Refactor Sized_relobj_file::do_relocate_sections.
[external/binutils.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2017 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80   static const int BYTES_PER_INSN;
81
82   // Zero register encoding - 31.
83   static const unsigned int AARCH64_ZR;
84
85   static unsigned int
86   aarch64_bit(Insntype insn, int pos)
87   { return ((1 << pos)  & insn) >> pos; }
88
89   static unsigned int
90   aarch64_bits(Insntype insn, int pos, int l)
91   { return (insn >> pos) & ((1 << l) - 1); }
92
93   // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94   // the name defined in armv8 insn manual C3.5.9.
95   static unsigned int
96   aarch64_op31(Insntype insn)
97   { return aarch64_bits(insn, 21, 3); }
98
99   // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100   // third source register. See armv8 insn manual C3.5.9.
101   static unsigned int
102   aarch64_ra(Insntype insn)
103   { return aarch64_bits(insn, 10, 5); }
104
105   static bool
106   is_adr(const Insntype insn)
107   { return (insn & 0x9F000000) == 0x10000000; }
108
109   static bool
110   is_adrp(const Insntype insn)
111   { return (insn & 0x9F000000) == 0x90000000; }
112
113   static unsigned int
114   aarch64_rm(const Insntype insn)
115   { return aarch64_bits(insn, 16, 5); }
116
117   static unsigned int
118   aarch64_rn(const Insntype insn)
119   { return aarch64_bits(insn, 5, 5); }
120
121   static unsigned int
122   aarch64_rd(const Insntype insn)
123   { return aarch64_bits(insn, 0, 5); }
124
125   static unsigned int
126   aarch64_rt(const Insntype insn)
127   { return aarch64_bits(insn, 0, 5); }
128
129   static unsigned int
130   aarch64_rt2(const Insntype insn)
131   { return aarch64_bits(insn, 10, 5); }
132
133   // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
134   static Insntype
135   aarch64_adr_encode_imm(Insntype adr, int imm21)
136   {
137     gold_assert(is_adr(adr));
138     gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
139     const int mask19 = (1 << 19) - 1;
140     const int mask2 = 3;
141     adr &= ~((mask19 << 5) | (mask2 << 29));
142     adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
143     return adr;
144   }
145
146   // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
147   // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
148   // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
149   static int64_t
150   aarch64_adrp_decode_imm(const Insntype adrp)
151   {
152     const int mask19 = (1 << 19) - 1;
153     const int mask2 = 3;
154     gold_assert(is_adrp(adrp));
155     // 21-bit imm encoded in adrp.
156     uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
157     // Retrieve msb of 21-bit-signed imm for sign extension.
158     uint64_t msbt = (imm >> 20) & 1;
159     // Real value is imm multiplied by 4k. Value now has 33-bit information.
160     int64_t value = imm << 12;
161     // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
162     // with value.
163     return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
164   }
165
166   static bool
167   aarch64_b(const Insntype insn)
168   { return (insn & 0xFC000000) == 0x14000000; }
169
170   static bool
171   aarch64_bl(const Insntype insn)
172   { return (insn & 0xFC000000) == 0x94000000; }
173
174   static bool
175   aarch64_blr(const Insntype insn)
176   { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
177
178   static bool
179   aarch64_br(const Insntype insn)
180   { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
181
182   // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
183   // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
184   static bool
185   aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
186
187   static bool
188   aarch64_ldst(Insntype insn)
189   { return (insn & 0x0a000000) == 0x08000000; }
190
191   static bool
192   aarch64_ldst_ex(Insntype insn)
193   { return (insn & 0x3f000000) == 0x08000000; }
194
195   static bool
196   aarch64_ldst_pcrel(Insntype insn)
197   { return (insn & 0x3b000000) == 0x18000000; }
198
199   static bool
200   aarch64_ldst_nap(Insntype insn)
201   { return (insn & 0x3b800000) == 0x28000000; }
202
203   static bool
204   aarch64_ldstp_pi(Insntype insn)
205   { return (insn & 0x3b800000) == 0x28800000; }
206
207   static bool
208   aarch64_ldstp_o(Insntype insn)
209   { return (insn & 0x3b800000) == 0x29000000; }
210
211   static bool
212   aarch64_ldstp_pre(Insntype insn)
213   { return (insn & 0x3b800000) == 0x29800000; }
214
215   static bool
216   aarch64_ldst_ui(Insntype insn)
217   { return (insn & 0x3b200c00) == 0x38000000; }
218
219   static bool
220   aarch64_ldst_piimm(Insntype insn)
221   { return (insn & 0x3b200c00) == 0x38000400; }
222
223   static bool
224   aarch64_ldst_u(Insntype insn)
225   { return (insn & 0x3b200c00) == 0x38000800; }
226
227   static bool
228   aarch64_ldst_preimm(Insntype insn)
229   { return (insn & 0x3b200c00) == 0x38000c00; }
230
231   static bool
232   aarch64_ldst_ro(Insntype insn)
233   { return (insn & 0x3b200c00) == 0x38200800; }
234
235   static bool
236   aarch64_ldst_uimm(Insntype insn)
237   { return (insn & 0x3b000000) == 0x39000000; }
238
239   static bool
240   aarch64_ldst_simd_m(Insntype insn)
241   { return (insn & 0xbfbf0000) == 0x0c000000; }
242
243   static bool
244   aarch64_ldst_simd_m_pi(Insntype insn)
245   { return (insn & 0xbfa00000) == 0x0c800000; }
246
247   static bool
248   aarch64_ldst_simd_s(Insntype insn)
249   { return (insn & 0xbf9f0000) == 0x0d000000; }
250
251   static bool
252   aarch64_ldst_simd_s_pi(Insntype insn)
253   { return (insn & 0xbf800000) == 0x0d800000; }
254
255   // Classify an INSN if it is indeed a load/store. Return true if INSN is a
256   // LD/ST instruction otherwise return false. For scalar LD/ST instructions
257   // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
258   // instructions PAIR is TRUE, RT and RT2 are returned.
259   static bool
260   aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
261                    bool *pair, bool *load)
262   {
263     uint32_t opcode;
264     unsigned int r;
265     uint32_t opc = 0;
266     uint32_t v = 0;
267     uint32_t opc_v = 0;
268
269     /* Bail out quickly if INSN doesn't fall into the the load-store
270        encoding space.  */
271     if (!aarch64_ldst (insn))
272       return false;
273
274     *pair = false;
275     *load = false;
276     if (aarch64_ldst_ex (insn))
277       {
278         *rt = aarch64_rt (insn);
279         *rt2 = *rt;
280         if (aarch64_bit (insn, 21) == 1)
281           {
282             *pair = true;
283             *rt2 = aarch64_rt2 (insn);
284           }
285         *load = aarch64_ld (insn);
286         return true;
287       }
288     else if (aarch64_ldst_nap (insn)
289              || aarch64_ldstp_pi (insn)
290              || aarch64_ldstp_o (insn)
291              || aarch64_ldstp_pre (insn))
292       {
293         *pair = true;
294         *rt = aarch64_rt (insn);
295         *rt2 = aarch64_rt2 (insn);
296         *load = aarch64_ld (insn);
297         return true;
298       }
299     else if (aarch64_ldst_pcrel (insn)
300              || aarch64_ldst_ui (insn)
301              || aarch64_ldst_piimm (insn)
302              || aarch64_ldst_u (insn)
303              || aarch64_ldst_preimm (insn)
304              || aarch64_ldst_ro (insn)
305              || aarch64_ldst_uimm (insn))
306       {
307         *rt = aarch64_rt (insn);
308         *rt2 = *rt;
309         if (aarch64_ldst_pcrel (insn))
310           *load = true;
311         opc = aarch64_bits (insn, 22, 2);
312         v = aarch64_bit (insn, 26);
313         opc_v = opc | (v << 2);
314         *load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
315                   || opc_v == 5 || opc_v == 7);
316         return true;
317       }
318     else if (aarch64_ldst_simd_m (insn)
319              || aarch64_ldst_simd_m_pi (insn))
320       {
321         *rt = aarch64_rt (insn);
322         *load = aarch64_bit (insn, 22);
323         opcode = (insn >> 12) & 0xf;
324         switch (opcode)
325           {
326           case 0:
327           case 2:
328             *rt2 = *rt + 3;
329             break;
330
331           case 4:
332           case 6:
333             *rt2 = *rt + 2;
334             break;
335
336           case 7:
337             *rt2 = *rt;
338             break;
339
340           case 8:
341           case 10:
342             *rt2 = *rt + 1;
343             break;
344
345           default:
346             return false;
347           }
348         return true;
349       }
350     else if (aarch64_ldst_simd_s (insn)
351              || aarch64_ldst_simd_s_pi (insn))
352       {
353         *rt = aarch64_rt (insn);
354         r = (insn >> 21) & 1;
355         *load = aarch64_bit (insn, 22);
356         opcode = (insn >> 13) & 0x7;
357         switch (opcode)
358           {
359           case 0:
360           case 2:
361           case 4:
362             *rt2 = *rt + r;
363             break;
364
365           case 1:
366           case 3:
367           case 5:
368             *rt2 = *rt + (r == 0 ? 2 : 3);
369             break;
370
371           case 6:
372             *rt2 = *rt + r;
373             break;
374
375           case 7:
376             *rt2 = *rt + (r == 0 ? 2 : 3);
377             break;
378
379           default:
380             return false;
381           }
382         return true;
383       }
384     return false;
385   }  // End of "aarch64_mem_op_p".
386
387   // Return true if INSN is mac insn.
388   static bool
389   aarch64_mac(Insntype insn)
390   { return (insn & 0xff000000) == 0x9b000000; }
391
392   // Return true if INSN is multiply-accumulate.
393   // (This is similar to implementaton in elfnn-aarch64.c.)
394   static bool
395   aarch64_mlxl(Insntype insn)
396   {
397     uint32_t op31 = aarch64_op31(insn);
398     if (aarch64_mac(insn)
399         && (op31 == 0 || op31 == 1 || op31 == 5)
400         /* Exclude MUL instructions which are encoded as a multiple-accumulate
401            with RA = XZR.  */
402         && aarch64_ra(insn) != AARCH64_ZR)
403       {
404         return true;
405       }
406     return false;
407   }
408 };  // End of "AArch64_insn_utilities".
409
410
411 // Insn length in byte.
412
413 template<bool big_endian>
414 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
415
416
417 // Zero register encoding - 31.
418
419 template<bool big_endian>
420 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
421
422
423 // Output_data_got_aarch64 class.
424
425 template<int size, bool big_endian>
426 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
427 {
428  public:
429   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
430   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
431     : Output_data_got<size, big_endian>(),
432       symbol_table_(symtab), layout_(layout)
433   { }
434
435   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
436   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
437   // applied in a static link.
438   void
439   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
440   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
441
442
443   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
444   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
445   // relocation that needs to be applied in a static link.
446   void
447   add_static_reloc(unsigned int got_offset, unsigned int r_type,
448                    Sized_relobj_file<size, big_endian>* relobj,
449                    unsigned int index)
450   {
451     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
452                                                 index));
453   }
454
455
456  protected:
457   // Write out the GOT table.
458   void
459   do_write(Output_file* of) {
460     // The first entry in the GOT is the address of the .dynamic section.
461     gold_assert(this->data_size() >= size / 8);
462     Output_section* dynamic = this->layout_->dynamic_section();
463     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
464     this->replace_constant(0, dynamic_addr);
465     Output_data_got<size, big_endian>::do_write(of);
466
467     // Handling static relocs
468     if (this->static_relocs_.empty())
469       return;
470
471     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
472
473     gold_assert(parameters->doing_static_link());
474     const off_t offset = this->offset();
475     const section_size_type oview_size =
476       convert_to_section_size_type(this->data_size());
477     unsigned char* const oview = of->get_output_view(offset, oview_size);
478
479     Output_segment* tls_segment = this->layout_->tls_segment();
480     gold_assert(tls_segment != NULL);
481
482     AArch64_address aligned_tcb_address =
483       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
484                     tls_segment->maximum_alignment());
485
486     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
487       {
488         Static_reloc& reloc(this->static_relocs_[i]);
489         AArch64_address value;
490
491         if (!reloc.symbol_is_global())
492           {
493             Sized_relobj_file<size, big_endian>* object = reloc.relobj();
494             const Symbol_value<size>* psymval =
495               reloc.relobj()->local_symbol(reloc.index());
496
497             // We are doing static linking.  Issue an error and skip this
498             // relocation if the symbol is undefined or in a discarded_section.
499             bool is_ordinary;
500             unsigned int shndx = psymval->input_shndx(&is_ordinary);
501             if ((shndx == elfcpp::SHN_UNDEF)
502                 || (is_ordinary
503                     && shndx != elfcpp::SHN_UNDEF
504                     && !object->is_section_included(shndx)
505                     && !this->symbol_table_->is_section_folded(object, shndx)))
506               {
507                 gold_error(_("undefined or discarded local symbol %u from "
508                              " object %s in GOT"),
509                            reloc.index(), reloc.relobj()->name().c_str());
510                 continue;
511               }
512             value = psymval->value(object, 0);
513           }
514         else
515           {
516             const Symbol* gsym = reloc.symbol();
517             gold_assert(gsym != NULL);
518             if (gsym->is_forwarder())
519               gsym = this->symbol_table_->resolve_forwards(gsym);
520
521             // We are doing static linking.  Issue an error and skip this
522             // relocation if the symbol is undefined or in a discarded_section
523             // unless it is a weakly_undefined symbol.
524             if ((gsym->is_defined_in_discarded_section()
525                  || gsym->is_undefined())
526                 && !gsym->is_weak_undefined())
527               {
528                 gold_error(_("undefined or discarded symbol %s in GOT"),
529                            gsym->name());
530                 continue;
531               }
532
533             if (!gsym->is_weak_undefined())
534               {
535                 const Sized_symbol<size>* sym =
536                   static_cast<const Sized_symbol<size>*>(gsym);
537                 value = sym->value();
538               }
539             else
540               value = 0;
541           }
542
543         unsigned got_offset = reloc.got_offset();
544         gold_assert(got_offset < oview_size);
545
546         typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
547         Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
548         Valtype x;
549         switch (reloc.r_type())
550           {
551           case elfcpp::R_AARCH64_TLS_DTPREL64:
552             x = value;
553             break;
554           case elfcpp::R_AARCH64_TLS_TPREL64:
555             x = value + aligned_tcb_address;
556             break;
557           default:
558             gold_unreachable();
559           }
560         elfcpp::Swap<size, big_endian>::writeval(wv, x);
561       }
562
563     of->write_output_view(offset, oview_size, oview);
564   }
565
566  private:
567   // Symbol table of the output object.
568   Symbol_table* symbol_table_;
569   // A pointer to the Layout class, so that we can find the .dynamic
570   // section when we write out the GOT section.
571   Layout* layout_;
572
573   // This class represent dynamic relocations that need to be applied by
574   // gold because we are using TLS relocations in a static link.
575   class Static_reloc
576   {
577    public:
578     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
579       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
580     { this->u_.global.symbol = gsym; }
581
582     Static_reloc(unsigned int got_offset, unsigned int r_type,
583           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
584       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
585     {
586       this->u_.local.relobj = relobj;
587       this->u_.local.index = index;
588     }
589
590     // Return the GOT offset.
591     unsigned int
592     got_offset() const
593     { return this->got_offset_; }
594
595     // Relocation type.
596     unsigned int
597     r_type() const
598     { return this->r_type_; }
599
600     // Whether the symbol is global or not.
601     bool
602     symbol_is_global() const
603     { return this->symbol_is_global_; }
604
605     // For a relocation against a global symbol, the global symbol.
606     Symbol*
607     symbol() const
608     {
609       gold_assert(this->symbol_is_global_);
610       return this->u_.global.symbol;
611     }
612
613     // For a relocation against a local symbol, the defining object.
614     Sized_relobj_file<size, big_endian>*
615     relobj() const
616     {
617       gold_assert(!this->symbol_is_global_);
618       return this->u_.local.relobj;
619     }
620
621     // For a relocation against a local symbol, the local symbol index.
622     unsigned int
623     index() const
624     {
625       gold_assert(!this->symbol_is_global_);
626       return this->u_.local.index;
627     }
628
629    private:
630     // GOT offset of the entry to which this relocation is applied.
631     unsigned int got_offset_;
632     // Type of relocation.
633     unsigned int r_type_;
634     // Whether this relocation is against a global symbol.
635     bool symbol_is_global_;
636     // A global or local symbol.
637     union
638     {
639       struct
640       {
641         // For a global symbol, the symbol itself.
642         Symbol* symbol;
643       } global;
644       struct
645       {
646         // For a local symbol, the object defining the symbol.
647         Sized_relobj_file<size, big_endian>* relobj;
648         // For a local symbol, the symbol index.
649         unsigned int index;
650       } local;
651     } u_;
652   };  // End of inner class Static_reloc
653
654   std::vector<Static_reloc> static_relocs_;
655 };  // End of Output_data_got_aarch64
656
657
658 template<int size, bool big_endian>
659 class AArch64_input_section;
660
661
662 template<int size, bool big_endian>
663 class AArch64_output_section;
664
665
666 template<int size, bool big_endian>
667 class AArch64_relobj;
668
669
670 // Stub type enum constants.
671
672 enum
673 {
674   ST_NONE = 0,
675
676   // Using adrp/add pair, 4 insns (including alignment) without mem access,
677   // the fastest stub. This has a limited jump distance, which is tested by
678   // aarch64_valid_for_adrp_p.
679   ST_ADRP_BRANCH = 1,
680
681   // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
682   // unlimited in jump distance.
683   ST_LONG_BRANCH_ABS = 2,
684
685   // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
686   // mem access, slowest one. Only used in position independent executables.
687   ST_LONG_BRANCH_PCREL = 3,
688
689   // Stub for erratum 843419 handling.
690   ST_E_843419 = 4,
691
692   // Stub for erratum 835769 handling.
693   ST_E_835769 = 5,
694
695   // Number of total stub types.
696   ST_NUMBER = 6
697 };
698
699
700 // Struct that wraps insns for a particular stub. All stub templates are
701 // created/initialized as constants by Stub_template_repertoire.
702
703 template<bool big_endian>
704 struct Stub_template
705 {
706   const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
707   const int insn_num;
708 };
709
710
711 // Simple singleton class that creates/initializes/stores all types of stub
712 // templates.
713
714 template<bool big_endian>
715 class Stub_template_repertoire
716 {
717 public:
718   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
719
720   // Single static method to get stub template for a given stub type.
721   static const Stub_template<big_endian>*
722   get_stub_template(int type)
723   {
724     static Stub_template_repertoire<big_endian> singleton;
725     return singleton.stub_templates_[type];
726   }
727
728 private:
729   // Constructor - creates/initializes all stub templates.
730   Stub_template_repertoire();
731   ~Stub_template_repertoire()
732   { }
733
734   // Disallowing copy ctor and copy assignment operator.
735   Stub_template_repertoire(Stub_template_repertoire&);
736   Stub_template_repertoire& operator=(Stub_template_repertoire&);
737
738   // Data that stores all insn templates.
739   const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
740 };  // End of "class Stub_template_repertoire".
741
742
743 // Constructor - creates/initilizes all stub templates.
744
745 template<bool big_endian>
746 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
747 {
748   // Insn array definitions.
749   const static Insntype ST_NONE_INSNS[] = {};
750
751   const static Insntype ST_ADRP_BRANCH_INSNS[] =
752     {
753       0x90000010,       /*      adrp    ip0, X             */
754                         /*        ADR_PREL_PG_HI21(X)      */
755       0x91000210,       /*      add     ip0, ip0, :lo12:X  */
756                         /*        ADD_ABS_LO12_NC(X)       */
757       0xd61f0200,       /*      br      ip0                */
758       0x00000000,       /*      alignment padding          */
759     };
760
761   const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
762     {
763       0x58000050,       /*      ldr   ip0, 0x8             */
764       0xd61f0200,       /*      br    ip0                  */
765       0x00000000,       /*      address field              */
766       0x00000000,       /*      address fields             */
767     };
768
769   const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
770     {
771       0x58000090,       /*      ldr   ip0, 0x10            */
772       0x10000011,       /*      adr   ip1, #0              */
773       0x8b110210,       /*      add   ip0, ip0, ip1        */
774       0xd61f0200,       /*      br    ip0                  */
775       0x00000000,       /*      address field              */
776       0x00000000,       /*      address field              */
777       0x00000000,       /*      alignment padding          */
778       0x00000000,       /*      alignment padding          */
779     };
780
781   const static Insntype ST_E_843419_INSNS[] =
782     {
783       0x00000000,    /* Placeholder for erratum insn. */
784       0x14000000,    /* b <label> */
785     };
786
787   // ST_E_835769 has the same stub template as ST_E_843419.
788   const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
789
790 #define install_insn_template(T) \
791   const static Stub_template<big_endian> template_##T = {  \
792     T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
793   this->stub_templates_[T] = &template_##T
794
795   install_insn_template(ST_NONE);
796   install_insn_template(ST_ADRP_BRANCH);
797   install_insn_template(ST_LONG_BRANCH_ABS);
798   install_insn_template(ST_LONG_BRANCH_PCREL);
799   install_insn_template(ST_E_843419);
800   install_insn_template(ST_E_835769);
801
802 #undef install_insn_template
803 }
804
805
806 // Base class for stubs.
807
808 template<int size, bool big_endian>
809 class Stub_base
810 {
811 public:
812   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
813   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
814
815   static const AArch64_address invalid_address =
816     static_cast<AArch64_address>(-1);
817
818   static const section_offset_type invalid_offset =
819     static_cast<section_offset_type>(-1);
820
821   Stub_base(int type)
822     : destination_address_(invalid_address),
823       offset_(invalid_offset),
824       type_(type)
825   {}
826
827   ~Stub_base()
828   {}
829
830   // Get stub type.
831   int
832   type() const
833   { return this->type_; }
834
835   // Get stub template that provides stub insn information.
836   const Stub_template<big_endian>*
837   stub_template() const
838   {
839     return Stub_template_repertoire<big_endian>::
840       get_stub_template(this->type());
841   }
842
843   // Get destination address.
844   AArch64_address
845   destination_address() const
846   {
847     gold_assert(this->destination_address_ != this->invalid_address);
848     return this->destination_address_;
849   }
850
851   // Set destination address.
852   void
853   set_destination_address(AArch64_address address)
854   {
855     gold_assert(address != this->invalid_address);
856     this->destination_address_ = address;
857   }
858
859   // Reset the destination address.
860   void
861   reset_destination_address()
862   { this->destination_address_ = this->invalid_address; }
863
864   // Get offset of code stub. For Reloc_stub, it is the offset from the
865   // beginning of its containing stub table; for Erratum_stub, it is the offset
866   // from the end of reloc_stubs.
867   section_offset_type
868   offset() const
869   {
870     gold_assert(this->offset_ != this->invalid_offset);
871     return this->offset_;
872   }
873
874   // Set stub offset.
875   void
876   set_offset(section_offset_type offset)
877   { this->offset_ = offset; }
878
879   // Return the stub insn.
880   const Insntype*
881   insns() const
882   { return this->stub_template()->insns; }
883
884   // Return num of stub insns.
885   unsigned int
886   insn_num() const
887   { return this->stub_template()->insn_num; }
888
889   // Get size of the stub.
890   int
891   stub_size() const
892   {
893     return this->insn_num() *
894       AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
895   }
896
897   // Write stub to output file.
898   void
899   write(unsigned char* view, section_size_type view_size)
900   { this->do_write(view, view_size); }
901
902 protected:
903   // Abstract method to be implemented by sub-classes.
904   virtual void
905   do_write(unsigned char*, section_size_type) = 0;
906
907 private:
908   // The last insn of a stub is a jump to destination insn. This field records
909   // the destination address.
910   AArch64_address destination_address_;
911   // The stub offset. Note this has difference interpretations between an
912   // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
913   // beginning of the containing stub_table, whereas for Erratum_stub, this is
914   // the offset from the end of reloc_stubs.
915   section_offset_type offset_;
916   // Stub type.
917   const int type_;
918 };  // End of "Stub_base".
919
920
921 // Erratum stub class. An erratum stub differs from a reloc stub in that for
922 // each erratum occurrence, we generate an erratum stub. We never share erratum
923 // stubs, whereas for reloc stubs, different branches insns share a single reloc
924 // stub as long as the branch targets are the same. (More to the point, reloc
925 // stubs can be shared because they're used to reach a specific target, whereas
926 // erratum stubs branch back to the original control flow.)
927
928 template<int size, bool big_endian>
929 class Erratum_stub : public Stub_base<size, big_endian>
930 {
931 public:
932   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
933   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
934   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
935   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
936
937   static const int STUB_ADDR_ALIGN;
938
939   static const Insntype invalid_insn = static_cast<Insntype>(-1);
940
941   Erratum_stub(The_aarch64_relobj* relobj, int type,
942                unsigned shndx, unsigned int sh_offset)
943     : Stub_base<size, big_endian>(type), relobj_(relobj),
944       shndx_(shndx), sh_offset_(sh_offset),
945       erratum_insn_(invalid_insn),
946       erratum_address_(this->invalid_address)
947   {}
948
949   ~Erratum_stub() {}
950
951   // Return the object that contains the erratum.
952   The_aarch64_relobj*
953   relobj()
954   { return this->relobj_; }
955
956   // Get section index of the erratum.
957   unsigned int
958   shndx() const
959   { return this->shndx_; }
960
961   // Get section offset of the erratum.
962   unsigned int
963   sh_offset() const
964   { return this->sh_offset_; }
965
966   // Get the erratum insn. This is the insn located at erratum_insn_address.
967   Insntype
968   erratum_insn() const
969   {
970     gold_assert(this->erratum_insn_ != this->invalid_insn);
971     return this->erratum_insn_;
972   }
973
974   // Set the insn that the erratum happens to.
975   void
976   set_erratum_insn(Insntype insn)
977   { this->erratum_insn_ = insn; }
978
979   // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
980   // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
981   // is no longer the one we want to write out to the stub, update erratum_insn_
982   // with relocated version. Also note that in this case xn must not be "PC", so
983   // it is safe to move the erratum insn from the origin place to the stub. For
984   // 835769, the erratum insn is multiply-accumulate insn, which could not be a
985   // relocation spot (assertion added though).
986   void
987   update_erratum_insn(Insntype insn)
988   {
989     gold_assert(this->erratum_insn_ != this->invalid_insn);
990     switch (this->type())
991       {
992       case ST_E_843419:
993         gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
994         gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
995         gold_assert(Insn_utilities::aarch64_rd(insn) ==
996                     Insn_utilities::aarch64_rd(this->erratum_insn()));
997         gold_assert(Insn_utilities::aarch64_rn(insn) ==
998                     Insn_utilities::aarch64_rn(this->erratum_insn()));
999         // Update plain ld/st insn with relocated insn.
1000         this->erratum_insn_ = insn;
1001         break;
1002       case ST_E_835769:
1003         gold_assert(insn == this->erratum_insn());
1004         break;
1005       default:
1006         gold_unreachable();
1007       }
1008   }
1009
1010
1011   // Return the address where an erratum must be done.
1012   AArch64_address
1013   erratum_address() const
1014   {
1015     gold_assert(this->erratum_address_ != this->invalid_address);
1016     return this->erratum_address_;
1017   }
1018
1019   // Set the address where an erratum must be done.
1020   void
1021   set_erratum_address(AArch64_address addr)
1022   { this->erratum_address_ = addr; }
1023
1024   // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1025   // sh_offset). We do not include 'type' in the calculation, because there is
1026   // at most one stub type at (obj, shndx, sh_offset).
1027   bool
1028   operator<(const Erratum_stub<size, big_endian>& k) const
1029   {
1030     if (this == &k)
1031       return false;
1032     // We group stubs by relobj.
1033     if (this->relobj_ != k.relobj_)
1034       return this->relobj_ < k.relobj_;
1035     // Then by section index.
1036     if (this->shndx_ != k.shndx_)
1037       return this->shndx_ < k.shndx_;
1038     // Lastly by section offset.
1039     return this->sh_offset_ < k.sh_offset_;
1040   }
1041
1042 protected:
1043   virtual void
1044   do_write(unsigned char*, section_size_type);
1045
1046 private:
1047   // The object that needs to be fixed.
1048   The_aarch64_relobj* relobj_;
1049   // The shndx in the object that needs to be fixed.
1050   const unsigned int shndx_;
1051   // The section offset in the obejct that needs to be fixed.
1052   const unsigned int sh_offset_;
1053   // The insn to be fixed.
1054   Insntype erratum_insn_;
1055   // The address of the above insn.
1056   AArch64_address erratum_address_;
1057 };  // End of "Erratum_stub".
1058
1059
1060 // Erratum sub class to wrap additional info needed by 843419.  In fixing this
1061 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1062 // adrp's code position (two or three insns before erratum insn itself).
1063
1064 template<int size, bool big_endian>
1065 class E843419_stub : public Erratum_stub<size, big_endian>
1066 {
1067 public:
1068   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1069
1070   E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1071                       unsigned int shndx, unsigned int sh_offset,
1072                       unsigned int adrp_sh_offset)
1073     : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1074       adrp_sh_offset_(adrp_sh_offset)
1075   {}
1076
1077   unsigned int
1078   adrp_sh_offset() const
1079   { return this->adrp_sh_offset_; }
1080
1081 private:
1082   // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1083   // can can obtain it from its parent.)
1084   const unsigned int adrp_sh_offset_;
1085 };
1086
1087
1088 template<int size, bool big_endian>
1089 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1090
1091 // Comparator used in set definition.
1092 template<int size, bool big_endian>
1093 struct Erratum_stub_less
1094 {
1095   bool
1096   operator()(const Erratum_stub<size, big_endian>* s1,
1097              const Erratum_stub<size, big_endian>* s2) const
1098   { return *s1 < *s2; }
1099 };
1100
1101 // Erratum_stub implementation for writing stub to output file.
1102
1103 template<int size, bool big_endian>
1104 void
1105 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1106 {
1107   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1108   const Insntype* insns = this->insns();
1109   uint32_t num_insns = this->insn_num();
1110   Insntype* ip = reinterpret_cast<Insntype*>(view);
1111   // For current implemented erratum 843419 and 835769, the first insn in the
1112   // stub is always a copy of the problematic insn (in 843419, the mem access
1113   // insn, in 835769, the mac insn), followed by a jump-back.
1114   elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1115   for (uint32_t i = 1; i < num_insns; ++i)
1116     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1117 }
1118
1119
1120 // Reloc stub class.
1121
1122 template<int size, bool big_endian>
1123 class Reloc_stub : public Stub_base<size, big_endian>
1124 {
1125  public:
1126   typedef Reloc_stub<size, big_endian> This;
1127   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1128
1129   // Branch range. This is used to calculate the section group size, as well as
1130   // determine whether a stub is needed.
1131   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1132   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1133
1134   // Constant used to determine if an offset fits in the adrp instruction
1135   // encoding.
1136   static const int MAX_ADRP_IMM = (1 << 20) - 1;
1137   static const int MIN_ADRP_IMM = -(1 << 20);
1138
1139   static const int BYTES_PER_INSN = 4;
1140   static const int STUB_ADDR_ALIGN;
1141
1142   // Determine whether the offset fits in the jump/branch instruction.
1143   static bool
1144   aarch64_valid_branch_offset_p(int64_t offset)
1145   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1146
1147   // Determine whether the offset fits in the adrp immediate field.
1148   static bool
1149   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1150   {
1151     typedef AArch64_relocate_functions<size, big_endian> Reloc;
1152     int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1153     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1154   }
1155
1156   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1157   // needed.
1158   static int
1159   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1160                       AArch64_address target);
1161
1162   Reloc_stub(int type)
1163     : Stub_base<size, big_endian>(type)
1164   { }
1165
1166   ~Reloc_stub()
1167   { }
1168
1169   // The key class used to index the stub instance in the stub table's stub map.
1170   class Key
1171   {
1172    public:
1173     Key(int type, const Symbol* symbol, const Relobj* relobj,
1174         unsigned int r_sym, int32_t addend)
1175       : type_(type), addend_(addend)
1176     {
1177       if (symbol != NULL)
1178         {
1179           this->r_sym_ = Reloc_stub::invalid_index;
1180           this->u_.symbol = symbol;
1181         }
1182       else
1183         {
1184           gold_assert(relobj != NULL && r_sym != invalid_index);
1185           this->r_sym_ = r_sym;
1186           this->u_.relobj = relobj;
1187         }
1188     }
1189
1190     ~Key()
1191     { }
1192
1193     // Return stub type.
1194     int
1195     type() const
1196     { return this->type_; }
1197
1198     // Return the local symbol index or invalid_index.
1199     unsigned int
1200     r_sym() const
1201     { return this->r_sym_; }
1202
1203     // Return the symbol if there is one.
1204     const Symbol*
1205     symbol() const
1206     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1207
1208     // Return the relobj if there is one.
1209     const Relobj*
1210     relobj() const
1211     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1212
1213     // Whether this equals to another key k.
1214     bool
1215     eq(const Key& k) const
1216     {
1217       return ((this->type_ == k.type_)
1218               && (this->r_sym_ == k.r_sym_)
1219               && ((this->r_sym_ != Reloc_stub::invalid_index)
1220                   ? (this->u_.relobj == k.u_.relobj)
1221                   : (this->u_.symbol == k.u_.symbol))
1222               && (this->addend_ == k.addend_));
1223     }
1224
1225     // Return a hash value.
1226     size_t
1227     hash_value() const
1228     {
1229       size_t name_hash_value = gold::string_hash<char>(
1230           (this->r_sym_ != Reloc_stub::invalid_index)
1231           ? this->u_.relobj->name().c_str()
1232           : this->u_.symbol->name());
1233       // We only have 4 stub types.
1234       size_t stub_type_hash_value = 0x03 & this->type_;
1235       return (name_hash_value
1236               ^ stub_type_hash_value
1237               ^ ((this->r_sym_ & 0x3fff) << 2)
1238               ^ ((this->addend_ & 0xffff) << 16));
1239     }
1240
1241     // Functors for STL associative containers.
1242     struct hash
1243     {
1244       size_t
1245       operator()(const Key& k) const
1246       { return k.hash_value(); }
1247     };
1248
1249     struct equal_to
1250     {
1251       bool
1252       operator()(const Key& k1, const Key& k2) const
1253       { return k1.eq(k2); }
1254     };
1255
1256    private:
1257     // Stub type.
1258     const int type_;
1259     // If this is a local symbol, this is the index in the defining object.
1260     // Otherwise, it is invalid_index for a global symbol.
1261     unsigned int r_sym_;
1262     // If r_sym_ is an invalid index, this points to a global symbol.
1263     // Otherwise, it points to a relobj.  We used the unsized and target
1264     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1265     // Arm_relobj, in order to avoid making the stub class a template
1266     // as most of the stub machinery is endianness-neutral.  However, it
1267     // may require a bit of casting done by users of this class.
1268     union
1269     {
1270       const Symbol* symbol;
1271       const Relobj* relobj;
1272     } u_;
1273     // Addend associated with a reloc.
1274     int32_t addend_;
1275   };  // End of inner class Reloc_stub::Key
1276
1277  protected:
1278   // This may be overridden in the child class.
1279   virtual void
1280   do_write(unsigned char*, section_size_type);
1281
1282  private:
1283   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1284 };  // End of Reloc_stub
1285
1286 template<int size, bool big_endian>
1287 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1288
1289 // Write data to output file.
1290
1291 template<int size, bool big_endian>
1292 void
1293 Reloc_stub<size, big_endian>::
1294 do_write(unsigned char* view, section_size_type)
1295 {
1296   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1297   const uint32_t* insns = this->insns();
1298   uint32_t num_insns = this->insn_num();
1299   Insntype* ip = reinterpret_cast<Insntype*>(view);
1300   for (uint32_t i = 0; i < num_insns; ++i)
1301     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1302 }
1303
1304
1305 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1306 // needed.
1307
1308 template<int size, bool big_endian>
1309 inline int
1310 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1311     unsigned int r_type, AArch64_address location, AArch64_address dest)
1312 {
1313   int64_t branch_offset = 0;
1314   switch(r_type)
1315     {
1316     case elfcpp::R_AARCH64_CALL26:
1317     case elfcpp::R_AARCH64_JUMP26:
1318       branch_offset = dest - location;
1319       break;
1320     default:
1321       gold_unreachable();
1322     }
1323
1324   if (aarch64_valid_branch_offset_p(branch_offset))
1325     return ST_NONE;
1326
1327   if (aarch64_valid_for_adrp_p(location, dest))
1328     return ST_ADRP_BRANCH;
1329
1330   // Always use PC-relative addressing in case of -shared or -pie.
1331   if (parameters->options().output_is_position_independent())
1332     return ST_LONG_BRANCH_PCREL;
1333
1334   // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1335   // But is only applicable to non-shared or non-pie.
1336   return ST_LONG_BRANCH_ABS;
1337 }
1338
1339 // A class to hold stubs for the ARM target.
1340
1341 template<int size, bool big_endian>
1342 class Stub_table : public Output_data
1343 {
1344  public:
1345   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1346   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1347   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1348   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1349   typedef Reloc_stub<size, big_endian> The_reloc_stub;
1350   typedef typename The_reloc_stub::Key The_reloc_stub_key;
1351   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1352   typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1353   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1354   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1355   typedef Stub_table<size, big_endian> The_stub_table;
1356   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1357                         The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1358                         Reloc_stub_map;
1359   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1360   typedef Relocate_info<size, big_endian> The_relocate_info;
1361
1362   typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1363   typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1364
1365   Stub_table(The_aarch64_input_section* owner)
1366     : Output_data(), owner_(owner), reloc_stubs_size_(0),
1367       erratum_stubs_size_(0), prev_data_size_(0)
1368   { }
1369
1370   ~Stub_table()
1371   { }
1372
1373   The_aarch64_input_section*
1374   owner() const
1375   { return owner_; }
1376
1377   // Whether this stub table is empty.
1378   bool
1379   empty() const
1380   { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1381
1382   // Return the current data size.
1383   off_t
1384   current_data_size() const
1385   { return this->current_data_size_for_child(); }
1386
1387   // Add a STUB using KEY.  The caller is responsible for avoiding addition
1388   // if a STUB with the same key has already been added.
1389   void
1390   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1391
1392   // Add an erratum stub into the erratum stub set. The set is ordered by
1393   // (relobj, shndx, sh_offset).
1394   void
1395   add_erratum_stub(The_erratum_stub* stub);
1396
1397   // Find if such erratum exists for any given (obj, shndx, sh_offset).
1398   The_erratum_stub*
1399   find_erratum_stub(The_aarch64_relobj* a64relobj,
1400                     unsigned int shndx, unsigned int sh_offset);
1401
1402   // Find all the erratums for a given input section. The return value is a pair
1403   // of iterators [begin, end).
1404   std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1405   find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1406                                        unsigned int shndx);
1407
1408   // Compute the erratum stub address.
1409   AArch64_address
1410   erratum_stub_address(The_erratum_stub* stub) const
1411   {
1412     AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1413                                       The_erratum_stub::STUB_ADDR_ALIGN);
1414     r += stub->offset();
1415     return r;
1416   }
1417
1418   // Finalize stubs. No-op here, just for completeness.
1419   void
1420   finalize_stubs()
1421   { }
1422
1423   // Look up a relocation stub using KEY. Return NULL if there is none.
1424   The_reloc_stub*
1425   find_reloc_stub(The_reloc_stub_key& key)
1426   {
1427     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1428     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1429   }
1430
1431   // Relocate stubs in this stub table.
1432   void
1433   relocate_stubs(const The_relocate_info*,
1434                  The_target_aarch64*,
1435                  Output_section*,
1436                  unsigned char*,
1437                  AArch64_address,
1438                  section_size_type);
1439
1440   // Update data size at the end of a relaxation pass.  Return true if data size
1441   // is different from that of the previous relaxation pass.
1442   bool
1443   update_data_size_changed_p()
1444   {
1445     // No addralign changed here.
1446     off_t s = align_address(this->reloc_stubs_size_,
1447                             The_erratum_stub::STUB_ADDR_ALIGN)
1448               + this->erratum_stubs_size_;
1449     bool changed = (s != this->prev_data_size_);
1450     this->prev_data_size_ = s;
1451     return changed;
1452   }
1453
1454  protected:
1455   // Write out section contents.
1456   void
1457   do_write(Output_file*);
1458
1459   // Return the required alignment.
1460   uint64_t
1461   do_addralign() const
1462   {
1463     return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1464                     The_erratum_stub::STUB_ADDR_ALIGN);
1465   }
1466
1467   // Reset address and file offset.
1468   void
1469   do_reset_address_and_file_offset()
1470   { this->set_current_data_size_for_child(this->prev_data_size_); }
1471
1472   // Set final data size.
1473   void
1474   set_final_data_size()
1475   { this->set_data_size(this->current_data_size()); }
1476
1477  private:
1478   // Relocate one stub.
1479   void
1480   relocate_stub(The_reloc_stub*,
1481                 const The_relocate_info*,
1482                 The_target_aarch64*,
1483                 Output_section*,
1484                 unsigned char*,
1485                 AArch64_address,
1486                 section_size_type);
1487
1488  private:
1489   // Owner of this stub table.
1490   The_aarch64_input_section* owner_;
1491   // The relocation stubs.
1492   Reloc_stub_map reloc_stubs_;
1493   // The erratum stubs.
1494   Erratum_stub_set erratum_stubs_;
1495   // Size of reloc stubs.
1496   off_t reloc_stubs_size_;
1497   // Size of erratum stubs.
1498   off_t erratum_stubs_size_;
1499   // data size of this in the previous pass.
1500   off_t prev_data_size_;
1501 };  // End of Stub_table
1502
1503
1504 // Add an erratum stub into the erratum stub set. The set is ordered by
1505 // (relobj, shndx, sh_offset).
1506
1507 template<int size, bool big_endian>
1508 void
1509 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1510 {
1511   std::pair<Erratum_stub_set_iter, bool> ret =
1512     this->erratum_stubs_.insert(stub);
1513   gold_assert(ret.second);
1514   this->erratum_stubs_size_ = align_address(
1515         this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1516   stub->set_offset(this->erratum_stubs_size_);
1517   this->erratum_stubs_size_ += stub->stub_size();
1518 }
1519
1520
1521 // Find if such erratum exists for given (obj, shndx, sh_offset).
1522
1523 template<int size, bool big_endian>
1524 Erratum_stub<size, big_endian>*
1525 Stub_table<size, big_endian>::find_erratum_stub(
1526     The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1527 {
1528   // A dummy object used as key to search in the set.
1529   The_erratum_stub key(a64relobj, ST_NONE,
1530                          shndx, sh_offset);
1531   Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1532   if (i != this->erratum_stubs_.end())
1533     {
1534         The_erratum_stub* stub(*i);
1535         gold_assert(stub->erratum_insn() != 0);
1536         return stub;
1537     }
1538   return NULL;
1539 }
1540
1541
1542 // Find all the errata for a given input section. The return value is a pair of
1543 // iterators [begin, end).
1544
1545 template<int size, bool big_endian>
1546 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1547           typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1548 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1549     The_aarch64_relobj* a64relobj, unsigned int shndx)
1550 {
1551   typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1552   Erratum_stub_set_iter start, end;
1553   The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1554   start = this->erratum_stubs_.lower_bound(&low_key);
1555   if (start == this->erratum_stubs_.end())
1556     return Result_pair(this->erratum_stubs_.end(),
1557                        this->erratum_stubs_.end());
1558   end = start;
1559   while (end != this->erratum_stubs_.end() &&
1560          (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1561     ++end;
1562   return Result_pair(start, end);
1563 }
1564
1565
1566 // Add a STUB using KEY.  The caller is responsible for avoiding addition
1567 // if a STUB with the same key has already been added.
1568
1569 template<int size, bool big_endian>
1570 void
1571 Stub_table<size, big_endian>::add_reloc_stub(
1572     The_reloc_stub* stub, const The_reloc_stub_key& key)
1573 {
1574   gold_assert(stub->type() == key.type());
1575   this->reloc_stubs_[key] = stub;
1576
1577   // Assign stub offset early.  We can do this because we never remove
1578   // reloc stubs and they are in the beginning of the stub table.
1579   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1580                                           The_reloc_stub::STUB_ADDR_ALIGN);
1581   stub->set_offset(this->reloc_stubs_size_);
1582   this->reloc_stubs_size_ += stub->stub_size();
1583 }
1584
1585
1586 // Relocate all stubs in this stub table.
1587
1588 template<int size, bool big_endian>
1589 void
1590 Stub_table<size, big_endian>::
1591 relocate_stubs(const The_relocate_info* relinfo,
1592                The_target_aarch64* target_aarch64,
1593                Output_section* output_section,
1594                unsigned char* view,
1595                AArch64_address address,
1596                section_size_type view_size)
1597 {
1598   // "view_size" is the total size of the stub_table.
1599   gold_assert(address == this->address() &&
1600               view_size == static_cast<section_size_type>(this->data_size()));
1601   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1602       p != this->reloc_stubs_.end(); ++p)
1603     relocate_stub(p->second, relinfo, target_aarch64, output_section,
1604                   view, address, view_size);
1605
1606   // Just for convenience.
1607   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1608
1609   // Now 'relocate' erratum stubs.
1610   for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1611       i != this->erratum_stubs_.end(); ++i)
1612     {
1613       AArch64_address stub_address = this->erratum_stub_address(*i);
1614       // The address of "b" in the stub that is to be "relocated".
1615       AArch64_address stub_b_insn_address;
1616       // Branch offset that is to be filled in "b" insn.
1617       int b_offset = 0;
1618       switch ((*i)->type())
1619         {
1620         case ST_E_843419:
1621         case ST_E_835769:
1622           // The 1st insn of the erratum could be a relocation spot,
1623           // in this case we need to fix it with
1624           // "(*i)->erratum_insn()".
1625           elfcpp::Swap<32, big_endian>::writeval(
1626               view + (stub_address - this->address()),
1627               (*i)->erratum_insn());
1628           // For the erratum, the 2nd insn is a b-insn to be patched
1629           // (relocated).
1630           stub_b_insn_address = stub_address + 1 * BPI;
1631           b_offset = (*i)->destination_address() - stub_b_insn_address;
1632           AArch64_relocate_functions<size, big_endian>::construct_b(
1633               view + (stub_b_insn_address - this->address()),
1634               ((unsigned int)(b_offset)) & 0xfffffff);
1635           break;
1636         default:
1637           gold_unreachable();
1638           break;
1639         }
1640     }
1641 }
1642
1643
1644 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
1645
1646 template<int size, bool big_endian>
1647 void
1648 Stub_table<size, big_endian>::
1649 relocate_stub(The_reloc_stub* stub,
1650               const The_relocate_info* relinfo,
1651               The_target_aarch64* target_aarch64,
1652               Output_section* output_section,
1653               unsigned char* view,
1654               AArch64_address address,
1655               section_size_type view_size)
1656 {
1657   // "offset" is the offset from the beginning of the stub_table.
1658   section_size_type offset = stub->offset();
1659   section_size_type stub_size = stub->stub_size();
1660   // "view_size" is the total size of the stub_table.
1661   gold_assert(offset + stub_size <= view_size);
1662
1663   target_aarch64->relocate_stub(stub, relinfo, output_section,
1664                                 view + offset, address + offset, view_size);
1665 }
1666
1667
1668 // Write out the stubs to file.
1669
1670 template<int size, bool big_endian>
1671 void
1672 Stub_table<size, big_endian>::do_write(Output_file* of)
1673 {
1674   off_t offset = this->offset();
1675   const section_size_type oview_size =
1676     convert_to_section_size_type(this->data_size());
1677   unsigned char* const oview = of->get_output_view(offset, oview_size);
1678
1679   // Write relocation stubs.
1680   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1681       p != this->reloc_stubs_.end(); ++p)
1682     {
1683       The_reloc_stub* stub = p->second;
1684       AArch64_address address = this->address() + stub->offset();
1685       gold_assert(address ==
1686                   align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1687       stub->write(oview + stub->offset(), stub->stub_size());
1688     }
1689
1690   // Write erratum stubs.
1691   unsigned int erratum_stub_start_offset =
1692     align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1693   for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1694        p != this->erratum_stubs_.end(); ++p)
1695     {
1696       The_erratum_stub* stub(*p);
1697       stub->write(oview + erratum_stub_start_offset + stub->offset(),
1698                   stub->stub_size());
1699     }
1700
1701   of->write_output_view(this->offset(), oview_size, oview);
1702 }
1703
1704
1705 // AArch64_relobj class.
1706
1707 template<int size, bool big_endian>
1708 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1709 {
1710  public:
1711   typedef AArch64_relobj<size, big_endian> This;
1712   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1713   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1714   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1715   typedef Stub_table<size, big_endian> The_stub_table;
1716   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1717   typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1718   typedef std::vector<The_stub_table*> Stub_table_list;
1719   static const AArch64_address invalid_address =
1720       static_cast<AArch64_address>(-1);
1721
1722   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1723                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1724     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1725       stub_tables_()
1726   { }
1727
1728   ~AArch64_relobj()
1729   { }
1730
1731   // Return the stub table of the SHNDX-th section if there is one.
1732   The_stub_table*
1733   stub_table(unsigned int shndx) const
1734   {
1735     gold_assert(shndx < this->stub_tables_.size());
1736     return this->stub_tables_[shndx];
1737   }
1738
1739   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1740   void
1741   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1742   {
1743     gold_assert(shndx < this->stub_tables_.size());
1744     this->stub_tables_[shndx] = stub_table;
1745   }
1746
1747   // Entrance to errata scanning.
1748   void
1749   scan_errata(unsigned int shndx,
1750               const elfcpp::Shdr<size, big_endian>&,
1751               Output_section*, const Symbol_table*,
1752               The_target_aarch64*);
1753
1754   // Scan all relocation sections for stub generation.
1755   void
1756   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1757                           const Layout*);
1758
1759   // Whether a section is a scannable text section.
1760   bool
1761   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1762                             const Output_section*, const Symbol_table*);
1763
1764   // Convert regular input section with index SHNDX to a relaxed section.
1765   void
1766   convert_input_section_to_relaxed_section(unsigned /* shndx */)
1767   {
1768     // The stubs have relocations and we need to process them after writing
1769     // out the stubs.  So relocation now must follow section write.
1770     this->set_relocs_must_follow_section_writes();
1771   }
1772
1773   // Structure for mapping symbol position.
1774   struct Mapping_symbol_position
1775   {
1776     Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1777       shndx_(shndx), offset_(offset)
1778     {}
1779
1780     // "<" comparator used in ordered_map container.
1781     bool
1782     operator<(const Mapping_symbol_position& p) const
1783     {
1784       return (this->shndx_ < p.shndx_
1785               || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1786     }
1787
1788     // Section index.
1789     unsigned int shndx_;
1790
1791     // Section offset.
1792     AArch64_address offset_;
1793   };
1794
1795   typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1796
1797  protected:
1798   // Post constructor setup.
1799   void
1800   do_setup()
1801   {
1802     // Call parent's setup method.
1803     Sized_relobj_file<size, big_endian>::do_setup();
1804
1805     // Initialize look-up tables.
1806     this->stub_tables_.resize(this->shnum());
1807   }
1808
1809   virtual void
1810   do_relocate_sections(
1811       const Symbol_table* symtab, const Layout* layout,
1812       const unsigned char* pshdrs, Output_file* of,
1813       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1814
1815   // Count local symbols and (optionally) record mapping info.
1816   virtual void
1817   do_count_local_symbols(Stringpool_template<char>*,
1818                          Stringpool_template<char>*);
1819
1820  private:
1821   // Fix all errata in the object.
1822   void
1823   fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1824
1825   // Try to fix erratum 843419 in an optimized way. Return true if patch is
1826   // applied.
1827   bool
1828   try_fix_erratum_843419_optimized(
1829       The_erratum_stub*,
1830       typename Sized_relobj_file<size, big_endian>::View_size&);
1831
1832   // Whether a section needs to be scanned for relocation stubs.
1833   bool
1834   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1835                                     const Relobj::Output_sections&,
1836                                     const Symbol_table*, const unsigned char*);
1837
1838   // List of stub tables.
1839   Stub_table_list stub_tables_;
1840
1841   // Mapping symbol information sorted by (section index, section_offset).
1842   Mapping_symbol_info mapping_symbol_info_;
1843 };  // End of AArch64_relobj
1844
1845
1846 // Override to record mapping symbol information.
1847 template<int size, bool big_endian>
1848 void
1849 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1850     Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1851 {
1852   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1853
1854   // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1855   // processing if not fixing erratum.
1856   if (!parameters->options().fix_cortex_a53_843419()
1857       && !parameters->options().fix_cortex_a53_835769())
1858     return;
1859
1860   const unsigned int loccount = this->local_symbol_count();
1861   if (loccount == 0)
1862     return;
1863
1864   // Read the symbol table section header.
1865   const unsigned int symtab_shndx = this->symtab_shndx();
1866   elfcpp::Shdr<size, big_endian>
1867       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1868   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1869
1870   // Read the local symbols.
1871   const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1872   gold_assert(loccount == symtabshdr.get_sh_info());
1873   off_t locsize = loccount * sym_size;
1874   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1875                                               locsize, true, true);
1876
1877   // For mapping symbol processing, we need to read the symbol names.
1878   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1879   if (strtab_shndx >= this->shnum())
1880     {
1881       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1882       return;
1883     }
1884
1885   elfcpp::Shdr<size, big_endian>
1886     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1887   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1888     {
1889       this->error(_("symbol table name section has wrong type: %u"),
1890                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
1891       return;
1892     }
1893
1894   const char* pnames =
1895     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1896                                                  strtabshdr.get_sh_size(),
1897                                                  false, false));
1898
1899   // Skip the first dummy symbol.
1900   psyms += sym_size;
1901   typename Sized_relobj_file<size, big_endian>::Local_values*
1902     plocal_values = this->local_values();
1903   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1904     {
1905       elfcpp::Sym<size, big_endian> sym(psyms);
1906       Symbol_value<size>& lv((*plocal_values)[i]);
1907       AArch64_address input_value = lv.input_value();
1908
1909       // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1910       // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1911       // symbols.
1912       // Mapping symbols could be one of the following 4 forms -
1913       //   a) $x
1914       //   b) $x.<any...>
1915       //   c) $d
1916       //   d) $d.<any...>
1917       const char* sym_name = pnames + sym.get_st_name();
1918       if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1919           && (sym_name[2] == '\0' || sym_name[2] == '.'))
1920         {
1921           bool is_ordinary;
1922           unsigned int input_shndx =
1923             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1924           gold_assert(is_ordinary);
1925
1926           Mapping_symbol_position msp(input_shndx, input_value);
1927           // Insert mapping_symbol_info into map whose ordering is defined by
1928           // (shndx, offset_within_section).
1929           this->mapping_symbol_info_[msp] = sym_name[1];
1930         }
1931    }
1932 }
1933
1934
1935 // Fix all errata in the object.
1936
1937 template<int size, bool big_endian>
1938 void
1939 AArch64_relobj<size, big_endian>::fix_errata(
1940     typename Sized_relobj_file<size, big_endian>::Views* pviews)
1941 {
1942   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1943   unsigned int shnum = this->shnum();
1944   for (unsigned int i = 1; i < shnum; ++i)
1945     {
1946       The_stub_table* stub_table = this->stub_table(i);
1947       if (!stub_table)
1948         continue;
1949       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1950         ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1951       Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1952       while (p != end)
1953         {
1954           The_erratum_stub* stub = *p;
1955           typename Sized_relobj_file<size, big_endian>::View_size&
1956             pview((*pviews)[i]);
1957
1958           // Double check data before fix.
1959           gold_assert(pview.address + stub->sh_offset()
1960                       == stub->erratum_address());
1961
1962           // Update previously recorded erratum insn with relocated
1963           // version.
1964           Insntype* ip =
1965             reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1966           Insntype insn_to_fix = ip[0];
1967           stub->update_erratum_insn(insn_to_fix);
1968
1969           // First try to see if erratum is 843419 and if it can be fixed
1970           // without using branch-to-stub.
1971           if (!try_fix_erratum_843419_optimized(stub, pview))
1972             {
1973               // Replace the erratum insn with a branch-to-stub.
1974               AArch64_address stub_address =
1975                 stub_table->erratum_stub_address(stub);
1976               unsigned int b_offset = stub_address - stub->erratum_address();
1977               AArch64_relocate_functions<size, big_endian>::construct_b(
1978                 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1979             }
1980           ++p;
1981         }
1982     }
1983 }
1984
1985
1986 // This is an optimization for 843419. This erratum requires the sequence begin
1987 // with 'adrp', when final value calculated by adrp fits in adr, we can just
1988 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
1989 // in this case, we do not delete the erratum stub (too late to do so), it is
1990 // merely generated without ever being called.)
1991
1992 template<int size, bool big_endian>
1993 bool
1994 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
1995     The_erratum_stub* stub,
1996     typename Sized_relobj_file<size, big_endian>::View_size& pview)
1997 {
1998   if (stub->type() != ST_E_843419)
1999     return false;
2000
2001   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2002   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2003   E843419_stub<size, big_endian>* e843419_stub =
2004     reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2005   AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2006   Insntype* adrp_view = reinterpret_cast<Insntype*>(
2007     pview.view + e843419_stub->adrp_sh_offset());
2008   Insntype adrp_insn = adrp_view[0];
2009   gold_assert(Insn_utilities::is_adrp(adrp_insn));
2010   // Get adrp 33-bit signed imm value.
2011   int64_t adrp_imm = Insn_utilities::
2012     aarch64_adrp_decode_imm(adrp_insn);
2013   // adrp - final value transferred to target register is calculated as:
2014   //     PC[11:0] = Zeros(12)
2015   //     adrp_dest_value = PC + adrp_imm;
2016   int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2017   // adr -final value transferred to target register is calucalted as:
2018   //     PC + adr_imm
2019   // So we have:
2020   //     PC + adr_imm = adrp_dest_value
2021   //   ==>
2022   //     adr_imm = adrp_dest_value - PC
2023   int64_t adr_imm = adrp_dest_value - pc;
2024   // Check if imm fits in adr (21-bit signed).
2025   if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2026     {
2027       // Convert 'adrp' into 'adr'.
2028       Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2029       adr_insn = Insn_utilities::
2030         aarch64_adr_encode_imm(adr_insn, adr_imm);
2031       elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2032       return true;
2033     }
2034   return false;
2035 }
2036
2037
2038 // Relocate sections.
2039
2040 template<int size, bool big_endian>
2041 void
2042 AArch64_relobj<size, big_endian>::do_relocate_sections(
2043     const Symbol_table* symtab, const Layout* layout,
2044     const unsigned char* pshdrs, Output_file* of,
2045     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2046 {
2047   // Relocate the section data.
2048   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2049                                1, this->shnum() - 1);
2050
2051   // We do not generate stubs if doing a relocatable link.
2052   if (parameters->options().relocatable())
2053     return;
2054
2055   if (parameters->options().fix_cortex_a53_843419()
2056       || parameters->options().fix_cortex_a53_835769())
2057     this->fix_errata(pviews);
2058
2059   Relocate_info<size, big_endian> relinfo;
2060   relinfo.symtab = symtab;
2061   relinfo.layout = layout;
2062   relinfo.object = this;
2063
2064   // Relocate stub tables.
2065   unsigned int shnum = this->shnum();
2066   The_target_aarch64* target = The_target_aarch64::current_target();
2067
2068   for (unsigned int i = 1; i < shnum; ++i)
2069     {
2070       The_aarch64_input_section* aarch64_input_section =
2071           target->find_aarch64_input_section(this, i);
2072       if (aarch64_input_section != NULL
2073           && aarch64_input_section->is_stub_table_owner()
2074           && !aarch64_input_section->stub_table()->empty())
2075         {
2076           Output_section* os = this->output_section(i);
2077           gold_assert(os != NULL);
2078
2079           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2080           relinfo.reloc_shdr = NULL;
2081           relinfo.data_shndx = i;
2082           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2083
2084           typename Sized_relobj_file<size, big_endian>::View_size&
2085               view_struct = (*pviews)[i];
2086           gold_assert(view_struct.view != NULL);
2087
2088           The_stub_table* stub_table = aarch64_input_section->stub_table();
2089           off_t offset = stub_table->address() - view_struct.address;
2090           unsigned char* view = view_struct.view + offset;
2091           AArch64_address address = stub_table->address();
2092           section_size_type view_size = stub_table->data_size();
2093           stub_table->relocate_stubs(&relinfo, target, os, view, address,
2094                                      view_size);
2095         }
2096     }
2097 }
2098
2099
2100 // Determine if an input section is scannable for stub processing.  SHDR is
2101 // the header of the section and SHNDX is the section index.  OS is the output
2102 // section for the input section and SYMTAB is the global symbol table used to
2103 // look up ICF information.
2104
2105 template<int size, bool big_endian>
2106 bool
2107 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2108     const elfcpp::Shdr<size, big_endian>& text_shdr,
2109     unsigned int text_shndx,
2110     const Output_section* os,
2111     const Symbol_table* symtab)
2112 {
2113   // Skip any empty sections, unallocated sections or sections whose
2114   // type are not SHT_PROGBITS.
2115   if (text_shdr.get_sh_size() == 0
2116       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2117       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2118     return false;
2119
2120   // Skip any discarded or ICF'ed sections.
2121   if (os == NULL || symtab->is_section_folded(this, text_shndx))
2122     return false;
2123
2124   // Skip exception frame.
2125   if (strcmp(os->name(), ".eh_frame") == 0)
2126     return false ;
2127
2128   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2129               os->find_relaxed_input_section(this, text_shndx) != NULL);
2130
2131   return true;
2132 }
2133
2134
2135 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2136 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2137
2138 template<int size, bool big_endian>
2139 bool
2140 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2141     const elfcpp::Shdr<size, big_endian>& shdr,
2142     const Relobj::Output_sections& out_sections,
2143     const Symbol_table* symtab,
2144     const unsigned char* pshdrs)
2145 {
2146   unsigned int sh_type = shdr.get_sh_type();
2147   if (sh_type != elfcpp::SHT_RELA)
2148     return false;
2149
2150   // Ignore empty section.
2151   off_t sh_size = shdr.get_sh_size();
2152   if (sh_size == 0)
2153     return false;
2154
2155   // Ignore reloc section with unexpected symbol table.  The
2156   // error will be reported in the final link.
2157   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2158     return false;
2159
2160   gold_assert(sh_type == elfcpp::SHT_RELA);
2161   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2162
2163   // Ignore reloc section with unexpected entsize or uneven size.
2164   // The error will be reported in the final link.
2165   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2166     return false;
2167
2168   // Ignore reloc section with bad info.  This error will be
2169   // reported in the final link.
2170   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2171   if (text_shndx >= this->shnum())
2172     return false;
2173
2174   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2175   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2176                                                  text_shndx * shdr_size);
2177   return this->text_section_is_scannable(text_shdr, text_shndx,
2178                                          out_sections[text_shndx], symtab);
2179 }
2180
2181
2182 // Scan section SHNDX for erratum 843419 and 835769.
2183
2184 template<int size, bool big_endian>
2185 void
2186 AArch64_relobj<size, big_endian>::scan_errata(
2187     unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2188     Output_section* os, const Symbol_table* symtab,
2189     The_target_aarch64* target)
2190 {
2191   if (shdr.get_sh_size() == 0
2192       || (shdr.get_sh_flags() &
2193           (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2194       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2195     return;
2196
2197   if (!os || symtab->is_section_folded(this, shndx)) return;
2198
2199   AArch64_address output_offset = this->get_output_section_offset(shndx);
2200   AArch64_address output_address;
2201   if (output_offset != invalid_address)
2202     output_address = os->address() + output_offset;
2203   else
2204     {
2205       const Output_relaxed_input_section* poris =
2206         os->find_relaxed_input_section(this, shndx);
2207       if (!poris) return;
2208       output_address = poris->address();
2209     }
2210
2211   section_size_type input_view_size = 0;
2212   const unsigned char* input_view =
2213     this->section_contents(shndx, &input_view_size, false);
2214
2215   Mapping_symbol_position section_start(shndx, 0);
2216   // Find the first mapping symbol record within section shndx.
2217   typename Mapping_symbol_info::const_iterator p =
2218     this->mapping_symbol_info_.lower_bound(section_start);
2219   while (p != this->mapping_symbol_info_.end() &&
2220          p->first.shndx_ == shndx)
2221     {
2222       typename Mapping_symbol_info::const_iterator prev = p;
2223       ++p;
2224       if (prev->second == 'x')
2225         {
2226           section_size_type span_start =
2227             convert_to_section_size_type(prev->first.offset_);
2228           section_size_type span_end;
2229           if (p != this->mapping_symbol_info_.end()
2230               && p->first.shndx_ == shndx)
2231             span_end = convert_to_section_size_type(p->first.offset_);
2232           else
2233             span_end = convert_to_section_size_type(shdr.get_sh_size());
2234
2235           // Here we do not share the scanning code of both errata. For 843419,
2236           // only the last few insns of each page are examined, which is fast,
2237           // whereas, for 835769, every insn pair needs to be checked.
2238
2239           if (parameters->options().fix_cortex_a53_843419())
2240             target->scan_erratum_843419_span(
2241               this, shndx, span_start, span_end,
2242               const_cast<unsigned char*>(input_view), output_address);
2243
2244           if (parameters->options().fix_cortex_a53_835769())
2245             target->scan_erratum_835769_span(
2246               this, shndx, span_start, span_end,
2247               const_cast<unsigned char*>(input_view), output_address);
2248         }
2249     }
2250 }
2251
2252
2253 // Scan relocations for stub generation.
2254
2255 template<int size, bool big_endian>
2256 void
2257 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2258     The_target_aarch64* target,
2259     const Symbol_table* symtab,
2260     const Layout* layout)
2261 {
2262   unsigned int shnum = this->shnum();
2263   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2264
2265   // Read the section headers.
2266   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2267                                                shnum * shdr_size,
2268                                                true, true);
2269
2270   // To speed up processing, we set up hash tables for fast lookup of
2271   // input offsets to output addresses.
2272   this->initialize_input_to_output_maps();
2273
2274   const Relobj::Output_sections& out_sections(this->output_sections());
2275
2276   Relocate_info<size, big_endian> relinfo;
2277   relinfo.symtab = symtab;
2278   relinfo.layout = layout;
2279   relinfo.object = this;
2280
2281   // Do relocation stubs scanning.
2282   const unsigned char* p = pshdrs + shdr_size;
2283   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2284     {
2285       const elfcpp::Shdr<size, big_endian> shdr(p);
2286       if (parameters->options().fix_cortex_a53_843419()
2287           || parameters->options().fix_cortex_a53_835769())
2288         scan_errata(i, shdr, out_sections[i], symtab, target);
2289       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2290                                                   pshdrs))
2291         {
2292           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2293           AArch64_address output_offset =
2294               this->get_output_section_offset(index);
2295           AArch64_address output_address;
2296           if (output_offset != invalid_address)
2297             {
2298               output_address = out_sections[index]->address() + output_offset;
2299             }
2300           else
2301             {
2302               // Currently this only happens for a relaxed section.
2303               const Output_relaxed_input_section* poris =
2304                   out_sections[index]->find_relaxed_input_section(this, index);
2305               gold_assert(poris != NULL);
2306               output_address = poris->address();
2307             }
2308
2309           // Get the relocations.
2310           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2311                                                         shdr.get_sh_size(),
2312                                                         true, false);
2313
2314           // Get the section contents.
2315           section_size_type input_view_size = 0;
2316           const unsigned char* input_view =
2317               this->section_contents(index, &input_view_size, false);
2318
2319           relinfo.reloc_shndx = i;
2320           relinfo.data_shndx = index;
2321           unsigned int sh_type = shdr.get_sh_type();
2322           unsigned int reloc_size;
2323           gold_assert (sh_type == elfcpp::SHT_RELA);
2324           reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2325
2326           Output_section* os = out_sections[index];
2327           target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2328                                          shdr.get_sh_size() / reloc_size,
2329                                          os,
2330                                          output_offset == invalid_address,
2331                                          input_view, output_address,
2332                                          input_view_size);
2333         }
2334     }
2335 }
2336
2337
2338 // A class to wrap an ordinary input section containing executable code.
2339
2340 template<int size, bool big_endian>
2341 class AArch64_input_section : public Output_relaxed_input_section
2342 {
2343  public:
2344   typedef Stub_table<size, big_endian> The_stub_table;
2345
2346   AArch64_input_section(Relobj* relobj, unsigned int shndx)
2347     : Output_relaxed_input_section(relobj, shndx, 1),
2348       stub_table_(NULL),
2349       original_contents_(NULL), original_size_(0),
2350       original_addralign_(1)
2351   { }
2352
2353   ~AArch64_input_section()
2354   { delete[] this->original_contents_; }
2355
2356   // Initialize.
2357   void
2358   init();
2359
2360   // Set the stub_table.
2361   void
2362   set_stub_table(The_stub_table* st)
2363   { this->stub_table_ = st; }
2364
2365   // Whether this is a stub table owner.
2366   bool
2367   is_stub_table_owner() const
2368   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2369
2370   // Return the original size of the section.
2371   uint32_t
2372   original_size() const
2373   { return this->original_size_; }
2374
2375   // Return the stub table.
2376   The_stub_table*
2377   stub_table()
2378   { return stub_table_; }
2379
2380  protected:
2381   // Write out this input section.
2382   void
2383   do_write(Output_file*);
2384
2385   // Return required alignment of this.
2386   uint64_t
2387   do_addralign() const
2388   {
2389     if (this->is_stub_table_owner())
2390       return std::max(this->stub_table_->addralign(),
2391                       static_cast<uint64_t>(this->original_addralign_));
2392     else
2393       return this->original_addralign_;
2394   }
2395
2396   // Finalize data size.
2397   void
2398   set_final_data_size();
2399
2400   // Reset address and file offset.
2401   void
2402   do_reset_address_and_file_offset();
2403
2404   // Output offset.
2405   bool
2406   do_output_offset(const Relobj* object, unsigned int shndx,
2407                    section_offset_type offset,
2408                    section_offset_type* poutput) const
2409   {
2410     if ((object == this->relobj())
2411         && (shndx == this->shndx())
2412         && (offset >= 0)
2413         && (offset <=
2414             convert_types<section_offset_type, uint32_t>(this->original_size_)))
2415       {
2416         *poutput = offset;
2417         return true;
2418       }
2419     else
2420       return false;
2421   }
2422
2423  private:
2424   // Copying is not allowed.
2425   AArch64_input_section(const AArch64_input_section&);
2426   AArch64_input_section& operator=(const AArch64_input_section&);
2427
2428   // The relocation stubs.
2429   The_stub_table* stub_table_;
2430   // Original section contents.  We have to make a copy here since the file
2431   // containing the original section may not be locked when we need to access
2432   // the contents.
2433   unsigned char* original_contents_;
2434   // Section size of the original input section.
2435   uint32_t original_size_;
2436   // Address alignment of the original input section.
2437   uint32_t original_addralign_;
2438 };  // End of AArch64_input_section
2439
2440
2441 // Finalize data size.
2442
2443 template<int size, bool big_endian>
2444 void
2445 AArch64_input_section<size, big_endian>::set_final_data_size()
2446 {
2447   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2448
2449   if (this->is_stub_table_owner())
2450     {
2451       this->stub_table_->finalize_data_size();
2452       off = align_address(off, this->stub_table_->addralign());
2453       off += this->stub_table_->data_size();
2454     }
2455   this->set_data_size(off);
2456 }
2457
2458
2459 // Reset address and file offset.
2460
2461 template<int size, bool big_endian>
2462 void
2463 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2464 {
2465   // Size of the original input section contents.
2466   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2467
2468   // If this is a stub table owner, account for the stub table size.
2469   if (this->is_stub_table_owner())
2470     {
2471       The_stub_table* stub_table = this->stub_table_;
2472
2473       // Reset the stub table's address and file offset.  The
2474       // current data size for child will be updated after that.
2475       stub_table_->reset_address_and_file_offset();
2476       off = align_address(off, stub_table_->addralign());
2477       off += stub_table->current_data_size();
2478     }
2479
2480   this->set_current_data_size(off);
2481 }
2482
2483
2484 // Initialize an Arm_input_section.
2485
2486 template<int size, bool big_endian>
2487 void
2488 AArch64_input_section<size, big_endian>::init()
2489 {
2490   Relobj* relobj = this->relobj();
2491   unsigned int shndx = this->shndx();
2492
2493   // We have to cache original size, alignment and contents to avoid locking
2494   // the original file.
2495   this->original_addralign_ =
2496       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2497
2498   // This is not efficient but we expect only a small number of relaxed
2499   // input sections for stubs.
2500   section_size_type section_size;
2501   const unsigned char* section_contents =
2502       relobj->section_contents(shndx, &section_size, false);
2503   this->original_size_ =
2504       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2505
2506   gold_assert(this->original_contents_ == NULL);
2507   this->original_contents_ = new unsigned char[section_size];
2508   memcpy(this->original_contents_, section_contents, section_size);
2509
2510   // We want to make this look like the original input section after
2511   // output sections are finalized.
2512   Output_section* os = relobj->output_section(shndx);
2513   off_t offset = relobj->output_section_offset(shndx);
2514   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2515   this->set_address(os->address() + offset);
2516   this->set_file_offset(os->offset() + offset);
2517   this->set_current_data_size(this->original_size_);
2518   this->finalize_data_size();
2519 }
2520
2521
2522 // Write data to output file.
2523
2524 template<int size, bool big_endian>
2525 void
2526 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2527 {
2528   // We have to write out the original section content.
2529   gold_assert(this->original_contents_ != NULL);
2530   of->write(this->offset(), this->original_contents_,
2531             this->original_size_);
2532
2533   // If this owns a stub table and it is not empty, write it.
2534   if (this->is_stub_table_owner() && !this->stub_table_->empty())
2535     this->stub_table_->write(of);
2536 }
2537
2538
2539 // Arm output section class.  This is defined mainly to add a number of stub
2540 // generation methods.
2541
2542 template<int size, bool big_endian>
2543 class AArch64_output_section : public Output_section
2544 {
2545  public:
2546   typedef Target_aarch64<size, big_endian> The_target_aarch64;
2547   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2548   typedef Stub_table<size, big_endian> The_stub_table;
2549   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2550
2551  public:
2552   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2553                          elfcpp::Elf_Xword flags)
2554     : Output_section(name, type, flags)
2555   { }
2556
2557   ~AArch64_output_section() {}
2558
2559   // Group input sections for stub generation.
2560   void
2561   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2562                  const Task*);
2563
2564  private:
2565   typedef Output_section::Input_section Input_section;
2566   typedef Output_section::Input_section_list Input_section_list;
2567
2568   // Create a stub group.
2569   void
2570   create_stub_group(Input_section_list::const_iterator,
2571                     Input_section_list::const_iterator,
2572                     Input_section_list::const_iterator,
2573                     The_target_aarch64*,
2574                     std::vector<Output_relaxed_input_section*>&,
2575                     const Task*);
2576 };  // End of AArch64_output_section
2577
2578
2579 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2580 // the input section that will be the owner of the stub table.
2581
2582 template<int size, bool big_endian> void
2583 AArch64_output_section<size, big_endian>::create_stub_group(
2584     Input_section_list::const_iterator first,
2585     Input_section_list::const_iterator last,
2586     Input_section_list::const_iterator owner,
2587     The_target_aarch64* target,
2588     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2589     const Task* task)
2590 {
2591   // Currently we convert ordinary input sections into relaxed sections only
2592   // at this point.
2593   The_aarch64_input_section* input_section;
2594   if (owner->is_relaxed_input_section())
2595     gold_unreachable();
2596   else
2597     {
2598       gold_assert(owner->is_input_section());
2599       // Create a new relaxed input section.  We need to lock the original
2600       // file.
2601       Task_lock_obj<Object> tl(task, owner->relobj());
2602       input_section =
2603           target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2604       new_relaxed_sections.push_back(input_section);
2605     }
2606
2607   // Create a stub table.
2608   The_stub_table* stub_table =
2609       target->new_stub_table(input_section);
2610
2611   input_section->set_stub_table(stub_table);
2612
2613   Input_section_list::const_iterator p = first;
2614   // Look for input sections or relaxed input sections in [first ... last].
2615   do
2616     {
2617       if (p->is_input_section() || p->is_relaxed_input_section())
2618         {
2619           // The stub table information for input sections live
2620           // in their objects.
2621           The_aarch64_relobj* aarch64_relobj =
2622               static_cast<The_aarch64_relobj*>(p->relobj());
2623           aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2624         }
2625     }
2626   while (p++ != last);
2627 }
2628
2629
2630 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2631 // stub groups. We grow a stub group by adding input section until the size is
2632 // just below GROUP_SIZE. The last input section will be converted into a stub
2633 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2634 // after the stub table, effectively doubling the group size.
2635 //
2636 // This is similar to the group_sections() function in elf32-arm.c but is
2637 // implemented differently.
2638
2639 template<int size, bool big_endian>
2640 void AArch64_output_section<size, big_endian>::group_sections(
2641     section_size_type group_size,
2642     bool stubs_always_after_branch,
2643     Target_aarch64<size, big_endian>* target,
2644     const Task* task)
2645 {
2646   typedef enum
2647   {
2648     NO_GROUP,
2649     FINDING_STUB_SECTION,
2650     HAS_STUB_SECTION
2651   } State;
2652
2653   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2654
2655   State state = NO_GROUP;
2656   section_size_type off = 0;
2657   section_size_type group_begin_offset = 0;
2658   section_size_type group_end_offset = 0;
2659   section_size_type stub_table_end_offset = 0;
2660   Input_section_list::const_iterator group_begin =
2661       this->input_sections().end();
2662   Input_section_list::const_iterator stub_table =
2663       this->input_sections().end();
2664   Input_section_list::const_iterator group_end = this->input_sections().end();
2665   for (Input_section_list::const_iterator p = this->input_sections().begin();
2666        p != this->input_sections().end();
2667        ++p)
2668     {
2669       section_size_type section_begin_offset =
2670         align_address(off, p->addralign());
2671       section_size_type section_end_offset =
2672         section_begin_offset + p->data_size();
2673
2674       // Check to see if we should group the previously seen sections.
2675       switch (state)
2676         {
2677         case NO_GROUP:
2678           break;
2679
2680         case FINDING_STUB_SECTION:
2681           // Adding this section makes the group larger than GROUP_SIZE.
2682           if (section_end_offset - group_begin_offset >= group_size)
2683             {
2684               if (stubs_always_after_branch)
2685                 {
2686                   gold_assert(group_end != this->input_sections().end());
2687                   this->create_stub_group(group_begin, group_end, group_end,
2688                                           target, new_relaxed_sections,
2689                                           task);
2690                   state = NO_GROUP;
2691                 }
2692               else
2693                 {
2694                   // Input sections up to stub_group_size bytes after the stub
2695                   // table can be handled by it too.
2696                   state = HAS_STUB_SECTION;
2697                   stub_table = group_end;
2698                   stub_table_end_offset = group_end_offset;
2699                 }
2700             }
2701             break;
2702
2703         case HAS_STUB_SECTION:
2704           // Adding this section makes the post stub-section group larger
2705           // than GROUP_SIZE.
2706           gold_unreachable();
2707           // NOT SUPPORTED YET. For completeness only.
2708           if (section_end_offset - stub_table_end_offset >= group_size)
2709            {
2710              gold_assert(group_end != this->input_sections().end());
2711              this->create_stub_group(group_begin, group_end, stub_table,
2712                                      target, new_relaxed_sections, task);
2713              state = NO_GROUP;
2714            }
2715            break;
2716
2717           default:
2718             gold_unreachable();
2719         }
2720
2721       // If we see an input section and currently there is no group, start
2722       // a new one.  Skip any empty sections.  We look at the data size
2723       // instead of calling p->relobj()->section_size() to avoid locking.
2724       if ((p->is_input_section() || p->is_relaxed_input_section())
2725           && (p->data_size() != 0))
2726         {
2727           if (state == NO_GROUP)
2728             {
2729               state = FINDING_STUB_SECTION;
2730               group_begin = p;
2731               group_begin_offset = section_begin_offset;
2732             }
2733
2734           // Keep track of the last input section seen.
2735           group_end = p;
2736           group_end_offset = section_end_offset;
2737         }
2738
2739       off = section_end_offset;
2740     }
2741
2742   // Create a stub group for any ungrouped sections.
2743   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2744     {
2745       gold_assert(group_end != this->input_sections().end());
2746       this->create_stub_group(group_begin, group_end,
2747                               (state == FINDING_STUB_SECTION
2748                                ? group_end
2749                                : stub_table),
2750                               target, new_relaxed_sections, task);
2751     }
2752
2753   if (!new_relaxed_sections.empty())
2754     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2755
2756   // Update the section offsets
2757   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2758     {
2759       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2760           new_relaxed_sections[i]->relobj());
2761       unsigned int shndx = new_relaxed_sections[i]->shndx();
2762       // Tell AArch64_relobj that this input section is converted.
2763       relobj->convert_input_section_to_relaxed_section(shndx);
2764     }
2765 }  // End of AArch64_output_section::group_sections
2766
2767
2768 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2769
2770
2771 // The aarch64 target class.
2772 // See the ABI at
2773 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2774 template<int size, bool big_endian>
2775 class Target_aarch64 : public Sized_target<size, big_endian>
2776 {
2777  public:
2778   typedef Target_aarch64<size, big_endian> This;
2779   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2780       Reloc_section;
2781   typedef Relocate_info<size, big_endian> The_relocate_info;
2782   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2783   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2784   typedef Reloc_stub<size, big_endian> The_reloc_stub;
2785   typedef Erratum_stub<size, big_endian> The_erratum_stub;
2786   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2787   typedef Stub_table<size, big_endian> The_stub_table;
2788   typedef std::vector<The_stub_table*> Stub_table_list;
2789   typedef typename Stub_table_list::iterator Stub_table_iterator;
2790   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2791   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2792   typedef Unordered_map<Section_id,
2793                         AArch64_input_section<size, big_endian>*,
2794                         Section_id_hash> AArch64_input_section_map;
2795   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2796   const static int TCB_SIZE = size / 8 * 2;
2797
2798   Target_aarch64(const Target::Target_info* info = &aarch64_info)
2799     : Sized_target<size, big_endian>(info),
2800       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2801       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2802       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2803       got_mod_index_offset_(-1U),
2804       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2805       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2806   { }
2807
2808   // Scan the relocations to determine unreferenced sections for
2809   // garbage collection.
2810   void
2811   gc_process_relocs(Symbol_table* symtab,
2812                     Layout* layout,
2813                     Sized_relobj_file<size, big_endian>* object,
2814                     unsigned int data_shndx,
2815                     unsigned int sh_type,
2816                     const unsigned char* prelocs,
2817                     size_t reloc_count,
2818                     Output_section* output_section,
2819                     bool needs_special_offset_handling,
2820                     size_t local_symbol_count,
2821                     const unsigned char* plocal_symbols);
2822
2823   // Scan the relocations to look for symbol adjustments.
2824   void
2825   scan_relocs(Symbol_table* symtab,
2826               Layout* layout,
2827               Sized_relobj_file<size, big_endian>* object,
2828               unsigned int data_shndx,
2829               unsigned int sh_type,
2830               const unsigned char* prelocs,
2831               size_t reloc_count,
2832               Output_section* output_section,
2833               bool needs_special_offset_handling,
2834               size_t local_symbol_count,
2835               const unsigned char* plocal_symbols);
2836
2837   // Finalize the sections.
2838   void
2839   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2840
2841   // Return the value to use for a dynamic which requires special
2842   // treatment.
2843   uint64_t
2844   do_dynsym_value(const Symbol*) const;
2845
2846   // Relocate a section.
2847   void
2848   relocate_section(const Relocate_info<size, big_endian>*,
2849                    unsigned int sh_type,
2850                    const unsigned char* prelocs,
2851                    size_t reloc_count,
2852                    Output_section* output_section,
2853                    bool needs_special_offset_handling,
2854                    unsigned char* view,
2855                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2856                    section_size_type view_size,
2857                    const Reloc_symbol_changes*);
2858
2859   // Scan the relocs during a relocatable link.
2860   void
2861   scan_relocatable_relocs(Symbol_table* symtab,
2862                           Layout* layout,
2863                           Sized_relobj_file<size, big_endian>* object,
2864                           unsigned int data_shndx,
2865                           unsigned int sh_type,
2866                           const unsigned char* prelocs,
2867                           size_t reloc_count,
2868                           Output_section* output_section,
2869                           bool needs_special_offset_handling,
2870                           size_t local_symbol_count,
2871                           const unsigned char* plocal_symbols,
2872                           Relocatable_relocs*);
2873
2874   // Scan the relocs for --emit-relocs.
2875   void
2876   emit_relocs_scan(Symbol_table* symtab,
2877                    Layout* layout,
2878                    Sized_relobj_file<size, big_endian>* object,
2879                    unsigned int data_shndx,
2880                    unsigned int sh_type,
2881                    const unsigned char* prelocs,
2882                    size_t reloc_count,
2883                    Output_section* output_section,
2884                    bool needs_special_offset_handling,
2885                    size_t local_symbol_count,
2886                    const unsigned char* plocal_syms,
2887                    Relocatable_relocs* rr);
2888
2889   // Relocate a section during a relocatable link.
2890   void
2891   relocate_relocs(
2892       const Relocate_info<size, big_endian>*,
2893       unsigned int sh_type,
2894       const unsigned char* prelocs,
2895       size_t reloc_count,
2896       Output_section* output_section,
2897       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2898       unsigned char* view,
2899       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2900       section_size_type view_size,
2901       unsigned char* reloc_view,
2902       section_size_type reloc_view_size);
2903
2904   // Return the symbol index to use for a target specific relocation.
2905   // The only target specific relocation is R_AARCH64_TLSDESC for a
2906   // local symbol, which is an absolute reloc.
2907   unsigned int
2908   do_reloc_symbol_index(void*, unsigned int r_type) const
2909   {
2910     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2911     return 0;
2912   }
2913
2914   // Return the addend to use for a target specific relocation.
2915   uint64_t
2916   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2917
2918   // Return the PLT section.
2919   uint64_t
2920   do_plt_address_for_global(const Symbol* gsym) const
2921   { return this->plt_section()->address_for_global(gsym); }
2922
2923   uint64_t
2924   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2925   { return this->plt_section()->address_for_local(relobj, symndx); }
2926
2927   // This function should be defined in targets that can use relocation
2928   // types to determine (implemented in local_reloc_may_be_function_pointer
2929   // and global_reloc_may_be_function_pointer)
2930   // if a function's pointer is taken.  ICF uses this in safe mode to only
2931   // fold those functions whose pointer is defintely not taken.
2932   bool
2933   do_can_check_for_function_pointers() const
2934   { return true; }
2935
2936   // Return the number of entries in the PLT.
2937   unsigned int
2938   plt_entry_count() const;
2939
2940   //Return the offset of the first non-reserved PLT entry.
2941   unsigned int
2942   first_plt_entry_offset() const;
2943
2944   // Return the size of each PLT entry.
2945   unsigned int
2946   plt_entry_size() const;
2947
2948   // Create a stub table.
2949   The_stub_table*
2950   new_stub_table(The_aarch64_input_section*);
2951
2952   // Create an aarch64 input section.
2953   The_aarch64_input_section*
2954   new_aarch64_input_section(Relobj*, unsigned int);
2955
2956   // Find an aarch64 input section instance for a given OBJ and SHNDX.
2957   The_aarch64_input_section*
2958   find_aarch64_input_section(Relobj*, unsigned int) const;
2959
2960   // Return the thread control block size.
2961   unsigned int
2962   tcb_size() const { return This::TCB_SIZE; }
2963
2964   // Scan a section for stub generation.
2965   void
2966   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2967                          const unsigned char*, size_t, Output_section*,
2968                          bool, const unsigned char*,
2969                          Address,
2970                          section_size_type);
2971
2972   // Scan a relocation section for stub.
2973   template<int sh_type>
2974   void
2975   scan_reloc_section_for_stubs(
2976       const The_relocate_info* relinfo,
2977       const unsigned char* prelocs,
2978       size_t reloc_count,
2979       Output_section* output_section,
2980       bool needs_special_offset_handling,
2981       const unsigned char* view,
2982       Address view_address,
2983       section_size_type);
2984
2985   // Relocate a single stub.
2986   void
2987   relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2988                 Output_section*, unsigned char*, Address,
2989                 section_size_type);
2990
2991   // Get the default AArch64 target.
2992   static This*
2993   current_target()
2994   {
2995     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2996                 && parameters->target().get_size() == size
2997                 && parameters->target().is_big_endian() == big_endian);
2998     return static_cast<This*>(parameters->sized_target<size, big_endian>());
2999   }
3000
3001
3002   // Scan erratum 843419 for a part of a section.
3003   void
3004   scan_erratum_843419_span(
3005     AArch64_relobj<size, big_endian>*,
3006     unsigned int,
3007     const section_size_type,
3008     const section_size_type,
3009     unsigned char*,
3010     Address);
3011
3012   // Scan erratum 835769 for a part of a section.
3013   void
3014   scan_erratum_835769_span(
3015     AArch64_relobj<size, big_endian>*,
3016     unsigned int,
3017     const section_size_type,
3018     const section_size_type,
3019     unsigned char*,
3020     Address);
3021
3022  protected:
3023   void
3024   do_select_as_default_target()
3025   {
3026     gold_assert(aarch64_reloc_property_table == NULL);
3027     aarch64_reloc_property_table = new AArch64_reloc_property_table();
3028   }
3029
3030   // Add a new reloc argument, returning the index in the vector.
3031   size_t
3032   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3033                    unsigned int r_sym)
3034   {
3035     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3036     return this->tlsdesc_reloc_info_.size() - 1;
3037   }
3038
3039   virtual Output_data_plt_aarch64<size, big_endian>*
3040   do_make_data_plt(Layout* layout,
3041                    Output_data_got_aarch64<size, big_endian>* got,
3042                    Output_data_space* got_plt,
3043                    Output_data_space* got_irelative)
3044   {
3045     return new Output_data_plt_aarch64_standard<size, big_endian>(
3046       layout, got, got_plt, got_irelative);
3047   }
3048
3049
3050   // do_make_elf_object to override the same function in the base class.
3051   Object*
3052   do_make_elf_object(const std::string&, Input_file*, off_t,
3053                      const elfcpp::Ehdr<size, big_endian>&);
3054
3055   Output_data_plt_aarch64<size, big_endian>*
3056   make_data_plt(Layout* layout,
3057                 Output_data_got_aarch64<size, big_endian>* got,
3058                 Output_data_space* got_plt,
3059                 Output_data_space* got_irelative)
3060   {
3061     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3062   }
3063
3064   // We only need to generate stubs, and hence perform relaxation if we are
3065   // not doing relocatable linking.
3066   virtual bool
3067   do_may_relax() const
3068   { return !parameters->options().relocatable(); }
3069
3070   // Relaxation hook.  This is where we do stub generation.
3071   virtual bool
3072   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3073
3074   void
3075   group_sections(Layout* layout,
3076                  section_size_type group_size,
3077                  bool stubs_always_after_branch,
3078                  const Task* task);
3079
3080   void
3081   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3082                       const Sized_symbol<size>*, unsigned int,
3083                       const Symbol_value<size>*,
3084                       typename elfcpp::Elf_types<size>::Elf_Swxword,
3085                       Address Elf_Addr);
3086
3087   // Make an output section.
3088   Output_section*
3089   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3090                          elfcpp::Elf_Xword flags)
3091   { return new The_aarch64_output_section(name, type, flags); }
3092
3093  private:
3094   // The class which scans relocations.
3095   class Scan
3096   {
3097   public:
3098     Scan()
3099       : issued_non_pic_error_(false)
3100     { }
3101
3102     inline void
3103     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3104           Sized_relobj_file<size, big_endian>* object,
3105           unsigned int data_shndx,
3106           Output_section* output_section,
3107           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3108           const elfcpp::Sym<size, big_endian>& lsym,
3109           bool is_discarded);
3110
3111     inline void
3112     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3113            Sized_relobj_file<size, big_endian>* object,
3114            unsigned int data_shndx,
3115            Output_section* output_section,
3116            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3117            Symbol* gsym);
3118
3119     inline bool
3120     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3121                                         Target_aarch64<size, big_endian>* ,
3122                                         Sized_relobj_file<size, big_endian>* ,
3123                                         unsigned int ,
3124                                         Output_section* ,
3125                                         const elfcpp::Rela<size, big_endian>& ,
3126                                         unsigned int r_type,
3127                                         const elfcpp::Sym<size, big_endian>&);
3128
3129     inline bool
3130     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3131                                          Target_aarch64<size, big_endian>* ,
3132                                          Sized_relobj_file<size, big_endian>* ,
3133                                          unsigned int ,
3134                                          Output_section* ,
3135                                          const elfcpp::Rela<size, big_endian>& ,
3136                                          unsigned int r_type,
3137                                          Symbol* gsym);
3138
3139   private:
3140     static void
3141     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3142                             unsigned int r_type);
3143
3144     static void
3145     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3146                              unsigned int r_type, Symbol*);
3147
3148     inline bool
3149     possible_function_pointer_reloc(unsigned int r_type);
3150
3151     void
3152     check_non_pic(Relobj*, unsigned int r_type);
3153
3154     bool
3155     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3156                               unsigned int r_type);
3157
3158     // Whether we have issued an error about a non-PIC compilation.
3159     bool issued_non_pic_error_;
3160   };
3161
3162   // The class which implements relocation.
3163   class Relocate
3164   {
3165    public:
3166     Relocate()
3167       : skip_call_tls_get_addr_(false)
3168     { }
3169
3170     ~Relocate()
3171     { }
3172
3173     // Do a relocation.  Return false if the caller should not issue
3174     // any warnings about this relocation.
3175     inline bool
3176     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3177              Target_aarch64*, Output_section*, size_t, const unsigned char*,
3178              const Sized_symbol<size>*, const Symbol_value<size>*,
3179              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3180              section_size_type);
3181
3182   private:
3183     inline typename AArch64_relocate_functions<size, big_endian>::Status
3184     relocate_tls(const Relocate_info<size, big_endian>*,
3185                  Target_aarch64<size, big_endian>*,
3186                  size_t,
3187                  const elfcpp::Rela<size, big_endian>&,
3188                  unsigned int r_type, const Sized_symbol<size>*,
3189                  const Symbol_value<size>*,
3190                  unsigned char*,
3191                  typename elfcpp::Elf_types<size>::Elf_Addr);
3192
3193     inline typename AArch64_relocate_functions<size, big_endian>::Status
3194     tls_gd_to_le(
3195                  const Relocate_info<size, big_endian>*,
3196                  Target_aarch64<size, big_endian>*,
3197                  const elfcpp::Rela<size, big_endian>&,
3198                  unsigned int,
3199                  unsigned char*,
3200                  const Symbol_value<size>*);
3201
3202     inline typename AArch64_relocate_functions<size, big_endian>::Status
3203     tls_ld_to_le(
3204                  const Relocate_info<size, big_endian>*,
3205                  Target_aarch64<size, big_endian>*,
3206                  const elfcpp::Rela<size, big_endian>&,
3207                  unsigned int,
3208                  unsigned char*,
3209                  const Symbol_value<size>*);
3210
3211     inline typename AArch64_relocate_functions<size, big_endian>::Status
3212     tls_ie_to_le(
3213                  const Relocate_info<size, big_endian>*,
3214                  Target_aarch64<size, big_endian>*,
3215                  const elfcpp::Rela<size, big_endian>&,
3216                  unsigned int,
3217                  unsigned char*,
3218                  const Symbol_value<size>*);
3219
3220     inline typename AArch64_relocate_functions<size, big_endian>::Status
3221     tls_desc_gd_to_le(
3222                  const Relocate_info<size, big_endian>*,
3223                  Target_aarch64<size, big_endian>*,
3224                  const elfcpp::Rela<size, big_endian>&,
3225                  unsigned int,
3226                  unsigned char*,
3227                  const Symbol_value<size>*);
3228
3229     inline typename AArch64_relocate_functions<size, big_endian>::Status
3230     tls_desc_gd_to_ie(
3231                  const Relocate_info<size, big_endian>*,
3232                  Target_aarch64<size, big_endian>*,
3233                  const elfcpp::Rela<size, big_endian>&,
3234                  unsigned int,
3235                  unsigned char*,
3236                  const Symbol_value<size>*,
3237                  typename elfcpp::Elf_types<size>::Elf_Addr,
3238                  typename elfcpp::Elf_types<size>::Elf_Addr);
3239
3240     bool skip_call_tls_get_addr_;
3241
3242   };  // End of class Relocate
3243
3244   // Adjust TLS relocation type based on the options and whether this
3245   // is a local symbol.
3246   static tls::Tls_optimization
3247   optimize_tls_reloc(bool is_final, int r_type);
3248
3249   // Get the GOT section, creating it if necessary.
3250   Output_data_got_aarch64<size, big_endian>*
3251   got_section(Symbol_table*, Layout*);
3252
3253   // Get the GOT PLT section.
3254   Output_data_space*
3255   got_plt_section() const
3256   {
3257     gold_assert(this->got_plt_ != NULL);
3258     return this->got_plt_;
3259   }
3260
3261   // Get the GOT section for TLSDESC entries.
3262   Output_data_got<size, big_endian>*
3263   got_tlsdesc_section() const
3264   {
3265     gold_assert(this->got_tlsdesc_ != NULL);
3266     return this->got_tlsdesc_;
3267   }
3268
3269   // Create the PLT section.
3270   void
3271   make_plt_section(Symbol_table* symtab, Layout* layout);
3272
3273   // Create a PLT entry for a global symbol.
3274   void
3275   make_plt_entry(Symbol_table*, Layout*, Symbol*);
3276
3277   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3278   void
3279   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3280                              Sized_relobj_file<size, big_endian>* relobj,
3281                              unsigned int local_sym_index);
3282
3283   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3284   void
3285   define_tls_base_symbol(Symbol_table*, Layout*);
3286
3287   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3288   void
3289   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3290
3291   // Create a GOT entry for the TLS module index.
3292   unsigned int
3293   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3294                       Sized_relobj_file<size, big_endian>* object);
3295
3296   // Get the PLT section.
3297   Output_data_plt_aarch64<size, big_endian>*
3298   plt_section() const
3299   {
3300     gold_assert(this->plt_ != NULL);
3301     return this->plt_;
3302   }
3303
3304   // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3305   // ST_E_843419, we need an additional field for adrp offset.
3306   void create_erratum_stub(
3307     AArch64_relobj<size, big_endian>* relobj,
3308     unsigned int shndx,
3309     section_size_type erratum_insn_offset,
3310     Address erratum_address,
3311     typename Insn_utilities::Insntype erratum_insn,
3312     int erratum_type,
3313     unsigned int e843419_adrp_offset=0);
3314
3315   // Return whether this is a 3-insn erratum sequence.
3316   bool is_erratum_843419_sequence(
3317       typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3318       typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3319       typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3320
3321   // Return whether this is a 835769 sequence.
3322   // (Similarly implemented as in elfnn-aarch64.c.)
3323   bool is_erratum_835769_sequence(
3324       typename elfcpp::Swap<32,big_endian>::Valtype,
3325       typename elfcpp::Swap<32,big_endian>::Valtype);
3326
3327   // Get the dynamic reloc section, creating it if necessary.
3328   Reloc_section*
3329   rela_dyn_section(Layout*);
3330
3331   // Get the section to use for TLSDESC relocations.
3332   Reloc_section*
3333   rela_tlsdesc_section(Layout*) const;
3334
3335   // Get the section to use for IRELATIVE relocations.
3336   Reloc_section*
3337   rela_irelative_section(Layout*);
3338
3339   // Add a potential copy relocation.
3340   void
3341   copy_reloc(Symbol_table* symtab, Layout* layout,
3342              Sized_relobj_file<size, big_endian>* object,
3343              unsigned int shndx, Output_section* output_section,
3344              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3345   {
3346     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3347     this->copy_relocs_.copy_reloc(symtab, layout,
3348                                   symtab->get_sized_symbol<size>(sym),
3349                                   object, shndx, output_section,
3350                                   r_type, reloc.get_r_offset(),
3351                                   reloc.get_r_addend(),
3352                                   this->rela_dyn_section(layout));
3353   }
3354
3355   // Information about this specific target which we pass to the
3356   // general Target structure.
3357   static const Target::Target_info aarch64_info;
3358
3359   // The types of GOT entries needed for this platform.
3360   // These values are exposed to the ABI in an incremental link.
3361   // Do not renumber existing values without changing the version
3362   // number of the .gnu_incremental_inputs section.
3363   enum Got_type
3364   {
3365     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
3366     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
3367     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
3368     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
3369   };
3370
3371   // This type is used as the argument to the target specific
3372   // relocation routines.  The only target specific reloc is
3373   // R_AARCh64_TLSDESC against a local symbol.
3374   struct Tlsdesc_info
3375   {
3376     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3377                  unsigned int a_r_sym)
3378       : object(a_object), r_sym(a_r_sym)
3379     { }
3380
3381     // The object in which the local symbol is defined.
3382     Sized_relobj_file<size, big_endian>* object;
3383     // The local symbol index in the object.
3384     unsigned int r_sym;
3385   };
3386
3387   // The GOT section.
3388   Output_data_got_aarch64<size, big_endian>* got_;
3389   // The PLT section.
3390   Output_data_plt_aarch64<size, big_endian>* plt_;
3391   // The GOT PLT section.
3392   Output_data_space* got_plt_;
3393   // The GOT section for IRELATIVE relocations.
3394   Output_data_space* got_irelative_;
3395   // The GOT section for TLSDESC relocations.
3396   Output_data_got<size, big_endian>* got_tlsdesc_;
3397   // The _GLOBAL_OFFSET_TABLE_ symbol.
3398   Symbol* global_offset_table_;
3399   // The dynamic reloc section.
3400   Reloc_section* rela_dyn_;
3401   // The section to use for IRELATIVE relocs.
3402   Reloc_section* rela_irelative_;
3403   // Relocs saved to avoid a COPY reloc.
3404   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3405   // Offset of the GOT entry for the TLS module index.
3406   unsigned int got_mod_index_offset_;
3407   // We handle R_AARCH64_TLSDESC against a local symbol as a target
3408   // specific relocation. Here we store the object and local symbol
3409   // index for the relocation.
3410   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3411   // True if the _TLS_MODULE_BASE_ symbol has been defined.
3412   bool tls_base_symbol_defined_;
3413   // List of stub_tables
3414   Stub_table_list stub_tables_;
3415   // Actual stub group size
3416   section_size_type stub_group_size_;
3417   AArch64_input_section_map aarch64_input_section_map_;
3418 };  // End of Target_aarch64
3419
3420
3421 template<>
3422 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3423 {
3424   64,                   // size
3425   false,                // is_big_endian
3426   elfcpp::EM_AARCH64,   // machine_code
3427   false,                // has_make_symbol
3428   false,                // has_resolve
3429   false,                // has_code_fill
3430   true,                 // is_default_stack_executable
3431   true,                 // can_icf_inline_merge_sections
3432   '\0',                 // wrap_char
3433   "/lib/ld.so.1",       // program interpreter
3434   0x400000,             // default_text_segment_address
3435   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3436   0x1000,               // common_pagesize (overridable by -z common-page-size)
3437   false,                // isolate_execinstr
3438   0,                    // rosegment_gap
3439   elfcpp::SHN_UNDEF,    // small_common_shndx
3440   elfcpp::SHN_UNDEF,    // large_common_shndx
3441   0,                    // small_common_section_flags
3442   0,                    // large_common_section_flags
3443   NULL,                 // attributes_section
3444   NULL,                 // attributes_vendor
3445   "_start",             // entry_symbol_name
3446   32,                   // hash_entry_size
3447 };
3448
3449 template<>
3450 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3451 {
3452   32,                   // size
3453   false,                // is_big_endian
3454   elfcpp::EM_AARCH64,   // machine_code
3455   false,                // has_make_symbol
3456   false,                // has_resolve
3457   false,                // has_code_fill
3458   true,                 // is_default_stack_executable
3459   false,                // can_icf_inline_merge_sections
3460   '\0',                 // wrap_char
3461   "/lib/ld.so.1",       // program interpreter
3462   0x400000,             // default_text_segment_address
3463   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3464   0x1000,               // common_pagesize (overridable by -z common-page-size)
3465   false,                // isolate_execinstr
3466   0,                    // rosegment_gap
3467   elfcpp::SHN_UNDEF,    // small_common_shndx
3468   elfcpp::SHN_UNDEF,    // large_common_shndx
3469   0,                    // small_common_section_flags
3470   0,                    // large_common_section_flags
3471   NULL,                 // attributes_section
3472   NULL,                 // attributes_vendor
3473   "_start",             // entry_symbol_name
3474   32,                   // hash_entry_size
3475 };
3476
3477 template<>
3478 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3479 {
3480   64,                   // size
3481   true,                 // is_big_endian
3482   elfcpp::EM_AARCH64,   // machine_code
3483   false,                // has_make_symbol
3484   false,                // has_resolve
3485   false,                // has_code_fill
3486   true,                 // is_default_stack_executable
3487   true,                 // can_icf_inline_merge_sections
3488   '\0',                 // wrap_char
3489   "/lib/ld.so.1",       // program interpreter
3490   0x400000,             // default_text_segment_address
3491   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3492   0x1000,               // common_pagesize (overridable by -z common-page-size)
3493   false,                // isolate_execinstr
3494   0,                    // rosegment_gap
3495   elfcpp::SHN_UNDEF,    // small_common_shndx
3496   elfcpp::SHN_UNDEF,    // large_common_shndx
3497   0,                    // small_common_section_flags
3498   0,                    // large_common_section_flags
3499   NULL,                 // attributes_section
3500   NULL,                 // attributes_vendor
3501   "_start",             // entry_symbol_name
3502   32,                   // hash_entry_size
3503 };
3504
3505 template<>
3506 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3507 {
3508   32,                   // size
3509   true,                 // is_big_endian
3510   elfcpp::EM_AARCH64,   // machine_code
3511   false,                // has_make_symbol
3512   false,                // has_resolve
3513   false,                // has_code_fill
3514   true,                 // is_default_stack_executable
3515   false,                // can_icf_inline_merge_sections
3516   '\0',                 // wrap_char
3517   "/lib/ld.so.1",       // program interpreter
3518   0x400000,             // default_text_segment_address
3519   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3520   0x1000,               // common_pagesize (overridable by -z common-page-size)
3521   false,                // isolate_execinstr
3522   0,                    // rosegment_gap
3523   elfcpp::SHN_UNDEF,    // small_common_shndx
3524   elfcpp::SHN_UNDEF,    // large_common_shndx
3525   0,                    // small_common_section_flags
3526   0,                    // large_common_section_flags
3527   NULL,                 // attributes_section
3528   NULL,                 // attributes_vendor
3529   "_start",             // entry_symbol_name
3530   32,                   // hash_entry_size
3531 };
3532
3533 // Get the GOT section, creating it if necessary.
3534
3535 template<int size, bool big_endian>
3536 Output_data_got_aarch64<size, big_endian>*
3537 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3538                                               Layout* layout)
3539 {
3540   if (this->got_ == NULL)
3541     {
3542       gold_assert(symtab != NULL && layout != NULL);
3543
3544       // When using -z now, we can treat .got.plt as a relro section.
3545       // Without -z now, it is modified after program startup by lazy
3546       // PLT relocations.
3547       bool is_got_plt_relro = parameters->options().now();
3548       Output_section_order got_order = (is_got_plt_relro
3549                                         ? ORDER_RELRO
3550                                         : ORDER_RELRO_LAST);
3551       Output_section_order got_plt_order = (is_got_plt_relro
3552                                             ? ORDER_RELRO
3553                                             : ORDER_NON_RELRO_FIRST);
3554
3555       // Layout of .got and .got.plt sections.
3556       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
3557       // ...
3558       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
3559       // .gotplt[1] reserved for ld.so (resolver)
3560       // .gotplt[2] reserved
3561
3562       // Generate .got section.
3563       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3564                                                                  layout);
3565       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3566                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3567                                       this->got_, got_order, true);
3568       // The first word of GOT is reserved for the address of .dynamic.
3569       // We put 0 here now. The value will be replaced later in
3570       // Output_data_got_aarch64::do_write.
3571       this->got_->add_constant(0);
3572
3573       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3574       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3575       // even if there is a .got.plt section.
3576       this->global_offset_table_ =
3577         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3578                                       Symbol_table::PREDEFINED,
3579                                       this->got_,
3580                                       0, 0, elfcpp::STT_OBJECT,
3581                                       elfcpp::STB_LOCAL,
3582                                       elfcpp::STV_HIDDEN, 0,
3583                                       false, false);
3584
3585       // Generate .got.plt section.
3586       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3587       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3588                                       (elfcpp::SHF_ALLOC
3589                                        | elfcpp::SHF_WRITE),
3590                                       this->got_plt_, got_plt_order,
3591                                       is_got_plt_relro);
3592
3593       // The first three entries are reserved.
3594       this->got_plt_->set_current_data_size(
3595         AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3596
3597       // If there are any IRELATIVE relocations, they get GOT entries
3598       // in .got.plt after the jump slot entries.
3599       this->got_irelative_ = new Output_data_space(size / 8,
3600                                                    "** GOT IRELATIVE PLT");
3601       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3602                                       (elfcpp::SHF_ALLOC
3603                                        | elfcpp::SHF_WRITE),
3604                                       this->got_irelative_,
3605                                       got_plt_order,
3606                                       is_got_plt_relro);
3607
3608       // If there are any TLSDESC relocations, they get GOT entries in
3609       // .got.plt after the jump slot and IRELATIVE entries.
3610       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3611       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3612                                       (elfcpp::SHF_ALLOC
3613                                        | elfcpp::SHF_WRITE),
3614                                       this->got_tlsdesc_,
3615                                       got_plt_order,
3616                                       is_got_plt_relro);
3617
3618       if (!is_got_plt_relro)
3619         {
3620           // Those bytes can go into the relro segment.
3621           layout->increase_relro(
3622             AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3623         }
3624
3625     }
3626   return this->got_;
3627 }
3628
3629 // Get the dynamic reloc section, creating it if necessary.
3630
3631 template<int size, bool big_endian>
3632 typename Target_aarch64<size, big_endian>::Reloc_section*
3633 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3634 {
3635   if (this->rela_dyn_ == NULL)
3636     {
3637       gold_assert(layout != NULL);
3638       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3639       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3640                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
3641                                       ORDER_DYNAMIC_RELOCS, false);
3642     }
3643   return this->rela_dyn_;
3644 }
3645
3646 // Get the section to use for IRELATIVE relocs, creating it if
3647 // necessary.  These go in .rela.dyn, but only after all other dynamic
3648 // relocations.  They need to follow the other dynamic relocations so
3649 // that they can refer to global variables initialized by those
3650 // relocs.
3651
3652 template<int size, bool big_endian>
3653 typename Target_aarch64<size, big_endian>::Reloc_section*
3654 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3655 {
3656   if (this->rela_irelative_ == NULL)
3657     {
3658       // Make sure we have already created the dynamic reloc section.
3659       this->rela_dyn_section(layout);
3660       this->rela_irelative_ = new Reloc_section(false);
3661       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3662                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
3663                                       ORDER_DYNAMIC_RELOCS, false);
3664       gold_assert(this->rela_dyn_->output_section()
3665                   == this->rela_irelative_->output_section());
3666     }
3667   return this->rela_irelative_;
3668 }
3669
3670
3671 // do_make_elf_object to override the same function in the base class.  We need
3672 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3673 // store backend specific information. Hence we need to have our own ELF object
3674 // creation.
3675
3676 template<int size, bool big_endian>
3677 Object*
3678 Target_aarch64<size, big_endian>::do_make_elf_object(
3679     const std::string& name,
3680     Input_file* input_file,
3681     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3682 {
3683   int et = ehdr.get_e_type();
3684   // ET_EXEC files are valid input for --just-symbols/-R,
3685   // and we treat them as relocatable objects.
3686   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3687     return Sized_target<size, big_endian>::do_make_elf_object(
3688         name, input_file, offset, ehdr);
3689   else if (et == elfcpp::ET_REL)
3690     {
3691       AArch64_relobj<size, big_endian>* obj =
3692         new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3693       obj->setup();
3694       return obj;
3695     }
3696   else if (et == elfcpp::ET_DYN)
3697     {
3698       // Keep base implementation.
3699       Sized_dynobj<size, big_endian>* obj =
3700           new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3701       obj->setup();
3702       return obj;
3703     }
3704   else
3705     {
3706       gold_error(_("%s: unsupported ELF file type %d"),
3707                  name.c_str(), et);
3708       return NULL;
3709     }
3710 }
3711
3712
3713 // Scan a relocation for stub generation.
3714
3715 template<int size, bool big_endian>
3716 void
3717 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3718     const Relocate_info<size, big_endian>* relinfo,
3719     unsigned int r_type,
3720     const Sized_symbol<size>* gsym,
3721     unsigned int r_sym,
3722     const Symbol_value<size>* psymval,
3723     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3724     Address address)
3725 {
3726   const AArch64_relobj<size, big_endian>* aarch64_relobj =
3727       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3728
3729   Symbol_value<size> symval;
3730   if (gsym != NULL)
3731     {
3732       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3733         get_reloc_property(r_type);
3734       if (gsym->use_plt_offset(arp->reference_flags()))
3735         {
3736           // This uses a PLT, change the symbol value.
3737           symval.set_output_value(this->plt_section()->address()
3738                                   + gsym->plt_offset());
3739           psymval = &symval;
3740         }
3741       else if (gsym->is_undefined())
3742         // There is no need to generate a stub symbol is undefined.
3743         return;
3744     }
3745
3746   // Get the symbol value.
3747   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3748
3749   // Owing to pipelining, the PC relative branches below actually skip
3750   // two instructions when the branch offset is 0.
3751   Address destination = static_cast<Address>(-1);
3752   switch (r_type)
3753     {
3754     case elfcpp::R_AARCH64_CALL26:
3755     case elfcpp::R_AARCH64_JUMP26:
3756       destination = value + addend;
3757       break;
3758     default:
3759       gold_unreachable();
3760     }
3761
3762   int stub_type = The_reloc_stub::
3763       stub_type_for_reloc(r_type, address, destination);
3764   if (stub_type == ST_NONE)
3765     return;
3766
3767   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3768   gold_assert(stub_table != NULL);
3769
3770   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3771   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3772   if (stub == NULL)
3773     {
3774       stub = new The_reloc_stub(stub_type);
3775       stub_table->add_reloc_stub(stub, key);
3776     }
3777   stub->set_destination_address(destination);
3778 }  // End of Target_aarch64::scan_reloc_for_stub
3779
3780
3781 // This function scans a relocation section for stub generation.
3782 // The template parameter Relocate must be a class type which provides
3783 // a single function, relocate(), which implements the machine
3784 // specific part of a relocation.
3785
3786 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3787 // SHT_REL or SHT_RELA.
3788
3789 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
3790 // of relocs.  OUTPUT_SECTION is the output section.
3791 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3792 // mapped to output offsets.
3793
3794 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3795 // VIEW_SIZE is the size.  These refer to the input section, unless
3796 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3797 // the output section.
3798
3799 template<int size, bool big_endian>
3800 template<int sh_type>
3801 void inline
3802 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3803     const Relocate_info<size, big_endian>* relinfo,
3804     const unsigned char* prelocs,
3805     size_t reloc_count,
3806     Output_section* /*output_section*/,
3807     bool /*needs_special_offset_handling*/,
3808     const unsigned char* /*view*/,
3809     Address view_address,
3810     section_size_type)
3811 {
3812   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3813
3814   const int reloc_size =
3815       Reloc_types<sh_type,size,big_endian>::reloc_size;
3816   AArch64_relobj<size, big_endian>* object =
3817       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3818   unsigned int local_count = object->local_symbol_count();
3819
3820   gold::Default_comdat_behavior default_comdat_behavior;
3821   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3822
3823   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3824     {
3825       Reltype reloc(prelocs);
3826       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3827       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3828       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3829       if (r_type != elfcpp::R_AARCH64_CALL26
3830           && r_type != elfcpp::R_AARCH64_JUMP26)
3831         continue;
3832
3833       section_offset_type offset =
3834           convert_to_section_size_type(reloc.get_r_offset());
3835
3836       // Get the addend.
3837       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3838           reloc.get_r_addend();
3839
3840       const Sized_symbol<size>* sym;
3841       Symbol_value<size> symval;
3842       const Symbol_value<size> *psymval;
3843       bool is_defined_in_discarded_section;
3844       unsigned int shndx;
3845       if (r_sym < local_count)
3846         {
3847           sym = NULL;
3848           psymval = object->local_symbol(r_sym);
3849
3850           // If the local symbol belongs to a section we are discarding,
3851           // and that section is a debug section, try to find the
3852           // corresponding kept section and map this symbol to its
3853           // counterpart in the kept section.  The symbol must not
3854           // correspond to a section we are folding.
3855           bool is_ordinary;
3856           shndx = psymval->input_shndx(&is_ordinary);
3857           is_defined_in_discarded_section =
3858             (is_ordinary
3859              && shndx != elfcpp::SHN_UNDEF
3860              && !object->is_section_included(shndx)
3861              && !relinfo->symtab->is_section_folded(object, shndx));
3862
3863           // We need to compute the would-be final value of this local
3864           // symbol.
3865           if (!is_defined_in_discarded_section)
3866             {
3867               typedef Sized_relobj_file<size, big_endian> ObjType;
3868               if (psymval->is_section_symbol())
3869                 symval.set_is_section_symbol();
3870               typename ObjType::Compute_final_local_value_status status =
3871                 object->compute_final_local_value(r_sym, psymval, &symval,
3872                                                   relinfo->symtab);
3873               if (status == ObjType::CFLV_OK)
3874                 {
3875                   // Currently we cannot handle a branch to a target in
3876                   // a merged section.  If this is the case, issue an error
3877                   // and also free the merge symbol value.
3878                   if (!symval.has_output_value())
3879                     {
3880                       const std::string& section_name =
3881                         object->section_name(shndx);
3882                       object->error(_("cannot handle branch to local %u "
3883                                           "in a merged section %s"),
3884                                         r_sym, section_name.c_str());
3885                     }
3886                   psymval = &symval;
3887                 }
3888               else
3889                 {
3890                   // We cannot determine the final value.
3891                   continue;
3892                 }
3893             }
3894         }
3895       else
3896         {
3897           const Symbol* gsym;
3898           gsym = object->global_symbol(r_sym);
3899           gold_assert(gsym != NULL);
3900           if (gsym->is_forwarder())
3901             gsym = relinfo->symtab->resolve_forwards(gsym);
3902
3903           sym = static_cast<const Sized_symbol<size>*>(gsym);
3904           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3905             symval.set_output_symtab_index(sym->symtab_index());
3906           else
3907             symval.set_no_output_symtab_entry();
3908
3909           // We need to compute the would-be final value of this global
3910           // symbol.
3911           const Symbol_table* symtab = relinfo->symtab;
3912           const Sized_symbol<size>* sized_symbol =
3913               symtab->get_sized_symbol<size>(gsym);
3914           Symbol_table::Compute_final_value_status status;
3915           typename elfcpp::Elf_types<size>::Elf_Addr value =
3916               symtab->compute_final_value<size>(sized_symbol, &status);
3917
3918           // Skip this if the symbol has not output section.
3919           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3920             continue;
3921           symval.set_output_value(value);
3922
3923           if (gsym->type() == elfcpp::STT_TLS)
3924             symval.set_is_tls_symbol();
3925           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3926             symval.set_is_ifunc_symbol();
3927           psymval = &symval;
3928
3929           is_defined_in_discarded_section =
3930               (gsym->is_defined_in_discarded_section()
3931                && gsym->is_undefined());
3932           shndx = 0;
3933         }
3934
3935       Symbol_value<size> symval2;
3936       if (is_defined_in_discarded_section)
3937         {
3938           if (comdat_behavior == CB_UNDETERMINED)
3939             {
3940               std::string name = object->section_name(relinfo->data_shndx);
3941               comdat_behavior = default_comdat_behavior.get(name.c_str());
3942             }
3943           if (comdat_behavior == CB_PRETEND)
3944             {
3945               bool found;
3946               typename elfcpp::Elf_types<size>::Elf_Addr value =
3947                 object->map_to_kept_section(shndx, &found);
3948               if (found)
3949                 symval2.set_output_value(value + psymval->input_value());
3950               else
3951                 symval2.set_output_value(0);
3952             }
3953           else
3954             {
3955               if (comdat_behavior == CB_WARNING)
3956                 gold_warning_at_location(relinfo, i, offset,
3957                                          _("relocation refers to discarded "
3958                                            "section"));
3959               symval2.set_output_value(0);
3960             }
3961           symval2.set_no_output_symtab_entry();
3962           psymval = &symval2;
3963         }
3964
3965       // If symbol is a section symbol, we don't know the actual type of
3966       // destination.  Give up.
3967       if (psymval->is_section_symbol())
3968         continue;
3969
3970       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3971                                 addend, view_address + offset);
3972     }  // End of iterating relocs in a section
3973 }  // End of Target_aarch64::scan_reloc_section_for_stubs
3974
3975
3976 // Scan an input section for stub generation.
3977
3978 template<int size, bool big_endian>
3979 void
3980 Target_aarch64<size, big_endian>::scan_section_for_stubs(
3981     const Relocate_info<size, big_endian>* relinfo,
3982     unsigned int sh_type,
3983     const unsigned char* prelocs,
3984     size_t reloc_count,
3985     Output_section* output_section,
3986     bool needs_special_offset_handling,
3987     const unsigned char* view,
3988     Address view_address,
3989     section_size_type view_size)
3990 {
3991   gold_assert(sh_type == elfcpp::SHT_RELA);
3992   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3993       relinfo,
3994       prelocs,
3995       reloc_count,
3996       output_section,
3997       needs_special_offset_handling,
3998       view,
3999       view_address,
4000       view_size);
4001 }
4002
4003
4004 // Relocate a single stub.
4005
4006 template<int size, bool big_endian>
4007 void Target_aarch64<size, big_endian>::
4008 relocate_stub(The_reloc_stub* stub,
4009               const The_relocate_info*,
4010               Output_section*,
4011               unsigned char* view,
4012               Address address,
4013               section_size_type)
4014 {
4015   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4016   typedef typename The_reloc_functions::Status The_reloc_functions_status;
4017   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4018
4019   Insntype* ip = reinterpret_cast<Insntype*>(view);
4020   int insn_number = stub->insn_num();
4021   const uint32_t* insns = stub->insns();
4022   // Check the insns are really those stub insns.
4023   for (int i = 0; i < insn_number; ++i)
4024     {
4025       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4026       gold_assert(((uint32_t)insn == insns[i]));
4027     }
4028
4029   Address dest = stub->destination_address();
4030
4031   switch(stub->type())
4032     {
4033     case ST_ADRP_BRANCH:
4034       {
4035         // 1st reloc is ADR_PREL_PG_HI21
4036         The_reloc_functions_status status =
4037             The_reloc_functions::adrp(view, dest, address);
4038         // An error should never arise in the above step. If so, please
4039         // check 'aarch64_valid_for_adrp_p'.
4040         gold_assert(status == The_reloc_functions::STATUS_OKAY);
4041
4042         // 2nd reloc is ADD_ABS_LO12_NC
4043         const AArch64_reloc_property* arp =
4044             aarch64_reloc_property_table->get_reloc_property(
4045                 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4046         gold_assert(arp != NULL);
4047         status = The_reloc_functions::template
4048             rela_general<32>(view + 4, dest, 0, arp);
4049         // An error should never arise, it is an "_NC" relocation.
4050         gold_assert(status == The_reloc_functions::STATUS_OKAY);
4051       }
4052       break;
4053
4054     case ST_LONG_BRANCH_ABS:
4055       // 1st reloc is R_AARCH64_PREL64, at offset 8
4056       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4057       break;
4058
4059     case ST_LONG_BRANCH_PCREL:
4060       {
4061         // "PC" calculation is the 2nd insn in the stub.
4062         uint64_t offset = dest - (address + 4);
4063         // Offset is placed at offset 4 and 5.
4064         elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4065       }
4066       break;
4067
4068     default:
4069       gold_unreachable();
4070     }
4071 }
4072
4073
4074 // A class to handle the PLT data.
4075 // This is an abstract base class that handles most of the linker details
4076 // but does not know the actual contents of PLT entries.  The derived
4077 // classes below fill in those details.
4078
4079 template<int size, bool big_endian>
4080 class Output_data_plt_aarch64 : public Output_section_data
4081 {
4082  public:
4083   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4084       Reloc_section;
4085   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4086
4087   Output_data_plt_aarch64(Layout* layout,
4088                           uint64_t addralign,
4089                           Output_data_got_aarch64<size, big_endian>* got,
4090                           Output_data_space* got_plt,
4091                           Output_data_space* got_irelative)
4092     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4093       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4094       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4095   { this->init(layout); }
4096
4097   // Initialize the PLT section.
4098   void
4099   init(Layout* layout);
4100
4101   // Add an entry to the PLT.
4102   void
4103   add_entry(Symbol_table*, Layout*, Symbol* gsym);
4104
4105   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4106   unsigned int
4107   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4108                         Sized_relobj_file<size, big_endian>* relobj,
4109                         unsigned int local_sym_index);
4110
4111   // Add the relocation for a PLT entry.
4112   void
4113   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4114                  unsigned int got_offset);
4115
4116   // Add the reserved TLSDESC_PLT entry to the PLT.
4117   void
4118   reserve_tlsdesc_entry(unsigned int got_offset)
4119   { this->tlsdesc_got_offset_ = got_offset; }
4120
4121   // Return true if a TLSDESC_PLT entry has been reserved.
4122   bool
4123   has_tlsdesc_entry() const
4124   { return this->tlsdesc_got_offset_ != -1U; }
4125
4126   // Return the GOT offset for the reserved TLSDESC_PLT entry.
4127   unsigned int
4128   get_tlsdesc_got_offset() const
4129   { return this->tlsdesc_got_offset_; }
4130
4131   // Return the PLT offset of the reserved TLSDESC_PLT entry.
4132   unsigned int
4133   get_tlsdesc_plt_offset() const
4134   {
4135     return (this->first_plt_entry_offset() +
4136             (this->count_ + this->irelative_count_)
4137             * this->get_plt_entry_size());
4138   }
4139
4140   // Return the .rela.plt section data.
4141   Reloc_section*
4142   rela_plt()
4143   { return this->rel_; }
4144
4145   // Return where the TLSDESC relocations should go.
4146   Reloc_section*
4147   rela_tlsdesc(Layout*);
4148
4149   // Return where the IRELATIVE relocations should go in the PLT
4150   // relocations.
4151   Reloc_section*
4152   rela_irelative(Symbol_table*, Layout*);
4153
4154   // Return whether we created a section for IRELATIVE relocations.
4155   bool
4156   has_irelative_section() const
4157   { return this->irelative_rel_ != NULL; }
4158
4159   // Return the number of PLT entries.
4160   unsigned int
4161   entry_count() const
4162   { return this->count_ + this->irelative_count_; }
4163
4164   // Return the offset of the first non-reserved PLT entry.
4165   unsigned int
4166   first_plt_entry_offset() const
4167   { return this->do_first_plt_entry_offset(); }
4168
4169   // Return the size of a PLT entry.
4170   unsigned int
4171   get_plt_entry_size() const
4172   { return this->do_get_plt_entry_size(); }
4173
4174   // Return the reserved tlsdesc entry size.
4175   unsigned int
4176   get_plt_tlsdesc_entry_size() const
4177   { return this->do_get_plt_tlsdesc_entry_size(); }
4178
4179   // Return the PLT address to use for a global symbol.
4180   uint64_t
4181   address_for_global(const Symbol*);
4182
4183   // Return the PLT address to use for a local symbol.
4184   uint64_t
4185   address_for_local(const Relobj*, unsigned int symndx);
4186
4187  protected:
4188   // Fill in the first PLT entry.
4189   void
4190   fill_first_plt_entry(unsigned char* pov,
4191                        Address got_address,
4192                        Address plt_address)
4193   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4194
4195   // Fill in a normal PLT entry.
4196   void
4197   fill_plt_entry(unsigned char* pov,
4198                  Address got_address,
4199                  Address plt_address,
4200                  unsigned int got_offset,
4201                  unsigned int plt_offset)
4202   {
4203     this->do_fill_plt_entry(pov, got_address, plt_address,
4204                             got_offset, plt_offset);
4205   }
4206
4207   // Fill in the reserved TLSDESC PLT entry.
4208   void
4209   fill_tlsdesc_entry(unsigned char* pov,
4210                      Address gotplt_address,
4211                      Address plt_address,
4212                      Address got_base,
4213                      unsigned int tlsdesc_got_offset,
4214                      unsigned int plt_offset)
4215   {
4216     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4217                                 tlsdesc_got_offset, plt_offset);
4218   }
4219
4220   virtual unsigned int
4221   do_first_plt_entry_offset() const = 0;
4222
4223   virtual unsigned int
4224   do_get_plt_entry_size() const = 0;
4225
4226   virtual unsigned int
4227   do_get_plt_tlsdesc_entry_size() const = 0;
4228
4229   virtual void
4230   do_fill_first_plt_entry(unsigned char* pov,
4231                           Address got_addr,
4232                           Address plt_addr) = 0;
4233
4234   virtual void
4235   do_fill_plt_entry(unsigned char* pov,
4236                     Address got_address,
4237                     Address plt_address,
4238                     unsigned int got_offset,
4239                     unsigned int plt_offset) = 0;
4240
4241   virtual void
4242   do_fill_tlsdesc_entry(unsigned char* pov,
4243                         Address gotplt_address,
4244                         Address plt_address,
4245                         Address got_base,
4246                         unsigned int tlsdesc_got_offset,
4247                         unsigned int plt_offset) = 0;
4248
4249   void
4250   do_adjust_output_section(Output_section* os);
4251
4252   // Write to a map file.
4253   void
4254   do_print_to_mapfile(Mapfile* mapfile) const
4255   { mapfile->print_output_data(this, _("** PLT")); }
4256
4257  private:
4258   // Set the final size.
4259   void
4260   set_final_data_size();
4261
4262   // Write out the PLT data.
4263   void
4264   do_write(Output_file*);
4265
4266   // The reloc section.
4267   Reloc_section* rel_;
4268
4269   // The TLSDESC relocs, if necessary.  These must follow the regular
4270   // PLT relocs.
4271   Reloc_section* tlsdesc_rel_;
4272
4273   // The IRELATIVE relocs, if necessary.  These must follow the
4274   // regular PLT relocations.
4275   Reloc_section* irelative_rel_;
4276
4277   // The .got section.
4278   Output_data_got_aarch64<size, big_endian>* got_;
4279
4280   // The .got.plt section.
4281   Output_data_space* got_plt_;
4282
4283   // The part of the .got.plt section used for IRELATIVE relocs.
4284   Output_data_space* got_irelative_;
4285
4286   // The number of PLT entries.
4287   unsigned int count_;
4288
4289   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
4290   // follow the regular PLT entries.
4291   unsigned int irelative_count_;
4292
4293   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4294   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4295   // indicates an offset is not allocated.
4296   unsigned int tlsdesc_got_offset_;
4297 };
4298
4299 // Initialize the PLT section.
4300
4301 template<int size, bool big_endian>
4302 void
4303 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4304 {
4305   this->rel_ = new Reloc_section(false);
4306   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4307                                   elfcpp::SHF_ALLOC, this->rel_,
4308                                   ORDER_DYNAMIC_PLT_RELOCS, false);
4309 }
4310
4311 template<int size, bool big_endian>
4312 void
4313 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4314     Output_section* os)
4315 {
4316   os->set_entsize(this->get_plt_entry_size());
4317 }
4318
4319 // Add an entry to the PLT.
4320
4321 template<int size, bool big_endian>
4322 void
4323 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4324     Layout* layout, Symbol* gsym)
4325 {
4326   gold_assert(!gsym->has_plt_offset());
4327
4328   unsigned int* pcount;
4329   unsigned int plt_reserved;
4330   Output_section_data_build* got;
4331
4332   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4333       && gsym->can_use_relative_reloc(false))
4334     {
4335       pcount = &this->irelative_count_;
4336       plt_reserved = 0;
4337       got = this->got_irelative_;
4338     }
4339   else
4340     {
4341       pcount = &this->count_;
4342       plt_reserved = this->first_plt_entry_offset();
4343       got = this->got_plt_;
4344     }
4345
4346   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4347                        + plt_reserved);
4348
4349   ++*pcount;
4350
4351   section_offset_type got_offset = got->current_data_size();
4352
4353   // Every PLT entry needs a GOT entry which points back to the PLT
4354   // entry (this will be changed by the dynamic linker, normally
4355   // lazily when the function is called).
4356   got->set_current_data_size(got_offset + size / 8);
4357
4358   // Every PLT entry needs a reloc.
4359   this->add_relocation(symtab, layout, gsym, got_offset);
4360
4361   // Note that we don't need to save the symbol. The contents of the
4362   // PLT are independent of which symbols are used. The symbols only
4363   // appear in the relocations.
4364 }
4365
4366 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
4367 // the PLT offset.
4368
4369 template<int size, bool big_endian>
4370 unsigned int
4371 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4372     Symbol_table* symtab,
4373     Layout* layout,
4374     Sized_relobj_file<size, big_endian>* relobj,
4375     unsigned int local_sym_index)
4376 {
4377   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4378   ++this->irelative_count_;
4379
4380   section_offset_type got_offset = this->got_irelative_->current_data_size();
4381
4382   // Every PLT entry needs a GOT entry which points back to the PLT
4383   // entry.
4384   this->got_irelative_->set_current_data_size(got_offset + size / 8);
4385
4386   // Every PLT entry needs a reloc.
4387   Reloc_section* rela = this->rela_irelative(symtab, layout);
4388   rela->add_symbolless_local_addend(relobj, local_sym_index,
4389                                     elfcpp::R_AARCH64_IRELATIVE,
4390                                     this->got_irelative_, got_offset, 0);
4391
4392   return plt_offset;
4393 }
4394
4395 // Add the relocation for a PLT entry.
4396
4397 template<int size, bool big_endian>
4398 void
4399 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4400     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4401 {
4402   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4403       && gsym->can_use_relative_reloc(false))
4404     {
4405       Reloc_section* rela = this->rela_irelative(symtab, layout);
4406       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4407                                          this->got_irelative_, got_offset, 0);
4408     }
4409   else
4410     {
4411       gsym->set_needs_dynsym_entry();
4412       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4413                              got_offset, 0);
4414     }
4415 }
4416
4417 // Return where the TLSDESC relocations should go, creating it if
4418 // necessary.  These follow the JUMP_SLOT relocations.
4419
4420 template<int size, bool big_endian>
4421 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4422 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4423 {
4424   if (this->tlsdesc_rel_ == NULL)
4425     {
4426       this->tlsdesc_rel_ = new Reloc_section(false);
4427       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4428                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4429                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4430       gold_assert(this->tlsdesc_rel_->output_section()
4431                   == this->rel_->output_section());
4432     }
4433   return this->tlsdesc_rel_;
4434 }
4435
4436 // Return where the IRELATIVE relocations should go in the PLT.  These
4437 // follow the JUMP_SLOT and the TLSDESC relocations.
4438
4439 template<int size, bool big_endian>
4440 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4441 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4442                                                           Layout* layout)
4443 {
4444   if (this->irelative_rel_ == NULL)
4445     {
4446       // Make sure we have a place for the TLSDESC relocations, in
4447       // case we see any later on.
4448       this->rela_tlsdesc(layout);
4449       this->irelative_rel_ = new Reloc_section(false);
4450       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4451                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
4452                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4453       gold_assert(this->irelative_rel_->output_section()
4454                   == this->rel_->output_section());
4455
4456       if (parameters->doing_static_link())
4457         {
4458           // A statically linked executable will only have a .rela.plt
4459           // section to hold R_AARCH64_IRELATIVE relocs for
4460           // STT_GNU_IFUNC symbols.  The library will use these
4461           // symbols to locate the IRELATIVE relocs at program startup
4462           // time.
4463           symtab->define_in_output_data("__rela_iplt_start", NULL,
4464                                         Symbol_table::PREDEFINED,
4465                                         this->irelative_rel_, 0, 0,
4466                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4467                                         elfcpp::STV_HIDDEN, 0, false, true);
4468           symtab->define_in_output_data("__rela_iplt_end", NULL,
4469                                         Symbol_table::PREDEFINED,
4470                                         this->irelative_rel_, 0, 0,
4471                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4472                                         elfcpp::STV_HIDDEN, 0, true, true);
4473         }
4474     }
4475   return this->irelative_rel_;
4476 }
4477
4478 // Return the PLT address to use for a global symbol.
4479
4480 template<int size, bool big_endian>
4481 uint64_t
4482 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4483   const Symbol* gsym)
4484 {
4485   uint64_t offset = 0;
4486   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4487       && gsym->can_use_relative_reloc(false))
4488     offset = (this->first_plt_entry_offset() +
4489               this->count_ * this->get_plt_entry_size());
4490   return this->address() + offset + gsym->plt_offset();
4491 }
4492
4493 // Return the PLT address to use for a local symbol.  These are always
4494 // IRELATIVE relocs.
4495
4496 template<int size, bool big_endian>
4497 uint64_t
4498 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4499     const Relobj* object,
4500     unsigned int r_sym)
4501 {
4502   return (this->address()
4503           + this->first_plt_entry_offset()
4504           + this->count_ * this->get_plt_entry_size()
4505           + object->local_plt_offset(r_sym));
4506 }
4507
4508 // Set the final size.
4509
4510 template<int size, bool big_endian>
4511 void
4512 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4513 {
4514   unsigned int count = this->count_ + this->irelative_count_;
4515   unsigned int extra_size = 0;
4516   if (this->has_tlsdesc_entry())
4517     extra_size += this->get_plt_tlsdesc_entry_size();
4518   this->set_data_size(this->first_plt_entry_offset()
4519                       + count * this->get_plt_entry_size()
4520                       + extra_size);
4521 }
4522
4523 template<int size, bool big_endian>
4524 class Output_data_plt_aarch64_standard :
4525   public Output_data_plt_aarch64<size, big_endian>
4526 {
4527  public:
4528   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4529   Output_data_plt_aarch64_standard(
4530       Layout* layout,
4531       Output_data_got_aarch64<size, big_endian>* got,
4532       Output_data_space* got_plt,
4533       Output_data_space* got_irelative)
4534     : Output_data_plt_aarch64<size, big_endian>(layout,
4535                                                 size == 32 ? 4 : 8,
4536                                                 got, got_plt,
4537                                                 got_irelative)
4538   { }
4539
4540  protected:
4541   // Return the offset of the first non-reserved PLT entry.
4542   virtual unsigned int
4543   do_first_plt_entry_offset() const
4544   { return this->first_plt_entry_size; }
4545
4546   // Return the size of a PLT entry
4547   virtual unsigned int
4548   do_get_plt_entry_size() const
4549   { return this->plt_entry_size; }
4550
4551   // Return the size of a tlsdesc entry
4552   virtual unsigned int
4553   do_get_plt_tlsdesc_entry_size() const
4554   { return this->plt_tlsdesc_entry_size; }
4555
4556   virtual void
4557   do_fill_first_plt_entry(unsigned char* pov,
4558                           Address got_address,
4559                           Address plt_address);
4560
4561   virtual void
4562   do_fill_plt_entry(unsigned char* pov,
4563                     Address got_address,
4564                     Address plt_address,
4565                     unsigned int got_offset,
4566                     unsigned int plt_offset);
4567
4568   virtual void
4569   do_fill_tlsdesc_entry(unsigned char* pov,
4570                         Address gotplt_address,
4571                         Address plt_address,
4572                         Address got_base,
4573                         unsigned int tlsdesc_got_offset,
4574                         unsigned int plt_offset);
4575
4576  private:
4577   // The size of the first plt entry size.
4578   static const int first_plt_entry_size = 32;
4579   // The size of the plt entry size.
4580   static const int plt_entry_size = 16;
4581   // The size of the plt tlsdesc entry size.
4582   static const int plt_tlsdesc_entry_size = 32;
4583   // Template for the first PLT entry.
4584   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4585   // Template for subsequent PLT entries.
4586   static const uint32_t plt_entry[plt_entry_size / 4];
4587   // The reserved TLSDESC entry in the PLT for an executable.
4588   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4589 };
4590
4591 // The first entry in the PLT for an executable.
4592
4593 template<>
4594 const uint32_t
4595 Output_data_plt_aarch64_standard<32, false>::
4596     first_plt_entry[first_plt_entry_size / 4] =
4597 {
4598   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4599   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
4600   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
4601   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
4602   0xd61f0220,   /* br x17  */
4603   0xd503201f,   /* nop */
4604   0xd503201f,   /* nop */
4605   0xd503201f,   /* nop */
4606 };
4607
4608
4609 template<>
4610 const uint32_t
4611 Output_data_plt_aarch64_standard<32, true>::
4612     first_plt_entry[first_plt_entry_size / 4] =
4613 {
4614   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4615   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
4616   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
4617   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
4618   0xd61f0220,   /* br x17  */
4619   0xd503201f,   /* nop */
4620   0xd503201f,   /* nop */
4621   0xd503201f,   /* nop */
4622 };
4623
4624
4625 template<>
4626 const uint32_t
4627 Output_data_plt_aarch64_standard<64, false>::
4628     first_plt_entry[first_plt_entry_size / 4] =
4629 {
4630   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4631   0x90000010,   /* adrp x16, PLT_GOT+16  */
4632   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
4633   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
4634   0xd61f0220,   /* br x17  */
4635   0xd503201f,   /* nop */
4636   0xd503201f,   /* nop */
4637   0xd503201f,   /* nop */
4638 };
4639
4640
4641 template<>
4642 const uint32_t
4643 Output_data_plt_aarch64_standard<64, true>::
4644     first_plt_entry[first_plt_entry_size / 4] =
4645 {
4646   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4647   0x90000010,   /* adrp x16, PLT_GOT+16  */
4648   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
4649   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
4650   0xd61f0220,   /* br x17  */
4651   0xd503201f,   /* nop */
4652   0xd503201f,   /* nop */
4653   0xd503201f,   /* nop */
4654 };
4655
4656
4657 template<>
4658 const uint32_t
4659 Output_data_plt_aarch64_standard<32, false>::
4660     plt_entry[plt_entry_size / 4] =
4661 {
4662   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
4663   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
4664   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
4665   0xd61f0220,   /* br x17.  */
4666 };
4667
4668
4669 template<>
4670 const uint32_t
4671 Output_data_plt_aarch64_standard<32, true>::
4672     plt_entry[plt_entry_size / 4] =
4673 {
4674   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
4675   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
4676   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
4677   0xd61f0220,   /* br x17.  */
4678 };
4679
4680
4681 template<>
4682 const uint32_t
4683 Output_data_plt_aarch64_standard<64, false>::
4684     plt_entry[plt_entry_size / 4] =
4685 {
4686   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
4687   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
4688   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
4689   0xd61f0220,   /* br x17.  */
4690 };
4691
4692
4693 template<>
4694 const uint32_t
4695 Output_data_plt_aarch64_standard<64, true>::
4696     plt_entry[plt_entry_size / 4] =
4697 {
4698   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
4699   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
4700   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
4701   0xd61f0220,   /* br x17.  */
4702 };
4703
4704
4705 template<int size, bool big_endian>
4706 void
4707 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4708     unsigned char* pov,
4709     Address got_address,
4710     Address plt_address)
4711 {
4712   // PLT0 of the small PLT looks like this in ELF64 -
4713   // stp x16, x30, [sp, #-16]!          Save the reloc and lr on stack.
4714   // adrp x16, PLT_GOT + 16             Get the page base of the GOTPLT
4715   // ldr  x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4716   //                                    symbol resolver
4717   // add  x16, x16, #:lo12:PLT_GOT+16   Load the lo12 bits of the
4718   //                                    GOTPLT entry for this.
4719   // br   x17
4720   // PLT0 will be slightly different in ELF32 due to different got entry
4721   // size.
4722   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4723   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4724
4725   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4726   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4727   // FIXME: This only works for 64bit
4728   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4729       gotplt_2nd_ent, plt_address + 4);
4730
4731   // Fill in R_AARCH64_LDST8_LO12
4732   elfcpp::Swap<32, big_endian>::writeval(
4733       pov + 8,
4734       ((this->first_plt_entry[2] & 0xffc003ff)
4735        | ((gotplt_2nd_ent & 0xff8) << 7)));
4736
4737   // Fill in R_AARCH64_ADD_ABS_LO12
4738   elfcpp::Swap<32, big_endian>::writeval(
4739       pov + 12,
4740       ((this->first_plt_entry[3] & 0xffc003ff)
4741        | ((gotplt_2nd_ent & 0xfff) << 10)));
4742 }
4743
4744
4745 // Subsequent entries in the PLT for an executable.
4746 // FIXME: This only works for 64bit
4747
4748 template<int size, bool big_endian>
4749 void
4750 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4751     unsigned char* pov,
4752     Address got_address,
4753     Address plt_address,
4754     unsigned int got_offset,
4755     unsigned int plt_offset)
4756 {
4757   memcpy(pov, this->plt_entry, this->plt_entry_size);
4758
4759   Address gotplt_entry_address = got_address + got_offset;
4760   Address plt_entry_address = plt_address + plt_offset;
4761
4762   // Fill in R_AARCH64_PCREL_ADR_HI21
4763   AArch64_relocate_functions<size, big_endian>::adrp(
4764       pov,
4765       gotplt_entry_address,
4766       plt_entry_address);
4767
4768   // Fill in R_AARCH64_LDST64_ABS_LO12
4769   elfcpp::Swap<32, big_endian>::writeval(
4770       pov + 4,
4771       ((this->plt_entry[1] & 0xffc003ff)
4772        | ((gotplt_entry_address & 0xff8) << 7)));
4773
4774   // Fill in R_AARCH64_ADD_ABS_LO12
4775   elfcpp::Swap<32, big_endian>::writeval(
4776       pov + 8,
4777       ((this->plt_entry[2] & 0xffc003ff)
4778        | ((gotplt_entry_address & 0xfff) <<10)));
4779
4780 }
4781
4782
4783 template<>
4784 const uint32_t
4785 Output_data_plt_aarch64_standard<32, false>::
4786     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4787 {
4788   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4789   0x90000002,   /* adrp x2, 0 */
4790   0x90000003,   /* adrp x3, 0 */
4791   0xb9400042,   /* ldr w2, [w2, #0] */
4792   0x11000063,   /* add w3, w3, 0 */
4793   0xd61f0040,   /* br x2 */
4794   0xd503201f,   /* nop */
4795   0xd503201f,   /* nop */
4796 };
4797
4798 template<>
4799 const uint32_t
4800 Output_data_plt_aarch64_standard<32, true>::
4801     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4802 {
4803   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4804   0x90000002,   /* adrp x2, 0 */
4805   0x90000003,   /* adrp x3, 0 */
4806   0xb9400042,   /* ldr w2, [w2, #0] */
4807   0x11000063,   /* add w3, w3, 0 */
4808   0xd61f0040,   /* br x2 */
4809   0xd503201f,   /* nop */
4810   0xd503201f,   /* nop */
4811 };
4812
4813 template<>
4814 const uint32_t
4815 Output_data_plt_aarch64_standard<64, false>::
4816     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4817 {
4818   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4819   0x90000002,   /* adrp x2, 0 */
4820   0x90000003,   /* adrp x3, 0 */
4821   0xf9400042,   /* ldr x2, [x2, #0] */
4822   0x91000063,   /* add x3, x3, 0 */
4823   0xd61f0040,   /* br x2 */
4824   0xd503201f,   /* nop */
4825   0xd503201f,   /* nop */
4826 };
4827
4828 template<>
4829 const uint32_t
4830 Output_data_plt_aarch64_standard<64, true>::
4831     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4832 {
4833   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4834   0x90000002,   /* adrp x2, 0 */
4835   0x90000003,   /* adrp x3, 0 */
4836   0xf9400042,   /* ldr x2, [x2, #0] */
4837   0x91000063,   /* add x3, x3, 0 */
4838   0xd61f0040,   /* br x2 */
4839   0xd503201f,   /* nop */
4840   0xd503201f,   /* nop */
4841 };
4842
4843 template<int size, bool big_endian>
4844 void
4845 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4846     unsigned char* pov,
4847     Address gotplt_address,
4848     Address plt_address,
4849     Address got_base,
4850     unsigned int tlsdesc_got_offset,
4851     unsigned int plt_offset)
4852 {
4853   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4854
4855   // move DT_TLSDESC_GOT address into x2
4856   // move .got.plt address into x3
4857   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4858   Address plt_entry_address = plt_address + plt_offset;
4859
4860   // R_AARCH64_ADR_PREL_PG_HI21
4861   AArch64_relocate_functions<size, big_endian>::adrp(
4862       pov + 4,
4863       tlsdesc_got_entry,
4864       plt_entry_address + 4);
4865
4866   // R_AARCH64_ADR_PREL_PG_HI21
4867   AArch64_relocate_functions<size, big_endian>::adrp(
4868       pov + 8,
4869       gotplt_address,
4870       plt_entry_address + 8);
4871
4872   // R_AARCH64_LDST64_ABS_LO12
4873   elfcpp::Swap<32, big_endian>::writeval(
4874       pov + 12,
4875       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4876        | ((tlsdesc_got_entry & 0xff8) << 7)));
4877
4878   // R_AARCH64_ADD_ABS_LO12
4879   elfcpp::Swap<32, big_endian>::writeval(
4880       pov + 16,
4881       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4882        | ((gotplt_address & 0xfff) << 10)));
4883 }
4884
4885 // Write out the PLT.  This uses the hand-coded instructions above,
4886 // and adjusts them as needed.  This is specified by the AMD64 ABI.
4887
4888 template<int size, bool big_endian>
4889 void
4890 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4891 {
4892   const off_t offset = this->offset();
4893   const section_size_type oview_size =
4894     convert_to_section_size_type(this->data_size());
4895   unsigned char* const oview = of->get_output_view(offset, oview_size);
4896
4897   const off_t got_file_offset = this->got_plt_->offset();
4898   gold_assert(got_file_offset + this->got_plt_->data_size()
4899               == this->got_irelative_->offset());
4900
4901   const section_size_type got_size =
4902       convert_to_section_size_type(this->got_plt_->data_size()
4903                                    + this->got_irelative_->data_size());
4904   unsigned char* const got_view = of->get_output_view(got_file_offset,
4905                                                       got_size);
4906
4907   unsigned char* pov = oview;
4908
4909   // The base address of the .plt section.
4910   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4911   // The base address of the PLT portion of the .got section.
4912   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4913       = this->got_plt_->address();
4914
4915   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4916   pov += this->first_plt_entry_offset();
4917
4918   // The first three entries in .got.plt are reserved.
4919   unsigned char* got_pov = got_view;
4920   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4921   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4922
4923   unsigned int plt_offset = this->first_plt_entry_offset();
4924   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4925   const unsigned int count = this->count_ + this->irelative_count_;
4926   for (unsigned int plt_index = 0;
4927        plt_index < count;
4928        ++plt_index,
4929          pov += this->get_plt_entry_size(),
4930          got_pov += size / 8,
4931          plt_offset += this->get_plt_entry_size(),
4932          got_offset += size / 8)
4933     {
4934       // Set and adjust the PLT entry itself.
4935       this->fill_plt_entry(pov, gotplt_address, plt_address,
4936                            got_offset, plt_offset);
4937
4938       // Set the entry in the GOT, which points to plt0.
4939       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4940     }
4941
4942   if (this->has_tlsdesc_entry())
4943     {
4944       // Set and adjust the reserved TLSDESC PLT entry.
4945       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4946       // The base address of the .base section.
4947       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4948           this->got_->address();
4949       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4950                                tlsdesc_got_offset, plt_offset);
4951       pov += this->get_plt_tlsdesc_entry_size();
4952     }
4953
4954   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4955   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4956
4957   of->write_output_view(offset, oview_size, oview);
4958   of->write_output_view(got_file_offset, got_size, got_view);
4959 }
4960
4961 // Telling how to update the immediate field of an instruction.
4962 struct AArch64_howto
4963 {
4964   // The immediate field mask.
4965   elfcpp::Elf_Xword dst_mask;
4966
4967   // The offset to apply relocation immediate
4968   int doffset;
4969
4970   // The second part offset, if the immediate field has two parts.
4971   // -1 if the immediate field has only one part.
4972   int doffset2;
4973 };
4974
4975 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4976 {
4977   {0, -1, -1},          // DATA
4978   {0x1fffe0, 5, -1},    // MOVW  [20:5]-imm16
4979   {0xffffe0, 5, -1},    // LD    [23:5]-imm19
4980   {0x60ffffe0, 29, 5},  // ADR   [30:29]-immlo  [23:5]-immhi
4981   {0x60ffffe0, 29, 5},  // ADRP  [30:29]-immlo  [23:5]-immhi
4982   {0x3ffc00, 10, -1},   // ADD   [21:10]-imm12
4983   {0x3ffc00, 10, -1},   // LDST  [21:10]-imm12
4984   {0x7ffe0, 5, -1},     // TBZNZ [18:5]-imm14
4985   {0xffffe0, 5, -1},    // CONDB [23:5]-imm19
4986   {0x3ffffff, 0, -1},   // B     [25:0]-imm26
4987   {0x3ffffff, 0, -1},   // CALL  [25:0]-imm26
4988 };
4989
4990 // AArch64 relocate function class
4991
4992 template<int size, bool big_endian>
4993 class AArch64_relocate_functions
4994 {
4995  public:
4996   typedef enum
4997   {
4998     STATUS_OKAY,        // No error during relocation.
4999     STATUS_OVERFLOW,    // Relocation overflow.
5000     STATUS_BAD_RELOC,   // Relocation cannot be applied.
5001   } Status;
5002
5003   typedef AArch64_relocate_functions<size, big_endian> This;
5004   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5005   typedef Relocate_info<size, big_endian> The_relocate_info;
5006   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5007   typedef Reloc_stub<size, big_endian> The_reloc_stub;
5008   typedef Stub_table<size, big_endian> The_stub_table;
5009   typedef elfcpp::Rela<size, big_endian> The_rela;
5010   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5011
5012   // Return the page address of the address.
5013   // Page(address) = address & ~0xFFF
5014
5015   static inline AArch64_valtype
5016   Page(Address address)
5017   {
5018     return (address & (~static_cast<Address>(0xFFF)));
5019   }
5020
5021  private:
5022   // Update instruction (pointed by view) with selected bits (immed).
5023   // val = (val & ~dst_mask) | (immed << doffset)
5024
5025   template<int valsize>
5026   static inline void
5027   update_view(unsigned char* view,
5028               AArch64_valtype immed,
5029               elfcpp::Elf_Xword doffset,
5030               elfcpp::Elf_Xword dst_mask)
5031   {
5032     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5033     Valtype* wv = reinterpret_cast<Valtype*>(view);
5034     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5035
5036     // Clear immediate fields.
5037     val &= ~dst_mask;
5038     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5039       static_cast<Valtype>(val | (immed << doffset)));
5040   }
5041
5042   // Update two parts of an instruction (pointed by view) with selected
5043   // bits (immed1 and immed2).
5044   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5045
5046   template<int valsize>
5047   static inline void
5048   update_view_two_parts(
5049     unsigned char* view,
5050     AArch64_valtype immed1,
5051     AArch64_valtype immed2,
5052     elfcpp::Elf_Xword doffset1,
5053     elfcpp::Elf_Xword doffset2,
5054     elfcpp::Elf_Xword dst_mask)
5055   {
5056     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5057     Valtype* wv = reinterpret_cast<Valtype*>(view);
5058     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5059     val &= ~dst_mask;
5060     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5061       static_cast<Valtype>(val | (immed1 << doffset1) |
5062                            (immed2 << doffset2)));
5063   }
5064
5065   // Update adr or adrp instruction with immed.
5066   // In adr and adrp: [30:29] immlo   [23:5] immhi
5067
5068   static inline void
5069   update_adr(unsigned char* view, AArch64_valtype immed)
5070   {
5071     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5072     This::template update_view_two_parts<32>(
5073       view,
5074       immed & 0x3,
5075       (immed & 0x1ffffc) >> 2,
5076       29,
5077       5,
5078       dst_mask);
5079   }
5080
5081   // Update movz/movn instruction with bits immed.
5082   // Set instruction to movz if is_movz is true, otherwise set instruction
5083   // to movn.
5084
5085   static inline void
5086   update_movnz(unsigned char* view,
5087                AArch64_valtype immed,
5088                bool is_movz)
5089   {
5090     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5091     Valtype* wv = reinterpret_cast<Valtype*>(view);
5092     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5093
5094     const elfcpp::Elf_Xword doffset =
5095         aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5096     const elfcpp::Elf_Xword dst_mask =
5097         aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5098
5099     // Clear immediate fields and opc code.
5100     val &= ~(dst_mask | (0x3 << 29));
5101
5102     // Set instruction to movz or movn.
5103     // movz: [30:29] is 10   movn: [30:29] is 00
5104     if (is_movz)
5105       val |= (0x2 << 29);
5106
5107     elfcpp::Swap<32, big_endian>::writeval(wv,
5108       static_cast<Valtype>(val | (immed << doffset)));
5109   }
5110
5111  public:
5112
5113   // Update selected bits in text.
5114
5115   template<int valsize>
5116   static inline typename This::Status
5117   reloc_common(unsigned char* view, Address x,
5118                 const AArch64_reloc_property* reloc_property)
5119   {
5120     // Select bits from X.
5121     Address immed = reloc_property->select_x_value(x);
5122
5123     // Update view.
5124     const AArch64_reloc_property::Reloc_inst inst =
5125       reloc_property->reloc_inst();
5126     // If it is a data relocation or instruction has 2 parts of immediate
5127     // fields, you should not call pcrela_general.
5128     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5129                 aarch64_howto[inst].doffset != -1);
5130     This::template update_view<valsize>(view, immed,
5131                                         aarch64_howto[inst].doffset,
5132                                         aarch64_howto[inst].dst_mask);
5133
5134     // Do check overflow or alignment if needed.
5135     return (reloc_property->checkup_x_value(x)
5136             ? This::STATUS_OKAY
5137             : This::STATUS_OVERFLOW);
5138   }
5139
5140   // Construct a B insn. Note, although we group it here with other relocation
5141   // operation, there is actually no 'relocation' involved here.
5142   static inline void
5143   construct_b(unsigned char* view, unsigned int branch_offset)
5144   {
5145     update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5146                               26, 0, 0xffffffff);
5147   }
5148
5149   // Do a simple rela relocation at unaligned addresses.
5150
5151   template<int valsize>
5152   static inline typename This::Status
5153   rela_ua(unsigned char* view,
5154           const Sized_relobj_file<size, big_endian>* object,
5155           const Symbol_value<size>* psymval,
5156           AArch64_valtype addend,
5157           const AArch64_reloc_property* reloc_property)
5158   {
5159     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5160       Valtype;
5161     typename elfcpp::Elf_types<size>::Elf_Addr x =
5162         psymval->value(object, addend);
5163     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5164       static_cast<Valtype>(x));
5165     return (reloc_property->checkup_x_value(x)
5166             ? This::STATUS_OKAY
5167             : This::STATUS_OVERFLOW);
5168   }
5169
5170   // Do a simple pc-relative relocation at unaligned addresses.
5171
5172   template<int valsize>
5173   static inline typename This::Status
5174   pcrela_ua(unsigned char* view,
5175             const Sized_relobj_file<size, big_endian>* object,
5176             const Symbol_value<size>* psymval,
5177             AArch64_valtype addend,
5178             Address address,
5179             const AArch64_reloc_property* reloc_property)
5180   {
5181     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5182       Valtype;
5183     Address x = psymval->value(object, addend) - address;
5184     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5185       static_cast<Valtype>(x));
5186     return (reloc_property->checkup_x_value(x)
5187             ? This::STATUS_OKAY
5188             : This::STATUS_OVERFLOW);
5189   }
5190
5191   // Do a simple rela relocation at aligned addresses.
5192
5193   template<int valsize>
5194   static inline typename This::Status
5195   rela(
5196     unsigned char* view,
5197     const Sized_relobj_file<size, big_endian>* object,
5198     const Symbol_value<size>* psymval,
5199     AArch64_valtype addend,
5200     const AArch64_reloc_property* reloc_property)
5201   {
5202     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5203     Valtype* wv = reinterpret_cast<Valtype*>(view);
5204     Address x = psymval->value(object, addend);
5205     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5206     return (reloc_property->checkup_x_value(x)
5207             ? This::STATUS_OKAY
5208             : This::STATUS_OVERFLOW);
5209   }
5210
5211   // Do relocate. Update selected bits in text.
5212   // new_val = (val & ~dst_mask) | (immed << doffset)
5213
5214   template<int valsize>
5215   static inline typename This::Status
5216   rela_general(unsigned char* view,
5217                const Sized_relobj_file<size, big_endian>* object,
5218                const Symbol_value<size>* psymval,
5219                AArch64_valtype addend,
5220                const AArch64_reloc_property* reloc_property)
5221   {
5222     // Calculate relocation.
5223     Address x = psymval->value(object, addend);
5224     return This::template reloc_common<valsize>(view, x, reloc_property);
5225   }
5226
5227   // Do relocate. Update selected bits in text.
5228   // new val = (val & ~dst_mask) | (immed << doffset)
5229
5230   template<int valsize>
5231   static inline typename This::Status
5232   rela_general(
5233     unsigned char* view,
5234     AArch64_valtype s,
5235     AArch64_valtype addend,
5236     const AArch64_reloc_property* reloc_property)
5237   {
5238     // Calculate relocation.
5239     Address x = s + addend;
5240     return This::template reloc_common<valsize>(view, x, reloc_property);
5241   }
5242
5243   // Do address relative relocate. Update selected bits in text.
5244   // new val = (val & ~dst_mask) | (immed << doffset)
5245
5246   template<int valsize>
5247   static inline typename This::Status
5248   pcrela_general(
5249     unsigned char* view,
5250     const Sized_relobj_file<size, big_endian>* object,
5251     const Symbol_value<size>* psymval,
5252     AArch64_valtype addend,
5253     Address address,
5254     const AArch64_reloc_property* reloc_property)
5255   {
5256     // Calculate relocation.
5257     Address x = psymval->value(object, addend) - address;
5258     return This::template reloc_common<valsize>(view, x, reloc_property);
5259   }
5260
5261
5262   // Calculate (S + A) - address, update adr instruction.
5263
5264   static inline typename This::Status
5265   adr(unsigned char* view,
5266       const Sized_relobj_file<size, big_endian>* object,
5267       const Symbol_value<size>* psymval,
5268       Address addend,
5269       Address address,
5270       const AArch64_reloc_property* /* reloc_property */)
5271   {
5272     AArch64_valtype x = psymval->value(object, addend) - address;
5273     // Pick bits [20:0] of X.
5274     AArch64_valtype immed = x & 0x1fffff;
5275     update_adr(view, immed);
5276     // Check -2^20 <= X < 2^20
5277     return (size == 64 && Bits<21>::has_overflow((x))
5278             ? This::STATUS_OVERFLOW
5279             : This::STATUS_OKAY);
5280   }
5281
5282   // Calculate PG(S+A) - PG(address), update adrp instruction.
5283   // R_AARCH64_ADR_PREL_PG_HI21
5284
5285   static inline typename This::Status
5286   adrp(
5287     unsigned char* view,
5288     Address sa,
5289     Address address)
5290   {
5291     AArch64_valtype x = This::Page(sa) - This::Page(address);
5292     // Pick [32:12] of X.
5293     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5294     update_adr(view, immed);
5295     // Check -2^32 <= X < 2^32
5296     return (size == 64 && Bits<33>::has_overflow((x))
5297             ? This::STATUS_OVERFLOW
5298             : This::STATUS_OKAY);
5299   }
5300
5301   // Calculate PG(S+A) - PG(address), update adrp instruction.
5302   // R_AARCH64_ADR_PREL_PG_HI21
5303
5304   static inline typename This::Status
5305   adrp(unsigned char* view,
5306        const Sized_relobj_file<size, big_endian>* object,
5307        const Symbol_value<size>* psymval,
5308        Address addend,
5309        Address address,
5310        const AArch64_reloc_property* reloc_property)
5311   {
5312     Address sa = psymval->value(object, addend);
5313     AArch64_valtype x = This::Page(sa) - This::Page(address);
5314     // Pick [32:12] of X.
5315     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5316     update_adr(view, immed);
5317     return (reloc_property->checkup_x_value(x)
5318             ? This::STATUS_OKAY
5319             : This::STATUS_OVERFLOW);
5320   }
5321
5322   // Update mov[n/z] instruction. Check overflow if needed.
5323   // If X >=0, set the instruction to movz and its immediate value to the
5324   // selected bits S.
5325   // If X < 0, set the instruction to movn and its immediate value to
5326   // NOT (selected bits of).
5327
5328   static inline typename This::Status
5329   movnz(unsigned char* view,
5330         AArch64_valtype x,
5331         const AArch64_reloc_property* reloc_property)
5332   {
5333     // Select bits from X.
5334     Address immed;
5335     bool is_movz;
5336     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5337     if (static_cast<SignedW>(x) >= 0)
5338       {
5339         immed = reloc_property->select_x_value(x);
5340         is_movz = true;
5341       }
5342     else
5343       {
5344         immed = reloc_property->select_x_value(~x);;
5345         is_movz = false;
5346       }
5347
5348     // Update movnz instruction.
5349     update_movnz(view, immed, is_movz);
5350
5351     // Do check overflow or alignment if needed.
5352     return (reloc_property->checkup_x_value(x)
5353             ? This::STATUS_OKAY
5354             : This::STATUS_OVERFLOW);
5355   }
5356
5357   static inline bool
5358   maybe_apply_stub(unsigned int,
5359                    const The_relocate_info*,
5360                    const The_rela&,
5361                    unsigned char*,
5362                    Address,
5363                    const Sized_symbol<size>*,
5364                    const Symbol_value<size>*,
5365                    const Sized_relobj_file<size, big_endian>*,
5366                    section_size_type);
5367
5368 };  // End of AArch64_relocate_functions
5369
5370
5371 // For a certain relocation type (usually jump/branch), test to see if the
5372 // destination needs a stub to fulfil. If so, re-route the destination of the
5373 // original instruction to the stub, note, at this time, the stub has already
5374 // been generated.
5375
5376 template<int size, bool big_endian>
5377 bool
5378 AArch64_relocate_functions<size, big_endian>::
5379 maybe_apply_stub(unsigned int r_type,
5380                  const The_relocate_info* relinfo,
5381                  const The_rela& rela,
5382                  unsigned char* view,
5383                  Address address,
5384                  const Sized_symbol<size>* gsym,
5385                  const Symbol_value<size>* psymval,
5386                  const Sized_relobj_file<size, big_endian>* object,
5387                  section_size_type current_group_size)
5388 {
5389   if (parameters->options().relocatable())
5390     return false;
5391
5392   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5393   Address branch_target = psymval->value(object, 0) + addend;
5394   int stub_type =
5395     The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5396   if (stub_type == ST_NONE)
5397     return false;
5398
5399   const The_aarch64_relobj* aarch64_relobj =
5400       static_cast<const The_aarch64_relobj*>(object);
5401   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5402   gold_assert(stub_table != NULL);
5403
5404   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5405   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5406   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5407   gold_assert(stub != NULL);
5408
5409   Address new_branch_target = stub_table->address() + stub->offset();
5410   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5411       new_branch_target - address;
5412   const AArch64_reloc_property* arp =
5413       aarch64_reloc_property_table->get_reloc_property(r_type);
5414   gold_assert(arp != NULL);
5415   typename This::Status status = This::template
5416       rela_general<32>(view, branch_offset, 0, arp);
5417   if (status != This::STATUS_OKAY)
5418     gold_error(_("Stub is too far away, try a smaller value "
5419                  "for '--stub-group-size'. The current value is 0x%lx."),
5420                static_cast<unsigned long>(current_group_size));
5421   return true;
5422 }
5423
5424
5425 // Group input sections for stub generation.
5426 //
5427 // We group input sections in an output section so that the total size,
5428 // including any padding space due to alignment is smaller than GROUP_SIZE
5429 // unless the only input section in group is bigger than GROUP_SIZE already.
5430 // Then an ARM stub table is created to follow the last input section
5431 // in group.  For each group an ARM stub table is created an is placed
5432 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
5433 // extend the group after the stub table.
5434
5435 template<int size, bool big_endian>
5436 void
5437 Target_aarch64<size, big_endian>::group_sections(
5438     Layout* layout,
5439     section_size_type group_size,
5440     bool stubs_always_after_branch,
5441     const Task* task)
5442 {
5443   // Group input sections and insert stub table
5444   Layout::Section_list section_list;
5445   layout->get_executable_sections(&section_list);
5446   for (Layout::Section_list::const_iterator p = section_list.begin();
5447        p != section_list.end();
5448        ++p)
5449     {
5450       AArch64_output_section<size, big_endian>* output_section =
5451           static_cast<AArch64_output_section<size, big_endian>*>(*p);
5452       output_section->group_sections(group_size, stubs_always_after_branch,
5453                                      this, task);
5454     }
5455 }
5456
5457
5458 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5459 // section of RELOBJ.
5460
5461 template<int size, bool big_endian>
5462 AArch64_input_section<size, big_endian>*
5463 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5464     Relobj* relobj, unsigned int shndx) const
5465 {
5466   Section_id sid(relobj, shndx);
5467   typename AArch64_input_section_map::const_iterator p =
5468     this->aarch64_input_section_map_.find(sid);
5469   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5470 }
5471
5472
5473 // Make a new AArch64_input_section object.
5474
5475 template<int size, bool big_endian>
5476 AArch64_input_section<size, big_endian>*
5477 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5478     Relobj* relobj, unsigned int shndx)
5479 {
5480   Section_id sid(relobj, shndx);
5481
5482   AArch64_input_section<size, big_endian>* input_section =
5483       new AArch64_input_section<size, big_endian>(relobj, shndx);
5484   input_section->init();
5485
5486   // Register new AArch64_input_section in map for look-up.
5487   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5488       this->aarch64_input_section_map_.insert(
5489           std::make_pair(sid, input_section));
5490
5491   // Make sure that it we have not created another AArch64_input_section
5492   // for this input section already.
5493   gold_assert(ins.second);
5494
5495   return input_section;
5496 }
5497
5498
5499 // Relaxation hook.  This is where we do stub generation.
5500
5501 template<int size, bool big_endian>
5502 bool
5503 Target_aarch64<size, big_endian>::do_relax(
5504     int pass,
5505     const Input_objects* input_objects,
5506     Symbol_table* symtab,
5507     Layout* layout ,
5508     const Task* task)
5509 {
5510   gold_assert(!parameters->options().relocatable());
5511   if (pass == 1)
5512     {
5513       // We don't handle negative stub_group_size right now.
5514       this->stub_group_size_ = abs(parameters->options().stub_group_size());
5515       if (this->stub_group_size_ == 1)
5516         {
5517           // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5518           // will fail to link.  The user will have to relink with an explicit
5519           // group size option.
5520           this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5521                                    4096 * 4;
5522         }
5523       group_sections(layout, this->stub_group_size_, true, task);
5524     }
5525   else
5526     {
5527       // If this is not the first pass, addresses and file offsets have
5528       // been reset at this point, set them here.
5529       for (Stub_table_iterator sp = this->stub_tables_.begin();
5530            sp != this->stub_tables_.end(); ++sp)
5531         {
5532           The_stub_table* stt = *sp;
5533           The_aarch64_input_section* owner = stt->owner();
5534           off_t off = align_address(owner->original_size(),
5535                                     stt->addralign());
5536           stt->set_address_and_file_offset(owner->address() + off,
5537                                            owner->offset() + off);
5538         }
5539     }
5540
5541   // Scan relocs for relocation stubs
5542   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5543        op != input_objects->relobj_end();
5544        ++op)
5545     {
5546       The_aarch64_relobj* aarch64_relobj =
5547           static_cast<The_aarch64_relobj*>(*op);
5548       // Lock the object so we can read from it.  This is only called
5549       // single-threaded from Layout::finalize, so it is OK to lock.
5550       Task_lock_obj<Object> tl(task, aarch64_relobj);
5551       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5552     }
5553
5554   bool any_stub_table_changed = false;
5555   for (Stub_table_iterator siter = this->stub_tables_.begin();
5556        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5557     {
5558       The_stub_table* stub_table = *siter;
5559       if (stub_table->update_data_size_changed_p())
5560         {
5561           The_aarch64_input_section* owner = stub_table->owner();
5562           uint64_t address = owner->address();
5563           off_t offset = owner->offset();
5564           owner->reset_address_and_file_offset();
5565           owner->set_address_and_file_offset(address, offset);
5566
5567           any_stub_table_changed = true;
5568         }
5569     }
5570
5571   // Do not continue relaxation.
5572   bool continue_relaxation = any_stub_table_changed;
5573   if (!continue_relaxation)
5574     for (Stub_table_iterator sp = this->stub_tables_.begin();
5575          (sp != this->stub_tables_.end());
5576          ++sp)
5577       (*sp)->finalize_stubs();
5578
5579   return continue_relaxation;
5580 }
5581
5582
5583 // Make a new Stub_table.
5584
5585 template<int size, bool big_endian>
5586 Stub_table<size, big_endian>*
5587 Target_aarch64<size, big_endian>::new_stub_table(
5588     AArch64_input_section<size, big_endian>* owner)
5589 {
5590   Stub_table<size, big_endian>* stub_table =
5591       new Stub_table<size, big_endian>(owner);
5592   stub_table->set_address(align_address(
5593       owner->address() + owner->data_size(), 8));
5594   stub_table->set_file_offset(owner->offset() + owner->data_size());
5595   stub_table->finalize_data_size();
5596
5597   this->stub_tables_.push_back(stub_table);
5598
5599   return stub_table;
5600 }
5601
5602
5603 template<int size, bool big_endian>
5604 uint64_t
5605 Target_aarch64<size, big_endian>::do_reloc_addend(
5606     void* arg, unsigned int r_type, uint64_t) const
5607 {
5608   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5609   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5610   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5611   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5612   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5613   gold_assert(psymval->is_tls_symbol());
5614   // The value of a TLS symbol is the offset in the TLS segment.
5615   return psymval->value(ti.object, 0);
5616 }
5617
5618 // Return the number of entries in the PLT.
5619
5620 template<int size, bool big_endian>
5621 unsigned int
5622 Target_aarch64<size, big_endian>::plt_entry_count() const
5623 {
5624   if (this->plt_ == NULL)
5625     return 0;
5626   return this->plt_->entry_count();
5627 }
5628
5629 // Return the offset of the first non-reserved PLT entry.
5630
5631 template<int size, bool big_endian>
5632 unsigned int
5633 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5634 {
5635   return this->plt_->first_plt_entry_offset();
5636 }
5637
5638 // Return the size of each PLT entry.
5639
5640 template<int size, bool big_endian>
5641 unsigned int
5642 Target_aarch64<size, big_endian>::plt_entry_size() const
5643 {
5644   return this->plt_->get_plt_entry_size();
5645 }
5646
5647 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5648
5649 template<int size, bool big_endian>
5650 void
5651 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5652     Symbol_table* symtab, Layout* layout)
5653 {
5654   if (this->tls_base_symbol_defined_)
5655     return;
5656
5657   Output_segment* tls_segment = layout->tls_segment();
5658   if (tls_segment != NULL)
5659     {
5660       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5661       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5662                                        Symbol_table::PREDEFINED,
5663                                        tls_segment, 0, 0,
5664                                        elfcpp::STT_TLS,
5665                                        elfcpp::STB_LOCAL,
5666                                        elfcpp::STV_HIDDEN, 0,
5667                                        Symbol::SEGMENT_START,
5668                                        true);
5669     }
5670   this->tls_base_symbol_defined_ = true;
5671 }
5672
5673 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5674
5675 template<int size, bool big_endian>
5676 void
5677 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5678     Symbol_table* symtab, Layout* layout)
5679 {
5680   if (this->plt_ == NULL)
5681     this->make_plt_section(symtab, layout);
5682
5683   if (!this->plt_->has_tlsdesc_entry())
5684     {
5685       // Allocate the TLSDESC_GOT entry.
5686       Output_data_got_aarch64<size, big_endian>* got =
5687           this->got_section(symtab, layout);
5688       unsigned int got_offset = got->add_constant(0);
5689
5690       // Allocate the TLSDESC_PLT entry.
5691       this->plt_->reserve_tlsdesc_entry(got_offset);
5692     }
5693 }
5694
5695 // Create a GOT entry for the TLS module index.
5696
5697 template<int size, bool big_endian>
5698 unsigned int
5699 Target_aarch64<size, big_endian>::got_mod_index_entry(
5700     Symbol_table* symtab, Layout* layout,
5701     Sized_relobj_file<size, big_endian>* object)
5702 {
5703   if (this->got_mod_index_offset_ == -1U)
5704     {
5705       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5706       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5707       Output_data_got_aarch64<size, big_endian>* got =
5708           this->got_section(symtab, layout);
5709       unsigned int got_offset = got->add_constant(0);
5710       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5711                           got_offset, 0);
5712       got->add_constant(0);
5713       this->got_mod_index_offset_ = got_offset;
5714     }
5715   return this->got_mod_index_offset_;
5716 }
5717
5718 // Optimize the TLS relocation type based on what we know about the
5719 // symbol.  IS_FINAL is true if the final address of this symbol is
5720 // known at link time.
5721
5722 template<int size, bool big_endian>
5723 tls::Tls_optimization
5724 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5725                                                      int r_type)
5726 {
5727   // If we are generating a shared library, then we can't do anything
5728   // in the linker
5729   if (parameters->options().shared())
5730     return tls::TLSOPT_NONE;
5731
5732   switch (r_type)
5733     {
5734     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5735     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5736     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5737     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5738     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5739     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5740     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5741     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5742     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5743     case elfcpp::R_AARCH64_TLSDESC_LDR:
5744     case elfcpp::R_AARCH64_TLSDESC_ADD:
5745     case elfcpp::R_AARCH64_TLSDESC_CALL:
5746       // These are General-Dynamic which permits fully general TLS
5747       // access.  Since we know that we are generating an executable,
5748       // we can convert this to Initial-Exec.  If we also know that
5749       // this is a local symbol, we can further switch to Local-Exec.
5750       if (is_final)
5751         return tls::TLSOPT_TO_LE;
5752       return tls::TLSOPT_TO_IE;
5753
5754     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5755     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5756     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5757     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5758     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5759     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5760       // These are Local-Dynamic, which refer to local symbols in the
5761       // dynamic TLS block. Since we know that we generating an
5762       // executable, we can switch to Local-Exec.
5763       return tls::TLSOPT_TO_LE;
5764
5765     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5766     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5767     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5768     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5769     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5770       // These are Initial-Exec relocs which get the thread offset
5771       // from the GOT. If we know that we are linking against the
5772       // local symbol, we can switch to Local-Exec, which links the
5773       // thread offset into the instruction.
5774       if (is_final)
5775         return tls::TLSOPT_TO_LE;
5776       return tls::TLSOPT_NONE;
5777
5778     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5779     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5780     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5781     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5782     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5783     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5784     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5785     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5786       // When we already have Local-Exec, there is nothing further we
5787       // can do.
5788       return tls::TLSOPT_NONE;
5789
5790     default:
5791       gold_unreachable();
5792     }
5793 }
5794
5795 // Returns true if this relocation type could be that of a function pointer.
5796
5797 template<int size, bool big_endian>
5798 inline bool
5799 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5800   unsigned int r_type)
5801 {
5802   switch (r_type)
5803     {
5804     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5805     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5806     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5807     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5808     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5809       {
5810         return true;
5811       }
5812     }
5813   return false;
5814 }
5815
5816 // For safe ICF, scan a relocation for a local symbol to check if it
5817 // corresponds to a function pointer being taken.  In that case mark
5818 // the function whose pointer was taken as not foldable.
5819
5820 template<int size, bool big_endian>
5821 inline bool
5822 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5823   Symbol_table* ,
5824   Layout* ,
5825   Target_aarch64<size, big_endian>* ,
5826   Sized_relobj_file<size, big_endian>* ,
5827   unsigned int ,
5828   Output_section* ,
5829   const elfcpp::Rela<size, big_endian>& ,
5830   unsigned int r_type,
5831   const elfcpp::Sym<size, big_endian>&)
5832 {
5833   // When building a shared library, do not fold any local symbols.
5834   return (parameters->options().shared()
5835           || possible_function_pointer_reloc(r_type));
5836 }
5837
5838 // For safe ICF, scan a relocation for a global symbol to check if it
5839 // corresponds to a function pointer being taken.  In that case mark
5840 // the function whose pointer was taken as not foldable.
5841
5842 template<int size, bool big_endian>
5843 inline bool
5844 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5845   Symbol_table* ,
5846   Layout* ,
5847   Target_aarch64<size, big_endian>* ,
5848   Sized_relobj_file<size, big_endian>* ,
5849   unsigned int ,
5850   Output_section* ,
5851   const elfcpp::Rela<size, big_endian>& ,
5852   unsigned int r_type,
5853   Symbol* gsym)
5854 {
5855   // When building a shared library, do not fold symbols whose visibility
5856   // is hidden, internal or protected.
5857   return ((parameters->options().shared()
5858            && (gsym->visibility() == elfcpp::STV_INTERNAL
5859                || gsym->visibility() == elfcpp::STV_PROTECTED
5860                || gsym->visibility() == elfcpp::STV_HIDDEN))
5861           || possible_function_pointer_reloc(r_type));
5862 }
5863
5864 // Report an unsupported relocation against a local symbol.
5865
5866 template<int size, bool big_endian>
5867 void
5868 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5869      Sized_relobj_file<size, big_endian>* object,
5870      unsigned int r_type)
5871 {
5872   gold_error(_("%s: unsupported reloc %u against local symbol"),
5873              object->name().c_str(), r_type);
5874 }
5875
5876 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5877 // dynamic linker does not support it, issue an error.
5878
5879 template<int size, bool big_endian>
5880 void
5881 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5882                                                       unsigned int r_type)
5883 {
5884   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5885
5886   switch (r_type)
5887     {
5888     // These are the relocation types supported by glibc for AARCH64.
5889     case elfcpp::R_AARCH64_NONE:
5890     case elfcpp::R_AARCH64_COPY:
5891     case elfcpp::R_AARCH64_GLOB_DAT:
5892     case elfcpp::R_AARCH64_JUMP_SLOT:
5893     case elfcpp::R_AARCH64_RELATIVE:
5894     case elfcpp::R_AARCH64_TLS_DTPREL64:
5895     case elfcpp::R_AARCH64_TLS_DTPMOD64:
5896     case elfcpp::R_AARCH64_TLS_TPREL64:
5897     case elfcpp::R_AARCH64_TLSDESC:
5898     case elfcpp::R_AARCH64_IRELATIVE:
5899     case elfcpp::R_AARCH64_ABS32:
5900     case elfcpp::R_AARCH64_ABS64:
5901       return;
5902
5903     default:
5904       break;
5905     }
5906
5907   // This prevents us from issuing more than one error per reloc
5908   // section. But we can still wind up issuing more than one
5909   // error per object file.
5910   if (this->issued_non_pic_error_)
5911     return;
5912   gold_assert(parameters->options().output_is_position_independent());
5913   object->error(_("requires unsupported dynamic reloc; "
5914                   "recompile with -fPIC"));
5915   this->issued_non_pic_error_ = true;
5916   return;
5917 }
5918
5919 // Return whether we need to make a PLT entry for a relocation of the
5920 // given type against a STT_GNU_IFUNC symbol.
5921
5922 template<int size, bool big_endian>
5923 bool
5924 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5925     Sized_relobj_file<size, big_endian>* object,
5926     unsigned int r_type)
5927 {
5928   const AArch64_reloc_property* arp =
5929       aarch64_reloc_property_table->get_reloc_property(r_type);
5930   gold_assert(arp != NULL);
5931
5932   int flags = arp->reference_flags();
5933   if (flags & Symbol::TLS_REF)
5934     {
5935       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5936                  object->name().c_str(), arp->name().c_str());
5937       return false;
5938     }
5939   return flags != 0;
5940 }
5941
5942 // Scan a relocation for a local symbol.
5943
5944 template<int size, bool big_endian>
5945 inline void
5946 Target_aarch64<size, big_endian>::Scan::local(
5947     Symbol_table* symtab,
5948     Layout* layout,
5949     Target_aarch64<size, big_endian>* target,
5950     Sized_relobj_file<size, big_endian>* object,
5951     unsigned int data_shndx,
5952     Output_section* output_section,
5953     const elfcpp::Rela<size, big_endian>& rela,
5954     unsigned int r_type,
5955     const elfcpp::Sym<size, big_endian>& lsym,
5956     bool is_discarded)
5957 {
5958   if (is_discarded)
5959     return;
5960
5961   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5962       Reloc_section;
5963   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5964
5965   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5966   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5967   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5968     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5969
5970   switch (r_type)
5971     {
5972     case elfcpp::R_AARCH64_NONE:
5973       break;
5974
5975     case elfcpp::R_AARCH64_ABS32:
5976     case elfcpp::R_AARCH64_ABS16:
5977       if (parameters->options().output_is_position_independent())
5978         {
5979           gold_error(_("%s: unsupported reloc %u in pos independent link."),
5980                      object->name().c_str(), r_type);
5981         }
5982       break;
5983
5984     case elfcpp::R_AARCH64_ABS64:
5985       // If building a shared library or pie, we need to mark this as a dynmic
5986       // reloction, so that the dynamic loader can relocate it.
5987       if (parameters->options().output_is_position_independent())
5988         {
5989           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5990           rela_dyn->add_local_relative(object, r_sym,
5991                                        elfcpp::R_AARCH64_RELATIVE,
5992                                        output_section,
5993                                        data_shndx,
5994                                        rela.get_r_offset(),
5995                                        rela.get_r_addend(),
5996                                        is_ifunc);
5997         }
5998       break;
5999
6000     case elfcpp::R_AARCH64_PREL64:
6001     case elfcpp::R_AARCH64_PREL32:
6002     case elfcpp::R_AARCH64_PREL16:
6003       break;
6004
6005     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6006     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6007     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6008       // The above relocations are used to access GOT entries.
6009       {
6010         Output_data_got_aarch64<size, big_endian>* got =
6011             target->got_section(symtab, layout);
6012         bool is_new = false;
6013         // This symbol requires a GOT entry.
6014         if (is_ifunc)
6015           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6016         else
6017           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6018         if (is_new && parameters->options().output_is_position_independent())
6019           target->rela_dyn_section(layout)->
6020             add_local_relative(object,
6021                                r_sym,
6022                                elfcpp::R_AARCH64_RELATIVE,
6023                                got,
6024                                object->local_got_offset(r_sym,
6025                                                         GOT_TYPE_STANDARD),
6026                                0,
6027                                false);
6028       }
6029       break;
6030
6031     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6032     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6033     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6034     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6035     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6036     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6037     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6038     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6039     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6040     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6041       if (parameters->options().output_is_position_independent())
6042         {
6043           gold_error(_("%s: unsupported reloc %u in pos independent link."),
6044                      object->name().c_str(), r_type);
6045         }
6046       break;
6047
6048     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6049     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6050     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6051     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6052     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6053     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6054     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6055     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6056     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6057     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6058        break;
6059
6060     // Control flow, pc-relative. We don't need to do anything for a relative
6061     // addressing relocation against a local symbol if it does not reference
6062     // the GOT.
6063     case elfcpp::R_AARCH64_TSTBR14:
6064     case elfcpp::R_AARCH64_CONDBR19:
6065     case elfcpp::R_AARCH64_JUMP26:
6066     case elfcpp::R_AARCH64_CALL26:
6067       break;
6068
6069     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6070     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6071       {
6072         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6073           optimize_tls_reloc(!parameters->options().shared(), r_type);
6074         if (tlsopt == tls::TLSOPT_TO_LE)
6075           break;
6076
6077         layout->set_has_static_tls();
6078         // Create a GOT entry for the tp-relative offset.
6079         if (!parameters->doing_static_link())
6080           {
6081             Output_data_got_aarch64<size, big_endian>* got =
6082                 target->got_section(symtab, layout);
6083             got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6084                                     target->rela_dyn_section(layout),
6085                                     elfcpp::R_AARCH64_TLS_TPREL64);
6086           }
6087         else if (!object->local_has_got_offset(r_sym,
6088                                                GOT_TYPE_TLS_OFFSET))
6089           {
6090             Output_data_got_aarch64<size, big_endian>* got =
6091                 target->got_section(symtab, layout);
6092             got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6093             unsigned int got_offset =
6094                 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6095             const elfcpp::Elf_Xword addend = rela.get_r_addend();
6096             gold_assert(addend == 0);
6097             got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6098                                   object, r_sym);
6099           }
6100       }
6101       break;
6102
6103     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6104     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6105       {
6106         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6107             optimize_tls_reloc(!parameters->options().shared(), r_type);
6108         if (tlsopt == tls::TLSOPT_TO_LE)
6109           {
6110             layout->set_has_static_tls();
6111             break;
6112           }
6113         gold_assert(tlsopt == tls::TLSOPT_NONE);
6114
6115         Output_data_got_aarch64<size, big_endian>* got =
6116             target->got_section(symtab, layout);
6117         got->add_local_pair_with_rel(object,r_sym, data_shndx,
6118                                      GOT_TYPE_TLS_PAIR,
6119                                      target->rela_dyn_section(layout),
6120                                      elfcpp::R_AARCH64_TLS_DTPMOD64);
6121       }
6122       break;
6123
6124     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6125     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6126     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6127     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6128     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6129     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6130     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6131     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6132       {
6133         layout->set_has_static_tls();
6134         bool output_is_shared = parameters->options().shared();
6135         if (output_is_shared)
6136           gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6137                      object->name().c_str(), r_type);
6138       }
6139       break;
6140
6141     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6142     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6143       {
6144         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6145             optimize_tls_reloc(!parameters->options().shared(), r_type);
6146         if (tlsopt == tls::TLSOPT_NONE)
6147           {
6148             // Create a GOT entry for the module index.
6149             target->got_mod_index_entry(symtab, layout, object);
6150           }
6151         else if (tlsopt != tls::TLSOPT_TO_LE)
6152           unsupported_reloc_local(object, r_type);
6153       }
6154       break;
6155
6156     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6157     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6158     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6159     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6160       break;
6161
6162     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6163     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6164     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6165       {
6166         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6167             optimize_tls_reloc(!parameters->options().shared(), r_type);
6168         target->define_tls_base_symbol(symtab, layout);
6169         if (tlsopt == tls::TLSOPT_NONE)
6170           {
6171             // Create reserved PLT and GOT entries for the resolver.
6172             target->reserve_tlsdesc_entries(symtab, layout);
6173
6174             // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6175             // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6176             // entry needs to be in an area in .got.plt, not .got. Call
6177             // got_section to make sure the section has been created.
6178             target->got_section(symtab, layout);
6179             Output_data_got<size, big_endian>* got =
6180                 target->got_tlsdesc_section();
6181             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6182             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6183               {
6184                 unsigned int got_offset = got->add_constant(0);
6185                 got->add_constant(0);
6186                 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6187                                              got_offset);
6188                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6189                 // We store the arguments we need in a vector, and use
6190                 // the index into the vector as the parameter to pass
6191                 // to the target specific routines.
6192                 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6193                 void* arg = reinterpret_cast<void*>(intarg);
6194                 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6195                                         got, got_offset, 0);
6196               }
6197           }
6198         else if (tlsopt != tls::TLSOPT_TO_LE)
6199           unsupported_reloc_local(object, r_type);
6200       }
6201       break;
6202
6203     case elfcpp::R_AARCH64_TLSDESC_CALL:
6204       break;
6205
6206     default:
6207       unsupported_reloc_local(object, r_type);
6208     }
6209 }
6210
6211
6212 // Report an unsupported relocation against a global symbol.
6213
6214 template<int size, bool big_endian>
6215 void
6216 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6217     Sized_relobj_file<size, big_endian>* object,
6218     unsigned int r_type,
6219     Symbol* gsym)
6220 {
6221   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6222              object->name().c_str(), r_type, gsym->demangled_name().c_str());
6223 }
6224
6225 template<int size, bool big_endian>
6226 inline void
6227 Target_aarch64<size, big_endian>::Scan::global(
6228     Symbol_table* symtab,
6229     Layout* layout,
6230     Target_aarch64<size, big_endian>* target,
6231     Sized_relobj_file<size, big_endian> * object,
6232     unsigned int data_shndx,
6233     Output_section* output_section,
6234     const elfcpp::Rela<size, big_endian>& rela,
6235     unsigned int r_type,
6236     Symbol* gsym)
6237 {
6238   // A STT_GNU_IFUNC symbol may require a PLT entry.
6239   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6240       && this->reloc_needs_plt_for_ifunc(object, r_type))
6241     target->make_plt_entry(symtab, layout, gsym);
6242
6243   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6244     Reloc_section;
6245   const AArch64_reloc_property* arp =
6246       aarch64_reloc_property_table->get_reloc_property(r_type);
6247   gold_assert(arp != NULL);
6248
6249   switch (r_type)
6250     {
6251     case elfcpp::R_AARCH64_NONE:
6252       break;
6253
6254     case elfcpp::R_AARCH64_ABS16:
6255     case elfcpp::R_AARCH64_ABS32:
6256     case elfcpp::R_AARCH64_ABS64:
6257       {
6258         // Make a PLT entry if necessary.
6259         if (gsym->needs_plt_entry())
6260           {
6261             target->make_plt_entry(symtab, layout, gsym);
6262             // Since this is not a PC-relative relocation, we may be
6263             // taking the address of a function. In that case we need to
6264             // set the entry in the dynamic symbol table to the address of
6265             // the PLT entry.
6266             if (gsym->is_from_dynobj() && !parameters->options().shared())
6267               gsym->set_needs_dynsym_value();
6268           }
6269         // Make a dynamic relocation if necessary.
6270         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6271           {
6272             if (!parameters->options().output_is_position_independent()
6273                 && gsym->may_need_copy_reloc())
6274               {
6275                 target->copy_reloc(symtab, layout, object,
6276                                    data_shndx, output_section, gsym, rela);
6277               }
6278             else if (r_type == elfcpp::R_AARCH64_ABS64
6279                      && gsym->type() == elfcpp::STT_GNU_IFUNC
6280                      && gsym->can_use_relative_reloc(false)
6281                      && !gsym->is_from_dynobj()
6282                      && !gsym->is_undefined()
6283                      && !gsym->is_preemptible())
6284               {
6285                 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6286                 // symbol. This makes a function address in a PIE executable
6287                 // match the address in a shared library that it links against.
6288                 Reloc_section* rela_dyn =
6289                     target->rela_irelative_section(layout);
6290                 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6291                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6292                                                        output_section, object,
6293                                                        data_shndx,
6294                                                        rela.get_r_offset(),
6295                                                        rela.get_r_addend());
6296               }
6297             else if (r_type == elfcpp::R_AARCH64_ABS64
6298                      && gsym->can_use_relative_reloc(false))
6299               {
6300                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6301                 rela_dyn->add_global_relative(gsym,
6302                                               elfcpp::R_AARCH64_RELATIVE,
6303                                               output_section,
6304                                               object,
6305                                               data_shndx,
6306                                               rela.get_r_offset(),
6307                                               rela.get_r_addend(),
6308                                               false);
6309               }
6310             else
6311               {
6312                 check_non_pic(object, r_type);
6313                 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6314                     rela_dyn = target->rela_dyn_section(layout);
6315                 rela_dyn->add_global(
6316                   gsym, r_type, output_section, object,
6317                   data_shndx, rela.get_r_offset(),rela.get_r_addend());
6318               }
6319           }
6320       }
6321       break;
6322
6323     case elfcpp::R_AARCH64_PREL16:
6324     case elfcpp::R_AARCH64_PREL32:
6325     case elfcpp::R_AARCH64_PREL64:
6326       // This is used to fill the GOT absolute address.
6327       if (gsym->needs_plt_entry())
6328         {
6329           target->make_plt_entry(symtab, layout, gsym);
6330         }
6331       break;
6332
6333     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6334     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6335     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6336     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6337     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6338     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6339     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6340     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6341     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6342     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6343       if (parameters->options().output_is_position_independent())
6344         {
6345           gold_error(_("%s: unsupported reloc %u in pos independent link."),
6346                      object->name().c_str(), r_type);
6347         }
6348       break;
6349
6350     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6351     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6352     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6353     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6354     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6355     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6356     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6357     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6358     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6359     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6360       {
6361         if (gsym->needs_plt_entry())
6362           target->make_plt_entry(symtab, layout, gsym);
6363         // Make a dynamic relocation if necessary.
6364         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6365           {
6366             if (parameters->options().output_is_executable()
6367                 && gsym->may_need_copy_reloc())
6368               {
6369                 target->copy_reloc(symtab, layout, object,
6370                                    data_shndx, output_section, gsym, rela);
6371               }
6372           }
6373         break;
6374       }
6375
6376     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6377     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6378     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6379       {
6380         // The above relocations are used to access GOT entries.
6381         // Note a GOT entry is an *address* to a symbol.
6382         // The symbol requires a GOT entry
6383         Output_data_got_aarch64<size, big_endian>* got =
6384           target->got_section(symtab, layout);
6385         if (gsym->final_value_is_known())
6386           {
6387             // For a STT_GNU_IFUNC symbol we want the PLT address.
6388             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6389               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6390             else
6391               got->add_global(gsym, GOT_TYPE_STANDARD);
6392           }
6393         else
6394           {
6395             // If this symbol is not fully resolved, we need to add a dynamic
6396             // relocation for it.
6397             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6398
6399             // Use a GLOB_DAT rather than a RELATIVE reloc if:
6400             //
6401             // 1) The symbol may be defined in some other module.
6402             // 2) We are building a shared library and this is a protected
6403             // symbol; using GLOB_DAT means that the dynamic linker can use
6404             // the address of the PLT in the main executable when appropriate
6405             // so that function address comparisons work.
6406             // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6407             // again so that function address comparisons work.
6408             if (gsym->is_from_dynobj()
6409                 || gsym->is_undefined()
6410                 || gsym->is_preemptible()
6411                 || (gsym->visibility() == elfcpp::STV_PROTECTED
6412                     && parameters->options().shared())
6413                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6414                     && parameters->options().output_is_position_independent()))
6415               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6416                                        rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6417             else
6418               {
6419                 // For a STT_GNU_IFUNC symbol we want to write the PLT
6420                 // offset into the GOT, so that function pointer
6421                 // comparisons work correctly.
6422                 bool is_new;
6423                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6424                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6425                 else
6426                   {
6427                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6428                     // Tell the dynamic linker to use the PLT address
6429                     // when resolving relocations.
6430                     if (gsym->is_from_dynobj()
6431                         && !parameters->options().shared())
6432                       gsym->set_needs_dynsym_value();
6433                   }
6434                 if (is_new)
6435                   {
6436                     rela_dyn->add_global_relative(
6437                         gsym, elfcpp::R_AARCH64_RELATIVE,
6438                         got,
6439                         gsym->got_offset(GOT_TYPE_STANDARD),
6440                         0,
6441                         false);
6442                   }
6443               }
6444           }
6445         break;
6446       }
6447
6448     case elfcpp::R_AARCH64_TSTBR14:
6449     case elfcpp::R_AARCH64_CONDBR19:
6450     case elfcpp::R_AARCH64_JUMP26:
6451     case elfcpp::R_AARCH64_CALL26:
6452       {
6453         if (gsym->final_value_is_known())
6454           break;
6455
6456         if (gsym->is_defined() &&
6457             !gsym->is_from_dynobj() &&
6458             !gsym->is_preemptible())
6459           break;
6460
6461         // Make plt entry for function call.
6462         target->make_plt_entry(symtab, layout, gsym);
6463         break;
6464       }
6465
6466     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6467     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
6468       {
6469         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6470             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6471         if (tlsopt == tls::TLSOPT_TO_LE)
6472           {
6473             layout->set_has_static_tls();
6474             break;
6475           }
6476         gold_assert(tlsopt == tls::TLSOPT_NONE);
6477
6478         // General dynamic.
6479         Output_data_got_aarch64<size, big_endian>* got =
6480             target->got_section(symtab, layout);
6481         // Create 2 consecutive entries for module index and offset.
6482         got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6483                                       target->rela_dyn_section(layout),
6484                                       elfcpp::R_AARCH64_TLS_DTPMOD64,
6485                                       elfcpp::R_AARCH64_TLS_DTPREL64);
6486       }
6487       break;
6488
6489     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6490     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
6491       {
6492         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6493             optimize_tls_reloc(!parameters->options().shared(), r_type);
6494         if (tlsopt == tls::TLSOPT_NONE)
6495           {
6496             // Create a GOT entry for the module index.
6497             target->got_mod_index_entry(symtab, layout, object);
6498           }
6499         else if (tlsopt != tls::TLSOPT_TO_LE)
6500           unsupported_reloc_local(object, r_type);
6501       }
6502       break;
6503
6504     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6505     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6506     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6507     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
6508       break;
6509
6510     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6511     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
6512       {
6513         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6514           optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6515         if (tlsopt == tls::TLSOPT_TO_LE)
6516           break;
6517
6518         layout->set_has_static_tls();
6519         // Create a GOT entry for the tp-relative offset.
6520         Output_data_got_aarch64<size, big_endian>* got
6521           = target->got_section(symtab, layout);
6522         if (!parameters->doing_static_link())
6523           {
6524             got->add_global_with_rel(
6525               gsym, GOT_TYPE_TLS_OFFSET,
6526               target->rela_dyn_section(layout),
6527               elfcpp::R_AARCH64_TLS_TPREL64);
6528           }
6529         if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6530           {
6531             got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6532             unsigned int got_offset =
6533               gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6534             const elfcpp::Elf_Xword addend = rela.get_r_addend();
6535             gold_assert(addend == 0);
6536             got->add_static_reloc(got_offset,
6537                                   elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6538           }
6539       }
6540       break;
6541
6542     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6543     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6544     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6545     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6546     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6547     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6548     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6549     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:  // Local executable
6550       layout->set_has_static_tls();
6551       if (parameters->options().shared())
6552         gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6553                    object->name().c_str(), r_type);
6554       break;
6555
6556     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6557     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6558     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
6559       {
6560         target->define_tls_base_symbol(symtab, layout);
6561         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6562             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6563         if (tlsopt == tls::TLSOPT_NONE)
6564           {
6565             // Create reserved PLT and GOT entries for the resolver.
6566             target->reserve_tlsdesc_entries(symtab, layout);
6567
6568             // Create a double GOT entry with an R_AARCH64_TLSDESC
6569             // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6570             // entry needs to be in an area in .got.plt, not .got. Call
6571             // got_section to make sure the section has been created.
6572             target->got_section(symtab, layout);
6573             Output_data_got<size, big_endian>* got =
6574                 target->got_tlsdesc_section();
6575             Reloc_section* rt = target->rela_tlsdesc_section(layout);
6576             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6577                                           elfcpp::R_AARCH64_TLSDESC, 0);
6578           }
6579         else if (tlsopt == tls::TLSOPT_TO_IE)
6580           {
6581             // Create a GOT entry for the tp-relative offset.
6582             Output_data_got<size, big_endian>* got
6583                 = target->got_section(symtab, layout);
6584             got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6585                                      target->rela_dyn_section(layout),
6586                                      elfcpp::R_AARCH64_TLS_TPREL64);
6587           }
6588         else if (tlsopt != tls::TLSOPT_TO_LE)
6589           unsupported_reloc_global(object, r_type, gsym);
6590       }
6591       break;
6592
6593     case elfcpp::R_AARCH64_TLSDESC_CALL:
6594       break;
6595
6596     default:
6597       gold_error(_("%s: unsupported reloc type in global scan"),
6598                  aarch64_reloc_property_table->
6599                  reloc_name_in_error_message(r_type).c_str());
6600     }
6601   return;
6602 }  // End of Scan::global
6603
6604
6605 // Create the PLT section.
6606 template<int size, bool big_endian>
6607 void
6608 Target_aarch64<size, big_endian>::make_plt_section(
6609   Symbol_table* symtab, Layout* layout)
6610 {
6611   if (this->plt_ == NULL)
6612     {
6613       // Create the GOT section first.
6614       this->got_section(symtab, layout);
6615
6616       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6617                                        this->got_irelative_);
6618
6619       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6620                                       (elfcpp::SHF_ALLOC
6621                                        | elfcpp::SHF_EXECINSTR),
6622                                       this->plt_, ORDER_PLT, false);
6623
6624       // Make the sh_info field of .rela.plt point to .plt.
6625       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6626       rela_plt_os->set_info_section(this->plt_->output_section());
6627     }
6628 }
6629
6630 // Return the section for TLSDESC relocations.
6631
6632 template<int size, bool big_endian>
6633 typename Target_aarch64<size, big_endian>::Reloc_section*
6634 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6635 {
6636   return this->plt_section()->rela_tlsdesc(layout);
6637 }
6638
6639 // Create a PLT entry for a global symbol.
6640
6641 template<int size, bool big_endian>
6642 void
6643 Target_aarch64<size, big_endian>::make_plt_entry(
6644     Symbol_table* symtab,
6645     Layout* layout,
6646     Symbol* gsym)
6647 {
6648   if (gsym->has_plt_offset())
6649     return;
6650
6651   if (this->plt_ == NULL)
6652     this->make_plt_section(symtab, layout);
6653
6654   this->plt_->add_entry(symtab, layout, gsym);
6655 }
6656
6657 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6658
6659 template<int size, bool big_endian>
6660 void
6661 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6662     Symbol_table* symtab, Layout* layout,
6663     Sized_relobj_file<size, big_endian>* relobj,
6664     unsigned int local_sym_index)
6665 {
6666   if (relobj->local_has_plt_offset(local_sym_index))
6667     return;
6668   if (this->plt_ == NULL)
6669     this->make_plt_section(symtab, layout);
6670   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6671                                                               relobj,
6672                                                               local_sym_index);
6673   relobj->set_local_plt_offset(local_sym_index, plt_offset);
6674 }
6675
6676 template<int size, bool big_endian>
6677 void
6678 Target_aarch64<size, big_endian>::gc_process_relocs(
6679     Symbol_table* symtab,
6680     Layout* layout,
6681     Sized_relobj_file<size, big_endian>* object,
6682     unsigned int data_shndx,
6683     unsigned int sh_type,
6684     const unsigned char* prelocs,
6685     size_t reloc_count,
6686     Output_section* output_section,
6687     bool needs_special_offset_handling,
6688     size_t local_symbol_count,
6689     const unsigned char* plocal_symbols)
6690 {
6691   typedef Target_aarch64<size, big_endian> Aarch64;
6692   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6693       Classify_reloc;
6694
6695   if (sh_type == elfcpp::SHT_REL)
6696     {
6697       return;
6698     }
6699
6700   gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6701     symtab,
6702     layout,
6703     this,
6704     object,
6705     data_shndx,
6706     prelocs,
6707     reloc_count,
6708     output_section,
6709     needs_special_offset_handling,
6710     local_symbol_count,
6711     plocal_symbols);
6712 }
6713
6714 // Scan relocations for a section.
6715
6716 template<int size, bool big_endian>
6717 void
6718 Target_aarch64<size, big_endian>::scan_relocs(
6719     Symbol_table* symtab,
6720     Layout* layout,
6721     Sized_relobj_file<size, big_endian>* object,
6722     unsigned int data_shndx,
6723     unsigned int sh_type,
6724     const unsigned char* prelocs,
6725     size_t reloc_count,
6726     Output_section* output_section,
6727     bool needs_special_offset_handling,
6728     size_t local_symbol_count,
6729     const unsigned char* plocal_symbols)
6730 {
6731   typedef Target_aarch64<size, big_endian> Aarch64;
6732   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6733       Classify_reloc;
6734
6735   if (sh_type == elfcpp::SHT_REL)
6736     {
6737       gold_error(_("%s: unsupported REL reloc section"),
6738                  object->name().c_str());
6739       return;
6740     }
6741
6742   gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6743     symtab,
6744     layout,
6745     this,
6746     object,
6747     data_shndx,
6748     prelocs,
6749     reloc_count,
6750     output_section,
6751     needs_special_offset_handling,
6752     local_symbol_count,
6753     plocal_symbols);
6754 }
6755
6756 // Return the value to use for a dynamic which requires special
6757 // treatment.  This is how we support equality comparisons of function
6758 // pointers across shared library boundaries, as described in the
6759 // processor specific ABI supplement.
6760
6761 template<int size, bool big_endian>
6762 uint64_t
6763 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6764 {
6765   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6766   return this->plt_address_for_global(gsym);
6767 }
6768
6769
6770 // Finalize the sections.
6771
6772 template<int size, bool big_endian>
6773 void
6774 Target_aarch64<size, big_endian>::do_finalize_sections(
6775     Layout* layout,
6776     const Input_objects*,
6777     Symbol_table* symtab)
6778 {
6779   const Reloc_section* rel_plt = (this->plt_ == NULL
6780                                   ? NULL
6781                                   : this->plt_->rela_plt());
6782   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6783                                   this->rela_dyn_, true, false);
6784
6785   // Emit any relocs we saved in an attempt to avoid generating COPY
6786   // relocs.
6787   if (this->copy_relocs_.any_saved_relocs())
6788     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6789
6790   // Fill in some more dynamic tags.
6791   Output_data_dynamic* const odyn = layout->dynamic_data();
6792   if (odyn != NULL)
6793     {
6794       if (this->plt_ != NULL
6795           && this->plt_->output_section() != NULL
6796           && this->plt_ ->has_tlsdesc_entry())
6797         {
6798           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6799           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6800           this->got_->finalize_data_size();
6801           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6802                                         this->plt_, plt_offset);
6803           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6804                                         this->got_, got_offset);
6805         }
6806     }
6807
6808   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6809   // the .got.plt section.
6810   Symbol* sym = this->global_offset_table_;
6811   if (sym != NULL)
6812     {
6813       uint64_t data_size = this->got_plt_->current_data_size();
6814       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6815
6816       // If the .got section is more than 0x8000 bytes, we add
6817       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6818       // bit relocations have a greater chance of working.
6819       if (data_size >= 0x8000)
6820         symtab->get_sized_symbol<size>(sym)->set_value(
6821           symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6822     }
6823
6824   if (parameters->doing_static_link()
6825       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6826     {
6827       // If linking statically, make sure that the __rela_iplt symbols
6828       // were defined if necessary, even if we didn't create a PLT.
6829       static const Define_symbol_in_segment syms[] =
6830         {
6831           {
6832             "__rela_iplt_start",        // name
6833             elfcpp::PT_LOAD,            // segment_type
6834             elfcpp::PF_W,               // segment_flags_set
6835             elfcpp::PF(0),              // segment_flags_clear
6836             0,                          // value
6837             0,                          // size
6838             elfcpp::STT_NOTYPE,         // type
6839             elfcpp::STB_GLOBAL,         // binding
6840             elfcpp::STV_HIDDEN,         // visibility
6841             0,                          // nonvis
6842             Symbol::SEGMENT_START,      // offset_from_base
6843             true                        // only_if_ref
6844           },
6845           {
6846             "__rela_iplt_end",          // name
6847             elfcpp::PT_LOAD,            // segment_type
6848             elfcpp::PF_W,               // segment_flags_set
6849             elfcpp::PF(0),              // segment_flags_clear
6850             0,                          // value
6851             0,                          // size
6852             elfcpp::STT_NOTYPE,         // type
6853             elfcpp::STB_GLOBAL,         // binding
6854             elfcpp::STV_HIDDEN,         // visibility
6855             0,                          // nonvis
6856             Symbol::SEGMENT_START,      // offset_from_base
6857             true                        // only_if_ref
6858           }
6859         };
6860
6861       symtab->define_symbols(layout, 2, syms,
6862                              layout->script_options()->saw_sections_clause());
6863     }
6864
6865   return;
6866 }
6867
6868 // Perform a relocation.
6869
6870 template<int size, bool big_endian>
6871 inline bool
6872 Target_aarch64<size, big_endian>::Relocate::relocate(
6873     const Relocate_info<size, big_endian>* relinfo,
6874     unsigned int,
6875     Target_aarch64<size, big_endian>* target,
6876     Output_section* ,
6877     size_t relnum,
6878     const unsigned char* preloc,
6879     const Sized_symbol<size>* gsym,
6880     const Symbol_value<size>* psymval,
6881     unsigned char* view,
6882     typename elfcpp::Elf_types<size>::Elf_Addr address,
6883     section_size_type /* view_size */)
6884 {
6885   if (view == NULL)
6886     return true;
6887
6888   typedef AArch64_relocate_functions<size, big_endian> Reloc;
6889
6890   const elfcpp::Rela<size, big_endian> rela(preloc);
6891   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
6892   const AArch64_reloc_property* reloc_property =
6893       aarch64_reloc_property_table->get_reloc_property(r_type);
6894
6895   if (reloc_property == NULL)
6896     {
6897       std::string reloc_name =
6898           aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6899       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6900                              _("cannot relocate %s in object file"),
6901                              reloc_name.c_str());
6902       return true;
6903     }
6904
6905   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6906
6907   // Pick the value to use for symbols defined in the PLT.
6908   Symbol_value<size> symval;
6909   if (gsym != NULL
6910       && gsym->use_plt_offset(reloc_property->reference_flags()))
6911     {
6912       symval.set_output_value(target->plt_address_for_global(gsym));
6913       psymval = &symval;
6914     }
6915   else if (gsym == NULL && psymval->is_ifunc_symbol())
6916     {
6917       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6918       if (object->local_has_plt_offset(r_sym))
6919         {
6920           symval.set_output_value(target->plt_address_for_local(object, r_sym));
6921           psymval = &symval;
6922         }
6923     }
6924
6925   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6926
6927   // Get the GOT offset if needed.
6928   // For aarch64, the GOT pointer points to the start of the GOT section.
6929   bool have_got_offset = false;
6930   int got_offset = 0;
6931   int got_base = (target->got_ != NULL
6932                   ? (target->got_->current_data_size() >= 0x8000
6933                      ? 0x8000 : 0)
6934                   : 0);
6935   switch (r_type)
6936     {
6937     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6938     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6939     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6940     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6941     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6942     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6943     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6944     case elfcpp::R_AARCH64_GOTREL64:
6945     case elfcpp::R_AARCH64_GOTREL32:
6946     case elfcpp::R_AARCH64_GOT_LD_PREL19:
6947     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6948     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6949     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6950     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6951       if (gsym != NULL)
6952         {
6953           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6954           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6955         }
6956       else
6957         {
6958           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6959           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6960           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6961                         - got_base);
6962         }
6963       have_got_offset = true;
6964       break;
6965
6966     default:
6967       break;
6968     }
6969
6970   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6971   typename elfcpp::Elf_types<size>::Elf_Addr value;
6972   switch (r_type)
6973     {
6974     case elfcpp::R_AARCH64_NONE:
6975       break;
6976
6977     case elfcpp::R_AARCH64_ABS64:
6978       if (!parameters->options().apply_dynamic_relocs()
6979           && parameters->options().output_is_position_independent()
6980           && gsym != NULL
6981           && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
6982           && !gsym->can_use_relative_reloc(false))
6983         // We have generated an absolute dynamic relocation, so do not
6984         // apply the relocation statically. (Works around bugs in older
6985         // Android dynamic linkers.)
6986         break;
6987       reloc_status = Reloc::template rela_ua<64>(
6988         view, object, psymval, addend, reloc_property);
6989       break;
6990
6991     case elfcpp::R_AARCH64_ABS32:
6992       if (!parameters->options().apply_dynamic_relocs()
6993           && parameters->options().output_is_position_independent()
6994           && gsym != NULL
6995           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6996         // We have generated an absolute dynamic relocation, so do not
6997         // apply the relocation statically. (Works around bugs in older
6998         // Android dynamic linkers.)
6999         break;
7000       reloc_status = Reloc::template rela_ua<32>(
7001         view, object, psymval, addend, reloc_property);
7002       break;
7003
7004     case elfcpp::R_AARCH64_ABS16:
7005       if (!parameters->options().apply_dynamic_relocs()
7006           && parameters->options().output_is_position_independent()
7007           && gsym != NULL
7008           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7009         // We have generated an absolute dynamic relocation, so do not
7010         // apply the relocation statically. (Works around bugs in older
7011         // Android dynamic linkers.)
7012         break;
7013       reloc_status = Reloc::template rela_ua<16>(
7014         view, object, psymval, addend, reloc_property);
7015       break;
7016
7017     case elfcpp::R_AARCH64_PREL64:
7018       reloc_status = Reloc::template pcrela_ua<64>(
7019         view, object, psymval, addend, address, reloc_property);
7020       break;
7021
7022     case elfcpp::R_AARCH64_PREL32:
7023       reloc_status = Reloc::template pcrela_ua<32>(
7024         view, object, psymval, addend, address, reloc_property);
7025       break;
7026
7027     case elfcpp::R_AARCH64_PREL16:
7028       reloc_status = Reloc::template pcrela_ua<16>(
7029         view, object, psymval, addend, address, reloc_property);
7030       break;
7031
7032     case elfcpp::R_AARCH64_MOVW_UABS_G0:
7033     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
7034     case elfcpp::R_AARCH64_MOVW_UABS_G1:
7035     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
7036     case elfcpp::R_AARCH64_MOVW_UABS_G2:
7037     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
7038     case elfcpp::R_AARCH64_MOVW_UABS_G3:
7039       reloc_status = Reloc::template rela_general<32>(
7040         view, object, psymval, addend, reloc_property);
7041       break;
7042     case elfcpp::R_AARCH64_MOVW_SABS_G0:
7043     case elfcpp::R_AARCH64_MOVW_SABS_G1:
7044     case elfcpp::R_AARCH64_MOVW_SABS_G2:
7045       reloc_status = Reloc::movnz(view, psymval->value(object, addend),
7046                                   reloc_property);
7047       break;
7048
7049     case elfcpp::R_AARCH64_LD_PREL_LO19:
7050       reloc_status = Reloc::template pcrela_general<32>(
7051           view, object, psymval, addend, address, reloc_property);
7052       break;
7053
7054     case elfcpp::R_AARCH64_ADR_PREL_LO21:
7055       reloc_status = Reloc::adr(view, object, psymval, addend,
7056                                 address, reloc_property);
7057       break;
7058
7059     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7060     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7061       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7062                                  reloc_property);
7063       break;
7064
7065     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7066     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7067     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7068     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7069     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7070     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7071       reloc_status = Reloc::template rela_general<32>(
7072         view, object, psymval, addend, reloc_property);
7073       break;
7074
7075     case elfcpp::R_AARCH64_CALL26:
7076       if (this->skip_call_tls_get_addr_)
7077         {
7078           // Double check that the TLSGD insn has been optimized away.
7079           typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7080           Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7081               reinterpret_cast<Insntype*>(view));
7082           gold_assert((insn & 0xff000000) == 0x91000000);
7083
7084           reloc_status = Reloc::STATUS_OKAY;
7085           this->skip_call_tls_get_addr_ = false;
7086           // Return false to stop further processing this reloc.
7087           return false;
7088         }
7089       // Fall through.
7090     case elfcpp::R_AARCH64_JUMP26:
7091       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7092                                   gsym, psymval, object,
7093                                   target->stub_group_size_))
7094         break;
7095       // Fall through.
7096     case elfcpp::R_AARCH64_TSTBR14:
7097     case elfcpp::R_AARCH64_CONDBR19:
7098       reloc_status = Reloc::template pcrela_general<32>(
7099         view, object, psymval, addend, address, reloc_property);
7100       break;
7101
7102     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7103       gold_assert(have_got_offset);
7104       value = target->got_->address() + got_base + got_offset;
7105       reloc_status = Reloc::adrp(view, value + addend, address);
7106       break;
7107
7108     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7109       gold_assert(have_got_offset);
7110       value = target->got_->address() + got_base + got_offset;
7111       reloc_status = Reloc::template rela_general<32>(
7112         view, value, addend, reloc_property);
7113       break;
7114
7115     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7116       {
7117         gold_assert(have_got_offset);
7118         value = target->got_->address() + got_base + got_offset + addend -
7119           Reloc::Page(target->got_->address() + got_base);
7120         if ((value & 7) != 0)
7121           reloc_status = Reloc::STATUS_OVERFLOW;
7122         else
7123           reloc_status = Reloc::template reloc_common<32>(
7124             view, value, reloc_property);
7125         break;
7126       }
7127
7128     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7129     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7130     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7131     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7132     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7133     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7134     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7135     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7136     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7137     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7138     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7139     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7140     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7141     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7142     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7143     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7144     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7145     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7146     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7147     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7148     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7149     case elfcpp::R_AARCH64_TLSDESC_CALL:
7150       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7151                                   gsym, psymval, view, address);
7152       break;
7153
7154     // These are dynamic relocations, which are unexpected when linking.
7155     case elfcpp::R_AARCH64_COPY:
7156     case elfcpp::R_AARCH64_GLOB_DAT:
7157     case elfcpp::R_AARCH64_JUMP_SLOT:
7158     case elfcpp::R_AARCH64_RELATIVE:
7159     case elfcpp::R_AARCH64_IRELATIVE:
7160     case elfcpp::R_AARCH64_TLS_DTPREL64:
7161     case elfcpp::R_AARCH64_TLS_DTPMOD64:
7162     case elfcpp::R_AARCH64_TLS_TPREL64:
7163     case elfcpp::R_AARCH64_TLSDESC:
7164       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7165                              _("unexpected reloc %u in object file"),
7166                              r_type);
7167       break;
7168
7169     default:
7170       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7171                              _("unsupported reloc %s"),
7172                              reloc_property->name().c_str());
7173       break;
7174     }
7175
7176   // Report any errors.
7177   switch (reloc_status)
7178     {
7179     case Reloc::STATUS_OKAY:
7180       break;
7181     case Reloc::STATUS_OVERFLOW:
7182       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7183                              _("relocation overflow in %s"),
7184                              reloc_property->name().c_str());
7185       break;
7186     case Reloc::STATUS_BAD_RELOC:
7187       gold_error_at_location(
7188           relinfo,
7189           relnum,
7190           rela.get_r_offset(),
7191           _("unexpected opcode while processing relocation %s"),
7192           reloc_property->name().c_str());
7193       break;
7194     default:
7195       gold_unreachable();
7196     }
7197
7198   return true;
7199 }
7200
7201
7202 template<int size, bool big_endian>
7203 inline
7204 typename AArch64_relocate_functions<size, big_endian>::Status
7205 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7206     const Relocate_info<size, big_endian>* relinfo,
7207     Target_aarch64<size, big_endian>* target,
7208     size_t relnum,
7209     const elfcpp::Rela<size, big_endian>& rela,
7210     unsigned int r_type, const Sized_symbol<size>* gsym,
7211     const Symbol_value<size>* psymval,
7212     unsigned char* view,
7213     typename elfcpp::Elf_types<size>::Elf_Addr address)
7214 {
7215   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7216   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7217
7218   Output_segment* tls_segment = relinfo->layout->tls_segment();
7219   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7220   const AArch64_reloc_property* reloc_property =
7221       aarch64_reloc_property_table->get_reloc_property(r_type);
7222   gold_assert(reloc_property != NULL);
7223
7224   const bool is_final = (gsym == NULL
7225                          ? !parameters->options().shared()
7226                          : gsym->final_value_is_known());
7227   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7228       optimize_tls_reloc(is_final, r_type);
7229
7230   Sized_relobj_file<size, big_endian>* object = relinfo->object;
7231   int tls_got_offset_type;
7232   switch (r_type)
7233     {
7234     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7235     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
7236       {
7237         if (tlsopt == tls::TLSOPT_TO_LE)
7238           {
7239             if (tls_segment == NULL)
7240               {
7241                 gold_assert(parameters->errors()->error_count() > 0
7242                             || issue_undefined_symbol_error(gsym));
7243                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7244               }
7245             return tls_gd_to_le(relinfo, target, rela, r_type, view,
7246                                 psymval);
7247           }
7248         else if (tlsopt == tls::TLSOPT_NONE)
7249           {
7250             tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7251             // Firstly get the address for the got entry.
7252             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7253             if (gsym != NULL)
7254               {
7255                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7256                 got_entry_address = target->got_->address() +
7257                                     gsym->got_offset(tls_got_offset_type);
7258               }
7259             else
7260               {
7261                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7262                 gold_assert(
7263                   object->local_has_got_offset(r_sym, tls_got_offset_type));
7264                 got_entry_address = target->got_->address() +
7265                   object->local_got_offset(r_sym, tls_got_offset_type);
7266               }
7267
7268             // Relocate the address into adrp/ld, adrp/add pair.
7269             switch (r_type)
7270               {
7271               case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7272                 return aarch64_reloc_funcs::adrp(
7273                   view, got_entry_address + addend, address);
7274
7275                 break;
7276
7277               case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7278                 return aarch64_reloc_funcs::template rela_general<32>(
7279                   view, got_entry_address, addend, reloc_property);
7280                 break;
7281
7282               default:
7283                 gold_unreachable();
7284               }
7285           }
7286         gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7287                                _("unsupported gd_to_ie relaxation on %u"),
7288                                r_type);
7289       }
7290       break;
7291
7292     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7293     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
7294       {
7295         if (tlsopt == tls::TLSOPT_TO_LE)
7296           {
7297             if (tls_segment == NULL)
7298               {
7299                 gold_assert(parameters->errors()->error_count() > 0
7300                             || issue_undefined_symbol_error(gsym));
7301                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7302               }
7303             return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7304                                       psymval);
7305           }
7306
7307         gold_assert(tlsopt == tls::TLSOPT_NONE);
7308         // Relocate the field with the offset of the GOT entry for
7309         // the module index.
7310         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7311         got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7312                              target->got_->address());
7313
7314         switch (r_type)
7315           {
7316           case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7317             return aarch64_reloc_funcs::adrp(
7318               view, got_entry_address + addend, address);
7319             break;
7320
7321           case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7322             return aarch64_reloc_funcs::template rela_general<32>(
7323               view, got_entry_address, addend, reloc_property);
7324             break;
7325
7326           default:
7327             gold_unreachable();
7328           }
7329       }
7330       break;
7331
7332     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7333     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7334     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7335     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
7336       {
7337         AArch64_address value = psymval->value(object, 0);
7338         if (tlsopt == tls::TLSOPT_TO_LE)
7339           {
7340             if (tls_segment == NULL)
7341               {
7342                 gold_assert(parameters->errors()->error_count() > 0
7343                             || issue_undefined_symbol_error(gsym));
7344                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7345               }
7346           }
7347         switch (r_type)
7348           {
7349           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7350             return aarch64_reloc_funcs::movnz(view, value + addend,
7351                                               reloc_property);
7352             break;
7353
7354           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7355           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7356           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7357             return aarch64_reloc_funcs::template rela_general<32>(
7358                 view, value, addend, reloc_property);
7359             break;
7360
7361           default:
7362             gold_unreachable();
7363           }
7364         // We should never reach here.
7365       }
7366       break;
7367
7368     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7369     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
7370       {
7371         if (tlsopt == tls::TLSOPT_TO_LE)
7372           {
7373             if (tls_segment == NULL)
7374               {
7375                 gold_assert(parameters->errors()->error_count() > 0
7376                             || issue_undefined_symbol_error(gsym));
7377                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7378               }
7379             return tls_ie_to_le(relinfo, target, rela, r_type, view,
7380                                 psymval);
7381           }
7382         tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7383
7384         // Firstly get the address for the got entry.
7385         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7386         if (gsym != NULL)
7387           {
7388             gold_assert(gsym->has_got_offset(tls_got_offset_type));
7389             got_entry_address = target->got_->address() +
7390                                 gsym->got_offset(tls_got_offset_type);
7391           }
7392         else
7393           {
7394             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7395             gold_assert(
7396                 object->local_has_got_offset(r_sym, tls_got_offset_type));
7397             got_entry_address = target->got_->address() +
7398                 object->local_got_offset(r_sym, tls_got_offset_type);
7399           }
7400         // Relocate the address into adrp/ld, adrp/add pair.
7401         switch (r_type)
7402           {
7403           case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7404             return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7405                                              address);
7406             break;
7407           case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7408             return aarch64_reloc_funcs::template rela_general<32>(
7409               view, got_entry_address, addend, reloc_property);
7410           default:
7411             gold_unreachable();
7412           }
7413       }
7414       // We shall never reach here.
7415       break;
7416
7417     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7418     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7419     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7420     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7421     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7422     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7423     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7424     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7425       {
7426         gold_assert(tls_segment != NULL);
7427         AArch64_address value = psymval->value(object, 0);
7428
7429         if (!parameters->options().shared())
7430           {
7431             AArch64_address aligned_tcb_size =
7432                 align_address(target->tcb_size(),
7433                               tls_segment->maximum_alignment());
7434             value += aligned_tcb_size;
7435             switch (r_type)
7436               {
7437               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7438               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7439               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7440                 return aarch64_reloc_funcs::movnz(view, value + addend,
7441                                                   reloc_property);
7442               default:
7443                 return aarch64_reloc_funcs::template
7444                   rela_general<32>(view,
7445                                    value,
7446                                    addend,
7447                                    reloc_property);
7448               }
7449           }
7450         else
7451           gold_error(_("%s: unsupported reloc %u "
7452                        "in non-static TLSLE mode."),
7453                      object->name().c_str(), r_type);
7454       }
7455       break;
7456
7457     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7458     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7459     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7460     case elfcpp::R_AARCH64_TLSDESC_CALL:
7461       {
7462         if (tlsopt == tls::TLSOPT_TO_LE)
7463           {
7464             if (tls_segment == NULL)
7465               {
7466                 gold_assert(parameters->errors()->error_count() > 0
7467                             || issue_undefined_symbol_error(gsym));
7468                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7469               }
7470             return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7471                                      view, psymval);
7472           }
7473         else
7474           {
7475             tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7476                                    ? GOT_TYPE_TLS_OFFSET
7477                                    : GOT_TYPE_TLS_DESC);
7478             unsigned int got_tlsdesc_offset = 0;
7479             if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7480                 && tlsopt == tls::TLSOPT_NONE)
7481               {
7482                 // We created GOT entries in the .got.tlsdesc portion of the
7483                 // .got.plt section, but the offset stored in the symbol is the
7484                 // offset within .got.tlsdesc.
7485                 got_tlsdesc_offset = (target->got_->data_size()
7486                                       + target->got_plt_section()->data_size());
7487               }
7488             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7489             if (gsym != NULL)
7490               {
7491                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7492                 got_entry_address = target->got_->address()
7493                                     + got_tlsdesc_offset
7494                                     + gsym->got_offset(tls_got_offset_type);
7495               }
7496             else
7497               {
7498                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7499                 gold_assert(
7500                     object->local_has_got_offset(r_sym, tls_got_offset_type));
7501                 got_entry_address = target->got_->address() +
7502                   got_tlsdesc_offset +
7503                   object->local_got_offset(r_sym, tls_got_offset_type);
7504               }
7505             if (tlsopt == tls::TLSOPT_TO_IE)
7506               {
7507                 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7508                                          view, psymval, got_entry_address,
7509                                          address);
7510               }
7511
7512             // Now do tlsdesc relocation.
7513             switch (r_type)
7514               {
7515               case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7516                 return aarch64_reloc_funcs::adrp(view,
7517                                                  got_entry_address + addend,
7518                                                  address);
7519                 break;
7520               case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7521               case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7522                 return aarch64_reloc_funcs::template rela_general<32>(
7523                   view, got_entry_address, addend, reloc_property);
7524                 break;
7525               case elfcpp::R_AARCH64_TLSDESC_CALL:
7526                 return aarch64_reloc_funcs::STATUS_OKAY;
7527                 break;
7528               default:
7529                 gold_unreachable();
7530               }
7531           }
7532         }
7533       break;
7534
7535     default:
7536       gold_error(_("%s: unsupported TLS reloc %u."),
7537                  object->name().c_str(), r_type);
7538     }
7539   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7540 }  // End of relocate_tls.
7541
7542
7543 template<int size, bool big_endian>
7544 inline
7545 typename AArch64_relocate_functions<size, big_endian>::Status
7546 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7547              const Relocate_info<size, big_endian>* relinfo,
7548              Target_aarch64<size, big_endian>* target,
7549              const elfcpp::Rela<size, big_endian>& rela,
7550              unsigned int r_type,
7551              unsigned char* view,
7552              const Symbol_value<size>* psymval)
7553 {
7554   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7555   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7556   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7557
7558   Insntype* ip = reinterpret_cast<Insntype*>(view);
7559   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7560   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7561   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7562
7563   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7564     {
7565       // This is the 2nd relocs, optimization should already have been
7566       // done.
7567       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7568       return aarch64_reloc_funcs::STATUS_OKAY;
7569     }
7570
7571   // The original sequence is -
7572   //   90000000        adrp    x0, 0 <main>
7573   //   91000000        add     x0, x0, #0x0
7574   //   94000000        bl      0 <__tls_get_addr>
7575   // optimized to sequence -
7576   //   d53bd040        mrs     x0, tpidr_el0
7577   //   91400000        add     x0, x0, #0x0, lsl #12
7578   //   91000000        add     x0, x0, #0x0
7579
7580   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7581   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7582   // have to change "bl tls_get_addr", which does not have a corresponding tls
7583   // relocation type. So before proceeding, we need to make sure compiler
7584   // does not change the sequence.
7585   if(!(insn1 == 0x90000000      // adrp x0,0
7586        && insn2 == 0x91000000   // add x0, x0, #0x0
7587        && insn3 == 0x94000000)) // bl 0
7588     {
7589       // Ideally we should give up gd_to_le relaxation and do gd access.
7590       // However the gd_to_le relaxation decision has been made early
7591       // in the scan stage, where we did not allocate any GOT entry for
7592       // this symbol. Therefore we have to exit and report error now.
7593       gold_error(_("unexpected reloc insn sequence while relaxing "
7594                    "tls gd to le for reloc %u."), r_type);
7595       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7596     }
7597
7598   // Write new insns.
7599   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7600   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7601   insn3 = 0x91000000;  // add x0, x0, #0x0
7602   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7603   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7604   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7605
7606   // Calculate tprel value.
7607   Output_segment* tls_segment = relinfo->layout->tls_segment();
7608   gold_assert(tls_segment != NULL);
7609   AArch64_address value = psymval->value(relinfo->object, 0);
7610   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7611   AArch64_address aligned_tcb_size =
7612       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7613   AArch64_address x = value + aligned_tcb_size;
7614
7615   // After new insns are written, apply TLSLE relocs.
7616   const AArch64_reloc_property* rp1 =
7617       aarch64_reloc_property_table->get_reloc_property(
7618           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7619   const AArch64_reloc_property* rp2 =
7620       aarch64_reloc_property_table->get_reloc_property(
7621           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7622   gold_assert(rp1 != NULL && rp2 != NULL);
7623
7624   typename aarch64_reloc_funcs::Status s1 =
7625       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7626                                                      x,
7627                                                      addend,
7628                                                      rp1);
7629   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7630     return s1;
7631
7632   typename aarch64_reloc_funcs::Status s2 =
7633       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7634                                                      x,
7635                                                      addend,
7636                                                      rp2);
7637
7638   this->skip_call_tls_get_addr_ = true;
7639   return s2;
7640 }  // End of tls_gd_to_le
7641
7642
7643 template<int size, bool big_endian>
7644 inline
7645 typename AArch64_relocate_functions<size, big_endian>::Status
7646 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7647              const Relocate_info<size, big_endian>* relinfo,
7648              Target_aarch64<size, big_endian>* target,
7649              const elfcpp::Rela<size, big_endian>& rela,
7650              unsigned int r_type,
7651              unsigned char* view,
7652              const Symbol_value<size>* psymval)
7653 {
7654   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7655   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7656   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7657
7658   Insntype* ip = reinterpret_cast<Insntype*>(view);
7659   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7660   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7661   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7662
7663   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7664     {
7665       // This is the 2nd relocs, optimization should already have been
7666       // done.
7667       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7668       return aarch64_reloc_funcs::STATUS_OKAY;
7669     }
7670
7671   // The original sequence is -
7672   //   90000000        adrp    x0, 0 <main>
7673   //   91000000        add     x0, x0, #0x0
7674   //   94000000        bl      0 <__tls_get_addr>
7675   // optimized to sequence -
7676   //   d53bd040        mrs     x0, tpidr_el0
7677   //   91400000        add     x0, x0, #0x0, lsl #12
7678   //   91000000        add     x0, x0, #0x0
7679
7680   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7681   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7682   // have to change "bl tls_get_addr", which does not have a corresponding tls
7683   // relocation type. So before proceeding, we need to make sure compiler
7684   // does not change the sequence.
7685   if(!(insn1 == 0x90000000      // adrp x0,0
7686        && insn2 == 0x91000000   // add x0, x0, #0x0
7687        && insn3 == 0x94000000)) // bl 0
7688     {
7689       // Ideally we should give up gd_to_le relaxation and do gd access.
7690       // However the gd_to_le relaxation decision has been made early
7691       // in the scan stage, where we did not allocate any GOT entry for
7692       // this symbol. Therefore we have to exit and report error now.
7693       gold_error(_("unexpected reloc insn sequence while relaxing "
7694                    "tls gd to le for reloc %u."), r_type);
7695       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7696     }
7697
7698   // Write new insns.
7699   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7700   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7701   insn3 = 0x91000000;  // add x0, x0, #0x0
7702   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7703   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7704   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7705
7706   // Calculate tprel value.
7707   Output_segment* tls_segment = relinfo->layout->tls_segment();
7708   gold_assert(tls_segment != NULL);
7709   AArch64_address value = psymval->value(relinfo->object, 0);
7710   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7711   AArch64_address aligned_tcb_size =
7712       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7713   AArch64_address x = value + aligned_tcb_size;
7714
7715   // After new insns are written, apply TLSLE relocs.
7716   const AArch64_reloc_property* rp1 =
7717       aarch64_reloc_property_table->get_reloc_property(
7718           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7719   const AArch64_reloc_property* rp2 =
7720       aarch64_reloc_property_table->get_reloc_property(
7721           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7722   gold_assert(rp1 != NULL && rp2 != NULL);
7723
7724   typename aarch64_reloc_funcs::Status s1 =
7725       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7726                                                      x,
7727                                                      addend,
7728                                                      rp1);
7729   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7730     return s1;
7731
7732   typename aarch64_reloc_funcs::Status s2 =
7733       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7734                                                      x,
7735                                                      addend,
7736                                                      rp2);
7737
7738   this->skip_call_tls_get_addr_ = true;
7739   return s2;
7740
7741 }  // End of tls_ld_to_le
7742
7743 template<int size, bool big_endian>
7744 inline
7745 typename AArch64_relocate_functions<size, big_endian>::Status
7746 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7747              const Relocate_info<size, big_endian>* relinfo,
7748              Target_aarch64<size, big_endian>* target,
7749              const elfcpp::Rela<size, big_endian>& rela,
7750              unsigned int r_type,
7751              unsigned char* view,
7752              const Symbol_value<size>* psymval)
7753 {
7754   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7755   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7756   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7757
7758   AArch64_address value = psymval->value(relinfo->object, 0);
7759   Output_segment* tls_segment = relinfo->layout->tls_segment();
7760   AArch64_address aligned_tcb_address =
7761       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7762   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7763   AArch64_address x = value + addend + aligned_tcb_address;
7764   // "x" is the offset to tp, we can only do this if x is within
7765   // range [0, 2^32-1]
7766   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7767     {
7768       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7769                  r_type);
7770       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7771     }
7772
7773   Insntype* ip = reinterpret_cast<Insntype*>(view);
7774   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7775   unsigned int regno;
7776   Insntype newinsn;
7777   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7778     {
7779       // Generate movz.
7780       regno = (insn & 0x1f);
7781       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7782     }
7783   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7784     {
7785       // Generate movk.
7786       regno = (insn & 0x1f);
7787       gold_assert(regno == ((insn >> 5) & 0x1f));
7788       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7789     }
7790   else
7791     gold_unreachable();
7792
7793   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7794   return aarch64_reloc_funcs::STATUS_OKAY;
7795 }  // End of tls_ie_to_le
7796
7797
7798 template<int size, bool big_endian>
7799 inline
7800 typename AArch64_relocate_functions<size, big_endian>::Status
7801 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7802              const Relocate_info<size, big_endian>* relinfo,
7803              Target_aarch64<size, big_endian>* target,
7804              const elfcpp::Rela<size, big_endian>& rela,
7805              unsigned int r_type,
7806              unsigned char* view,
7807              const Symbol_value<size>* psymval)
7808 {
7809   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7810   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7811   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7812
7813   // TLSDESC-GD sequence is like:
7814   //   adrp  x0, :tlsdesc:v1
7815   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7816   //   add   x0, x0, :tlsdesc_lo12:v1
7817   //   .tlsdesccall    v1
7818   //   blr   x1
7819   // After desc_gd_to_le optimization, the sequence will be like:
7820   //   movz  x0, #0x0, lsl #16
7821   //   movk  x0, #0x10
7822   //   nop
7823   //   nop
7824
7825   // Calculate tprel value.
7826   Output_segment* tls_segment = relinfo->layout->tls_segment();
7827   gold_assert(tls_segment != NULL);
7828   Insntype* ip = reinterpret_cast<Insntype*>(view);
7829   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7830   AArch64_address value = psymval->value(relinfo->object, addend);
7831   AArch64_address aligned_tcb_size =
7832       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7833   AArch64_address x = value + aligned_tcb_size;
7834   // x is the offset to tp, we can only do this if x is within range
7835   // [0, 2^32-1]. If x is out of range, fail and exit.
7836   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7837     {
7838       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7839                    "We Can't do gd_to_le relaxation.\n"), r_type);
7840       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7841     }
7842   Insntype newinsn;
7843   switch (r_type)
7844     {
7845     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7846     case elfcpp::R_AARCH64_TLSDESC_CALL:
7847       // Change to nop
7848       newinsn = 0xd503201f;
7849       break;
7850
7851     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7852       // Change to movz.
7853       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7854       break;
7855
7856     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7857       // Change to movk.
7858       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7859       break;
7860
7861     default:
7862       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7863                  r_type);
7864       gold_unreachable();
7865     }
7866   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7867   return aarch64_reloc_funcs::STATUS_OKAY;
7868 }  // End of tls_desc_gd_to_le
7869
7870
7871 template<int size, bool big_endian>
7872 inline
7873 typename AArch64_relocate_functions<size, big_endian>::Status
7874 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7875              const Relocate_info<size, big_endian>* /* relinfo */,
7876              Target_aarch64<size, big_endian>* /* target */,
7877              const elfcpp::Rela<size, big_endian>& rela,
7878              unsigned int r_type,
7879              unsigned char* view,
7880              const Symbol_value<size>* /* psymval */,
7881              typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7882              typename elfcpp::Elf_types<size>::Elf_Addr address)
7883 {
7884   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7885   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7886
7887   // TLSDESC-GD sequence is like:
7888   //   adrp  x0, :tlsdesc:v1
7889   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7890   //   add   x0, x0, :tlsdesc_lo12:v1
7891   //   .tlsdesccall    v1
7892   //   blr   x1
7893   // After desc_gd_to_ie optimization, the sequence will be like:
7894   //   adrp  x0, :tlsie:v1
7895   //   ldr   x0, [x0, :tlsie_lo12:v1]
7896   //   nop
7897   //   nop
7898
7899   Insntype* ip = reinterpret_cast<Insntype*>(view);
7900   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7901   Insntype newinsn;
7902   switch (r_type)
7903     {
7904     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7905     case elfcpp::R_AARCH64_TLSDESC_CALL:
7906       // Change to nop
7907       newinsn = 0xd503201f;
7908       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7909       break;
7910
7911     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7912       {
7913         return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7914                                          address);
7915       }
7916       break;
7917
7918     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7919       {
7920        // Set ldr target register to be x0.
7921        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7922        insn &= 0xffffffe0;
7923        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7924        // Do relocation.
7925         const AArch64_reloc_property* reloc_property =
7926             aarch64_reloc_property_table->get_reloc_property(
7927               elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7928         return aarch64_reloc_funcs::template rela_general<32>(
7929                  view, got_entry_address, addend, reloc_property);
7930       }
7931       break;
7932
7933     default:
7934       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7935                  r_type);
7936       gold_unreachable();
7937     }
7938   return aarch64_reloc_funcs::STATUS_OKAY;
7939 }  // End of tls_desc_gd_to_ie
7940
7941 // Relocate section data.
7942
7943 template<int size, bool big_endian>
7944 void
7945 Target_aarch64<size, big_endian>::relocate_section(
7946     const Relocate_info<size, big_endian>* relinfo,
7947     unsigned int sh_type,
7948     const unsigned char* prelocs,
7949     size_t reloc_count,
7950     Output_section* output_section,
7951     bool needs_special_offset_handling,
7952     unsigned char* view,
7953     typename elfcpp::Elf_types<size>::Elf_Addr address,
7954     section_size_type view_size,
7955     const Reloc_symbol_changes* reloc_symbol_changes)
7956 {
7957   typedef Target_aarch64<size, big_endian> Aarch64;
7958   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7959   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7960       Classify_reloc;
7961
7962   gold_assert(sh_type == elfcpp::SHT_RELA);
7963
7964   gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
7965                          gold::Default_comdat_behavior, Classify_reloc>(
7966     relinfo,
7967     this,
7968     prelocs,
7969     reloc_count,
7970     output_section,
7971     needs_special_offset_handling,
7972     view,
7973     address,
7974     view_size,
7975     reloc_symbol_changes);
7976 }
7977
7978 // Scan the relocs during a relocatable link.
7979
7980 template<int size, bool big_endian>
7981 void
7982 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
7983     Symbol_table* symtab,
7984     Layout* layout,
7985     Sized_relobj_file<size, big_endian>* object,
7986     unsigned int data_shndx,
7987     unsigned int sh_type,
7988     const unsigned char* prelocs,
7989     size_t reloc_count,
7990     Output_section* output_section,
7991     bool needs_special_offset_handling,
7992     size_t local_symbol_count,
7993     const unsigned char* plocal_symbols,
7994     Relocatable_relocs* rr)
7995 {
7996   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7997       Classify_reloc;
7998   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
7999       Scan_relocatable_relocs;
8000
8001   gold_assert(sh_type == elfcpp::SHT_RELA);
8002
8003   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8004     symtab,
8005     layout,
8006     object,
8007     data_shndx,
8008     prelocs,
8009     reloc_count,
8010     output_section,
8011     needs_special_offset_handling,
8012     local_symbol_count,
8013     plocal_symbols,
8014     rr);
8015 }
8016
8017 // Scan the relocs for --emit-relocs.
8018
8019 template<int size, bool big_endian>
8020 void
8021 Target_aarch64<size, big_endian>::emit_relocs_scan(
8022     Symbol_table* symtab,
8023     Layout* layout,
8024     Sized_relobj_file<size, big_endian>* object,
8025     unsigned int data_shndx,
8026     unsigned int sh_type,
8027     const unsigned char* prelocs,
8028     size_t reloc_count,
8029     Output_section* output_section,
8030     bool needs_special_offset_handling,
8031     size_t local_symbol_count,
8032     const unsigned char* plocal_syms,
8033     Relocatable_relocs* rr)
8034 {
8035   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8036       Classify_reloc;
8037   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8038       Emit_relocs_strategy;
8039
8040   gold_assert(sh_type == elfcpp::SHT_RELA);
8041
8042   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8043     symtab,
8044     layout,
8045     object,
8046     data_shndx,
8047     prelocs,
8048     reloc_count,
8049     output_section,
8050     needs_special_offset_handling,
8051     local_symbol_count,
8052     plocal_syms,
8053     rr);
8054 }
8055
8056 // Relocate a section during a relocatable link.
8057
8058 template<int size, bool big_endian>
8059 void
8060 Target_aarch64<size, big_endian>::relocate_relocs(
8061     const Relocate_info<size, big_endian>* relinfo,
8062     unsigned int sh_type,
8063     const unsigned char* prelocs,
8064     size_t reloc_count,
8065     Output_section* output_section,
8066     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8067     unsigned char* view,
8068     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8069     section_size_type view_size,
8070     unsigned char* reloc_view,
8071     section_size_type reloc_view_size)
8072 {
8073   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8074       Classify_reloc;
8075
8076   gold_assert(sh_type == elfcpp::SHT_RELA);
8077
8078   gold::relocate_relocs<size, big_endian, Classify_reloc>(
8079     relinfo,
8080     prelocs,
8081     reloc_count,
8082     output_section,
8083     offset_in_output_section,
8084     view,
8085     view_address,
8086     view_size,
8087     reloc_view,
8088     reloc_view_size);
8089 }
8090
8091
8092 // Return whether this is a 3-insn erratum sequence.
8093
8094 template<int size, bool big_endian>
8095 bool
8096 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8097     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8098     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8099     typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8100 {
8101   unsigned rt1, rt2;
8102   bool load, pair;
8103
8104   // The 2nd insn is a single register load or store; or register pair
8105   // store.
8106   if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8107       && (!pair || (pair && !load)))
8108     {
8109       // The 3rd insn is a load or store instruction from the "Load/store
8110       // register (unsigned immediate)" encoding class, using Rn as the
8111       // base address register.
8112       if (Insn_utilities::aarch64_ldst_uimm(insn3)
8113           && (Insn_utilities::aarch64_rn(insn3)
8114               == Insn_utilities::aarch64_rd(insn1)))
8115         return true;
8116     }
8117   return false;
8118 }
8119
8120
8121 // Return whether this is a 835769 sequence.
8122 // (Similarly implemented as in elfnn-aarch64.c.)
8123
8124 template<int size, bool big_endian>
8125 bool
8126 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8127     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8128     typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8129 {
8130   uint32_t rt;
8131   uint32_t rt2 = 0;
8132   uint32_t rn;
8133   uint32_t rm;
8134   uint32_t ra;
8135   bool pair;
8136   bool load;
8137
8138   if (Insn_utilities::aarch64_mlxl(insn2)
8139       && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8140     {
8141       /* Any SIMD memory op is independent of the subsequent MLA
8142          by definition of the erratum.  */
8143       if (Insn_utilities::aarch64_bit(insn1, 26))
8144         return true;
8145
8146       /* If not SIMD, check for integer memory ops and MLA relationship.  */
8147       rn = Insn_utilities::aarch64_rn(insn2);
8148       ra = Insn_utilities::aarch64_ra(insn2);
8149       rm = Insn_utilities::aarch64_rm(insn2);
8150
8151       /* If this is a load and there's a true(RAW) dependency, we are safe
8152          and this is not an erratum sequence.  */
8153       if (load &&
8154           (rt == rn || rt == rm || rt == ra
8155            || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8156         return false;
8157
8158       /* We conservatively put out stubs for all other cases (including
8159          writebacks).  */
8160       return true;
8161     }
8162
8163   return false;
8164 }
8165
8166
8167 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8168
8169 template<int size, bool big_endian>
8170 void
8171 Target_aarch64<size, big_endian>::create_erratum_stub(
8172     AArch64_relobj<size, big_endian>* relobj,
8173     unsigned int shndx,
8174     section_size_type erratum_insn_offset,
8175     Address erratum_address,
8176     typename Insn_utilities::Insntype erratum_insn,
8177     int erratum_type,
8178     unsigned int e843419_adrp_offset)
8179 {
8180   gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8181   The_stub_table* stub_table = relobj->stub_table(shndx);
8182   gold_assert(stub_table != NULL);
8183   if (stub_table->find_erratum_stub(relobj,
8184                                     shndx,
8185                                     erratum_insn_offset) == NULL)
8186     {
8187       const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8188       The_erratum_stub* stub;
8189       if (erratum_type == ST_E_835769)
8190         stub = new The_erratum_stub(relobj, erratum_type, shndx,
8191                                     erratum_insn_offset);
8192       else if (erratum_type == ST_E_843419)
8193         stub = new E843419_stub<size, big_endian>(
8194             relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8195       else
8196         gold_unreachable();
8197       stub->set_erratum_insn(erratum_insn);
8198       stub->set_erratum_address(erratum_address);
8199       // For erratum ST_E_843419 and ST_E_835769, the destination address is
8200       // always the next insn after erratum insn.
8201       stub->set_destination_address(erratum_address + BPI);
8202       stub_table->add_erratum_stub(stub);
8203     }
8204 }
8205
8206
8207 // Scan erratum for section SHNDX range [output_address + span_start,
8208 // output_address + span_end). Note here we do not share the code with
8209 // scan_erratum_843419_span function, because for 843419 we optimize by only
8210 // scanning the last few insns of a page, whereas for 835769, we need to scan
8211 // every insn.
8212
8213 template<int size, bool big_endian>
8214 void
8215 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8216     AArch64_relobj<size, big_endian>*  relobj,
8217     unsigned int shndx,
8218     const section_size_type span_start,
8219     const section_size_type span_end,
8220     unsigned char* input_view,
8221     Address output_address)
8222 {
8223   typedef typename Insn_utilities::Insntype Insntype;
8224
8225   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8226
8227   // Adjust output_address and view to the start of span.
8228   output_address += span_start;
8229   input_view += span_start;
8230
8231   section_size_type span_length = span_end - span_start;
8232   section_size_type offset = 0;
8233   for (offset = 0; offset + BPI < span_length; offset += BPI)
8234     {
8235       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8236       Insntype insn1 = ip[0];
8237       Insntype insn2 = ip[1];
8238       if (is_erratum_835769_sequence(insn1, insn2))
8239         {
8240           Insntype erratum_insn = insn2;
8241           // "span_start + offset" is the offset for insn1. So for insn2, it is
8242           // "span_start + offset + BPI".
8243           section_size_type erratum_insn_offset = span_start + offset + BPI;
8244           Address erratum_address = output_address + offset + BPI;
8245           gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8246                          "section %d, offset 0x%08x."),
8247                        relobj->name().c_str(), shndx,
8248                        (unsigned int)(span_start + offset));
8249
8250           this->create_erratum_stub(relobj, shndx,
8251                                     erratum_insn_offset, erratum_address,
8252                                     erratum_insn, ST_E_835769);
8253           offset += BPI;  // Skip mac insn.
8254         }
8255     }
8256 }  // End of "Target_aarch64::scan_erratum_835769_span".
8257
8258
8259 // Scan erratum for section SHNDX range
8260 // [output_address + span_start, output_address + span_end).
8261
8262 template<int size, bool big_endian>
8263 void
8264 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8265     AArch64_relobj<size, big_endian>*  relobj,
8266     unsigned int shndx,
8267     const section_size_type span_start,
8268     const section_size_type span_end,
8269     unsigned char* input_view,
8270     Address output_address)
8271 {
8272   typedef typename Insn_utilities::Insntype Insntype;
8273
8274   // Adjust output_address and view to the start of span.
8275   output_address += span_start;
8276   input_view += span_start;
8277
8278   if ((output_address & 0x03) != 0)
8279     return;
8280
8281   section_size_type offset = 0;
8282   section_size_type span_length = span_end - span_start;
8283   // The first instruction must be ending at 0xFF8 or 0xFFC.
8284   unsigned int page_offset = output_address & 0xFFF;
8285   // Make sure starting position, that is "output_address+offset",
8286   // starts at page position 0xff8 or 0xffc.
8287   if (page_offset < 0xff8)
8288     offset = 0xff8 - page_offset;
8289   while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8290     {
8291       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8292       Insntype insn1 = ip[0];
8293       if (Insn_utilities::is_adrp(insn1))
8294         {
8295           Insntype insn2 = ip[1];
8296           Insntype insn3 = ip[2];
8297           Insntype erratum_insn;
8298           unsigned insn_offset;
8299           bool do_report = false;
8300           if (is_erratum_843419_sequence(insn1, insn2, insn3))
8301             {
8302               do_report = true;
8303               erratum_insn = insn3;
8304               insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8305             }
8306           else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8307             {
8308               // Optionally we can have an insn between ins2 and ins3
8309               Insntype insn_opt = ip[2];
8310               // And insn_opt must not be a branch.
8311               if (!Insn_utilities::aarch64_b(insn_opt)
8312                   && !Insn_utilities::aarch64_bl(insn_opt)
8313                   && !Insn_utilities::aarch64_blr(insn_opt)
8314                   && !Insn_utilities::aarch64_br(insn_opt))
8315                 {
8316                   // And insn_opt must not write to dest reg in insn1. However
8317                   // we do a conservative scan, which means we may fix/report
8318                   // more than necessary, but it doesn't hurt.
8319
8320                   Insntype insn4 = ip[3];
8321                   if (is_erratum_843419_sequence(insn1, insn2, insn4))
8322                     {
8323                       do_report = true;
8324                       erratum_insn = insn4;
8325                       insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8326                     }
8327                 }
8328             }
8329           if (do_report)
8330             {
8331               unsigned int erratum_insn_offset =
8332                 span_start + offset + insn_offset;
8333               Address erratum_address =
8334                 output_address + offset + insn_offset;
8335               create_erratum_stub(relobj, shndx,
8336                                   erratum_insn_offset, erratum_address,
8337                                   erratum_insn, ST_E_843419,
8338                                   span_start + offset);
8339             }
8340         }
8341
8342       // Advance to next candidate instruction. We only consider instruction
8343       // sequences starting at a page offset of 0xff8 or 0xffc.
8344       page_offset = (output_address + offset) & 0xfff;
8345       if (page_offset == 0xff8)
8346         offset += 4;
8347       else  // (page_offset == 0xffc), we move to next page's 0xff8.
8348         offset += 0xffc;
8349     }
8350 }  // End of "Target_aarch64::scan_erratum_843419_span".
8351
8352
8353 // The selector for aarch64 object files.
8354
8355 template<int size, bool big_endian>
8356 class Target_selector_aarch64 : public Target_selector
8357 {
8358  public:
8359   Target_selector_aarch64();
8360
8361   virtual Target*
8362   do_instantiate_target()
8363   { return new Target_aarch64<size, big_endian>(); }
8364 };
8365
8366 template<>
8367 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8368   : Target_selector(elfcpp::EM_AARCH64, 32, true,
8369                     "elf32-bigaarch64", "aarch64_elf32_be_vec")
8370 { }
8371
8372 template<>
8373 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8374   : Target_selector(elfcpp::EM_AARCH64, 32, false,
8375                     "elf32-littleaarch64", "aarch64_elf32_le_vec")
8376 { }
8377
8378 template<>
8379 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8380   : Target_selector(elfcpp::EM_AARCH64, 64, true,
8381                     "elf64-bigaarch64", "aarch64_elf64_be_vec")
8382 { }
8383
8384 template<>
8385 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8386   : Target_selector(elfcpp::EM_AARCH64, 64, false,
8387                     "elf64-littleaarch64", "aarch64_elf64_le_vec")
8388 { }
8389
8390 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8391 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8392 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8393 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8394
8395 } // End anonymous namespace.