Fix the signature of a virtual method to match the one in the parent class.
[external/binutils.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2015 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "aarch64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45 #include "aarch64-reloc-property.h"
46
47 // The first three .got.plt entries are reserved.
48 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
49
50
51 namespace
52 {
53
54 using namespace gold;
55
56 template<int size, bool big_endian>
57 class Output_data_plt_aarch64;
58
59 template<int size, bool big_endian>
60 class Output_data_plt_aarch64_standard;
61
62 template<int size, bool big_endian>
63 class Target_aarch64;
64
65 template<int size, bool big_endian>
66 class AArch64_relocate_functions;
67
68 // Output_data_got_aarch64 class.
69
70 template<int size, bool big_endian>
71 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
72 {
73  public:
74   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
75   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
76     : Output_data_got<size, big_endian>(),
77       symbol_table_(symtab), layout_(layout)
78   { }
79
80   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
81   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
82   // applied in a static link.
83   void
84   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
85   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
86
87
88   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
89   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
90   // relocation that needs to be applied in a static link.
91   void
92   add_static_reloc(unsigned int got_offset, unsigned int r_type,
93                    Sized_relobj_file<size, big_endian>* relobj,
94                    unsigned int index)
95   {
96     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
97                                                 index));
98   }
99
100
101  protected:
102   // Write out the GOT table.
103   void
104   do_write(Output_file* of) {
105     // The first entry in the GOT is the address of the .dynamic section.
106     gold_assert(this->data_size() >= size / 8);
107     Output_section* dynamic = this->layout_->dynamic_section();
108     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
109     this->replace_constant(0, dynamic_addr);
110     Output_data_got<size, big_endian>::do_write(of);
111
112     // Handling static relocs
113     if (this->static_relocs_.empty())
114       return;
115
116     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
117
118     gold_assert(parameters->doing_static_link());
119     const off_t offset = this->offset();
120     const section_size_type oview_size =
121       convert_to_section_size_type(this->data_size());
122     unsigned char* const oview = of->get_output_view(offset, oview_size);
123
124     Output_segment* tls_segment = this->layout_->tls_segment();
125     gold_assert(tls_segment != NULL);
126
127     AArch64_address aligned_tcb_address =
128       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
129                     tls_segment->maximum_alignment());
130
131     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
132       {
133         Static_reloc& reloc(this->static_relocs_[i]);
134         AArch64_address value;
135
136         if (!reloc.symbol_is_global())
137           {
138             Sized_relobj_file<size, big_endian>* object = reloc.relobj();
139             const Symbol_value<size>* psymval =
140               reloc.relobj()->local_symbol(reloc.index());
141
142             // We are doing static linking.  Issue an error and skip this
143             // relocation if the symbol is undefined or in a discarded_section.
144             bool is_ordinary;
145             unsigned int shndx = psymval->input_shndx(&is_ordinary);
146             if ((shndx == elfcpp::SHN_UNDEF)
147                 || (is_ordinary
148                     && shndx != elfcpp::SHN_UNDEF
149                     && !object->is_section_included(shndx)
150                     && !this->symbol_table_->is_section_folded(object, shndx)))
151               {
152                 gold_error(_("undefined or discarded local symbol %u from "
153                              " object %s in GOT"),
154                            reloc.index(), reloc.relobj()->name().c_str());
155                 continue;
156               }
157             value = psymval->value(object, 0);
158           }
159         else
160           {
161             const Symbol* gsym = reloc.symbol();
162             gold_assert(gsym != NULL);
163             if (gsym->is_forwarder())
164               gsym = this->symbol_table_->resolve_forwards(gsym);
165
166             // We are doing static linking.  Issue an error and skip this
167             // relocation if the symbol is undefined or in a discarded_section
168             // unless it is a weakly_undefined symbol.
169             if ((gsym->is_defined_in_discarded_section()
170                  || gsym->is_undefined())
171                 && !gsym->is_weak_undefined())
172               {
173                 gold_error(_("undefined or discarded symbol %s in GOT"),
174                            gsym->name());
175                 continue;
176               }
177
178             if (!gsym->is_weak_undefined())
179               {
180                 const Sized_symbol<size>* sym =
181                   static_cast<const Sized_symbol<size>*>(gsym);
182                 value = sym->value();
183               }
184             else
185               value = 0;
186           }
187
188         unsigned got_offset = reloc.got_offset();
189         gold_assert(got_offset < oview_size);
190
191         typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
192         Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
193         Valtype x;
194         switch (reloc.r_type())
195           {
196           case elfcpp::R_AARCH64_TLS_DTPREL64:
197             x = value;
198             break;
199           case elfcpp::R_AARCH64_TLS_TPREL64:
200             x = value + aligned_tcb_address;
201             break;
202           default:
203             gold_unreachable();
204           }
205         elfcpp::Swap<size, big_endian>::writeval(wv, x);
206       }
207
208     of->write_output_view(offset, oview_size, oview);
209   }
210
211  private:
212   // Symbol table of the output object.
213   Symbol_table* symbol_table_;
214   // A pointer to the Layout class, so that we can find the .dynamic
215   // section when we write out the GOT section.
216   Layout* layout_;
217
218   // This class represent dynamic relocations that need to be applied by
219   // gold because we are using TLS relocations in a static link.
220   class Static_reloc
221   {
222    public:
223     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
224       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
225     { this->u_.global.symbol = gsym; }
226
227     Static_reloc(unsigned int got_offset, unsigned int r_type,
228           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
229       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
230     {
231       this->u_.local.relobj = relobj;
232       this->u_.local.index = index;
233     }
234
235     // Return the GOT offset.
236     unsigned int
237     got_offset() const
238     { return this->got_offset_; }
239
240     // Relocation type.
241     unsigned int
242     r_type() const
243     { return this->r_type_; }
244
245     // Whether the symbol is global or not.
246     bool
247     symbol_is_global() const
248     { return this->symbol_is_global_; }
249
250     // For a relocation against a global symbol, the global symbol.
251     Symbol*
252     symbol() const
253     {
254       gold_assert(this->symbol_is_global_);
255       return this->u_.global.symbol;
256     }
257
258     // For a relocation against a local symbol, the defining object.
259     Sized_relobj_file<size, big_endian>*
260     relobj() const
261     {
262       gold_assert(!this->symbol_is_global_);
263       return this->u_.local.relobj;
264     }
265
266     // For a relocation against a local symbol, the local symbol index.
267     unsigned int
268     index() const
269     {
270       gold_assert(!this->symbol_is_global_);
271       return this->u_.local.index;
272     }
273
274    private:
275     // GOT offset of the entry to which this relocation is applied.
276     unsigned int got_offset_;
277     // Type of relocation.
278     unsigned int r_type_;
279     // Whether this relocation is against a global symbol.
280     bool symbol_is_global_;
281     // A global or local symbol.
282     union
283     {
284       struct
285       {
286         // For a global symbol, the symbol itself.
287         Symbol* symbol;
288       } global;
289       struct
290       {
291         // For a local symbol, the object defining the symbol.
292         Sized_relobj_file<size, big_endian>* relobj;
293         // For a local symbol, the symbol index.
294         unsigned int index;
295       } local;
296     } u_;
297   };  // End of inner class Static_reloc
298
299   std::vector<Static_reloc> static_relocs_;
300 };  // End of Output_data_got_aarch64
301
302
303 template<int size, bool big_endian>
304 class AArch64_input_section;
305
306
307 template<int size, bool big_endian>
308 class AArch64_output_section;
309
310
311 // Reloc stub class.
312
313 template<int size, bool big_endian>
314 class Reloc_stub
315 {
316  public:
317   typedef Reloc_stub<size, big_endian> This;
318   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
319
320   // Do not change the value of the enums, they are used to index into
321   // stub_insns array.
322   typedef enum
323   {
324     ST_NONE = 0,
325
326     // Using adrp/add pair, 4 insns (including alignment) without mem access,
327     // the fastest stub. This has a limited jump distance, which is tested by
328     // aarch64_valid_for_adrp_p.
329     ST_ADRP_BRANCH = 1,
330
331     // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
332     // unlimited in jump distance.
333     ST_LONG_BRANCH_ABS = 2,
334
335     // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1 mem
336     // access, slowest one. Only used in position independent executables.
337     ST_LONG_BRANCH_PCREL = 3,
338
339   } Stub_type;
340
341   // Branch range. This is used to calculate the section group size, as well as
342   // determine whether a stub is needed.
343   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
344   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
345
346   // Constant used to determine if an offset fits in the adrp instruction
347   // encoding.
348   static const int MAX_ADRP_IMM = (1 << 20) - 1;
349   static const int MIN_ADRP_IMM = -(1 << 20);
350
351   static const int BYTES_PER_INSN = 4;
352   static const int STUB_ADDR_ALIGN = 4;
353
354   // Determine whether the offset fits in the jump/branch instruction.
355   static bool
356   aarch64_valid_branch_offset_p(int64_t offset)
357   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
358
359   // Determine whether the offset fits in the adrp immediate field.
360   static bool
361   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
362   {
363     typedef AArch64_relocate_functions<size, big_endian> Reloc;
364     int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
365     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
366   }
367
368   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
369   // needed.
370   static Stub_type
371   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
372                       AArch64_address target);
373
374   Reloc_stub(Stub_type stub_type)
375     : stub_type_(stub_type), offset_(invalid_offset),
376       destination_address_(invalid_address)
377   { }
378
379   ~Reloc_stub()
380   { }
381
382   // Return offset of code stub from beginning of its containing stub table.
383   section_offset_type
384   offset() const
385   {
386     gold_assert(this->offset_ != invalid_offset);
387     return this->offset_;
388   }
389
390   // Set offset of code stub from beginning of its containing stub table.
391   void
392   set_offset(section_offset_type offset)
393   { this->offset_ = offset; }
394
395   // Return destination address.
396   AArch64_address
397   destination_address() const
398   {
399     gold_assert(this->destination_address_ != this->invalid_address);
400     return this->destination_address_;
401   }
402
403   // Set destination address.
404   void
405   set_destination_address(AArch64_address address)
406   {
407     gold_assert(address != this->invalid_address);
408     this->destination_address_ = address;
409   }
410
411   // Reset the destination address.
412   void
413   reset_destination_address()
414   { this->destination_address_ = this->invalid_address; }
415
416   // Return the stub type.
417   Stub_type
418   stub_type() const
419   { return stub_type_; }
420
421   // Return the stub size.
422   uint32_t
423   stub_size() const
424   { return this->stub_insn_number() * BYTES_PER_INSN; }
425
426   // Return the instruction number of this stub instance.
427   int
428   stub_insn_number() const
429   { return stub_insns_[this->stub_type_][0]; }
430
431   // Note the first "insn" is the number of total insns in this array.
432   const uint32_t*
433   stub_insns() const
434   { return stub_insns_[this->stub_type_]; }
435
436   // Write stub to output file.
437   void
438   write(unsigned char* view, section_size_type view_size)
439   { this->do_write(view, view_size); }
440
441   // The key class used to index the stub instance in the stub table's stub map.
442   class Key
443   {
444    public:
445     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
446         unsigned int r_sym, int32_t addend)
447       : stub_type_(stub_type), addend_(addend)
448     {
449       if (symbol != NULL)
450         {
451           this->r_sym_ = Reloc_stub::invalid_index;
452           this->u_.symbol = symbol;
453         }
454       else
455         {
456           gold_assert(relobj != NULL && r_sym != invalid_index);
457           this->r_sym_ = r_sym;
458           this->u_.relobj = relobj;
459         }
460     }
461
462     ~Key()
463     { }
464
465     // Return stub type.
466     Stub_type
467     stub_type() const
468     { return this->stub_type_; }
469
470     // Return the local symbol index or invalid_index.
471     unsigned int
472     r_sym() const
473     { return this->r_sym_; }
474
475     // Return the symbol if there is one.
476     const Symbol*
477     symbol() const
478     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
479
480     // Return the relobj if there is one.
481     const Relobj*
482     relobj() const
483     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
484
485     // Whether this equals to another key k.
486     bool
487     eq(const Key& k) const
488     {
489       return ((this->stub_type_ == k.stub_type_)
490               && (this->r_sym_ == k.r_sym_)
491               && ((this->r_sym_ != Reloc_stub::invalid_index)
492                   ? (this->u_.relobj == k.u_.relobj)
493                   : (this->u_.symbol == k.u_.symbol))
494               && (this->addend_ == k.addend_));
495     }
496
497     // Return a hash value.
498     size_t
499     hash_value() const
500     {
501       size_t name_hash_value = gold::string_hash<char>(
502           (this->r_sym_ != Reloc_stub::invalid_index)
503           ? this->u_.relobj->name().c_str()
504           : this->u_.symbol->name());
505       // We only have 4 stub types.
506       size_t stub_type_hash_value = 0x03 & this->stub_type_;
507       return (name_hash_value
508               ^ stub_type_hash_value
509               ^ ((this->r_sym_ & 0x3fff) << 2)
510               ^ ((this->addend_ & 0xffff) << 16));
511     }
512
513     // Functors for STL associative containers.
514     struct hash
515     {
516       size_t
517       operator()(const Key& k) const
518       { return k.hash_value(); }
519     };
520
521     struct equal_to
522     {
523       bool
524       operator()(const Key& k1, const Key& k2) const
525       { return k1.eq(k2); }
526     };
527
528    private:
529     // Stub type.
530     const Stub_type stub_type_;
531     // If this is a local symbol, this is the index in the defining object.
532     // Otherwise, it is invalid_index for a global symbol.
533     unsigned int r_sym_;
534     // If r_sym_ is an invalid index, this points to a global symbol.
535     // Otherwise, it points to a relobj.  We used the unsized and target
536     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
537     // Arm_relobj, in order to avoid making the stub class a template
538     // as most of the stub machinery is endianness-neutral.  However, it
539     // may require a bit of casting done by users of this class.
540     union
541     {
542       const Symbol* symbol;
543       const Relobj* relobj;
544     } u_;
545     // Addend associated with a reloc.
546     int32_t addend_;
547   };  // End of inner class Reloc_stub::Key
548
549  protected:
550   // This may be overridden in the child class.
551   virtual void
552   do_write(unsigned char*, section_size_type);
553
554  private:
555   static const section_offset_type invalid_offset =
556       static_cast<section_offset_type>(-1);
557   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
558   static const AArch64_address invalid_address =
559       static_cast<AArch64_address>(-1);
560
561   static const uint32_t stub_insns_[][10];
562
563   const Stub_type stub_type_;
564   section_offset_type offset_;
565   AArch64_address destination_address_;
566 };  // End of Reloc_stub
567
568
569 // Write data to output file.
570
571 template<int size, bool big_endian>
572 void
573 Reloc_stub<size, big_endian>::
574 do_write(unsigned char* view, section_size_type)
575 {
576   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
577   const uint32_t* insns = this->stub_insns();
578   uint32_t num_insns = this->stub_insn_number();
579   Insntype* ip = reinterpret_cast<Insntype*>(view);
580   for (uint32_t i = 1; i <= num_insns; ++i)
581     elfcpp::Swap<32, big_endian>::writeval(ip + i - 1, insns[i]);
582 }
583
584
585 // Stubs instructions definition.
586
587 template<int size, bool big_endian>
588 const uint32_t
589 Reloc_stub<size, big_endian>::stub_insns_[][10] =
590   {
591     // The first element of each group is the num of the insns.
592
593     // ST_NONE
594     {0, 0},
595
596     // ST_ADRP_BRANCH
597     {
598         4,
599         0x90000010,     /*      adrp    ip0, X             */
600                         /*        ADR_PREL_PG_HI21(X)      */
601         0x91000210,     /*      add     ip0, ip0, :lo12:X  */
602                         /*        ADD_ABS_LO12_NC(X)       */
603         0xd61f0200,     /*      br      ip0                */
604         0x00000000,     /*      alignment padding          */
605     },
606
607     // ST_LONG_BRANCH_ABS
608     {
609         4,
610         0x58000050,     /*      ldr   ip0, 0x8             */
611         0xd61f0200,     /*      br    ip0                  */
612         0x00000000,     /*      address field              */
613         0x00000000,     /*      address fields             */
614     },
615
616     // ST_LONG_BRANCH_PCREL
617     {
618       8,
619         0x58000090,     /*      ldr   ip0, 0x10            */
620         0x10000011,     /*      adr   ip1, #0              */
621         0x8b110210,     /*      add   ip0, ip0, ip1        */
622         0xd61f0200,     /*      br    ip0                  */
623         0x00000000,     /*      address field              */
624         0x00000000,     /*      address field              */
625         0x00000000,     /*      alignment padding          */
626         0x00000000,     /*      alignment padding          */
627     }
628   };
629
630
631 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
632 // needed.
633
634 template<int size, bool big_endian>
635 inline
636 typename Reloc_stub<size, big_endian>::Stub_type
637 Reloc_stub<size, big_endian>::stub_type_for_reloc(
638     unsigned int r_type, AArch64_address location, AArch64_address dest)
639 {
640   int64_t branch_offset = 0;
641   switch(r_type)
642     {
643     case elfcpp::R_AARCH64_CALL26:
644     case elfcpp::R_AARCH64_JUMP26:
645       branch_offset = dest - location;
646       break;
647     default:
648       gold_unreachable();
649     }
650
651   if (aarch64_valid_branch_offset_p(branch_offset))
652     return ST_NONE;
653
654   if (aarch64_valid_for_adrp_p(location, dest))
655     return ST_ADRP_BRANCH;
656
657   if (parameters->options().output_is_position_independent()
658       && parameters->options().output_is_executable())
659     return ST_LONG_BRANCH_PCREL;
660
661   return ST_LONG_BRANCH_ABS;
662 }
663
664 // A class to hold stubs for the ARM target.
665
666 template<int size, bool big_endian>
667 class Stub_table : public Output_data
668 {
669  public:
670   typedef Target_aarch64<size, big_endian> The_target_aarch64;
671   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
672   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
673   typedef Reloc_stub<size, big_endian> The_reloc_stub;
674   typedef typename The_reloc_stub::Key The_reloc_stub_key;
675   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
676   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
677   typedef Stub_table<size, big_endian> The_stub_table;
678   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
679                         The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
680                         Reloc_stub_map;
681   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
682   typedef Relocate_info<size, big_endian> The_relocate_info;
683
684   Stub_table(The_aarch64_input_section* owner)
685     : Output_data(), owner_(owner), reloc_stubs_size_(0), prev_data_size_(0)
686   { }
687
688   ~Stub_table()
689   { }
690
691   The_aarch64_input_section*
692   owner() const
693   { return owner_; }
694
695   // Whether this stub table is empty.
696   bool
697   empty() const
698   { return reloc_stubs_.empty(); }
699
700   // Return the current data size.
701   off_t
702   current_data_size() const
703   { return this->current_data_size_for_child(); }
704
705   // Add a STUB using KEY.  The caller is responsible for avoiding addition
706   // if a STUB with the same key has already been added.
707   void
708   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
709
710   // Finalize stubs. No-op here, just for completeness.
711   void
712   finalize_stubs()
713   { }
714
715   // Look up a relocation stub using KEY. Return NULL if there is none.
716   The_reloc_stub*
717   find_reloc_stub(The_reloc_stub_key& key)
718   {
719     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
720     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
721   }
722
723   // Relocate stubs in this stub table.
724   void
725   relocate_stubs(const The_relocate_info*,
726                  The_target_aarch64*,
727                  Output_section*,
728                  unsigned char*,
729                  AArch64_address,
730                  section_size_type);
731
732   // Update data size at the end of a relaxation pass.  Return true if data size
733   // is different from that of the previous relaxation pass.
734   bool
735   update_data_size_changed_p()
736   {
737     // No addralign changed here.
738     off_t s = this->reloc_stubs_size_;
739     bool changed = (s != this->prev_data_size_);
740     this->prev_data_size_ = s;
741     return changed;
742   }
743
744  protected:
745   // Write out section contents.
746   void
747   do_write(Output_file*);
748
749   // Return the required alignment.
750   uint64_t
751   do_addralign() const
752   { return The_reloc_stub::STUB_ADDR_ALIGN; }
753
754   // Reset address and file offset.
755   void
756   do_reset_address_and_file_offset()
757   { this->set_current_data_size_for_child(this->prev_data_size_); }
758
759   // Set final data size.
760   void
761   set_final_data_size()
762   { this->set_data_size(this->current_data_size()); }
763
764  private:
765   // Relocate one stub.
766   void
767   relocate_stub(The_reloc_stub*,
768                 const The_relocate_info*,
769                 The_target_aarch64*,
770                 Output_section*,
771                 unsigned char*,
772                 AArch64_address,
773                 section_size_type);
774
775  private:
776   // Owner of this stub table.
777   The_aarch64_input_section* owner_;
778   // The relocation stubs.
779   Reloc_stub_map reloc_stubs_;
780   // Size of reloc stubs.
781   off_t reloc_stubs_size_;
782   // data size of this in the previous pass.
783   off_t prev_data_size_;
784 };  // End of Stub_table
785
786
787 // Add a STUB using KEY.  The caller is responsible for avoiding addition
788 // if a STUB with the same key has already been added.
789
790 template<int size, bool big_endian>
791 void
792 Stub_table<size, big_endian>::add_reloc_stub(
793     The_reloc_stub* stub, const The_reloc_stub_key& key)
794 {
795   gold_assert(stub->stub_type() == key.stub_type());
796   this->reloc_stubs_[key] = stub;
797
798   // Assign stub offset early.  We can do this because we never remove
799   // reloc stubs and they are in the beginning of the stub table.
800   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
801                                           The_reloc_stub::STUB_ADDR_ALIGN);
802   stub->set_offset(this->reloc_stubs_size_);
803   this->reloc_stubs_size_ += stub->stub_size();
804 }
805
806
807 // Relocate all stubs in this stub table.
808
809 template<int size, bool big_endian>
810 void
811 Stub_table<size, big_endian>::
812 relocate_stubs(const The_relocate_info* relinfo,
813                The_target_aarch64* target_aarch64,
814                Output_section* output_section,
815                unsigned char* view,
816                AArch64_address address,
817                section_size_type view_size)
818 {
819   // "view_size" is the total size of the stub_table.
820   gold_assert(address == this->address() &&
821               view_size == static_cast<section_size_type>(this->data_size()));
822   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
823       p != this->reloc_stubs_.end(); ++p)
824     relocate_stub(p->second, relinfo, target_aarch64, output_section,
825                   view, address, view_size);
826 }
827
828
829 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
830
831 template<int size, bool big_endian>
832 void
833 Stub_table<size, big_endian>::
834 relocate_stub(The_reloc_stub* stub,
835               const The_relocate_info* relinfo,
836               The_target_aarch64* target_aarch64,
837               Output_section* output_section,
838               unsigned char* view,
839               AArch64_address address,
840               section_size_type view_size)
841 {
842   // "offset" is the offset from the beginning of the stub_table.
843   section_size_type offset = stub->offset();
844   section_size_type stub_size = stub->stub_size();
845   // "view_size" is the total size of the stub_table.
846   gold_assert(offset + stub_size <= view_size);
847
848   target_aarch64->relocate_stub(stub, relinfo, output_section,
849                                 view + offset, address + offset, view_size);
850 }
851
852
853 // Write out the stubs to file.
854
855 template<int size, bool big_endian>
856 void
857 Stub_table<size, big_endian>::do_write(Output_file* of)
858 {
859   off_t offset = this->offset();
860   const section_size_type oview_size =
861     convert_to_section_size_type(this->data_size());
862   unsigned char* const oview = of->get_output_view(offset, oview_size);
863
864   // Write relocation stubs.
865   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
866       p != this->reloc_stubs_.end(); ++p)
867     {
868       The_reloc_stub* stub = p->second;
869       AArch64_address address = this->address() + stub->offset();
870       gold_assert(address ==
871                   align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
872       stub->write(oview + stub->offset(), stub->stub_size());
873     }
874
875   of->write_output_view(this->offset(), oview_size, oview);
876 }
877
878
879 // AArch64_relobj class.
880
881 template<int size, bool big_endian>
882 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
883 {
884  public:
885   typedef AArch64_relobj<size, big_endian> This;
886   typedef Target_aarch64<size, big_endian> The_target_aarch64;
887   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
888   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
889   typedef Stub_table<size, big_endian> The_stub_table;
890   typedef std::vector<The_stub_table*> Stub_table_list;
891   static const AArch64_address invalid_address =
892       static_cast<AArch64_address>(-1);
893
894   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
895                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
896     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
897       stub_tables_()
898   { }
899
900   ~AArch64_relobj()
901   { }
902
903   // Return the stub table of the SHNDX-th section if there is one.
904   The_stub_table*
905   stub_table(unsigned int shndx) const
906   {
907     gold_assert(shndx < this->stub_tables_.size());
908     return this->stub_tables_[shndx];
909   }
910
911   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
912   void
913   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
914   {
915     gold_assert(shndx < this->stub_tables_.size());
916     this->stub_tables_[shndx] = stub_table;
917   }
918
919  // Scan all relocation sections for stub generation.
920   void
921   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
922                           const Layout*);
923
924   // Whether a section is a scannable text section.
925   bool
926   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
927                             const Output_section*, const Symbol_table*);
928
929   // Convert regular input section with index SHNDX to a relaxed section.
930   void
931   convert_input_section_to_relaxed_section(unsigned /* shndx */)
932   {
933     // The stubs have relocations and we need to process them after writing
934     // out the stubs.  So relocation now must follow section write.
935     this->set_relocs_must_follow_section_writes();
936   }
937
938  protected:
939   // Post constructor setup.
940   void
941   do_setup()
942   {
943     // Call parent's setup method.
944     Sized_relobj_file<size, big_endian>::do_setup();
945
946     // Initialize look-up tables.
947     this->stub_tables_.resize(this->shnum());
948   }
949
950   virtual void
951   do_relocate_sections(
952       const Symbol_table* symtab, const Layout* layout,
953       const unsigned char* pshdrs, Output_file* of,
954       typename Sized_relobj_file<size, big_endian>::Views* pviews);
955
956  private:
957   // Whether a section needs to be scanned for relocation stubs.
958   bool
959   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
960                                     const Relobj::Output_sections&,
961                                     const Symbol_table*, const unsigned char*);
962
963   // List of stub tables.
964   Stub_table_list stub_tables_;
965 };  // End of AArch64_relobj
966
967
968 // Relocate sections.
969
970 template<int size, bool big_endian>
971 void
972 AArch64_relobj<size, big_endian>::do_relocate_sections(
973     const Symbol_table* symtab, const Layout* layout,
974     const unsigned char* pshdrs, Output_file* of,
975     typename Sized_relobj_file<size, big_endian>::Views* pviews)
976 {
977   // Call parent to relocate sections.
978   Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
979                                                             pshdrs, of, pviews);
980
981   // We do not generate stubs if doing a relocatable link.
982   if (parameters->options().relocatable())
983     return;
984
985   Relocate_info<size, big_endian> relinfo;
986   relinfo.symtab = symtab;
987   relinfo.layout = layout;
988   relinfo.object = this;
989
990   // Relocate stub tables.
991   unsigned int shnum = this->shnum();
992   The_target_aarch64* target = The_target_aarch64::current_target();
993
994   for (unsigned int i = 1; i < shnum; ++i)
995     {
996       The_aarch64_input_section* aarch64_input_section =
997           target->find_aarch64_input_section(this, i);
998       if (aarch64_input_section != NULL
999           && aarch64_input_section->is_stub_table_owner()
1000           && !aarch64_input_section->stub_table()->empty())
1001         {
1002           Output_section* os = this->output_section(i);
1003           gold_assert(os != NULL);
1004
1005           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
1006           relinfo.reloc_shdr = NULL;
1007           relinfo.data_shndx = i;
1008           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
1009
1010           typename Sized_relobj_file<size, big_endian>::View_size&
1011               view_struct = (*pviews)[i];
1012           gold_assert(view_struct.view != NULL);
1013
1014           The_stub_table* stub_table = aarch64_input_section->stub_table();
1015           off_t offset = stub_table->address() - view_struct.address;
1016           unsigned char* view = view_struct.view + offset;
1017           AArch64_address address = stub_table->address();
1018           section_size_type view_size = stub_table->data_size();
1019           stub_table->relocate_stubs(&relinfo, target, os, view, address,
1020                                      view_size);
1021         }
1022     }
1023 }
1024
1025
1026 // Determine if an input section is scannable for stub processing.  SHDR is
1027 // the header of the section and SHNDX is the section index.  OS is the output
1028 // section for the input section and SYMTAB is the global symbol table used to
1029 // look up ICF information.
1030
1031 template<int size, bool big_endian>
1032 bool
1033 AArch64_relobj<size, big_endian>::text_section_is_scannable(
1034     const elfcpp::Shdr<size, big_endian>& text_shdr,
1035     unsigned int text_shndx,
1036     const Output_section* os,
1037     const Symbol_table* symtab)
1038 {
1039   // Skip any empty sections, unallocated sections or sections whose
1040   // type are not SHT_PROGBITS.
1041   if (text_shdr.get_sh_size() == 0
1042       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
1043       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
1044     return false;
1045
1046   // Skip any discarded or ICF'ed sections.
1047   if (os == NULL || symtab->is_section_folded(this, text_shndx))
1048     return false;
1049
1050   // Skip exception frame.
1051   if (strcmp(os->name(), ".eh_frame") == 0)
1052     return false ;
1053
1054   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
1055               os->find_relaxed_input_section(this, text_shndx) != NULL);
1056
1057   return true;
1058 }
1059
1060
1061 // Determine if we want to scan the SHNDX-th section for relocation stubs.
1062 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
1063
1064 template<int size, bool big_endian>
1065 bool
1066 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
1067     const elfcpp::Shdr<size, big_endian>& shdr,
1068     const Relobj::Output_sections& out_sections,
1069     const Symbol_table* symtab,
1070     const unsigned char* pshdrs)
1071 {
1072   unsigned int sh_type = shdr.get_sh_type();
1073   if (sh_type != elfcpp::SHT_RELA)
1074     return false;
1075
1076   // Ignore empty section.
1077   off_t sh_size = shdr.get_sh_size();
1078   if (sh_size == 0)
1079     return false;
1080
1081   // Ignore reloc section with unexpected symbol table.  The
1082   // error will be reported in the final link.
1083   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
1084     return false;
1085
1086   gold_assert(sh_type == elfcpp::SHT_RELA);
1087   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1088
1089   // Ignore reloc section with unexpected entsize or uneven size.
1090   // The error will be reported in the final link.
1091   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
1092     return false;
1093
1094   // Ignore reloc section with bad info.  This error will be
1095   // reported in the final link.
1096   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
1097   if (text_shndx >= this->shnum())
1098     return false;
1099
1100   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1101   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
1102                                                  text_shndx * shdr_size);
1103   return this->text_section_is_scannable(text_shdr, text_shndx,
1104                                          out_sections[text_shndx], symtab);
1105 }
1106
1107
1108 // Scan relocations for stub generation.
1109
1110 template<int size, bool big_endian>
1111 void
1112 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
1113     The_target_aarch64* target,
1114     const Symbol_table* symtab,
1115     const Layout* layout)
1116 {
1117   unsigned int shnum = this->shnum();
1118   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1119
1120   // Read the section headers.
1121   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
1122                                                shnum * shdr_size,
1123                                                true, true);
1124
1125   // To speed up processing, we set up hash tables for fast lookup of
1126   // input offsets to output addresses.
1127   this->initialize_input_to_output_maps();
1128
1129   const Relobj::Output_sections& out_sections(this->output_sections());
1130
1131   Relocate_info<size, big_endian> relinfo;
1132   relinfo.symtab = symtab;
1133   relinfo.layout = layout;
1134   relinfo.object = this;
1135
1136   // Do relocation stubs scanning.
1137   const unsigned char* p = pshdrs + shdr_size;
1138   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
1139     {
1140       const elfcpp::Shdr<size, big_endian> shdr(p);
1141       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
1142                                                   pshdrs))
1143         {
1144           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
1145           AArch64_address output_offset =
1146               this->get_output_section_offset(index);
1147           AArch64_address output_address;
1148           if (output_offset != invalid_address)
1149             {
1150               output_address = out_sections[index]->address() + output_offset;
1151             }
1152           else
1153             {
1154               // Currently this only happens for a relaxed section.
1155               const Output_relaxed_input_section* poris =
1156                   out_sections[index]->find_relaxed_input_section(this, index);
1157               gold_assert(poris != NULL);
1158               output_address = poris->address();
1159             }
1160
1161           // Get the relocations.
1162           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
1163                                                         shdr.get_sh_size(),
1164                                                         true, false);
1165
1166           // Get the section contents.
1167           section_size_type input_view_size = 0;
1168           const unsigned char* input_view =
1169               this->section_contents(index, &input_view_size, false);
1170
1171           relinfo.reloc_shndx = i;
1172           relinfo.data_shndx = index;
1173           unsigned int sh_type = shdr.get_sh_type();
1174           unsigned int reloc_size;
1175           gold_assert (sh_type == elfcpp::SHT_RELA);
1176           reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1177
1178           Output_section* os = out_sections[index];
1179           target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
1180                                          shdr.get_sh_size() / reloc_size,
1181                                          os,
1182                                          output_offset == invalid_address,
1183                                          input_view, output_address,
1184                                          input_view_size);
1185         }
1186     }
1187 }
1188
1189
1190 // A class to wrap an ordinary input section containing executable code.
1191
1192 template<int size, bool big_endian>
1193 class AArch64_input_section : public Output_relaxed_input_section
1194 {
1195  public:
1196   typedef Stub_table<size, big_endian> The_stub_table;
1197
1198   AArch64_input_section(Relobj* relobj, unsigned int shndx)
1199     : Output_relaxed_input_section(relobj, shndx, 1),
1200       stub_table_(NULL),
1201       original_contents_(NULL), original_size_(0),
1202       original_addralign_(1)
1203   { }
1204
1205   ~AArch64_input_section()
1206   { delete[] this->original_contents_; }
1207
1208   // Initialize.
1209   void
1210   init();
1211
1212   // Set the stub_table.
1213   void
1214   set_stub_table(The_stub_table* st)
1215   { this->stub_table_ = st; }
1216
1217   // Whether this is a stub table owner.
1218   bool
1219   is_stub_table_owner() const
1220   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1221
1222   // Return the original size of the section.
1223   uint32_t
1224   original_size() const
1225   { return this->original_size_; }
1226
1227   // Return the stub table.
1228   The_stub_table*
1229   stub_table()
1230   { return stub_table_; }
1231
1232  protected:
1233   // Write out this input section.
1234   void
1235   do_write(Output_file*);
1236
1237   // Return required alignment of this.
1238   uint64_t
1239   do_addralign() const
1240   {
1241     if (this->is_stub_table_owner())
1242       return std::max(this->stub_table_->addralign(),
1243                       static_cast<uint64_t>(this->original_addralign_));
1244     else
1245       return this->original_addralign_;
1246   }
1247
1248   // Finalize data size.
1249   void
1250   set_final_data_size();
1251
1252   // Reset address and file offset.
1253   void
1254   do_reset_address_and_file_offset();
1255
1256   // Output offset.
1257   bool
1258   do_output_offset(const Relobj* object, unsigned int shndx,
1259                    section_offset_type offset,
1260                    section_offset_type* poutput) const
1261   {
1262     if ((object == this->relobj())
1263         && (shndx == this->shndx())
1264         && (offset >= 0)
1265         && (offset <=
1266             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1267       {
1268         *poutput = offset;
1269         return true;
1270       }
1271     else
1272       return false;
1273   }
1274
1275  private:
1276   // Copying is not allowed.
1277   AArch64_input_section(const AArch64_input_section&);
1278   AArch64_input_section& operator=(const AArch64_input_section&);
1279
1280   // The relocation stubs.
1281   The_stub_table* stub_table_;
1282   // Original section contents.  We have to make a copy here since the file
1283   // containing the original section may not be locked when we need to access
1284   // the contents.
1285   unsigned char* original_contents_;
1286   // Section size of the original input section.
1287   uint32_t original_size_;
1288   // Address alignment of the original input section.
1289   uint32_t original_addralign_;
1290 };  // End of AArch64_input_section
1291
1292
1293 // Finalize data size.
1294
1295 template<int size, bool big_endian>
1296 void
1297 AArch64_input_section<size, big_endian>::set_final_data_size()
1298 {
1299   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
1300
1301   if (this->is_stub_table_owner())
1302     {
1303       this->stub_table_->finalize_data_size();
1304       off = align_address(off, this->stub_table_->addralign());
1305       off += this->stub_table_->data_size();
1306     }
1307   this->set_data_size(off);
1308 }
1309
1310
1311 // Reset address and file offset.
1312
1313 template<int size, bool big_endian>
1314 void
1315 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
1316 {
1317   // Size of the original input section contents.
1318   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
1319
1320   // If this is a stub table owner, account for the stub table size.
1321   if (this->is_stub_table_owner())
1322     {
1323       The_stub_table* stub_table = this->stub_table_;
1324
1325       // Reset the stub table's address and file offset.  The
1326       // current data size for child will be updated after that.
1327       stub_table_->reset_address_and_file_offset();
1328       off = align_address(off, stub_table_->addralign());
1329       off += stub_table->current_data_size();
1330     }
1331
1332   this->set_current_data_size(off);
1333 }
1334
1335
1336 // Initialize an Arm_input_section.
1337
1338 template<int size, bool big_endian>
1339 void
1340 AArch64_input_section<size, big_endian>::init()
1341 {
1342   Relobj* relobj = this->relobj();
1343   unsigned int shndx = this->shndx();
1344
1345   // We have to cache original size, alignment and contents to avoid locking
1346   // the original file.
1347   this->original_addralign_ =
1348       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
1349
1350   // This is not efficient but we expect only a small number of relaxed
1351   // input sections for stubs.
1352   section_size_type section_size;
1353   const unsigned char* section_contents =
1354       relobj->section_contents(shndx, &section_size, false);
1355   this->original_size_ =
1356       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
1357
1358   gold_assert(this->original_contents_ == NULL);
1359   this->original_contents_ = new unsigned char[section_size];
1360   memcpy(this->original_contents_, section_contents, section_size);
1361
1362   // We want to make this look like the original input section after
1363   // output sections are finalized.
1364   Output_section* os = relobj->output_section(shndx);
1365   off_t offset = relobj->output_section_offset(shndx);
1366   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
1367   this->set_address(os->address() + offset);
1368   this->set_file_offset(os->offset() + offset);
1369   this->set_current_data_size(this->original_size_);
1370   this->finalize_data_size();
1371 }
1372
1373
1374 // Write data to output file.
1375
1376 template<int size, bool big_endian>
1377 void
1378 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
1379 {
1380   // We have to write out the original section content.
1381   gold_assert(this->original_contents_ != NULL);
1382   of->write(this->offset(), this->original_contents_,
1383             this->original_size_);
1384
1385   // If this owns a stub table and it is not empty, write it.
1386   if (this->is_stub_table_owner() && !this->stub_table_->empty())
1387     this->stub_table_->write(of);
1388 }
1389
1390
1391 // Arm output section class.  This is defined mainly to add a number of stub
1392 // generation methods.
1393
1394 template<int size, bool big_endian>
1395 class AArch64_output_section : public Output_section
1396 {
1397  public:
1398   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1399   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1400   typedef Stub_table<size, big_endian> The_stub_table;
1401   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1402
1403  public:
1404   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
1405                          elfcpp::Elf_Xword flags)
1406     : Output_section(name, type, flags)
1407   { }
1408
1409   ~AArch64_output_section() {}
1410
1411   // Group input sections for stub generation.
1412   void
1413   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
1414                  const Task*);
1415
1416  private:
1417   typedef Output_section::Input_section Input_section;
1418   typedef Output_section::Input_section_list Input_section_list;
1419
1420   // Create a stub group.
1421   void
1422   create_stub_group(Input_section_list::const_iterator,
1423                     Input_section_list::const_iterator,
1424                     Input_section_list::const_iterator,
1425                     The_target_aarch64*,
1426                     std::vector<Output_relaxed_input_section*>&,
1427                     const Task*);
1428 };  // End of AArch64_output_section
1429
1430
1431 // Create a stub group for input sections from FIRST to LAST. OWNER points to
1432 // the input section that will be the owner of the stub table.
1433
1434 template<int size, bool big_endian> void
1435 AArch64_output_section<size, big_endian>::create_stub_group(
1436     Input_section_list::const_iterator first,
1437     Input_section_list::const_iterator last,
1438     Input_section_list::const_iterator owner,
1439     The_target_aarch64* target,
1440     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
1441     const Task* task)
1442 {
1443   // Currently we convert ordinary input sections into relaxed sections only
1444   // at this point.
1445   The_aarch64_input_section* input_section;
1446   if (owner->is_relaxed_input_section())
1447     gold_unreachable();
1448   else
1449     {
1450       gold_assert(owner->is_input_section());
1451       // Create a new relaxed input section.  We need to lock the original
1452       // file.
1453       Task_lock_obj<Object> tl(task, owner->relobj());
1454       input_section =
1455           target->new_aarch64_input_section(owner->relobj(), owner->shndx());
1456       new_relaxed_sections.push_back(input_section);
1457     }
1458
1459   // Create a stub table.
1460   The_stub_table* stub_table =
1461       target->new_stub_table(input_section);
1462
1463   input_section->set_stub_table(stub_table);
1464
1465   Input_section_list::const_iterator p = first;
1466   // Look for input sections or relaxed input sections in [first ... last].
1467   do
1468     {
1469       if (p->is_input_section() || p->is_relaxed_input_section())
1470         {
1471           // The stub table information for input sections live
1472           // in their objects.
1473           The_aarch64_relobj* aarch64_relobj =
1474               static_cast<The_aarch64_relobj*>(p->relobj());
1475           aarch64_relobj->set_stub_table(p->shndx(), stub_table);
1476         }
1477     }
1478   while (p++ != last);
1479 }
1480
1481
1482 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
1483 // stub groups. We grow a stub group by adding input section until the size is
1484 // just below GROUP_SIZE. The last input section will be converted into a stub
1485 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
1486 // after the stub table, effectively doubling the group size.
1487 //
1488 // This is similar to the group_sections() function in elf32-arm.c but is
1489 // implemented differently.
1490
1491 template<int size, bool big_endian>
1492 void AArch64_output_section<size, big_endian>::group_sections(
1493     section_size_type group_size,
1494     bool stubs_always_after_branch,
1495     Target_aarch64<size, big_endian>* target,
1496     const Task* task)
1497 {
1498   typedef enum
1499   {
1500     NO_GROUP,
1501     FINDING_STUB_SECTION,
1502     HAS_STUB_SECTION
1503   } State;
1504
1505   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
1506
1507   State state = NO_GROUP;
1508   section_size_type off = 0;
1509   section_size_type group_begin_offset = 0;
1510   section_size_type group_end_offset = 0;
1511   section_size_type stub_table_end_offset = 0;
1512   Input_section_list::const_iterator group_begin =
1513       this->input_sections().end();
1514   Input_section_list::const_iterator stub_table =
1515       this->input_sections().end();
1516   Input_section_list::const_iterator group_end = this->input_sections().end();
1517   for (Input_section_list::const_iterator p = this->input_sections().begin();
1518        p != this->input_sections().end();
1519        ++p)
1520     {
1521       section_size_type section_begin_offset =
1522         align_address(off, p->addralign());
1523       section_size_type section_end_offset =
1524         section_begin_offset + p->data_size();
1525
1526       // Check to see if we should group the previously seen sections.
1527       switch (state)
1528         {
1529         case NO_GROUP:
1530           break;
1531
1532         case FINDING_STUB_SECTION:
1533           // Adding this section makes the group larger than GROUP_SIZE.
1534           if (section_end_offset - group_begin_offset >= group_size)
1535             {
1536               if (stubs_always_after_branch)
1537                 {
1538                   gold_assert(group_end != this->input_sections().end());
1539                   this->create_stub_group(group_begin, group_end, group_end,
1540                                           target, new_relaxed_sections,
1541                                           task);
1542                   state = NO_GROUP;
1543                 }
1544               else
1545                 {
1546                   // Input sections up to stub_group_size bytes after the stub
1547                   // table can be handled by it too.
1548                   state = HAS_STUB_SECTION;
1549                   stub_table = group_end;
1550                   stub_table_end_offset = group_end_offset;
1551                 }
1552             }
1553             break;
1554
1555         case HAS_STUB_SECTION:
1556           // Adding this section makes the post stub-section group larger
1557           // than GROUP_SIZE.
1558           gold_unreachable();
1559           // NOT SUPPORTED YET. For completeness only.
1560           if (section_end_offset - stub_table_end_offset >= group_size)
1561            {
1562              gold_assert(group_end != this->input_sections().end());
1563              this->create_stub_group(group_begin, group_end, stub_table,
1564                                      target, new_relaxed_sections, task);
1565              state = NO_GROUP;
1566            }
1567            break;
1568
1569           default:
1570             gold_unreachable();
1571         }
1572
1573       // If we see an input section and currently there is no group, start
1574       // a new one.  Skip any empty sections.  We look at the data size
1575       // instead of calling p->relobj()->section_size() to avoid locking.
1576       if ((p->is_input_section() || p->is_relaxed_input_section())
1577           && (p->data_size() != 0))
1578         {
1579           if (state == NO_GROUP)
1580             {
1581               state = FINDING_STUB_SECTION;
1582               group_begin = p;
1583               group_begin_offset = section_begin_offset;
1584             }
1585
1586           // Keep track of the last input section seen.
1587           group_end = p;
1588           group_end_offset = section_end_offset;
1589         }
1590
1591       off = section_end_offset;
1592     }
1593
1594   // Create a stub group for any ungrouped sections.
1595   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
1596     {
1597       gold_assert(group_end != this->input_sections().end());
1598       this->create_stub_group(group_begin, group_end,
1599                               (state == FINDING_STUB_SECTION
1600                                ? group_end
1601                                : stub_table),
1602                               target, new_relaxed_sections, task);
1603     }
1604
1605   if (!new_relaxed_sections.empty())
1606     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
1607
1608   // Update the section offsets
1609   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
1610     {
1611       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
1612           new_relaxed_sections[i]->relobj());
1613       unsigned int shndx = new_relaxed_sections[i]->shndx();
1614       // Tell AArch64_relobj that this input section is converted.
1615       relobj->convert_input_section_to_relaxed_section(shndx);
1616     }
1617 }  // End of AArch64_output_section::group_sections
1618
1619
1620 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
1621
1622
1623 // The aarch64 target class.
1624 // See the ABI at
1625 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
1626 template<int size, bool big_endian>
1627 class Target_aarch64 : public Sized_target<size, big_endian>
1628 {
1629  public:
1630   typedef Target_aarch64<size, big_endian> This;
1631   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
1632       Reloc_section;
1633   typedef Relocate_info<size, big_endian> The_relocate_info;
1634   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1635   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1636   typedef Reloc_stub<size, big_endian> The_reloc_stub;
1637   typedef typename The_reloc_stub::Stub_type The_reloc_stub_type;
1638   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
1639   typedef Stub_table<size, big_endian> The_stub_table;
1640   typedef std::vector<The_stub_table*> Stub_table_list;
1641   typedef typename Stub_table_list::iterator Stub_table_iterator;
1642   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1643   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
1644   typedef Unordered_map<Section_id,
1645                         AArch64_input_section<size, big_endian>*,
1646                         Section_id_hash> AArch64_input_section_map;
1647   const static int TCB_SIZE = size / 8 * 2;
1648
1649   Target_aarch64(const Target::Target_info* info = &aarch64_info)
1650     : Sized_target<size, big_endian>(info),
1651       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
1652       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
1653       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
1654       got_mod_index_offset_(-1U),
1655       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
1656       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
1657   { }
1658
1659   // Scan the relocations to determine unreferenced sections for
1660   // garbage collection.
1661   void
1662   gc_process_relocs(Symbol_table* symtab,
1663                     Layout* layout,
1664                     Sized_relobj_file<size, big_endian>* object,
1665                     unsigned int data_shndx,
1666                     unsigned int sh_type,
1667                     const unsigned char* prelocs,
1668                     size_t reloc_count,
1669                     Output_section* output_section,
1670                     bool needs_special_offset_handling,
1671                     size_t local_symbol_count,
1672                     const unsigned char* plocal_symbols);
1673
1674   // Scan the relocations to look for symbol adjustments.
1675   void
1676   scan_relocs(Symbol_table* symtab,
1677               Layout* layout,
1678               Sized_relobj_file<size, big_endian>* object,
1679               unsigned int data_shndx,
1680               unsigned int sh_type,
1681               const unsigned char* prelocs,
1682               size_t reloc_count,
1683               Output_section* output_section,
1684               bool needs_special_offset_handling,
1685               size_t local_symbol_count,
1686               const unsigned char* plocal_symbols);
1687
1688   // Finalize the sections.
1689   void
1690   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
1691
1692   // Return the value to use for a dynamic which requires special
1693   // treatment.
1694   uint64_t
1695   do_dynsym_value(const Symbol*) const;
1696
1697   // Relocate a section.
1698   void
1699   relocate_section(const Relocate_info<size, big_endian>*,
1700                    unsigned int sh_type,
1701                    const unsigned char* prelocs,
1702                    size_t reloc_count,
1703                    Output_section* output_section,
1704                    bool needs_special_offset_handling,
1705                    unsigned char* view,
1706                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
1707                    section_size_type view_size,
1708                    const Reloc_symbol_changes*);
1709
1710   // Scan the relocs during a relocatable link.
1711   void
1712   scan_relocatable_relocs(Symbol_table* symtab,
1713                           Layout* layout,
1714                           Sized_relobj_file<size, big_endian>* object,
1715                           unsigned int data_shndx,
1716                           unsigned int sh_type,
1717                           const unsigned char* prelocs,
1718                           size_t reloc_count,
1719                           Output_section* output_section,
1720                           bool needs_special_offset_handling,
1721                           size_t local_symbol_count,
1722                           const unsigned char* plocal_symbols,
1723                           Relocatable_relocs*);
1724
1725   // Relocate a section during a relocatable link.
1726   void
1727   relocate_relocs(
1728       const Relocate_info<size, big_endian>*,
1729       unsigned int sh_type,
1730       const unsigned char* prelocs,
1731       size_t reloc_count,
1732       Output_section* output_section,
1733       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
1734       const Relocatable_relocs*,
1735       unsigned char* view,
1736       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
1737       section_size_type view_size,
1738       unsigned char* reloc_view,
1739       section_size_type reloc_view_size);
1740
1741   // Return the symbol index to use for a target specific relocation.
1742   // The only target specific relocation is R_AARCH64_TLSDESC for a
1743   // local symbol, which is an absolute reloc.
1744   unsigned int
1745   do_reloc_symbol_index(void*, unsigned int r_type) const
1746   {
1747     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
1748     return 0;
1749   }
1750
1751   // Return the addend to use for a target specific relocation.
1752   uint64_t
1753   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
1754
1755   // Return the PLT section.
1756   uint64_t
1757   do_plt_address_for_global(const Symbol* gsym) const
1758   { return this->plt_section()->address_for_global(gsym); }
1759
1760   uint64_t
1761   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
1762   { return this->plt_section()->address_for_local(relobj, symndx); }
1763
1764   // This function should be defined in targets that can use relocation
1765   // types to determine (implemented in local_reloc_may_be_function_pointer
1766   // and global_reloc_may_be_function_pointer)
1767   // if a function's pointer is taken.  ICF uses this in safe mode to only
1768   // fold those functions whose pointer is defintely not taken.
1769   bool
1770   do_can_check_for_function_pointers() const
1771   { return true; }
1772
1773   // Return the number of entries in the PLT.
1774   unsigned int
1775   plt_entry_count() const;
1776
1777   //Return the offset of the first non-reserved PLT entry.
1778   unsigned int
1779   first_plt_entry_offset() const;
1780
1781   // Return the size of each PLT entry.
1782   unsigned int
1783   plt_entry_size() const;
1784
1785   // Create a stub table.
1786   The_stub_table*
1787   new_stub_table(The_aarch64_input_section*);
1788
1789   // Create an aarch64 input section.
1790   The_aarch64_input_section*
1791   new_aarch64_input_section(Relobj*, unsigned int);
1792
1793   // Find an aarch64 input section instance for a given OBJ and SHNDX.
1794   The_aarch64_input_section*
1795   find_aarch64_input_section(Relobj*, unsigned int) const;
1796
1797   // Return the thread control block size.
1798   unsigned int
1799   tcb_size() const { return This::TCB_SIZE; }
1800
1801   // Scan a section for stub generation.
1802   void
1803   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
1804                          const unsigned char*, size_t, Output_section*,
1805                          bool, const unsigned char*,
1806                          Address,
1807                          section_size_type);
1808
1809   // Scan a relocation section for stub.
1810   template<int sh_type>
1811   void
1812   scan_reloc_section_for_stubs(
1813       const The_relocate_info* relinfo,
1814       const unsigned char* prelocs,
1815       size_t reloc_count,
1816       Output_section* output_section,
1817       bool needs_special_offset_handling,
1818       const unsigned char* view,
1819       Address view_address,
1820       section_size_type);
1821
1822   // Relocate a single stub.
1823   void
1824   relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
1825                 Output_section*, unsigned char*, Address,
1826                 section_size_type);
1827
1828   // Get the default AArch64 target.
1829   static This*
1830   current_target()
1831   {
1832     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
1833                 && parameters->target().get_size() == size
1834                 && parameters->target().is_big_endian() == big_endian);
1835     return static_cast<This*>(parameters->sized_target<size, big_endian>());
1836   }
1837
1838  protected:
1839   void
1840   do_select_as_default_target()
1841   {
1842     gold_assert(aarch64_reloc_property_table == NULL);
1843     aarch64_reloc_property_table = new AArch64_reloc_property_table();
1844   }
1845
1846   // Add a new reloc argument, returning the index in the vector.
1847   size_t
1848   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
1849                    unsigned int r_sym)
1850   {
1851     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
1852     return this->tlsdesc_reloc_info_.size() - 1;
1853   }
1854
1855   virtual Output_data_plt_aarch64<size, big_endian>*
1856   do_make_data_plt(Layout* layout,
1857                    Output_data_got_aarch64<size, big_endian>* got,
1858                    Output_data_space* got_plt,
1859                    Output_data_space* got_irelative)
1860   {
1861     return new Output_data_plt_aarch64_standard<size, big_endian>(
1862       layout, got, got_plt, got_irelative);
1863   }
1864
1865
1866   // do_make_elf_object to override the same function in the base class.
1867   Object*
1868   do_make_elf_object(const std::string&, Input_file*, off_t,
1869                      const elfcpp::Ehdr<size, big_endian>&);
1870
1871   Output_data_plt_aarch64<size, big_endian>*
1872   make_data_plt(Layout* layout,
1873                 Output_data_got_aarch64<size, big_endian>* got,
1874                 Output_data_space* got_plt,
1875                 Output_data_space* got_irelative)
1876   {
1877     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
1878   }
1879
1880   // We only need to generate stubs, and hence perform relaxation if we are
1881   // not doing relocatable linking.
1882   virtual bool
1883   do_may_relax() const
1884   { return !parameters->options().relocatable(); }
1885
1886   // Relaxation hook.  This is where we do stub generation.
1887   virtual bool
1888   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
1889
1890   void
1891   group_sections(Layout* layout,
1892                  section_size_type group_size,
1893                  bool stubs_always_after_branch,
1894                  const Task* task);
1895
1896   void
1897   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
1898                       const Sized_symbol<size>*, unsigned int,
1899                       const Symbol_value<size>*,
1900                       typename elfcpp::Elf_types<size>::Elf_Swxword,
1901                       Address Elf_Addr);
1902
1903   // Make an output section.
1904   Output_section*
1905   do_make_output_section(const char* name, elfcpp::Elf_Word type,
1906                          elfcpp::Elf_Xword flags)
1907   { return new The_aarch64_output_section(name, type, flags); }
1908
1909  private:
1910   // The class which scans relocations.
1911   class Scan
1912   {
1913   public:
1914     Scan()
1915       : issued_non_pic_error_(false)
1916     { }
1917
1918     inline void
1919     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
1920           Sized_relobj_file<size, big_endian>* object,
1921           unsigned int data_shndx,
1922           Output_section* output_section,
1923           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1924           const elfcpp::Sym<size, big_endian>& lsym,
1925           bool is_discarded);
1926
1927     inline void
1928     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
1929            Sized_relobj_file<size, big_endian>* object,
1930            unsigned int data_shndx,
1931            Output_section* output_section,
1932            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1933            Symbol* gsym);
1934
1935     inline bool
1936     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1937                                         Target_aarch64<size, big_endian>* ,
1938                                         Sized_relobj_file<size, big_endian>* ,
1939                                         unsigned int ,
1940                                         Output_section* ,
1941                                         const elfcpp::Rela<size, big_endian>& ,
1942                                         unsigned int r_type,
1943                                         const elfcpp::Sym<size, big_endian>&);
1944
1945     inline bool
1946     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1947                                          Target_aarch64<size, big_endian>* ,
1948                                          Sized_relobj_file<size, big_endian>* ,
1949                                          unsigned int ,
1950                                          Output_section* ,
1951                                          const elfcpp::Rela<size, big_endian>& ,
1952                                          unsigned int r_type,
1953                                          Symbol* gsym);
1954
1955   private:
1956     static void
1957     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1958                             unsigned int r_type);
1959
1960     static void
1961     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1962                              unsigned int r_type, Symbol*);
1963
1964     inline bool
1965     possible_function_pointer_reloc(unsigned int r_type);
1966
1967     void
1968     check_non_pic(Relobj*, unsigned int r_type);
1969
1970     bool
1971     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
1972                               unsigned int r_type);
1973
1974     // Whether we have issued an error about a non-PIC compilation.
1975     bool issued_non_pic_error_;
1976   };
1977
1978   // The class which implements relocation.
1979   class Relocate
1980   {
1981    public:
1982     Relocate()
1983       : skip_call_tls_get_addr_(false)
1984     { }
1985
1986     ~Relocate()
1987     { }
1988
1989     // Do a relocation.  Return false if the caller should not issue
1990     // any warnings about this relocation.
1991     inline bool
1992     relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
1993              Output_section*,
1994              size_t relnum, const elfcpp::Rela<size, big_endian>&,
1995              unsigned int r_type, const Sized_symbol<size>*,
1996              const Symbol_value<size>*,
1997              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1998              section_size_type);
1999
2000   private:
2001     inline typename AArch64_relocate_functions<size, big_endian>::Status
2002     relocate_tls(const Relocate_info<size, big_endian>*,
2003                  Target_aarch64<size, big_endian>*,
2004                  size_t,
2005                  const elfcpp::Rela<size, big_endian>&,
2006                  unsigned int r_type, const Sized_symbol<size>*,
2007                  const Symbol_value<size>*,
2008                  unsigned char*,
2009                  typename elfcpp::Elf_types<size>::Elf_Addr);
2010
2011     inline typename AArch64_relocate_functions<size, big_endian>::Status
2012     tls_gd_to_le(
2013                  const Relocate_info<size, big_endian>*,
2014                  Target_aarch64<size, big_endian>*,
2015                  const elfcpp::Rela<size, big_endian>&,
2016                  unsigned int,
2017                  unsigned char*,
2018                  const Symbol_value<size>*);
2019
2020     inline typename AArch64_relocate_functions<size, big_endian>::Status
2021     tls_ld_to_le(
2022                  const Relocate_info<size, big_endian>*,
2023                  Target_aarch64<size, big_endian>*,
2024                  const elfcpp::Rela<size, big_endian>&,
2025                  unsigned int,
2026                  unsigned char*,
2027                  const Symbol_value<size>*);
2028
2029     inline typename AArch64_relocate_functions<size, big_endian>::Status
2030     tls_ie_to_le(
2031                  const Relocate_info<size, big_endian>*,
2032                  Target_aarch64<size, big_endian>*,
2033                  const elfcpp::Rela<size, big_endian>&,
2034                  unsigned int,
2035                  unsigned char*,
2036                  const Symbol_value<size>*);
2037
2038     inline typename AArch64_relocate_functions<size, big_endian>::Status
2039     tls_desc_gd_to_le(
2040                  const Relocate_info<size, big_endian>*,
2041                  Target_aarch64<size, big_endian>*,
2042                  const elfcpp::Rela<size, big_endian>&,
2043                  unsigned int,
2044                  unsigned char*,
2045                  const Symbol_value<size>*);
2046
2047     inline typename AArch64_relocate_functions<size, big_endian>::Status
2048     tls_desc_gd_to_ie(
2049                  const Relocate_info<size, big_endian>*,
2050                  Target_aarch64<size, big_endian>*,
2051                  const elfcpp::Rela<size, big_endian>&,
2052                  unsigned int,
2053                  unsigned char*,
2054                  const Symbol_value<size>*,
2055                  typename elfcpp::Elf_types<size>::Elf_Addr,
2056                  typename elfcpp::Elf_types<size>::Elf_Addr);
2057
2058     bool skip_call_tls_get_addr_;
2059
2060   };  // End of class Relocate
2061
2062   // A class which returns the size required for a relocation type,
2063   // used while scanning relocs during a relocatable link.
2064   class Relocatable_size_for_reloc
2065   {
2066    public:
2067     unsigned int
2068     get_size_for_reloc(unsigned int, Relobj*);
2069   };
2070
2071   // Adjust TLS relocation type based on the options and whether this
2072   // is a local symbol.
2073   static tls::Tls_optimization
2074   optimize_tls_reloc(bool is_final, int r_type);
2075
2076   // Get the GOT section, creating it if necessary.
2077   Output_data_got_aarch64<size, big_endian>*
2078   got_section(Symbol_table*, Layout*);
2079
2080   // Get the GOT PLT section.
2081   Output_data_space*
2082   got_plt_section() const
2083   {
2084     gold_assert(this->got_plt_ != NULL);
2085     return this->got_plt_;
2086   }
2087
2088   // Get the GOT section for TLSDESC entries.
2089   Output_data_got<size, big_endian>*
2090   got_tlsdesc_section() const
2091   {
2092     gold_assert(this->got_tlsdesc_ != NULL);
2093     return this->got_tlsdesc_;
2094   }
2095
2096   // Create the PLT section.
2097   void
2098   make_plt_section(Symbol_table* symtab, Layout* layout);
2099
2100   // Create a PLT entry for a global symbol.
2101   void
2102   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2103
2104   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2105   void
2106   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2107                              Sized_relobj_file<size, big_endian>* relobj,
2108                              unsigned int local_sym_index);
2109
2110   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2111   void
2112   define_tls_base_symbol(Symbol_table*, Layout*);
2113
2114   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2115   void
2116   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
2117
2118   // Create a GOT entry for the TLS module index.
2119   unsigned int
2120   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2121                       Sized_relobj_file<size, big_endian>* object);
2122
2123   // Get the PLT section.
2124   Output_data_plt_aarch64<size, big_endian>*
2125   plt_section() const
2126   {
2127     gold_assert(this->plt_ != NULL);
2128     return this->plt_;
2129   }
2130
2131   // Get the dynamic reloc section, creating it if necessary.
2132   Reloc_section*
2133   rela_dyn_section(Layout*);
2134
2135   // Get the section to use for TLSDESC relocations.
2136   Reloc_section*
2137   rela_tlsdesc_section(Layout*) const;
2138
2139   // Get the section to use for IRELATIVE relocations.
2140   Reloc_section*
2141   rela_irelative_section(Layout*);
2142
2143   // Add a potential copy relocation.
2144   void
2145   copy_reloc(Symbol_table* symtab, Layout* layout,
2146              Sized_relobj_file<size, big_endian>* object,
2147              unsigned int shndx, Output_section* output_section,
2148              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
2149   {
2150     this->copy_relocs_.copy_reloc(symtab, layout,
2151                                   symtab->get_sized_symbol<size>(sym),
2152                                   object, shndx, output_section,
2153                                   reloc, this->rela_dyn_section(layout));
2154   }
2155
2156   // Information about this specific target which we pass to the
2157   // general Target structure.
2158   static const Target::Target_info aarch64_info;
2159
2160   // The types of GOT entries needed for this platform.
2161   // These values are exposed to the ABI in an incremental link.
2162   // Do not renumber existing values without changing the version
2163   // number of the .gnu_incremental_inputs section.
2164   enum Got_type
2165   {
2166     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2167     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
2168     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
2169     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
2170   };
2171
2172   // This type is used as the argument to the target specific
2173   // relocation routines.  The only target specific reloc is
2174   // R_AARCh64_TLSDESC against a local symbol.
2175   struct Tlsdesc_info
2176   {
2177     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
2178                  unsigned int a_r_sym)
2179       : object(a_object), r_sym(a_r_sym)
2180     { }
2181
2182     // The object in which the local symbol is defined.
2183     Sized_relobj_file<size, big_endian>* object;
2184     // The local symbol index in the object.
2185     unsigned int r_sym;
2186   };
2187
2188   // The GOT section.
2189   Output_data_got_aarch64<size, big_endian>* got_;
2190   // The PLT section.
2191   Output_data_plt_aarch64<size, big_endian>* plt_;
2192   // The GOT PLT section.
2193   Output_data_space* got_plt_;
2194   // The GOT section for IRELATIVE relocations.
2195   Output_data_space* got_irelative_;
2196   // The GOT section for TLSDESC relocations.
2197   Output_data_got<size, big_endian>* got_tlsdesc_;
2198   // The _GLOBAL_OFFSET_TABLE_ symbol.
2199   Symbol* global_offset_table_;
2200   // The dynamic reloc section.
2201   Reloc_section* rela_dyn_;
2202   // The section to use for IRELATIVE relocs.
2203   Reloc_section* rela_irelative_;
2204   // Relocs saved to avoid a COPY reloc.
2205   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
2206   // Offset of the GOT entry for the TLS module index.
2207   unsigned int got_mod_index_offset_;
2208   // We handle R_AARCH64_TLSDESC against a local symbol as a target
2209   // specific relocation. Here we store the object and local symbol
2210   // index for the relocation.
2211   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
2212   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2213   bool tls_base_symbol_defined_;
2214   // List of stub_tables
2215   Stub_table_list stub_tables_;
2216   // Actual stub group size
2217   section_size_type stub_group_size_;
2218   AArch64_input_section_map aarch64_input_section_map_;
2219 };  // End of Target_aarch64
2220
2221
2222 template<>
2223 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
2224 {
2225   64,                   // size
2226   false,                // is_big_endian
2227   elfcpp::EM_AARCH64,   // machine_code
2228   false,                // has_make_symbol
2229   false,                // has_resolve
2230   false,                // has_code_fill
2231   true,                 // is_default_stack_executable
2232   true,                 // can_icf_inline_merge_sections
2233   '\0',                 // wrap_char
2234   "/lib/ld.so.1",       // program interpreter
2235   0x400000,             // default_text_segment_address
2236   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2237   0x1000,               // common_pagesize (overridable by -z common-page-size)
2238   false,                // isolate_execinstr
2239   0,                    // rosegment_gap
2240   elfcpp::SHN_UNDEF,    // small_common_shndx
2241   elfcpp::SHN_UNDEF,    // large_common_shndx
2242   0,                    // small_common_section_flags
2243   0,                    // large_common_section_flags
2244   NULL,                 // attributes_section
2245   NULL,                 // attributes_vendor
2246   "_start"              // entry_symbol_name
2247 };
2248
2249 template<>
2250 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
2251 {
2252   32,                   // size
2253   false,                // is_big_endian
2254   elfcpp::EM_AARCH64,   // machine_code
2255   false,                // has_make_symbol
2256   false,                // has_resolve
2257   false,                // has_code_fill
2258   true,                 // is_default_stack_executable
2259   false,                // can_icf_inline_merge_sections
2260   '\0',                 // wrap_char
2261   "/lib/ld.so.1",       // program interpreter
2262   0x400000,             // default_text_segment_address
2263   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2264   0x1000,               // common_pagesize (overridable by -z common-page-size)
2265   false,                // isolate_execinstr
2266   0,                    // rosegment_gap
2267   elfcpp::SHN_UNDEF,    // small_common_shndx
2268   elfcpp::SHN_UNDEF,    // large_common_shndx
2269   0,                    // small_common_section_flags
2270   0,                    // large_common_section_flags
2271   NULL,                 // attributes_section
2272   NULL,                 // attributes_vendor
2273   "_start"              // entry_symbol_name
2274 };
2275
2276 template<>
2277 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
2278 {
2279   64,                   // size
2280   true,                 // is_big_endian
2281   elfcpp::EM_AARCH64,   // machine_code
2282   false,                // has_make_symbol
2283   false,                // has_resolve
2284   false,                // has_code_fill
2285   true,                 // is_default_stack_executable
2286   true,                 // can_icf_inline_merge_sections
2287   '\0',                 // wrap_char
2288   "/lib/ld.so.1",       // program interpreter
2289   0x400000,             // default_text_segment_address
2290   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2291   0x1000,               // common_pagesize (overridable by -z common-page-size)
2292   false,                // isolate_execinstr
2293   0,                    // rosegment_gap
2294   elfcpp::SHN_UNDEF,    // small_common_shndx
2295   elfcpp::SHN_UNDEF,    // large_common_shndx
2296   0,                    // small_common_section_flags
2297   0,                    // large_common_section_flags
2298   NULL,                 // attributes_section
2299   NULL,                 // attributes_vendor
2300   "_start"              // entry_symbol_name
2301 };
2302
2303 template<>
2304 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
2305 {
2306   32,                   // size
2307   true,                 // is_big_endian
2308   elfcpp::EM_AARCH64,   // machine_code
2309   false,                // has_make_symbol
2310   false,                // has_resolve
2311   false,                // has_code_fill
2312   true,                 // is_default_stack_executable
2313   false,                // can_icf_inline_merge_sections
2314   '\0',                 // wrap_char
2315   "/lib/ld.so.1",       // program interpreter
2316   0x400000,             // default_text_segment_address
2317   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2318   0x1000,               // common_pagesize (overridable by -z common-page-size)
2319   false,                // isolate_execinstr
2320   0,                    // rosegment_gap
2321   elfcpp::SHN_UNDEF,    // small_common_shndx
2322   elfcpp::SHN_UNDEF,    // large_common_shndx
2323   0,                    // small_common_section_flags
2324   0,                    // large_common_section_flags
2325   NULL,                 // attributes_section
2326   NULL,                 // attributes_vendor
2327   "_start"              // entry_symbol_name
2328 };
2329
2330 // Get the GOT section, creating it if necessary.
2331
2332 template<int size, bool big_endian>
2333 Output_data_got_aarch64<size, big_endian>*
2334 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
2335                                               Layout* layout)
2336 {
2337   if (this->got_ == NULL)
2338     {
2339       gold_assert(symtab != NULL && layout != NULL);
2340
2341       // When using -z now, we can treat .got.plt as a relro section.
2342       // Without -z now, it is modified after program startup by lazy
2343       // PLT relocations.
2344       bool is_got_plt_relro = parameters->options().now();
2345       Output_section_order got_order = (is_got_plt_relro
2346                                         ? ORDER_RELRO
2347                                         : ORDER_RELRO_LAST);
2348       Output_section_order got_plt_order = (is_got_plt_relro
2349                                             ? ORDER_RELRO
2350                                             : ORDER_NON_RELRO_FIRST);
2351
2352       // Layout of .got and .got.plt sections.
2353       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
2354       // ...
2355       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
2356       // .gotplt[1] reserved for ld.so (resolver)
2357       // .gotplt[2] reserved
2358
2359       // Generate .got section.
2360       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
2361                                                                  layout);
2362       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2363                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
2364                                       this->got_, got_order, true);
2365       // The first word of GOT is reserved for the address of .dynamic.
2366       // We put 0 here now. The value will be replaced later in
2367       // Output_data_got_aarch64::do_write.
2368       this->got_->add_constant(0);
2369
2370       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
2371       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
2372       // even if there is a .got.plt section.
2373       this->global_offset_table_ =
2374         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2375                                       Symbol_table::PREDEFINED,
2376                                       this->got_,
2377                                       0, 0, elfcpp::STT_OBJECT,
2378                                       elfcpp::STB_LOCAL,
2379                                       elfcpp::STV_HIDDEN, 0,
2380                                       false, false);
2381
2382       // Generate .got.plt section.
2383       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
2384       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2385                                       (elfcpp::SHF_ALLOC
2386                                        | elfcpp::SHF_WRITE),
2387                                       this->got_plt_, got_plt_order,
2388                                       is_got_plt_relro);
2389
2390       // The first three entries are reserved.
2391       this->got_plt_->set_current_data_size(
2392         AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
2393
2394       // If there are any IRELATIVE relocations, they get GOT entries
2395       // in .got.plt after the jump slot entries.
2396       this->got_irelative_ = new Output_data_space(size / 8,
2397                                                    "** GOT IRELATIVE PLT");
2398       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2399                                       (elfcpp::SHF_ALLOC
2400                                        | elfcpp::SHF_WRITE),
2401                                       this->got_irelative_,
2402                                       got_plt_order,
2403                                       is_got_plt_relro);
2404
2405       // If there are any TLSDESC relocations, they get GOT entries in
2406       // .got.plt after the jump slot and IRELATIVE entries.
2407       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
2408       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2409                                       (elfcpp::SHF_ALLOC
2410                                        | elfcpp::SHF_WRITE),
2411                                       this->got_tlsdesc_,
2412                                       got_plt_order,
2413                                       is_got_plt_relro);
2414
2415       if (!is_got_plt_relro)
2416         {
2417           // Those bytes can go into the relro segment.
2418           layout->increase_relro(
2419             AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
2420         }
2421
2422     }
2423   return this->got_;
2424 }
2425
2426 // Get the dynamic reloc section, creating it if necessary.
2427
2428 template<int size, bool big_endian>
2429 typename Target_aarch64<size, big_endian>::Reloc_section*
2430 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
2431 {
2432   if (this->rela_dyn_ == NULL)
2433     {
2434       gold_assert(layout != NULL);
2435       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2436       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2437                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2438                                       ORDER_DYNAMIC_RELOCS, false);
2439     }
2440   return this->rela_dyn_;
2441 }
2442
2443 // Get the section to use for IRELATIVE relocs, creating it if
2444 // necessary.  These go in .rela.dyn, but only after all other dynamic
2445 // relocations.  They need to follow the other dynamic relocations so
2446 // that they can refer to global variables initialized by those
2447 // relocs.
2448
2449 template<int size, bool big_endian>
2450 typename Target_aarch64<size, big_endian>::Reloc_section*
2451 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
2452 {
2453   if (this->rela_irelative_ == NULL)
2454     {
2455       // Make sure we have already created the dynamic reloc section.
2456       this->rela_dyn_section(layout);
2457       this->rela_irelative_ = new Reloc_section(false);
2458       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2459                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
2460                                       ORDER_DYNAMIC_RELOCS, false);
2461       gold_assert(this->rela_dyn_->output_section()
2462                   == this->rela_irelative_->output_section());
2463     }
2464   return this->rela_irelative_;
2465 }
2466
2467
2468 // do_make_elf_object to override the same function in the base class.  We need
2469 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
2470 // store backend specific information. Hence we need to have our own ELF object
2471 // creation.
2472
2473 template<int size, bool big_endian>
2474 Object*
2475 Target_aarch64<size, big_endian>::do_make_elf_object(
2476     const std::string& name,
2477     Input_file* input_file,
2478     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2479 {
2480   int et = ehdr.get_e_type();
2481   // ET_EXEC files are valid input for --just-symbols/-R,
2482   // and we treat them as relocatable objects.
2483   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
2484     return Sized_target<size, big_endian>::do_make_elf_object(
2485         name, input_file, offset, ehdr);
2486   else if (et == elfcpp::ET_REL)
2487     {
2488       AArch64_relobj<size, big_endian>* obj =
2489         new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
2490       obj->setup();
2491       return obj;
2492     }
2493   else if (et == elfcpp::ET_DYN)
2494     {
2495       // Keep base implementation.
2496       Sized_dynobj<size, big_endian>* obj =
2497           new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2498       obj->setup();
2499       return obj;
2500     }
2501   else
2502     {
2503       gold_error(_("%s: unsupported ELF file type %d"),
2504                  name.c_str(), et);
2505       return NULL;
2506     }
2507 }
2508
2509
2510 // Scan a relocation for stub generation.
2511
2512 template<int size, bool big_endian>
2513 void
2514 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
2515     const Relocate_info<size, big_endian>* relinfo,
2516     unsigned int r_type,
2517     const Sized_symbol<size>* gsym,
2518     unsigned int r_sym,
2519     const Symbol_value<size>* psymval,
2520     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
2521     Address address)
2522 {
2523   const AArch64_relobj<size, big_endian>* aarch64_relobj =
2524       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
2525
2526   Symbol_value<size> symval;
2527   if (gsym != NULL)
2528     {
2529       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
2530         get_reloc_property(r_type);
2531       if (gsym->use_plt_offset(arp->reference_flags()))
2532         {
2533           // This uses a PLT, change the symbol value.
2534           symval.set_output_value(this->plt_section()->address()
2535                                   + gsym->plt_offset());
2536           psymval = &symval;
2537         }
2538       else if (gsym->is_undefined())
2539         // There is no need to generate a stub symbol is undefined.
2540         return;
2541     }
2542
2543   // Get the symbol value.
2544   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
2545
2546   // Owing to pipelining, the PC relative branches below actually skip
2547   // two instructions when the branch offset is 0.
2548   Address destination = static_cast<Address>(-1);
2549   switch (r_type)
2550     {
2551     case elfcpp::R_AARCH64_CALL26:
2552     case elfcpp::R_AARCH64_JUMP26:
2553       destination = value + addend;
2554       break;
2555     default:
2556       gold_unreachable();
2557     }
2558
2559   typename The_reloc_stub::Stub_type stub_type = The_reloc_stub::
2560       stub_type_for_reloc(r_type, address, destination);
2561   if (stub_type == The_reloc_stub::ST_NONE)
2562     return ;
2563
2564   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
2565   gold_assert(stub_table != NULL);
2566
2567   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
2568   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
2569   if (stub == NULL)
2570     {
2571       stub = new The_reloc_stub(stub_type);
2572       stub_table->add_reloc_stub(stub, key);
2573     }
2574   stub->set_destination_address(destination);
2575 }  // End of Target_aarch64::scan_reloc_for_stub
2576
2577
2578 // This function scans a relocation section for stub generation.
2579 // The template parameter Relocate must be a class type which provides
2580 // a single function, relocate(), which implements the machine
2581 // specific part of a relocation.
2582
2583 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
2584 // SHT_REL or SHT_RELA.
2585
2586 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
2587 // of relocs.  OUTPUT_SECTION is the output section.
2588 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
2589 // mapped to output offsets.
2590
2591 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
2592 // VIEW_SIZE is the size.  These refer to the input section, unless
2593 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
2594 // the output section.
2595
2596 template<int size, bool big_endian>
2597 template<int sh_type>
2598 void inline
2599 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
2600     const Relocate_info<size, big_endian>* relinfo,
2601     const unsigned char* prelocs,
2602     size_t reloc_count,
2603     Output_section* /*output_section*/,
2604     bool /*needs_special_offset_handling*/,
2605     const unsigned char* /*view*/,
2606     Address view_address,
2607     section_size_type)
2608 {
2609   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
2610
2611   const int reloc_size =
2612       Reloc_types<sh_type,size,big_endian>::reloc_size;
2613   AArch64_relobj<size, big_endian>* object =
2614       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
2615   unsigned int local_count = object->local_symbol_count();
2616
2617   gold::Default_comdat_behavior default_comdat_behavior;
2618   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
2619
2620   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2621     {
2622       Reltype reloc(prelocs);
2623       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
2624       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2625       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2626       if (r_type != elfcpp::R_AARCH64_CALL26
2627           && r_type != elfcpp::R_AARCH64_JUMP26)
2628         continue;
2629
2630       section_offset_type offset =
2631           convert_to_section_size_type(reloc.get_r_offset());
2632
2633       // Get the addend.
2634       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
2635           reloc.get_r_addend();
2636
2637       const Sized_symbol<size>* sym;
2638       Symbol_value<size> symval;
2639       const Symbol_value<size> *psymval;
2640       bool is_defined_in_discarded_section;
2641       unsigned int shndx;
2642       if (r_sym < local_count)
2643         {
2644           sym = NULL;
2645           psymval = object->local_symbol(r_sym);
2646
2647           // If the local symbol belongs to a section we are discarding,
2648           // and that section is a debug section, try to find the
2649           // corresponding kept section and map this symbol to its
2650           // counterpart in the kept section.  The symbol must not
2651           // correspond to a section we are folding.
2652           bool is_ordinary;
2653           shndx = psymval->input_shndx(&is_ordinary);
2654           is_defined_in_discarded_section =
2655             (is_ordinary
2656              && shndx != elfcpp::SHN_UNDEF
2657              && !object->is_section_included(shndx)
2658              && !relinfo->symtab->is_section_folded(object, shndx));
2659
2660           // We need to compute the would-be final value of this local
2661           // symbol.
2662           if (!is_defined_in_discarded_section)
2663             {
2664               typedef Sized_relobj_file<size, big_endian> ObjType;
2665               typename ObjType::Compute_final_local_value_status status =
2666                 object->compute_final_local_value(r_sym, psymval, &symval,
2667                                                   relinfo->symtab);
2668               if (status == ObjType::CFLV_OK)
2669                 {
2670                   // Currently we cannot handle a branch to a target in
2671                   // a merged section.  If this is the case, issue an error
2672                   // and also free the merge symbol value.
2673                   if (!symval.has_output_value())
2674                     {
2675                       const std::string& section_name =
2676                         object->section_name(shndx);
2677                       object->error(_("cannot handle branch to local %u "
2678                                           "in a merged section %s"),
2679                                         r_sym, section_name.c_str());
2680                     }
2681                   psymval = &symval;
2682                 }
2683               else
2684                 {
2685                   // We cannot determine the final value.
2686                   continue;
2687                 }
2688             }
2689         }
2690       else
2691         {
2692           const Symbol* gsym;
2693           gsym = object->global_symbol(r_sym);
2694           gold_assert(gsym != NULL);
2695           if (gsym->is_forwarder())
2696             gsym = relinfo->symtab->resolve_forwards(gsym);
2697
2698           sym = static_cast<const Sized_symbol<size>*>(gsym);
2699           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
2700             symval.set_output_symtab_index(sym->symtab_index());
2701           else
2702             symval.set_no_output_symtab_entry();
2703
2704           // We need to compute the would-be final value of this global
2705           // symbol.
2706           const Symbol_table* symtab = relinfo->symtab;
2707           const Sized_symbol<size>* sized_symbol =
2708               symtab->get_sized_symbol<size>(gsym);
2709           Symbol_table::Compute_final_value_status status;
2710           typename elfcpp::Elf_types<size>::Elf_Addr value =
2711               symtab->compute_final_value<size>(sized_symbol, &status);
2712
2713           // Skip this if the symbol has not output section.
2714           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
2715             continue;
2716           symval.set_output_value(value);
2717
2718           if (gsym->type() == elfcpp::STT_TLS)
2719             symval.set_is_tls_symbol();
2720           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2721             symval.set_is_ifunc_symbol();
2722           psymval = &symval;
2723
2724           is_defined_in_discarded_section =
2725               (gsym->is_defined_in_discarded_section()
2726                && gsym->is_undefined());
2727           shndx = 0;
2728         }
2729
2730       Symbol_value<size> symval2;
2731       if (is_defined_in_discarded_section)
2732         {
2733           if (comdat_behavior == CB_UNDETERMINED)
2734             {
2735               std::string name = object->section_name(relinfo->data_shndx);
2736               comdat_behavior = default_comdat_behavior.get(name.c_str());
2737             }
2738           if (comdat_behavior == CB_PRETEND)
2739             {
2740               bool found;
2741               typename elfcpp::Elf_types<size>::Elf_Addr value =
2742                 object->map_to_kept_section(shndx, &found);
2743               if (found)
2744                 symval2.set_output_value(value + psymval->input_value());
2745               else
2746                 symval2.set_output_value(0);
2747             }
2748           else
2749             {
2750               if (comdat_behavior == CB_WARNING)
2751                 gold_warning_at_location(relinfo, i, offset,
2752                                          _("relocation refers to discarded "
2753                                            "section"));
2754               symval2.set_output_value(0);
2755             }
2756           symval2.set_no_output_symtab_entry();
2757           psymval = &symval2;
2758         }
2759
2760       // If symbol is a section symbol, we don't know the actual type of
2761       // destination.  Give up.
2762       if (psymval->is_section_symbol())
2763         continue;
2764
2765       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2766                                 addend, view_address + offset);
2767     }  // End of iterating relocs in a section
2768 }  // End of Target_aarch64::scan_reloc_section_for_stubs
2769
2770
2771 // Scan an input section for stub generation.
2772
2773 template<int size, bool big_endian>
2774 void
2775 Target_aarch64<size, big_endian>::scan_section_for_stubs(
2776     const Relocate_info<size, big_endian>* relinfo,
2777     unsigned int sh_type,
2778     const unsigned char* prelocs,
2779     size_t reloc_count,
2780     Output_section* output_section,
2781     bool needs_special_offset_handling,
2782     const unsigned char* view,
2783     Address view_address,
2784     section_size_type view_size)
2785 {
2786   gold_assert(sh_type == elfcpp::SHT_RELA);
2787   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
2788       relinfo,
2789       prelocs,
2790       reloc_count,
2791       output_section,
2792       needs_special_offset_handling,
2793       view,
2794       view_address,
2795       view_size);
2796 }
2797
2798
2799 // Relocate a single stub.
2800
2801 template<int size, bool big_endian>
2802 void Target_aarch64<size, big_endian>::
2803 relocate_stub(The_reloc_stub* stub,
2804               const The_relocate_info*,
2805               Output_section*,
2806               unsigned char* view,
2807               Address address,
2808               section_size_type)
2809 {
2810   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
2811   typedef typename The_reloc_functions::Status The_reloc_functions_status;
2812   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2813
2814   Insntype* ip = reinterpret_cast<Insntype*>(view);
2815   int insn_number = stub->stub_insn_number();
2816   const uint32_t* insns = stub->stub_insns();
2817   // Check the insns are really those stub insns.
2818   for (int i = 0; i < insn_number; ++i)
2819     {
2820       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
2821       gold_assert(((uint32_t)insn == insns[i+1]));
2822     }
2823
2824   Address dest = stub->destination_address();
2825
2826   switch(stub->stub_type())
2827     {
2828     case The_reloc_stub::ST_ADRP_BRANCH:
2829       {
2830         // 1st reloc is ADR_PREL_PG_HI21
2831         The_reloc_functions_status status =
2832             The_reloc_functions::adrp(view, dest, address);
2833         // An error should never arise in the above step. If so, please
2834         // check 'aarch64_valid_for_adrp_p'.
2835         gold_assert(status == The_reloc_functions::STATUS_OKAY);
2836
2837         // 2nd reloc is ADD_ABS_LO12_NC
2838         const AArch64_reloc_property* arp =
2839             aarch64_reloc_property_table->get_reloc_property(
2840                 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
2841         gold_assert(arp != NULL);
2842         status = The_reloc_functions::template
2843             rela_general<32>(view + 4, dest, 0, arp);
2844         // An error should never arise, it is an "_NC" relocation.
2845         gold_assert(status == The_reloc_functions::STATUS_OKAY);
2846       }
2847       break;
2848
2849     case The_reloc_stub::ST_LONG_BRANCH_ABS:
2850       // 1st reloc is R_AARCH64_PREL64, at offset 8
2851       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
2852       break;
2853
2854     case The_reloc_stub::ST_LONG_BRANCH_PCREL:
2855       {
2856         // "PC" calculation is the 2nd insn in the stub.
2857         uint64_t offset = dest - (address + 4);
2858         // Offset is placed at offset 4 and 5.
2859         elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
2860       }
2861       break;
2862
2863     default:
2864       gold_unreachable();
2865     }
2866 }
2867
2868
2869 // A class to handle the PLT data.
2870 // This is an abstract base class that handles most of the linker details
2871 // but does not know the actual contents of PLT entries.  The derived
2872 // classes below fill in those details.
2873
2874 template<int size, bool big_endian>
2875 class Output_data_plt_aarch64 : public Output_section_data
2876 {
2877  public:
2878   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2879       Reloc_section;
2880   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2881
2882   Output_data_plt_aarch64(Layout* layout,
2883                           uint64_t addralign,
2884                           Output_data_got_aarch64<size, big_endian>* got,
2885                           Output_data_space* got_plt,
2886                           Output_data_space* got_irelative)
2887     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
2888       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
2889       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
2890   { this->init(layout); }
2891
2892   // Initialize the PLT section.
2893   void
2894   init(Layout* layout);
2895
2896   // Add an entry to the PLT.
2897   void
2898   add_entry(Symbol_table*, Layout*, Symbol* gsym);
2899
2900   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
2901   unsigned int
2902   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
2903                         Sized_relobj_file<size, big_endian>* relobj,
2904                         unsigned int local_sym_index);
2905
2906   // Add the relocation for a PLT entry.
2907   void
2908   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
2909                  unsigned int got_offset);
2910
2911   // Add the reserved TLSDESC_PLT entry to the PLT.
2912   void
2913   reserve_tlsdesc_entry(unsigned int got_offset)
2914   { this->tlsdesc_got_offset_ = got_offset; }
2915
2916   // Return true if a TLSDESC_PLT entry has been reserved.
2917   bool
2918   has_tlsdesc_entry() const
2919   { return this->tlsdesc_got_offset_ != -1U; }
2920
2921   // Return the GOT offset for the reserved TLSDESC_PLT entry.
2922   unsigned int
2923   get_tlsdesc_got_offset() const
2924   { return this->tlsdesc_got_offset_; }
2925
2926   // Return the PLT offset of the reserved TLSDESC_PLT entry.
2927   unsigned int
2928   get_tlsdesc_plt_offset() const
2929   {
2930     return (this->first_plt_entry_offset() +
2931             (this->count_ + this->irelative_count_)
2932             * this->get_plt_entry_size());
2933   }
2934
2935   // Return the .rela.plt section data.
2936   Reloc_section*
2937   rela_plt()
2938   { return this->rel_; }
2939
2940   // Return where the TLSDESC relocations should go.
2941   Reloc_section*
2942   rela_tlsdesc(Layout*);
2943
2944   // Return where the IRELATIVE relocations should go in the PLT
2945   // relocations.
2946   Reloc_section*
2947   rela_irelative(Symbol_table*, Layout*);
2948
2949   // Return whether we created a section for IRELATIVE relocations.
2950   bool
2951   has_irelative_section() const
2952   { return this->irelative_rel_ != NULL; }
2953
2954   // Return the number of PLT entries.
2955   unsigned int
2956   entry_count() const
2957   { return this->count_ + this->irelative_count_; }
2958
2959   // Return the offset of the first non-reserved PLT entry.
2960   unsigned int
2961   first_plt_entry_offset() const
2962   { return this->do_first_plt_entry_offset(); }
2963
2964   // Return the size of a PLT entry.
2965   unsigned int
2966   get_plt_entry_size() const
2967   { return this->do_get_plt_entry_size(); }
2968
2969   // Return the reserved tlsdesc entry size.
2970   unsigned int
2971   get_plt_tlsdesc_entry_size() const
2972   { return this->do_get_plt_tlsdesc_entry_size(); }
2973
2974   // Return the PLT address to use for a global symbol.
2975   uint64_t
2976   address_for_global(const Symbol*);
2977
2978   // Return the PLT address to use for a local symbol.
2979   uint64_t
2980   address_for_local(const Relobj*, unsigned int symndx);
2981
2982  protected:
2983   // Fill in the first PLT entry.
2984   void
2985   fill_first_plt_entry(unsigned char* pov,
2986                        Address got_address,
2987                        Address plt_address)
2988   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
2989
2990   // Fill in a normal PLT entry.
2991   void
2992   fill_plt_entry(unsigned char* pov,
2993                  Address got_address,
2994                  Address plt_address,
2995                  unsigned int got_offset,
2996                  unsigned int plt_offset)
2997   {
2998     this->do_fill_plt_entry(pov, got_address, plt_address,
2999                             got_offset, plt_offset);
3000   }
3001
3002   // Fill in the reserved TLSDESC PLT entry.
3003   void
3004   fill_tlsdesc_entry(unsigned char* pov,
3005                      Address gotplt_address,
3006                      Address plt_address,
3007                      Address got_base,
3008                      unsigned int tlsdesc_got_offset,
3009                      unsigned int plt_offset)
3010   {
3011     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
3012                                 tlsdesc_got_offset, plt_offset);
3013   }
3014
3015   virtual unsigned int
3016   do_first_plt_entry_offset() const = 0;
3017
3018   virtual unsigned int
3019   do_get_plt_entry_size() const = 0;
3020
3021   virtual unsigned int
3022   do_get_plt_tlsdesc_entry_size() const = 0;
3023
3024   virtual void
3025   do_fill_first_plt_entry(unsigned char* pov,
3026                           Address got_addr,
3027                           Address plt_addr) = 0;
3028
3029   virtual void
3030   do_fill_plt_entry(unsigned char* pov,
3031                     Address got_address,
3032                     Address plt_address,
3033                     unsigned int got_offset,
3034                     unsigned int plt_offset) = 0;
3035
3036   virtual void
3037   do_fill_tlsdesc_entry(unsigned char* pov,
3038                         Address gotplt_address,
3039                         Address plt_address,
3040                         Address got_base,
3041                         unsigned int tlsdesc_got_offset,
3042                         unsigned int plt_offset) = 0;
3043
3044   void
3045   do_adjust_output_section(Output_section* os);
3046
3047   // Write to a map file.
3048   void
3049   do_print_to_mapfile(Mapfile* mapfile) const
3050   { mapfile->print_output_data(this, _("** PLT")); }
3051
3052  private:
3053   // Set the final size.
3054   void
3055   set_final_data_size();
3056
3057   // Write out the PLT data.
3058   void
3059   do_write(Output_file*);
3060
3061   // The reloc section.
3062   Reloc_section* rel_;
3063
3064   // The TLSDESC relocs, if necessary.  These must follow the regular
3065   // PLT relocs.
3066   Reloc_section* tlsdesc_rel_;
3067
3068   // The IRELATIVE relocs, if necessary.  These must follow the
3069   // regular PLT relocations.
3070   Reloc_section* irelative_rel_;
3071
3072   // The .got section.
3073   Output_data_got_aarch64<size, big_endian>* got_;
3074
3075   // The .got.plt section.
3076   Output_data_space* got_plt_;
3077
3078   // The part of the .got.plt section used for IRELATIVE relocs.
3079   Output_data_space* got_irelative_;
3080
3081   // The number of PLT entries.
3082   unsigned int count_;
3083
3084   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
3085   // follow the regular PLT entries.
3086   unsigned int irelative_count_;
3087
3088   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
3089   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
3090   // indicates an offset is not allocated.
3091   unsigned int tlsdesc_got_offset_;
3092 };
3093
3094 // Initialize the PLT section.
3095
3096 template<int size, bool big_endian>
3097 void
3098 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
3099 {
3100   this->rel_ = new Reloc_section(false);
3101   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3102                                   elfcpp::SHF_ALLOC, this->rel_,
3103                                   ORDER_DYNAMIC_PLT_RELOCS, false);
3104 }
3105
3106 template<int size, bool big_endian>
3107 void
3108 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
3109     Output_section* os)
3110 {
3111   os->set_entsize(this->get_plt_entry_size());
3112 }
3113
3114 // Add an entry to the PLT.
3115
3116 template<int size, bool big_endian>
3117 void
3118 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
3119     Layout* layout, Symbol* gsym)
3120 {
3121   gold_assert(!gsym->has_plt_offset());
3122
3123   unsigned int* pcount;
3124   unsigned int plt_reserved;
3125   Output_section_data_build* got;
3126
3127   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3128       && gsym->can_use_relative_reloc(false))
3129     {
3130       pcount = &this->irelative_count_;
3131       plt_reserved = 0;
3132       got = this->got_irelative_;
3133     }
3134   else
3135     {
3136       pcount = &this->count_;
3137       plt_reserved = this->first_plt_entry_offset();
3138       got = this->got_plt_;
3139     }
3140
3141   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
3142                        + plt_reserved);
3143
3144   ++*pcount;
3145
3146   section_offset_type got_offset = got->current_data_size();
3147
3148   // Every PLT entry needs a GOT entry which points back to the PLT
3149   // entry (this will be changed by the dynamic linker, normally
3150   // lazily when the function is called).
3151   got->set_current_data_size(got_offset + size / 8);
3152
3153   // Every PLT entry needs a reloc.
3154   this->add_relocation(symtab, layout, gsym, got_offset);
3155
3156   // Note that we don't need to save the symbol. The contents of the
3157   // PLT are independent of which symbols are used. The symbols only
3158   // appear in the relocations.
3159 }
3160
3161 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
3162 // the PLT offset.
3163
3164 template<int size, bool big_endian>
3165 unsigned int
3166 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
3167     Symbol_table* symtab,
3168     Layout* layout,
3169     Sized_relobj_file<size, big_endian>* relobj,
3170     unsigned int local_sym_index)
3171 {
3172   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
3173   ++this->irelative_count_;
3174
3175   section_offset_type got_offset = this->got_irelative_->current_data_size();
3176
3177   // Every PLT entry needs a GOT entry which points back to the PLT
3178   // entry.
3179   this->got_irelative_->set_current_data_size(got_offset + size / 8);
3180
3181   // Every PLT entry needs a reloc.
3182   Reloc_section* rela = this->rela_irelative(symtab, layout);
3183   rela->add_symbolless_local_addend(relobj, local_sym_index,
3184                                     elfcpp::R_AARCH64_IRELATIVE,
3185                                     this->got_irelative_, got_offset, 0);
3186
3187   return plt_offset;
3188 }
3189
3190 // Add the relocation for a PLT entry.
3191
3192 template<int size, bool big_endian>
3193 void
3194 Output_data_plt_aarch64<size, big_endian>::add_relocation(
3195     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
3196 {
3197   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3198       && gsym->can_use_relative_reloc(false))
3199     {
3200       Reloc_section* rela = this->rela_irelative(symtab, layout);
3201       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
3202                                          this->got_irelative_, got_offset, 0);
3203     }
3204   else
3205     {
3206       gsym->set_needs_dynsym_entry();
3207       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
3208                              got_offset, 0);
3209     }
3210 }
3211
3212 // Return where the TLSDESC relocations should go, creating it if
3213 // necessary.  These follow the JUMP_SLOT relocations.
3214
3215 template<int size, bool big_endian>
3216 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
3217 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
3218 {
3219   if (this->tlsdesc_rel_ == NULL)
3220     {
3221       this->tlsdesc_rel_ = new Reloc_section(false);
3222       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3223                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
3224                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3225       gold_assert(this->tlsdesc_rel_->output_section()
3226                   == this->rel_->output_section());
3227     }
3228   return this->tlsdesc_rel_;
3229 }
3230
3231 // Return where the IRELATIVE relocations should go in the PLT.  These
3232 // follow the JUMP_SLOT and the TLSDESC relocations.
3233
3234 template<int size, bool big_endian>
3235 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
3236 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
3237                                                           Layout* layout)
3238 {
3239   if (this->irelative_rel_ == NULL)
3240     {
3241       // Make sure we have a place for the TLSDESC relocations, in
3242       // case we see any later on.
3243       this->rela_tlsdesc(layout);
3244       this->irelative_rel_ = new Reloc_section(false);
3245       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3246                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
3247                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3248       gold_assert(this->irelative_rel_->output_section()
3249                   == this->rel_->output_section());
3250
3251       if (parameters->doing_static_link())
3252         {
3253           // A statically linked executable will only have a .rela.plt
3254           // section to hold R_AARCH64_IRELATIVE relocs for
3255           // STT_GNU_IFUNC symbols.  The library will use these
3256           // symbols to locate the IRELATIVE relocs at program startup
3257           // time.
3258           symtab->define_in_output_data("__rela_iplt_start", NULL,
3259                                         Symbol_table::PREDEFINED,
3260                                         this->irelative_rel_, 0, 0,
3261                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3262                                         elfcpp::STV_HIDDEN, 0, false, true);
3263           symtab->define_in_output_data("__rela_iplt_end", NULL,
3264                                         Symbol_table::PREDEFINED,
3265                                         this->irelative_rel_, 0, 0,
3266                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3267                                         elfcpp::STV_HIDDEN, 0, true, true);
3268         }
3269     }
3270   return this->irelative_rel_;
3271 }
3272
3273 // Return the PLT address to use for a global symbol.
3274
3275 template<int size, bool big_endian>
3276 uint64_t
3277 Output_data_plt_aarch64<size, big_endian>::address_for_global(
3278   const Symbol* gsym)
3279 {
3280   uint64_t offset = 0;
3281   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3282       && gsym->can_use_relative_reloc(false))
3283     offset = (this->first_plt_entry_offset() +
3284               this->count_ * this->get_plt_entry_size());
3285   return this->address() + offset + gsym->plt_offset();
3286 }
3287
3288 // Return the PLT address to use for a local symbol.  These are always
3289 // IRELATIVE relocs.
3290
3291 template<int size, bool big_endian>
3292 uint64_t
3293 Output_data_plt_aarch64<size, big_endian>::address_for_local(
3294     const Relobj* object,
3295     unsigned int r_sym)
3296 {
3297   return (this->address()
3298           + this->first_plt_entry_offset()
3299           + this->count_ * this->get_plt_entry_size()
3300           + object->local_plt_offset(r_sym));
3301 }
3302
3303 // Set the final size.
3304
3305 template<int size, bool big_endian>
3306 void
3307 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
3308 {
3309   unsigned int count = this->count_ + this->irelative_count_;
3310   unsigned int extra_size = 0;
3311   if (this->has_tlsdesc_entry())
3312     extra_size += this->get_plt_tlsdesc_entry_size();
3313   this->set_data_size(this->first_plt_entry_offset()
3314                       + count * this->get_plt_entry_size()
3315                       + extra_size);
3316 }
3317
3318 template<int size, bool big_endian>
3319 class Output_data_plt_aarch64_standard :
3320   public Output_data_plt_aarch64<size, big_endian>
3321 {
3322  public:
3323   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3324   Output_data_plt_aarch64_standard(
3325       Layout* layout,
3326       Output_data_got_aarch64<size, big_endian>* got,
3327       Output_data_space* got_plt,
3328       Output_data_space* got_irelative)
3329     : Output_data_plt_aarch64<size, big_endian>(layout,
3330                                                 size == 32 ? 4 : 8,
3331                                                 got, got_plt,
3332                                                 got_irelative)
3333   { }
3334
3335  protected:
3336   // Return the offset of the first non-reserved PLT entry.
3337   virtual unsigned int
3338   do_first_plt_entry_offset() const
3339   { return this->first_plt_entry_size; }
3340
3341   // Return the size of a PLT entry
3342   virtual unsigned int
3343   do_get_plt_entry_size() const
3344   { return this->plt_entry_size; }
3345
3346   // Return the size of a tlsdesc entry
3347   virtual unsigned int
3348   do_get_plt_tlsdesc_entry_size() const
3349   { return this->plt_tlsdesc_entry_size; }
3350
3351   virtual void
3352   do_fill_first_plt_entry(unsigned char* pov,
3353                           Address got_address,
3354                           Address plt_address);
3355
3356   virtual void
3357   do_fill_plt_entry(unsigned char* pov,
3358                     Address got_address,
3359                     Address plt_address,
3360                     unsigned int got_offset,
3361                     unsigned int plt_offset);
3362
3363   virtual void
3364   do_fill_tlsdesc_entry(unsigned char* pov,
3365                         Address gotplt_address,
3366                         Address plt_address,
3367                         Address got_base,
3368                         unsigned int tlsdesc_got_offset,
3369                         unsigned int plt_offset);
3370
3371  private:
3372   // The size of the first plt entry size.
3373   static const int first_plt_entry_size = 32;
3374   // The size of the plt entry size.
3375   static const int plt_entry_size = 16;
3376   // The size of the plt tlsdesc entry size.
3377   static const int plt_tlsdesc_entry_size = 32;
3378   // Template for the first PLT entry.
3379   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
3380   // Template for subsequent PLT entries.
3381   static const uint32_t plt_entry[plt_entry_size / 4];
3382   // The reserved TLSDESC entry in the PLT for an executable.
3383   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
3384 };
3385
3386 // The first entry in the PLT for an executable.
3387
3388 template<>
3389 const uint32_t
3390 Output_data_plt_aarch64_standard<32, false>::
3391     first_plt_entry[first_plt_entry_size / 4] =
3392 {
3393   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
3394   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
3395   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
3396   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
3397   0xd61f0220,   /* br x17  */
3398   0xd503201f,   /* nop */
3399   0xd503201f,   /* nop */
3400   0xd503201f,   /* nop */
3401 };
3402
3403
3404 template<>
3405 const uint32_t
3406 Output_data_plt_aarch64_standard<32, true>::
3407     first_plt_entry[first_plt_entry_size / 4] =
3408 {
3409   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
3410   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
3411   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
3412   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
3413   0xd61f0220,   /* br x17  */
3414   0xd503201f,   /* nop */
3415   0xd503201f,   /* nop */
3416   0xd503201f,   /* nop */
3417 };
3418
3419
3420 template<>
3421 const uint32_t
3422 Output_data_plt_aarch64_standard<64, false>::
3423     first_plt_entry[first_plt_entry_size / 4] =
3424 {
3425   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
3426   0x90000010,   /* adrp x16, PLT_GOT+16  */
3427   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
3428   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
3429   0xd61f0220,   /* br x17  */
3430   0xd503201f,   /* nop */
3431   0xd503201f,   /* nop */
3432   0xd503201f,   /* nop */
3433 };
3434
3435
3436 template<>
3437 const uint32_t
3438 Output_data_plt_aarch64_standard<64, true>::
3439     first_plt_entry[first_plt_entry_size / 4] =
3440 {
3441   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
3442   0x90000010,   /* adrp x16, PLT_GOT+16  */
3443   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
3444   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
3445   0xd61f0220,   /* br x17  */
3446   0xd503201f,   /* nop */
3447   0xd503201f,   /* nop */
3448   0xd503201f,   /* nop */
3449 };
3450
3451
3452 template<>
3453 const uint32_t
3454 Output_data_plt_aarch64_standard<32, false>::
3455     plt_entry[plt_entry_size / 4] =
3456 {
3457   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
3458   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
3459   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
3460   0xd61f0220,   /* br x17.  */
3461 };
3462
3463
3464 template<>
3465 const uint32_t
3466 Output_data_plt_aarch64_standard<32, true>::
3467     plt_entry[plt_entry_size / 4] =
3468 {
3469   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
3470   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
3471   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
3472   0xd61f0220,   /* br x17.  */
3473 };
3474
3475
3476 template<>
3477 const uint32_t
3478 Output_data_plt_aarch64_standard<64, false>::
3479     plt_entry[plt_entry_size / 4] =
3480 {
3481   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
3482   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
3483   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
3484   0xd61f0220,   /* br x17.  */
3485 };
3486
3487
3488 template<>
3489 const uint32_t
3490 Output_data_plt_aarch64_standard<64, true>::
3491     plt_entry[plt_entry_size / 4] =
3492 {
3493   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
3494   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
3495   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
3496   0xd61f0220,   /* br x17.  */
3497 };
3498
3499
3500 template<int size, bool big_endian>
3501 void
3502 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
3503     unsigned char* pov,
3504     Address got_address,
3505     Address plt_address)
3506 {
3507   // PLT0 of the small PLT looks like this in ELF64 -
3508   // stp x16, x30, [sp, #-16]!          Save the reloc and lr on stack.
3509   // adrp x16, PLT_GOT + 16             Get the page base of the GOTPLT
3510   // ldr  x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
3511   //                                    symbol resolver
3512   // add  x16, x16, #:lo12:PLT_GOT+16   Load the lo12 bits of the
3513   //                                    GOTPLT entry for this.
3514   // br   x17
3515   // PLT0 will be slightly different in ELF32 due to different got entry
3516   // size.
3517   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
3518   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
3519
3520   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
3521   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
3522   // FIXME: This only works for 64bit
3523   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
3524       gotplt_2nd_ent, plt_address + 4);
3525
3526   // Fill in R_AARCH64_LDST8_LO12
3527   elfcpp::Swap<32, big_endian>::writeval(
3528       pov + 8,
3529       ((this->first_plt_entry[2] & 0xffc003ff)
3530        | ((gotplt_2nd_ent & 0xff8) << 7)));
3531
3532   // Fill in R_AARCH64_ADD_ABS_LO12
3533   elfcpp::Swap<32, big_endian>::writeval(
3534       pov + 12,
3535       ((this->first_plt_entry[3] & 0xffc003ff)
3536        | ((gotplt_2nd_ent & 0xfff) << 10)));
3537 }
3538
3539
3540 // Subsequent entries in the PLT for an executable.
3541 // FIXME: This only works for 64bit
3542
3543 template<int size, bool big_endian>
3544 void
3545 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
3546     unsigned char* pov,
3547     Address got_address,
3548     Address plt_address,
3549     unsigned int got_offset,
3550     unsigned int plt_offset)
3551 {
3552   memcpy(pov, this->plt_entry, this->plt_entry_size);
3553
3554   Address gotplt_entry_address = got_address + got_offset;
3555   Address plt_entry_address = plt_address + plt_offset;
3556
3557   // Fill in R_AARCH64_PCREL_ADR_HI21
3558   AArch64_relocate_functions<size, big_endian>::adrp(
3559       pov,
3560       gotplt_entry_address,
3561       plt_entry_address);
3562
3563   // Fill in R_AARCH64_LDST64_ABS_LO12
3564   elfcpp::Swap<32, big_endian>::writeval(
3565       pov + 4,
3566       ((this->plt_entry[1] & 0xffc003ff)
3567        | ((gotplt_entry_address & 0xff8) << 7)));
3568
3569   // Fill in R_AARCH64_ADD_ABS_LO12
3570   elfcpp::Swap<32, big_endian>::writeval(
3571       pov + 8,
3572       ((this->plt_entry[2] & 0xffc003ff)
3573        | ((gotplt_entry_address & 0xfff) <<10)));
3574
3575 }
3576
3577
3578 template<>
3579 const uint32_t
3580 Output_data_plt_aarch64_standard<32, false>::
3581     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3582 {
3583   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
3584   0x90000002,   /* adrp x2, 0 */
3585   0x90000003,   /* adrp x3, 0 */
3586   0xb9400042,   /* ldr w2, [w2, #0] */
3587   0x11000063,   /* add w3, w3, 0 */
3588   0xd61f0040,   /* br x2 */
3589   0xd503201f,   /* nop */
3590   0xd503201f,   /* nop */
3591 };
3592
3593 template<>
3594 const uint32_t
3595 Output_data_plt_aarch64_standard<32, true>::
3596     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3597 {
3598   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
3599   0x90000002,   /* adrp x2, 0 */
3600   0x90000003,   /* adrp x3, 0 */
3601   0xb9400042,   /* ldr w2, [w2, #0] */
3602   0x11000063,   /* add w3, w3, 0 */
3603   0xd61f0040,   /* br x2 */
3604   0xd503201f,   /* nop */
3605   0xd503201f,   /* nop */
3606 };
3607
3608 template<>
3609 const uint32_t
3610 Output_data_plt_aarch64_standard<64, false>::
3611     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3612 {
3613   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
3614   0x90000002,   /* adrp x2, 0 */
3615   0x90000003,   /* adrp x3, 0 */
3616   0xf9400042,   /* ldr x2, [x2, #0] */
3617   0x91000063,   /* add x3, x3, 0 */
3618   0xd61f0040,   /* br x2 */
3619   0xd503201f,   /* nop */
3620   0xd503201f,   /* nop */
3621 };
3622
3623 template<>
3624 const uint32_t
3625 Output_data_plt_aarch64_standard<64, true>::
3626     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3627 {
3628   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
3629   0x90000002,   /* adrp x2, 0 */
3630   0x90000003,   /* adrp x3, 0 */
3631   0xf9400042,   /* ldr x2, [x2, #0] */
3632   0x91000063,   /* add x3, x3, 0 */
3633   0xd61f0040,   /* br x2 */
3634   0xd503201f,   /* nop */
3635   0xd503201f,   /* nop */
3636 };
3637
3638 template<int size, bool big_endian>
3639 void
3640 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
3641     unsigned char* pov,
3642     Address gotplt_address,
3643     Address plt_address,
3644     Address got_base,
3645     unsigned int tlsdesc_got_offset,
3646     unsigned int plt_offset)
3647 {
3648   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
3649
3650   // move DT_TLSDESC_GOT address into x2
3651   // move .got.plt address into x3
3652   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
3653   Address plt_entry_address = plt_address + plt_offset;
3654
3655   // R_AARCH64_ADR_PREL_PG_HI21
3656   AArch64_relocate_functions<size, big_endian>::adrp(
3657       pov + 4,
3658       tlsdesc_got_entry,
3659       plt_entry_address + 4);
3660
3661   // R_AARCH64_ADR_PREL_PG_HI21
3662   AArch64_relocate_functions<size, big_endian>::adrp(
3663       pov + 8,
3664       gotplt_address,
3665       plt_entry_address + 8);
3666
3667   // R_AARCH64_LDST64_ABS_LO12
3668   elfcpp::Swap<32, big_endian>::writeval(
3669       pov + 12,
3670       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
3671        | ((tlsdesc_got_entry & 0xff8) << 7)));
3672
3673   // R_AARCH64_ADD_ABS_LO12
3674   elfcpp::Swap<32, big_endian>::writeval(
3675       pov + 16,
3676       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
3677        | ((gotplt_address & 0xfff) << 10)));
3678 }
3679
3680 // Write out the PLT.  This uses the hand-coded instructions above,
3681 // and adjusts them as needed.  This is specified by the AMD64 ABI.
3682
3683 template<int size, bool big_endian>
3684 void
3685 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
3686 {
3687   const off_t offset = this->offset();
3688   const section_size_type oview_size =
3689     convert_to_section_size_type(this->data_size());
3690   unsigned char* const oview = of->get_output_view(offset, oview_size);
3691
3692   const off_t got_file_offset = this->got_plt_->offset();
3693   gold_assert(got_file_offset + this->got_plt_->data_size()
3694               == this->got_irelative_->offset());
3695
3696   const section_size_type got_size =
3697       convert_to_section_size_type(this->got_plt_->data_size()
3698                                    + this->got_irelative_->data_size());
3699   unsigned char* const got_view = of->get_output_view(got_file_offset,
3700                                                       got_size);
3701
3702   unsigned char* pov = oview;
3703
3704   // The base address of the .plt section.
3705   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
3706   // The base address of the PLT portion of the .got section.
3707   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
3708       = this->got_plt_->address();
3709
3710   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
3711   pov += this->first_plt_entry_offset();
3712
3713   // The first three entries in .got.plt are reserved.
3714   unsigned char* got_pov = got_view;
3715   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
3716   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
3717
3718   unsigned int plt_offset = this->first_plt_entry_offset();
3719   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
3720   const unsigned int count = this->count_ + this->irelative_count_;
3721   for (unsigned int plt_index = 0;
3722        plt_index < count;
3723        ++plt_index,
3724          pov += this->get_plt_entry_size(),
3725          got_pov += size / 8,
3726          plt_offset += this->get_plt_entry_size(),
3727          got_offset += size / 8)
3728     {
3729       // Set and adjust the PLT entry itself.
3730       this->fill_plt_entry(pov, gotplt_address, plt_address,
3731                            got_offset, plt_offset);
3732
3733       // Set the entry in the GOT, which points to plt0.
3734       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
3735     }
3736
3737   if (this->has_tlsdesc_entry())
3738     {
3739       // Set and adjust the reserved TLSDESC PLT entry.
3740       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
3741       // The base address of the .base section.
3742       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
3743           this->got_->address();
3744       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
3745                                tlsdesc_got_offset, plt_offset);
3746       pov += this->get_plt_tlsdesc_entry_size();
3747     }
3748
3749   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
3750   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
3751
3752   of->write_output_view(offset, oview_size, oview);
3753   of->write_output_view(got_file_offset, got_size, got_view);
3754 }
3755
3756 // Telling how to update the immediate field of an instruction.
3757 struct AArch64_howto
3758 {
3759   // The immediate field mask.
3760   elfcpp::Elf_Xword dst_mask;
3761
3762   // The offset to apply relocation immediate
3763   int doffset;
3764
3765   // The second part offset, if the immediate field has two parts.
3766   // -1 if the immediate field has only one part.
3767   int doffset2;
3768 };
3769
3770 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
3771 {
3772   {0, -1, -1},          // DATA
3773   {0x1fffe0, 5, -1},    // MOVW  [20:5]-imm16
3774   {0xffffe0, 5, -1},    // LD    [23:5]-imm19
3775   {0x60ffffe0, 29, 5},  // ADR   [30:29]-immlo  [23:5]-immhi
3776   {0x60ffffe0, 29, 5},  // ADRP  [30:29]-immlo  [23:5]-immhi
3777   {0x3ffc00, 10, -1},   // ADD   [21:10]-imm12
3778   {0x3ffc00, 10, -1},   // LDST  [21:10]-imm12
3779   {0x7ffe0, 5, -1},     // TBZNZ [18:5]-imm14
3780   {0xffffe0, 5, -1},    // CONDB [23:5]-imm19
3781   {0x3ffffff, 0, -1},   // B     [25:0]-imm26
3782   {0x3ffffff, 0, -1},   // CALL  [25:0]-imm26
3783 };
3784
3785 // AArch64 relocate function class
3786
3787 template<int size, bool big_endian>
3788 class AArch64_relocate_functions
3789 {
3790  public:
3791   typedef enum
3792   {
3793     STATUS_OKAY,        // No error during relocation.
3794     STATUS_OVERFLOW,    // Relocation overflow.
3795     STATUS_BAD_RELOC,   // Relocation cannot be applied.
3796   } Status;
3797
3798   typedef AArch64_relocate_functions<size, big_endian> This;
3799   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3800   typedef Relocate_info<size, big_endian> The_relocate_info;
3801   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
3802   typedef Reloc_stub<size, big_endian> The_reloc_stub;
3803   typedef typename The_reloc_stub::Stub_type The_reloc_stub_type;
3804   typedef Stub_table<size, big_endian> The_stub_table;
3805   typedef elfcpp::Rela<size, big_endian> The_rela;
3806   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
3807
3808   // Return the page address of the address.
3809   // Page(address) = address & ~0xFFF
3810
3811   static inline AArch64_valtype
3812   Page(Address address)
3813   {
3814     return (address & (~static_cast<Address>(0xFFF)));
3815   }
3816
3817  private:
3818   // Update instruction (pointed by view) with selected bits (immed).
3819   // val = (val & ~dst_mask) | (immed << doffset)
3820
3821   template<int valsize>
3822   static inline void
3823   update_view(unsigned char* view,
3824               AArch64_valtype immed,
3825               elfcpp::Elf_Xword doffset,
3826               elfcpp::Elf_Xword dst_mask)
3827   {
3828     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
3829     Valtype* wv = reinterpret_cast<Valtype*>(view);
3830     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
3831
3832     // Clear immediate fields.
3833     val &= ~dst_mask;
3834     elfcpp::Swap<valsize, big_endian>::writeval(wv,
3835       static_cast<Valtype>(val | (immed << doffset)));
3836   }
3837
3838   // Update two parts of an instruction (pointed by view) with selected
3839   // bits (immed1 and immed2).
3840   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
3841
3842   template<int valsize>
3843   static inline void
3844   update_view_two_parts(
3845     unsigned char* view,
3846     AArch64_valtype immed1,
3847     AArch64_valtype immed2,
3848     elfcpp::Elf_Xword doffset1,
3849     elfcpp::Elf_Xword doffset2,
3850     elfcpp::Elf_Xword dst_mask)
3851   {
3852     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
3853     Valtype* wv = reinterpret_cast<Valtype*>(view);
3854     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
3855     val &= ~dst_mask;
3856     elfcpp::Swap<valsize, big_endian>::writeval(wv,
3857       static_cast<Valtype>(val | (immed1 << doffset1) |
3858                            (immed2 << doffset2)));
3859   }
3860
3861   // Update adr or adrp instruction with immed.
3862   // In adr and adrp: [30:29] immlo   [23:5] immhi
3863
3864   static inline void
3865   update_adr(unsigned char* view, AArch64_valtype immed)
3866   {
3867     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
3868     This::template update_view_two_parts<32>(
3869       view,
3870       immed & 0x3,
3871       (immed & 0x1ffffc) >> 2,
3872       29,
3873       5,
3874       dst_mask);
3875   }
3876
3877   // Update movz/movn instruction with bits immed.
3878   // Set instruction to movz if is_movz is true, otherwise set instruction
3879   // to movn.
3880
3881   static inline void
3882   update_movnz(unsigned char* view,
3883                AArch64_valtype immed,
3884                bool is_movz)
3885   {
3886     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3887     Valtype* wv = reinterpret_cast<Valtype*>(view);
3888     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3889
3890     const elfcpp::Elf_Xword doffset =
3891         aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
3892     const elfcpp::Elf_Xword dst_mask =
3893         aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
3894
3895     // Clear immediate fields and opc code.
3896     val &= ~(dst_mask | (0x3 << 29));
3897
3898     // Set instruction to movz or movn.
3899     // movz: [30:29] is 10   movn: [30:29] is 00
3900     if (is_movz)
3901       val |= (0x2 << 29);
3902
3903     elfcpp::Swap<32, big_endian>::writeval(wv,
3904       static_cast<Valtype>(val | (immed << doffset)));
3905   }
3906
3907   // Update selected bits in text.
3908
3909   template<int valsize>
3910   static inline typename This::Status
3911   reloc_common(unsigned char* view, Address x,
3912                 const AArch64_reloc_property* reloc_property)
3913   {
3914     // Select bits from X.
3915     Address immed = reloc_property->select_x_value(x);
3916
3917     // Update view.
3918     const AArch64_reloc_property::Reloc_inst inst =
3919       reloc_property->reloc_inst();
3920     // If it is a data relocation or instruction has 2 parts of immediate
3921     // fields, you should not call pcrela_general.
3922     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
3923                 aarch64_howto[inst].doffset != -1);
3924     This::template update_view<valsize>(view, immed,
3925                                         aarch64_howto[inst].doffset,
3926                                         aarch64_howto[inst].dst_mask);
3927
3928     // Do check overflow or alignment if needed.
3929     return (reloc_property->checkup_x_value(x)
3930             ? This::STATUS_OKAY
3931             : This::STATUS_OVERFLOW);
3932   }
3933
3934  public:
3935
3936   // Do a simple rela relocation at unaligned addresses.
3937
3938   template<int valsize>
3939   static inline typename This::Status
3940   rela_ua(unsigned char* view,
3941           const Sized_relobj_file<size, big_endian>* object,
3942           const Symbol_value<size>* psymval,
3943           AArch64_valtype addend,
3944           const AArch64_reloc_property* reloc_property)
3945   {
3946     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
3947       Valtype;
3948     typename elfcpp::Elf_types<size>::Elf_Addr x =
3949         psymval->value(object, addend);
3950     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
3951       static_cast<Valtype>(x));
3952     return (reloc_property->checkup_x_value(x)
3953             ? This::STATUS_OKAY
3954             : This::STATUS_OVERFLOW);
3955   }
3956
3957   // Do a simple pc-relative relocation at unaligned addresses.
3958
3959   template<int valsize>
3960   static inline typename This::Status
3961   pcrela_ua(unsigned char* view,
3962             const Sized_relobj_file<size, big_endian>* object,
3963             const Symbol_value<size>* psymval,
3964             AArch64_valtype addend,
3965             Address address,
3966             const AArch64_reloc_property* reloc_property)
3967   {
3968     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
3969       Valtype;
3970     Address x = psymval->value(object, addend) - address;
3971     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
3972       static_cast<Valtype>(x));
3973     return (reloc_property->checkup_x_value(x)
3974             ? This::STATUS_OKAY
3975             : This::STATUS_OVERFLOW);
3976   }
3977
3978   // Do a simple rela relocation at aligned addresses.
3979
3980   template<int valsize>
3981   static inline typename This::Status
3982   rela(
3983     unsigned char* view,
3984     const Sized_relobj_file<size, big_endian>* object,
3985     const Symbol_value<size>* psymval,
3986     AArch64_valtype addend,
3987     const AArch64_reloc_property* reloc_property)
3988   {
3989     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
3990     Valtype* wv = reinterpret_cast<Valtype*>(view);
3991     Address x = psymval->value(object, addend);
3992     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
3993     return (reloc_property->checkup_x_value(x)
3994             ? This::STATUS_OKAY
3995             : This::STATUS_OVERFLOW);
3996   }
3997
3998   // Do relocate. Update selected bits in text.
3999   // new_val = (val & ~dst_mask) | (immed << doffset)
4000
4001   template<int valsize>
4002   static inline typename This::Status
4003   rela_general(unsigned char* view,
4004                const Sized_relobj_file<size, big_endian>* object,
4005                const Symbol_value<size>* psymval,
4006                AArch64_valtype addend,
4007                const AArch64_reloc_property* reloc_property)
4008   {
4009     // Calculate relocation.
4010     Address x = psymval->value(object, addend);
4011     return This::template reloc_common<valsize>(view, x, reloc_property);
4012   }
4013
4014   // Do relocate. Update selected bits in text.
4015   // new val = (val & ~dst_mask) | (immed << doffset)
4016
4017   template<int valsize>
4018   static inline typename This::Status
4019   rela_general(
4020     unsigned char* view,
4021     AArch64_valtype s,
4022     AArch64_valtype addend,
4023     const AArch64_reloc_property* reloc_property)
4024   {
4025     // Calculate relocation.
4026     Address x = s + addend;
4027     return This::template reloc_common<valsize>(view, x, reloc_property);
4028   }
4029
4030   // Do address relative relocate. Update selected bits in text.
4031   // new val = (val & ~dst_mask) | (immed << doffset)
4032
4033   template<int valsize>
4034   static inline typename This::Status
4035   pcrela_general(
4036     unsigned char* view,
4037     const Sized_relobj_file<size, big_endian>* object,
4038     const Symbol_value<size>* psymval,
4039     AArch64_valtype addend,
4040     Address address,
4041     const AArch64_reloc_property* reloc_property)
4042   {
4043     // Calculate relocation.
4044     Address x = psymval->value(object, addend) - address;
4045     return This::template reloc_common<valsize>(view, x, reloc_property);
4046   }
4047
4048
4049   // Calculate (S + A) - address, update adr instruction.
4050
4051   static inline typename This::Status
4052   adr(unsigned char* view,
4053       const Sized_relobj_file<size, big_endian>* object,
4054       const Symbol_value<size>* psymval,
4055       Address addend,
4056       Address address,
4057       const AArch64_reloc_property* /* reloc_property */)
4058   {
4059     AArch64_valtype x = psymval->value(object, addend) - address;
4060     // Pick bits [20:0] of X.
4061     AArch64_valtype immed = x & 0x1fffff;
4062     update_adr(view, immed);
4063     // Check -2^20 <= X < 2^20
4064     return (size == 64 && Bits<21>::has_overflow((x))
4065             ? This::STATUS_OVERFLOW
4066             : This::STATUS_OKAY);
4067   }
4068
4069   // Calculate PG(S+A) - PG(address), update adrp instruction.
4070   // R_AARCH64_ADR_PREL_PG_HI21
4071
4072   static inline typename This::Status
4073   adrp(
4074     unsigned char* view,
4075     Address sa,
4076     Address address)
4077   {
4078     AArch64_valtype x = This::Page(sa) - This::Page(address);
4079     // Pick [32:12] of X.
4080     AArch64_valtype immed = (x >> 12) & 0x1fffff;
4081     update_adr(view, immed);
4082     // Check -2^32 <= X < 2^32
4083     return (size == 64 && Bits<33>::has_overflow((x))
4084             ? This::STATUS_OVERFLOW
4085             : This::STATUS_OKAY);
4086   }
4087
4088   // Calculate PG(S+A) - PG(address), update adrp instruction.
4089   // R_AARCH64_ADR_PREL_PG_HI21
4090
4091   static inline typename This::Status
4092   adrp(unsigned char* view,
4093        const Sized_relobj_file<size, big_endian>* object,
4094        const Symbol_value<size>* psymval,
4095        Address addend,
4096        Address address,
4097        const AArch64_reloc_property* reloc_property)
4098   {
4099     Address sa = psymval->value(object, addend);
4100     AArch64_valtype x = This::Page(sa) - This::Page(address);
4101     // Pick [32:12] of X.
4102     AArch64_valtype immed = (x >> 12) & 0x1fffff;
4103     update_adr(view, immed);
4104     return (reloc_property->checkup_x_value(x)
4105             ? This::STATUS_OKAY
4106             : This::STATUS_OVERFLOW);
4107   }
4108
4109   // Update mov[n/z] instruction. Check overflow if needed.
4110   // If X >=0, set the instruction to movz and its immediate value to the
4111   // selected bits S.
4112   // If X < 0, set the instruction to movn and its immediate value to
4113   // NOT (selected bits of).
4114
4115   static inline typename This::Status
4116   movnz(unsigned char* view,
4117         AArch64_valtype x,
4118         const AArch64_reloc_property* reloc_property)
4119   {
4120     // Select bits from X.
4121     Address immed;
4122     bool is_movz;
4123     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
4124     if (static_cast<SignedW>(x) >= 0)
4125       {
4126         immed = reloc_property->select_x_value(x);
4127         is_movz = true;
4128       }
4129     else
4130       {
4131         immed = reloc_property->select_x_value(~x);;
4132         is_movz = false;
4133       }
4134
4135     // Update movnz instruction.
4136     update_movnz(view, immed, is_movz);
4137
4138     // Do check overflow or alignment if needed.
4139     return (reloc_property->checkup_x_value(x)
4140             ? This::STATUS_OKAY
4141             : This::STATUS_OVERFLOW);
4142   }
4143
4144   static inline bool
4145   maybe_apply_stub(unsigned int,
4146                    const The_relocate_info*,
4147                    const The_rela&,
4148                    unsigned char*,
4149                    Address,
4150                    const Sized_symbol<size>*,
4151                    const Symbol_value<size>*,
4152                    const Sized_relobj_file<size, big_endian>*,
4153                    section_size_type);
4154
4155 };  // End of AArch64_relocate_functions
4156
4157
4158 // For a certain relocation type (usually jump/branch), test to see if the
4159 // destination needs a stub to fulfil. If so, re-route the destination of the
4160 // original instruction to the stub, note, at this time, the stub has already
4161 // been generated.
4162
4163 template<int size, bool big_endian>
4164 bool
4165 AArch64_relocate_functions<size, big_endian>::
4166 maybe_apply_stub(unsigned int r_type,
4167                  const The_relocate_info* relinfo,
4168                  const The_rela& rela,
4169                  unsigned char* view,
4170                  Address address,
4171                  const Sized_symbol<size>* gsym,
4172                  const Symbol_value<size>* psymval,
4173                  const Sized_relobj_file<size, big_endian>* object,
4174                  section_size_type current_group_size)
4175 {
4176   if (parameters->options().relocatable())
4177     return false;
4178
4179   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
4180   Address branch_target = psymval->value(object, 0) + addend;
4181   The_reloc_stub_type stub_type = The_reloc_stub::
4182     stub_type_for_reloc(r_type, address, branch_target);
4183   if (stub_type == The_reloc_stub::ST_NONE)
4184     return false;
4185
4186   const The_aarch64_relobj* aarch64_relobj =
4187       static_cast<const The_aarch64_relobj*>(object);
4188   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
4189   gold_assert(stub_table != NULL);
4190
4191   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4192   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4193   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4194   gold_assert(stub != NULL);
4195
4196   Address new_branch_target = stub_table->address() + stub->offset();
4197   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
4198       new_branch_target - address;
4199   const AArch64_reloc_property* arp =
4200       aarch64_reloc_property_table->get_reloc_property(r_type);
4201   gold_assert(arp != NULL);
4202   typename This::Status status = This::template
4203       rela_general<32>(view, branch_offset, 0, arp);
4204   if (status != This::STATUS_OKAY)
4205     gold_error(_("Stub is too far away, try a smaller value "
4206                  "for '--stub-group-size'. The current value is 0x%lx."),
4207                static_cast<unsigned long>(current_group_size));
4208   return true;
4209 }
4210
4211
4212 // Group input sections for stub generation.
4213 //
4214 // We group input sections in an output section so that the total size,
4215 // including any padding space due to alignment is smaller than GROUP_SIZE
4216 // unless the only input section in group is bigger than GROUP_SIZE already.
4217 // Then an ARM stub table is created to follow the last input section
4218 // in group.  For each group an ARM stub table is created an is placed
4219 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
4220 // extend the group after the stub table.
4221
4222 template<int size, bool big_endian>
4223 void
4224 Target_aarch64<size, big_endian>::group_sections(
4225     Layout* layout,
4226     section_size_type group_size,
4227     bool stubs_always_after_branch,
4228     const Task* task)
4229 {
4230   // Group input sections and insert stub table
4231   Layout::Section_list section_list;
4232   layout->get_executable_sections(&section_list);
4233   for (Layout::Section_list::const_iterator p = section_list.begin();
4234        p != section_list.end();
4235        ++p)
4236     {
4237       AArch64_output_section<size, big_endian>* output_section =
4238           static_cast<AArch64_output_section<size, big_endian>*>(*p);
4239       output_section->group_sections(group_size, stubs_always_after_branch,
4240                                      this, task);
4241     }
4242 }
4243
4244
4245 // Find the AArch64_input_section object corresponding to the SHNDX-th input
4246 // section of RELOBJ.
4247
4248 template<int size, bool big_endian>
4249 AArch64_input_section<size, big_endian>*
4250 Target_aarch64<size, big_endian>::find_aarch64_input_section(
4251     Relobj* relobj, unsigned int shndx) const
4252 {
4253   Section_id sid(relobj, shndx);
4254   typename AArch64_input_section_map::const_iterator p =
4255     this->aarch64_input_section_map_.find(sid);
4256   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
4257 }
4258
4259
4260 // Make a new AArch64_input_section object.
4261
4262 template<int size, bool big_endian>
4263 AArch64_input_section<size, big_endian>*
4264 Target_aarch64<size, big_endian>::new_aarch64_input_section(
4265     Relobj* relobj, unsigned int shndx)
4266 {
4267   Section_id sid(relobj, shndx);
4268
4269   AArch64_input_section<size, big_endian>* input_section =
4270       new AArch64_input_section<size, big_endian>(relobj, shndx);
4271   input_section->init();
4272
4273   // Register new AArch64_input_section in map for look-up.
4274   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
4275       this->aarch64_input_section_map_.insert(
4276           std::make_pair(sid, input_section));
4277
4278   // Make sure that it we have not created another AArch64_input_section
4279   // for this input section already.
4280   gold_assert(ins.second);
4281
4282   return input_section;
4283 }
4284
4285
4286 // Relaxation hook.  This is where we do stub generation.
4287
4288 template<int size, bool big_endian>
4289 bool
4290 Target_aarch64<size, big_endian>::do_relax(
4291     int pass,
4292     const Input_objects* input_objects,
4293     Symbol_table* symtab,
4294     Layout* layout ,
4295     const Task* task)
4296 {
4297   gold_assert(!parameters->options().relocatable());
4298   if (pass == 1)
4299     {
4300       // We don't handle negative stub_group_size right now.
4301       this->stub_group_size_ = abs(parameters->options().stub_group_size());
4302       if (this->stub_group_size_ == 1)
4303         {
4304           // Leave room for 4096 4-byte stub entries. If we exceed that, then we
4305           // will fail to link.  The user will have to relink with an explicit
4306           // group size option.
4307           this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
4308                                    4096 * 4;
4309         }
4310       group_sections(layout, this->stub_group_size_, true, task);
4311     }
4312   else
4313     {
4314       // If this is not the first pass, addresses and file offsets have
4315       // been reset at this point, set them here.
4316       for (Stub_table_iterator sp = this->stub_tables_.begin();
4317            sp != this->stub_tables_.end(); ++sp)
4318         {
4319           The_stub_table* stt = *sp;
4320           The_aarch64_input_section* owner = stt->owner();
4321           off_t off = align_address(owner->original_size(),
4322                                     stt->addralign());
4323           stt->set_address_and_file_offset(owner->address() + off,
4324                                            owner->offset() + off);
4325         }
4326     }
4327
4328   // Scan relocs for relocation stubs
4329   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
4330        op != input_objects->relobj_end();
4331        ++op)
4332     {
4333       The_aarch64_relobj* aarch64_relobj =
4334           static_cast<The_aarch64_relobj*>(*op);
4335       // Lock the object so we can read from it.  This is only called
4336       // single-threaded from Layout::finalize, so it is OK to lock.
4337       Task_lock_obj<Object> tl(task, aarch64_relobj);
4338       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
4339     }
4340
4341   bool any_stub_table_changed = false;
4342   for (Stub_table_iterator siter = this->stub_tables_.begin();
4343        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
4344     {
4345       The_stub_table* stub_table = *siter;
4346       if (stub_table->update_data_size_changed_p())
4347         {
4348           The_aarch64_input_section* owner = stub_table->owner();
4349           uint64_t address = owner->address();
4350           off_t offset = owner->offset();
4351           owner->reset_address_and_file_offset();
4352           owner->set_address_and_file_offset(address, offset);
4353
4354           any_stub_table_changed = true;
4355         }
4356     }
4357
4358   // Do not continue relaxation.
4359   bool continue_relaxation = any_stub_table_changed;
4360   if (!continue_relaxation)
4361     for (Stub_table_iterator sp = this->stub_tables_.begin();
4362          (sp != this->stub_tables_.end());
4363          ++sp)
4364       (*sp)->finalize_stubs();
4365
4366   return continue_relaxation;
4367 }
4368
4369
4370 // Make a new Stub_table.
4371
4372 template<int size, bool big_endian>
4373 Stub_table<size, big_endian>*
4374 Target_aarch64<size, big_endian>::new_stub_table(
4375     AArch64_input_section<size, big_endian>* owner)
4376 {
4377   Stub_table<size, big_endian>* stub_table =
4378       new Stub_table<size, big_endian>(owner);
4379   stub_table->set_address(align_address(
4380       owner->address() + owner->data_size(), 8));
4381   stub_table->set_file_offset(owner->offset() + owner->data_size());
4382   stub_table->finalize_data_size();
4383
4384   this->stub_tables_.push_back(stub_table);
4385
4386   return stub_table;
4387 }
4388
4389
4390 template<int size, bool big_endian>
4391 uint64_t
4392 Target_aarch64<size, big_endian>::do_reloc_addend(
4393     void* arg, unsigned int r_type, uint64_t) const
4394 {
4395   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
4396   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4397   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4398   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4399   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4400   gold_assert(psymval->is_tls_symbol());
4401   // The value of a TLS symbol is the offset in the TLS segment.
4402   return psymval->value(ti.object, 0);
4403 }
4404
4405 // Return the number of entries in the PLT.
4406
4407 template<int size, bool big_endian>
4408 unsigned int
4409 Target_aarch64<size, big_endian>::plt_entry_count() const
4410 {
4411   if (this->plt_ == NULL)
4412     return 0;
4413   return this->plt_->entry_count();
4414 }
4415
4416 // Return the offset of the first non-reserved PLT entry.
4417
4418 template<int size, bool big_endian>
4419 unsigned int
4420 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
4421 {
4422   return this->plt_->first_plt_entry_offset();
4423 }
4424
4425 // Return the size of each PLT entry.
4426
4427 template<int size, bool big_endian>
4428 unsigned int
4429 Target_aarch64<size, big_endian>::plt_entry_size() const
4430 {
4431   return this->plt_->get_plt_entry_size();
4432 }
4433
4434 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
4435
4436 template<int size, bool big_endian>
4437 void
4438 Target_aarch64<size, big_endian>::define_tls_base_symbol(
4439     Symbol_table* symtab, Layout* layout)
4440 {
4441   if (this->tls_base_symbol_defined_)
4442     return;
4443
4444   Output_segment* tls_segment = layout->tls_segment();
4445   if (tls_segment != NULL)
4446     {
4447       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
4448       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
4449                                        Symbol_table::PREDEFINED,
4450                                        tls_segment, 0, 0,
4451                                        elfcpp::STT_TLS,
4452                                        elfcpp::STB_LOCAL,
4453                                        elfcpp::STV_HIDDEN, 0,
4454                                        Symbol::SEGMENT_START,
4455                                        true);
4456     }
4457   this->tls_base_symbol_defined_ = true;
4458 }
4459
4460 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
4461
4462 template<int size, bool big_endian>
4463 void
4464 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
4465     Symbol_table* symtab, Layout* layout)
4466 {
4467   if (this->plt_ == NULL)
4468     this->make_plt_section(symtab, layout);
4469
4470   if (!this->plt_->has_tlsdesc_entry())
4471     {
4472       // Allocate the TLSDESC_GOT entry.
4473       Output_data_got_aarch64<size, big_endian>* got =
4474           this->got_section(symtab, layout);
4475       unsigned int got_offset = got->add_constant(0);
4476
4477       // Allocate the TLSDESC_PLT entry.
4478       this->plt_->reserve_tlsdesc_entry(got_offset);
4479     }
4480 }
4481
4482 // Create a GOT entry for the TLS module index.
4483
4484 template<int size, bool big_endian>
4485 unsigned int
4486 Target_aarch64<size, big_endian>::got_mod_index_entry(
4487     Symbol_table* symtab, Layout* layout,
4488     Sized_relobj_file<size, big_endian>* object)
4489 {
4490   if (this->got_mod_index_offset_ == -1U)
4491     {
4492       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4493       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4494       Output_data_got_aarch64<size, big_endian>* got =
4495           this->got_section(symtab, layout);
4496       unsigned int got_offset = got->add_constant(0);
4497       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
4498                           got_offset, 0);
4499       got->add_constant(0);
4500       this->got_mod_index_offset_ = got_offset;
4501     }
4502   return this->got_mod_index_offset_;
4503 }
4504
4505 // Optimize the TLS relocation type based on what we know about the
4506 // symbol.  IS_FINAL is true if the final address of this symbol is
4507 // known at link time.
4508
4509 template<int size, bool big_endian>
4510 tls::Tls_optimization
4511 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
4512                                                      int r_type)
4513 {
4514   // If we are generating a shared library, then we can't do anything
4515   // in the linker
4516   if (parameters->options().shared())
4517     return tls::TLSOPT_NONE;
4518
4519   switch (r_type)
4520     {
4521     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
4522     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
4523     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
4524     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
4525     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
4526     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
4527     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
4528     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
4529     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
4530     case elfcpp::R_AARCH64_TLSDESC_LDR:
4531     case elfcpp::R_AARCH64_TLSDESC_ADD:
4532     case elfcpp::R_AARCH64_TLSDESC_CALL:
4533       // These are General-Dynamic which permits fully general TLS
4534       // access.  Since we know that we are generating an executable,
4535       // we can convert this to Initial-Exec.  If we also know that
4536       // this is a local symbol, we can further switch to Local-Exec.
4537       if (is_final)
4538         return tls::TLSOPT_TO_LE;
4539       return tls::TLSOPT_TO_IE;
4540
4541     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
4542     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
4543     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
4544     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
4545     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
4546     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
4547       // These are Local-Dynamic, which refer to local symbols in the
4548       // dynamic TLS block. Since we know that we generating an
4549       // executable, we can switch to Local-Exec.
4550       return tls::TLSOPT_TO_LE;
4551
4552     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4553     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4554     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4555     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4556     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4557       // These are Initial-Exec relocs which get the thread offset
4558       // from the GOT. If we know that we are linking against the
4559       // local symbol, we can switch to Local-Exec, which links the
4560       // thread offset into the instruction.
4561       if (is_final)
4562         return tls::TLSOPT_TO_LE;
4563       return tls::TLSOPT_NONE;
4564
4565     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
4566     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
4567     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4568     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
4569     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4570     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
4571     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
4572     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4573       // When we already have Local-Exec, there is nothing further we
4574       // can do.
4575       return tls::TLSOPT_NONE;
4576
4577     default:
4578       gold_unreachable();
4579     }
4580 }
4581
4582 // Returns true if this relocation type could be that of a function pointer.
4583
4584 template<int size, bool big_endian>
4585 inline bool
4586 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
4587   unsigned int r_type)
4588 {
4589   switch (r_type)
4590     {
4591     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
4592     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
4593     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
4594     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
4595     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
4596       {
4597         return true;
4598       }
4599     }
4600   return false;
4601 }
4602
4603 // For safe ICF, scan a relocation for a local symbol to check if it
4604 // corresponds to a function pointer being taken.  In that case mark
4605 // the function whose pointer was taken as not foldable.
4606
4607 template<int size, bool big_endian>
4608 inline bool
4609 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
4610   Symbol_table* ,
4611   Layout* ,
4612   Target_aarch64<size, big_endian>* ,
4613   Sized_relobj_file<size, big_endian>* ,
4614   unsigned int ,
4615   Output_section* ,
4616   const elfcpp::Rela<size, big_endian>& ,
4617   unsigned int r_type,
4618   const elfcpp::Sym<size, big_endian>&)
4619 {
4620   // When building a shared library, do not fold any local symbols.
4621   return (parameters->options().shared()
4622           || possible_function_pointer_reloc(r_type));
4623 }
4624
4625 // For safe ICF, scan a relocation for a global symbol to check if it
4626 // corresponds to a function pointer being taken.  In that case mark
4627 // the function whose pointer was taken as not foldable.
4628
4629 template<int size, bool big_endian>
4630 inline bool
4631 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
4632   Symbol_table* ,
4633   Layout* ,
4634   Target_aarch64<size, big_endian>* ,
4635   Sized_relobj_file<size, big_endian>* ,
4636   unsigned int ,
4637   Output_section* ,
4638   const elfcpp::Rela<size, big_endian>& ,
4639   unsigned int r_type,
4640   Symbol* gsym)
4641 {
4642   // When building a shared library, do not fold symbols whose visibility
4643   // is hidden, internal or protected.
4644   return ((parameters->options().shared()
4645            && (gsym->visibility() == elfcpp::STV_INTERNAL
4646                || gsym->visibility() == elfcpp::STV_PROTECTED
4647                || gsym->visibility() == elfcpp::STV_HIDDEN))
4648           || possible_function_pointer_reloc(r_type));
4649 }
4650
4651 // Report an unsupported relocation against a local symbol.
4652
4653 template<int size, bool big_endian>
4654 void
4655 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
4656      Sized_relobj_file<size, big_endian>* object,
4657      unsigned int r_type)
4658 {
4659   gold_error(_("%s: unsupported reloc %u against local symbol"),
4660              object->name().c_str(), r_type);
4661 }
4662
4663 // We are about to emit a dynamic relocation of type R_TYPE.  If the
4664 // dynamic linker does not support it, issue an error.
4665
4666 template<int size, bool big_endian>
4667 void
4668 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
4669                                                       unsigned int r_type)
4670 {
4671   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
4672
4673   switch (r_type)
4674     {
4675     // These are the relocation types supported by glibc for AARCH64.
4676     case elfcpp::R_AARCH64_NONE:
4677     case elfcpp::R_AARCH64_COPY:
4678     case elfcpp::R_AARCH64_GLOB_DAT:
4679     case elfcpp::R_AARCH64_JUMP_SLOT:
4680     case elfcpp::R_AARCH64_RELATIVE:
4681     case elfcpp::R_AARCH64_TLS_DTPREL64:
4682     case elfcpp::R_AARCH64_TLS_DTPMOD64:
4683     case elfcpp::R_AARCH64_TLS_TPREL64:
4684     case elfcpp::R_AARCH64_TLSDESC:
4685     case elfcpp::R_AARCH64_IRELATIVE:
4686     case elfcpp::R_AARCH64_ABS32:
4687     case elfcpp::R_AARCH64_ABS64:
4688       return;
4689
4690     default:
4691       break;
4692     }
4693
4694   // This prevents us from issuing more than one error per reloc
4695   // section. But we can still wind up issuing more than one
4696   // error per object file.
4697   if (this->issued_non_pic_error_)
4698     return;
4699   gold_assert(parameters->options().output_is_position_independent());
4700   object->error(_("requires unsupported dynamic reloc; "
4701                   "recompile with -fPIC"));
4702   this->issued_non_pic_error_ = true;
4703   return;
4704 }
4705
4706 // Return whether we need to make a PLT entry for a relocation of the
4707 // given type against a STT_GNU_IFUNC symbol.
4708
4709 template<int size, bool big_endian>
4710 bool
4711 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4712     Sized_relobj_file<size, big_endian>* object,
4713     unsigned int r_type)
4714 {
4715   const AArch64_reloc_property* arp =
4716       aarch64_reloc_property_table->get_reloc_property(r_type);
4717   gold_assert(arp != NULL);
4718
4719   int flags = arp->reference_flags();
4720   if (flags & Symbol::TLS_REF)
4721     {
4722       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
4723                  object->name().c_str(), arp->name().c_str());
4724       return false;
4725     }
4726   return flags != 0;
4727 }
4728
4729 // Scan a relocation for a local symbol.
4730
4731 template<int size, bool big_endian>
4732 inline void
4733 Target_aarch64<size, big_endian>::Scan::local(
4734     Symbol_table* symtab,
4735     Layout* layout,
4736     Target_aarch64<size, big_endian>* target,
4737     Sized_relobj_file<size, big_endian>* object,
4738     unsigned int data_shndx,
4739     Output_section* output_section,
4740     const elfcpp::Rela<size, big_endian>& rela,
4741     unsigned int r_type,
4742     const elfcpp::Sym<size, big_endian>& lsym,
4743     bool is_discarded)
4744 {
4745   if (is_discarded)
4746     return;
4747
4748   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4749       Reloc_section;
4750   Output_data_got_aarch64<size, big_endian>* got =
4751       target->got_section(symtab, layout);
4752   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4753
4754   // A local STT_GNU_IFUNC symbol may require a PLT entry.
4755   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4756   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
4757     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4758
4759   switch (r_type)
4760     {
4761     case elfcpp::R_AARCH64_ABS32:
4762     case elfcpp::R_AARCH64_ABS16:
4763       if (parameters->options().output_is_position_independent())
4764         {
4765           gold_error(_("%s: unsupported reloc %u in pos independent link."),
4766                      object->name().c_str(), r_type);
4767         }
4768       break;
4769
4770     case elfcpp::R_AARCH64_ABS64:
4771       // If building a shared library or pie, we need to mark this as a dynmic
4772       // reloction, so that the dynamic loader can relocate it.
4773       if (parameters->options().output_is_position_independent())
4774         {
4775           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4776           rela_dyn->add_local_relative(object, r_sym,
4777                                        elfcpp::R_AARCH64_RELATIVE,
4778                                        output_section,
4779                                        data_shndx,
4780                                        rela.get_r_offset(),
4781                                        rela.get_r_addend(),
4782                                        is_ifunc);
4783         }
4784       break;
4785
4786     case elfcpp::R_AARCH64_PREL64:
4787     case elfcpp::R_AARCH64_PREL32:
4788     case elfcpp::R_AARCH64_PREL16:
4789       break;
4790
4791     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
4792     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
4793     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
4794     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
4795     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
4796     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
4797     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
4798     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
4799     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
4800     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
4801        break;
4802
4803     // Control flow, pc-relative. We don't need to do anything for a relative
4804     // addressing relocation against a local symbol if it does not reference
4805     // the GOT.
4806     case elfcpp::R_AARCH64_TSTBR14:
4807     case elfcpp::R_AARCH64_CONDBR19:
4808     case elfcpp::R_AARCH64_JUMP26:
4809     case elfcpp::R_AARCH64_CALL26:
4810       break;
4811
4812     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4813     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4814       {
4815         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4816           optimize_tls_reloc(!parameters->options().shared(), r_type);
4817         if (tlsopt == tls::TLSOPT_TO_LE)
4818           break;
4819
4820         layout->set_has_static_tls();
4821         // Create a GOT entry for the tp-relative offset.
4822         if (!parameters->doing_static_link())
4823           {
4824             got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
4825                                     target->rela_dyn_section(layout),
4826                                     elfcpp::R_AARCH64_TLS_TPREL64);
4827           }
4828         else if (!object->local_has_got_offset(r_sym,
4829                                                GOT_TYPE_TLS_OFFSET))
4830           {
4831             got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
4832             unsigned int got_offset =
4833                 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
4834             const elfcpp::Elf_Xword addend = rela.get_r_addend();
4835             gold_assert(addend == 0);
4836             got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
4837                                   object, r_sym);
4838           }
4839       }
4840       break;
4841
4842     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
4843     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
4844       {
4845         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4846             optimize_tls_reloc(!parameters->options().shared(), r_type);
4847         if (tlsopt == tls::TLSOPT_TO_LE)
4848           {
4849             layout->set_has_static_tls();
4850             break;
4851           }
4852         gold_assert(tlsopt == tls::TLSOPT_NONE);
4853
4854         got->add_local_pair_with_rel(object,r_sym, data_shndx,
4855                                      GOT_TYPE_TLS_PAIR,
4856                                      target->rela_dyn_section(layout),
4857                                      elfcpp::R_AARCH64_TLS_DTPMOD64);
4858       }
4859       break;
4860
4861     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
4862     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
4863     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4864     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
4865     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4866     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
4867     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
4868     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4869       {
4870         layout->set_has_static_tls();
4871         bool output_is_shared = parameters->options().shared();
4872         if (output_is_shared)
4873           gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
4874                      object->name().c_str(), r_type);
4875       }
4876       break;
4877
4878     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
4879     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
4880       {
4881         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4882             optimize_tls_reloc(!parameters->options().shared(), r_type);
4883         if (tlsopt == tls::TLSOPT_NONE)
4884           {
4885             // Create a GOT entry for the module index.
4886             target->got_mod_index_entry(symtab, layout, object);
4887           }
4888         else if (tlsopt != tls::TLSOPT_TO_LE)
4889           unsupported_reloc_local(object, r_type);
4890       }
4891       break;
4892
4893     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
4894     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
4895     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
4896     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
4897       break;
4898
4899     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
4900     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
4901     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
4902       {
4903         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4904             optimize_tls_reloc(!parameters->options().shared(), r_type);
4905         target->define_tls_base_symbol(symtab, layout);
4906         if (tlsopt == tls::TLSOPT_NONE)
4907           {
4908             // Create reserved PLT and GOT entries for the resolver.
4909             target->reserve_tlsdesc_entries(symtab, layout);
4910
4911             // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
4912             // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
4913             // entry needs to be in an area in .got.plt, not .got. Call
4914             // got_section to make sure the section has been created.
4915             target->got_section(symtab, layout);
4916             Output_data_got<size, big_endian>* got =
4917                 target->got_tlsdesc_section();
4918             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4919             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
4920               {
4921                 unsigned int got_offset = got->add_constant(0);
4922                 got->add_constant(0);
4923                 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
4924                                              got_offset);
4925                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
4926                 // We store the arguments we need in a vector, and use
4927                 // the index into the vector as the parameter to pass
4928                 // to the target specific routines.
4929                 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
4930                 void* arg = reinterpret_cast<void*>(intarg);
4931                 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
4932                                         got, got_offset, 0);
4933               }
4934           }
4935         else if (tlsopt != tls::TLSOPT_TO_LE)
4936           unsupported_reloc_local(object, r_type);
4937       }
4938       break;
4939
4940     case elfcpp::R_AARCH64_TLSDESC_CALL:
4941       break;
4942
4943     default:
4944       unsupported_reloc_local(object, r_type);
4945     }
4946 }
4947
4948
4949 // Report an unsupported relocation against a global symbol.
4950
4951 template<int size, bool big_endian>
4952 void
4953 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
4954     Sized_relobj_file<size, big_endian>* object,
4955     unsigned int r_type,
4956     Symbol* gsym)
4957 {
4958   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4959              object->name().c_str(), r_type, gsym->demangled_name().c_str());
4960 }
4961
4962 template<int size, bool big_endian>
4963 inline void
4964 Target_aarch64<size, big_endian>::Scan::global(
4965     Symbol_table* symtab,
4966     Layout* layout,
4967     Target_aarch64<size, big_endian>* target,
4968     Sized_relobj_file<size, big_endian> * object,
4969     unsigned int data_shndx,
4970     Output_section* output_section,
4971     const elfcpp::Rela<size, big_endian>& rela,
4972     unsigned int r_type,
4973     Symbol* gsym)
4974 {
4975   // A STT_GNU_IFUNC symbol may require a PLT entry.
4976   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4977       && this->reloc_needs_plt_for_ifunc(object, r_type))
4978     target->make_plt_entry(symtab, layout, gsym);
4979
4980   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4981     Reloc_section;
4982   const AArch64_reloc_property* arp =
4983       aarch64_reloc_property_table->get_reloc_property(r_type);
4984   gold_assert(arp != NULL);
4985
4986   switch (r_type)
4987     {
4988     case elfcpp::R_AARCH64_ABS16:
4989     case elfcpp::R_AARCH64_ABS32:
4990     case elfcpp::R_AARCH64_ABS64:
4991       {
4992         // Make a PLT entry if necessary.
4993         if (gsym->needs_plt_entry())
4994           {
4995             target->make_plt_entry(symtab, layout, gsym);
4996             // Since this is not a PC-relative relocation, we may be
4997             // taking the address of a function. In that case we need to
4998             // set the entry in the dynamic symbol table to the address of
4999             // the PLT entry.
5000             if (gsym->is_from_dynobj() && !parameters->options().shared())
5001               gsym->set_needs_dynsym_value();
5002           }
5003         // Make a dynamic relocation if necessary.
5004         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
5005           {
5006             if (!parameters->options().output_is_position_independent()
5007                 && gsym->may_need_copy_reloc())
5008               {
5009                 target->copy_reloc(symtab, layout, object,
5010                                    data_shndx, output_section, gsym, rela);
5011               }
5012             else if (r_type == elfcpp::R_AARCH64_ABS64
5013                      && gsym->type() == elfcpp::STT_GNU_IFUNC
5014                      && gsym->can_use_relative_reloc(false)
5015                      && !gsym->is_from_dynobj()
5016                      && !gsym->is_undefined()
5017                      && !gsym->is_preemptible())
5018               {
5019                 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
5020                 // symbol. This makes a function address in a PIE executable
5021                 // match the address in a shared library that it links against.
5022                 Reloc_section* rela_dyn =
5023                     target->rela_irelative_section(layout);
5024                 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
5025                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
5026                                                        output_section, object,
5027                                                        data_shndx,
5028                                                        rela.get_r_offset(),
5029                                                        rela.get_r_addend());
5030               }
5031             else if (r_type == elfcpp::R_AARCH64_ABS64
5032                      && gsym->can_use_relative_reloc(false))
5033               {
5034                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5035                 rela_dyn->add_global_relative(gsym,
5036                                               elfcpp::R_AARCH64_RELATIVE,
5037                                               output_section,
5038                                               object,
5039                                               data_shndx,
5040                                               rela.get_r_offset(),
5041                                               rela.get_r_addend(),
5042                                               false);
5043               }
5044             else
5045               {
5046                 check_non_pic(object, r_type);
5047                 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
5048                     rela_dyn = target->rela_dyn_section(layout);
5049                 rela_dyn->add_global(
5050                   gsym, r_type, output_section, object,
5051                   data_shndx, rela.get_r_offset(),rela.get_r_addend());
5052               }
5053           }
5054       }
5055       break;
5056
5057     case elfcpp::R_AARCH64_PREL16:
5058     case elfcpp::R_AARCH64_PREL32:
5059     case elfcpp::R_AARCH64_PREL64:
5060       // This is used to fill the GOT absolute address.
5061       if (gsym->needs_plt_entry())
5062         {
5063           target->make_plt_entry(symtab, layout, gsym);
5064         }
5065       break;
5066
5067     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
5068     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
5069     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
5070     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
5071     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
5072     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
5073     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
5074     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
5075     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
5076     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
5077       {
5078         if (gsym->needs_plt_entry())
5079           target->make_plt_entry(symtab, layout, gsym);
5080         // Make a dynamic relocation if necessary.
5081         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
5082           {
5083             if (parameters->options().output_is_executable()
5084                 && gsym->may_need_copy_reloc())
5085               {
5086                 target->copy_reloc(symtab, layout, object,
5087                                    data_shndx, output_section, gsym, rela);
5088               }
5089           }
5090         break;
5091       }
5092
5093     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5094     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5095       {
5096         // This pair of relocations is used to access a specific GOT entry.
5097         // Note a GOT entry is an *address* to a symbol.
5098         // The symbol requires a GOT entry
5099         Output_data_got_aarch64<size, big_endian>* got =
5100           target->got_section(symtab, layout);
5101         if (gsym->final_value_is_known())
5102           {
5103             // For a STT_GNU_IFUNC symbol we want the PLT address.
5104             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5105               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5106             else
5107               got->add_global(gsym, GOT_TYPE_STANDARD);
5108           }
5109         else
5110           {
5111             // If this symbol is not fully resolved, we need to add a dynamic
5112             // relocation for it.
5113             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5114
5115             // Use a GLOB_DAT rather than a RELATIVE reloc if:
5116             //
5117             // 1) The symbol may be defined in some other module.
5118             // 2) We are building a shared library and this is a protected
5119             // symbol; using GLOB_DAT means that the dynamic linker can use
5120             // the address of the PLT in the main executable when appropriate
5121             // so that function address comparisons work.
5122             // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
5123             // again so that function address comparisons work.
5124             if (gsym->is_from_dynobj()
5125                 || gsym->is_undefined()
5126                 || gsym->is_preemptible()
5127                 || (gsym->visibility() == elfcpp::STV_PROTECTED
5128                     && parameters->options().shared())
5129                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
5130                     && parameters->options().output_is_position_independent()))
5131               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
5132                                        rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
5133             else
5134               {
5135                 // For a STT_GNU_IFUNC symbol we want to write the PLT
5136                 // offset into the GOT, so that function pointer
5137                 // comparisons work correctly.
5138                 bool is_new;
5139                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
5140                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
5141                 else
5142                   {
5143                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5144                     // Tell the dynamic linker to use the PLT address
5145                     // when resolving relocations.
5146                     if (gsym->is_from_dynobj()
5147                         && !parameters->options().shared())
5148                       gsym->set_needs_dynsym_value();
5149                   }
5150                 if (is_new)
5151                   {
5152                     rela_dyn->add_global_relative(
5153                         gsym, elfcpp::R_AARCH64_RELATIVE,
5154                         got,
5155                         gsym->got_offset(GOT_TYPE_STANDARD),
5156                         0,
5157                         false);
5158                   }
5159               }
5160           }
5161         break;
5162       }
5163
5164     case elfcpp::R_AARCH64_TSTBR14:
5165     case elfcpp::R_AARCH64_CONDBR19:
5166     case elfcpp::R_AARCH64_JUMP26:
5167     case elfcpp::R_AARCH64_CALL26:
5168       {
5169         if (gsym->final_value_is_known())
5170           break;
5171
5172         if (gsym->is_defined() &&
5173             !gsym->is_from_dynobj() &&
5174             !gsym->is_preemptible())
5175           break;
5176
5177         // Make plt entry for function call.
5178         target->make_plt_entry(symtab, layout, gsym);
5179         break;
5180       }
5181
5182     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5183     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
5184       {
5185         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5186             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5187         if (tlsopt == tls::TLSOPT_TO_LE)
5188           {
5189             layout->set_has_static_tls();
5190             break;
5191           }
5192         gold_assert(tlsopt == tls::TLSOPT_NONE);
5193
5194         // General dynamic.
5195         Output_data_got_aarch64<size, big_endian>* got =
5196             target->got_section(symtab, layout);
5197         // Create 2 consecutive entries for module index and offset.
5198         got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
5199                                       target->rela_dyn_section(layout),
5200                                       elfcpp::R_AARCH64_TLS_DTPMOD64,
5201                                       elfcpp::R_AARCH64_TLS_DTPREL64);
5202       }
5203       break;
5204
5205     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5206     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
5207       {
5208         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5209             optimize_tls_reloc(!parameters->options().shared(), r_type);
5210         if (tlsopt == tls::TLSOPT_NONE)
5211           {
5212             // Create a GOT entry for the module index.
5213             target->got_mod_index_entry(symtab, layout, object);
5214           }
5215         else if (tlsopt != tls::TLSOPT_TO_LE)
5216           unsupported_reloc_local(object, r_type);
5217       }
5218       break;
5219
5220     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5221     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5222     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5223     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
5224       break;
5225
5226     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5227     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
5228       {
5229         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5230           optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5231         if (tlsopt == tls::TLSOPT_TO_LE)
5232           break;
5233
5234         layout->set_has_static_tls();
5235         // Create a GOT entry for the tp-relative offset.
5236         Output_data_got_aarch64<size, big_endian>* got
5237           = target->got_section(symtab, layout);
5238         if (!parameters->doing_static_link())
5239           {
5240             got->add_global_with_rel(
5241               gsym, GOT_TYPE_TLS_OFFSET,
5242               target->rela_dyn_section(layout),
5243               elfcpp::R_AARCH64_TLS_TPREL64);
5244           }
5245         if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
5246           {
5247             got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
5248             unsigned int got_offset =
5249               gsym->got_offset(GOT_TYPE_TLS_OFFSET);
5250             const elfcpp::Elf_Xword addend = rela.get_r_addend();
5251             gold_assert(addend == 0);
5252             got->add_static_reloc(got_offset,
5253                                   elfcpp::R_AARCH64_TLS_TPREL64, gsym);
5254           }
5255       }
5256       break;
5257
5258     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5259     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5260     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5261     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5262     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5263     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5264     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5265     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:  // Local executable
5266       layout->set_has_static_tls();
5267       if (parameters->options().shared())
5268         gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
5269                    object->name().c_str(), r_type);
5270       break;
5271
5272     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5273     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5274     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
5275       {
5276         target->define_tls_base_symbol(symtab, layout);
5277         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5278             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5279         if (tlsopt == tls::TLSOPT_NONE)
5280           {
5281             // Create reserved PLT and GOT entries for the resolver.
5282             target->reserve_tlsdesc_entries(symtab, layout);
5283
5284             // Create a double GOT entry with an R_AARCH64_TLSDESC
5285             // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
5286             // entry needs to be in an area in .got.plt, not .got. Call
5287             // got_section to make sure the section has been created.
5288             target->got_section(symtab, layout);
5289             Output_data_got<size, big_endian>* got =
5290                 target->got_tlsdesc_section();
5291             Reloc_section* rt = target->rela_tlsdesc_section(layout);
5292             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
5293                                           elfcpp::R_AARCH64_TLSDESC, 0);
5294           }
5295         else if (tlsopt == tls::TLSOPT_TO_IE)
5296           {
5297             // Create a GOT entry for the tp-relative offset.
5298             Output_data_got<size, big_endian>* got
5299                 = target->got_section(symtab, layout);
5300             got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
5301                                      target->rela_dyn_section(layout),
5302                                      elfcpp::R_AARCH64_TLS_TPREL64);
5303           }
5304         else if (tlsopt != tls::TLSOPT_TO_LE)
5305           unsupported_reloc_global(object, r_type, gsym);
5306       }
5307       break;
5308
5309     case elfcpp::R_AARCH64_TLSDESC_CALL:
5310       break;
5311
5312     default:
5313       gold_error(_("%s: unsupported reloc type in global scan"),
5314                  aarch64_reloc_property_table->
5315                  reloc_name_in_error_message(r_type).c_str());
5316     }
5317   return;
5318 }  // End of Scan::global
5319
5320
5321 // Create the PLT section.
5322 template<int size, bool big_endian>
5323 void
5324 Target_aarch64<size, big_endian>::make_plt_section(
5325   Symbol_table* symtab, Layout* layout)
5326 {
5327   if (this->plt_ == NULL)
5328     {
5329       // Create the GOT section first.
5330       this->got_section(symtab, layout);
5331
5332       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
5333                                        this->got_irelative_);
5334
5335       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
5336                                       (elfcpp::SHF_ALLOC
5337                                        | elfcpp::SHF_EXECINSTR),
5338                                       this->plt_, ORDER_PLT, false);
5339
5340       // Make the sh_info field of .rela.plt point to .plt.
5341       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
5342       rela_plt_os->set_info_section(this->plt_->output_section());
5343     }
5344 }
5345
5346 // Return the section for TLSDESC relocations.
5347
5348 template<int size, bool big_endian>
5349 typename Target_aarch64<size, big_endian>::Reloc_section*
5350 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
5351 {
5352   return this->plt_section()->rela_tlsdesc(layout);
5353 }
5354
5355 // Create a PLT entry for a global symbol.
5356
5357 template<int size, bool big_endian>
5358 void
5359 Target_aarch64<size, big_endian>::make_plt_entry(
5360     Symbol_table* symtab,
5361     Layout* layout,
5362     Symbol* gsym)
5363 {
5364   if (gsym->has_plt_offset())
5365     return;
5366
5367   if (this->plt_ == NULL)
5368     this->make_plt_section(symtab, layout);
5369
5370   this->plt_->add_entry(symtab, layout, gsym);
5371 }
5372
5373 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5374
5375 template<int size, bool big_endian>
5376 void
5377 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
5378     Symbol_table* symtab, Layout* layout,
5379     Sized_relobj_file<size, big_endian>* relobj,
5380     unsigned int local_sym_index)
5381 {
5382   if (relobj->local_has_plt_offset(local_sym_index))
5383     return;
5384   if (this->plt_ == NULL)
5385     this->make_plt_section(symtab, layout);
5386   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
5387                                                               relobj,
5388                                                               local_sym_index);
5389   relobj->set_local_plt_offset(local_sym_index, plt_offset);
5390 }
5391
5392 template<int size, bool big_endian>
5393 void
5394 Target_aarch64<size, big_endian>::gc_process_relocs(
5395     Symbol_table* symtab,
5396     Layout* layout,
5397     Sized_relobj_file<size, big_endian>* object,
5398     unsigned int data_shndx,
5399     unsigned int sh_type,
5400     const unsigned char* prelocs,
5401     size_t reloc_count,
5402     Output_section* output_section,
5403     bool needs_special_offset_handling,
5404     size_t local_symbol_count,
5405     const unsigned char* plocal_symbols)
5406 {
5407   if (sh_type == elfcpp::SHT_REL)
5408     {
5409       return;
5410     }
5411
5412   gold::gc_process_relocs<
5413     size, big_endian,
5414     Target_aarch64<size, big_endian>,
5415     elfcpp::SHT_RELA,
5416     typename Target_aarch64<size, big_endian>::Scan,
5417     typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
5418     symtab,
5419     layout,
5420     this,
5421     object,
5422     data_shndx,
5423     prelocs,
5424     reloc_count,
5425     output_section,
5426     needs_special_offset_handling,
5427     local_symbol_count,
5428     plocal_symbols);
5429 }
5430
5431 // Scan relocations for a section.
5432
5433 template<int size, bool big_endian>
5434 void
5435 Target_aarch64<size, big_endian>::scan_relocs(
5436     Symbol_table* symtab,
5437     Layout* layout,
5438     Sized_relobj_file<size, big_endian>* object,
5439     unsigned int data_shndx,
5440     unsigned int sh_type,
5441     const unsigned char* prelocs,
5442     size_t reloc_count,
5443     Output_section* output_section,
5444     bool needs_special_offset_handling,
5445     size_t local_symbol_count,
5446     const unsigned char* plocal_symbols)
5447 {
5448   if (sh_type == elfcpp::SHT_REL)
5449     {
5450       gold_error(_("%s: unsupported REL reloc section"),
5451                  object->name().c_str());
5452       return;
5453     }
5454   gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
5455     symtab,
5456     layout,
5457     this,
5458     object,
5459     data_shndx,
5460     prelocs,
5461     reloc_count,
5462     output_section,
5463     needs_special_offset_handling,
5464     local_symbol_count,
5465     plocal_symbols);
5466 }
5467
5468 // Return the value to use for a dynamic which requires special
5469 // treatment.  This is how we support equality comparisons of function
5470 // pointers across shared library boundaries, as described in the
5471 // processor specific ABI supplement.
5472
5473 template<int size, bool big_endian>
5474 uint64_t
5475 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
5476 {
5477   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5478   return this->plt_address_for_global(gsym);
5479 }
5480
5481
5482 // Finalize the sections.
5483
5484 template<int size, bool big_endian>
5485 void
5486 Target_aarch64<size, big_endian>::do_finalize_sections(
5487     Layout* layout,
5488     const Input_objects*,
5489     Symbol_table* symtab)
5490 {
5491   const Reloc_section* rel_plt = (this->plt_ == NULL
5492                                   ? NULL
5493                                   : this->plt_->rela_plt());
5494   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
5495                                   this->rela_dyn_, true, false);
5496
5497   // Emit any relocs we saved in an attempt to avoid generating COPY
5498   // relocs.
5499   if (this->copy_relocs_.any_saved_relocs())
5500     this->copy_relocs_.emit(this->rela_dyn_section(layout));
5501
5502   // Fill in some more dynamic tags.
5503   Output_data_dynamic* const odyn = layout->dynamic_data();
5504   if (odyn != NULL)
5505     {
5506       if (this->plt_ != NULL
5507           && this->plt_->output_section() != NULL
5508           && this->plt_ ->has_tlsdesc_entry())
5509         {
5510           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
5511           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
5512           this->got_->finalize_data_size();
5513           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
5514                                         this->plt_, plt_offset);
5515           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
5516                                         this->got_, got_offset);
5517         }
5518     }
5519
5520   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
5521   // the .got.plt section.
5522   Symbol* sym = this->global_offset_table_;
5523   if (sym != NULL)
5524     {
5525       uint64_t data_size = this->got_plt_->current_data_size();
5526       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
5527
5528       // If the .got section is more than 0x8000 bytes, we add
5529       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
5530       // bit relocations have a greater chance of working.
5531       if (data_size >= 0x8000)
5532         symtab->get_sized_symbol<size>(sym)->set_value(
5533           symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
5534     }
5535
5536   if (parameters->doing_static_link()
5537       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
5538     {
5539       // If linking statically, make sure that the __rela_iplt symbols
5540       // were defined if necessary, even if we didn't create a PLT.
5541       static const Define_symbol_in_segment syms[] =
5542         {
5543           {
5544             "__rela_iplt_start",        // name
5545             elfcpp::PT_LOAD,            // segment_type
5546             elfcpp::PF_W,               // segment_flags_set
5547             elfcpp::PF(0),              // segment_flags_clear
5548             0,                          // value
5549             0,                          // size
5550             elfcpp::STT_NOTYPE,         // type
5551             elfcpp::STB_GLOBAL,         // binding
5552             elfcpp::STV_HIDDEN,         // visibility
5553             0,                          // nonvis
5554             Symbol::SEGMENT_START,      // offset_from_base
5555             true                        // only_if_ref
5556           },
5557           {
5558             "__rela_iplt_end",          // name
5559             elfcpp::PT_LOAD,            // segment_type
5560             elfcpp::PF_W,               // segment_flags_set
5561             elfcpp::PF(0),              // segment_flags_clear
5562             0,                          // value
5563             0,                          // size
5564             elfcpp::STT_NOTYPE,         // type
5565             elfcpp::STB_GLOBAL,         // binding
5566             elfcpp::STV_HIDDEN,         // visibility
5567             0,                          // nonvis
5568             Symbol::SEGMENT_START,      // offset_from_base
5569             true                        // only_if_ref
5570           }
5571         };
5572
5573       symtab->define_symbols(layout, 2, syms,
5574                              layout->script_options()->saw_sections_clause());
5575     }
5576
5577   return;
5578 }
5579
5580 // Perform a relocation.
5581
5582 template<int size, bool big_endian>
5583 inline bool
5584 Target_aarch64<size, big_endian>::Relocate::relocate(
5585     const Relocate_info<size, big_endian>* relinfo,
5586     Target_aarch64<size, big_endian>* target,
5587     Output_section* ,
5588     size_t relnum,
5589     const elfcpp::Rela<size, big_endian>& rela,
5590     unsigned int r_type,
5591     const Sized_symbol<size>* gsym,
5592     const Symbol_value<size>* psymval,
5593     unsigned char* view,
5594     typename elfcpp::Elf_types<size>::Elf_Addr address,
5595     section_size_type /* view_size */)
5596 {
5597   if (view == NULL)
5598     return true;
5599
5600   typedef AArch64_relocate_functions<size, big_endian> Reloc;
5601
5602   const AArch64_reloc_property* reloc_property =
5603       aarch64_reloc_property_table->get_reloc_property(r_type);
5604
5605   if (reloc_property == NULL)
5606     {
5607       std::string reloc_name =
5608           aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
5609       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5610                              _("cannot relocate %s in object file"),
5611                              reloc_name.c_str());
5612       return true;
5613     }
5614
5615   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
5616
5617   // Pick the value to use for symbols defined in the PLT.
5618   Symbol_value<size> symval;
5619   if (gsym != NULL
5620       && gsym->use_plt_offset(reloc_property->reference_flags()))
5621     {
5622       symval.set_output_value(target->plt_address_for_global(gsym));
5623       psymval = &symval;
5624     }
5625   else if (gsym == NULL && psymval->is_ifunc_symbol())
5626     {
5627       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5628       if (object->local_has_plt_offset(r_sym))
5629         {
5630           symval.set_output_value(target->plt_address_for_local(object, r_sym));
5631           psymval = &symval;
5632         }
5633     }
5634
5635   const elfcpp::Elf_Xword addend = rela.get_r_addend();
5636
5637   // Get the GOT offset if needed.
5638   // For aarch64, the GOT pointer points to the start of the GOT section.
5639   bool have_got_offset = false;
5640   int got_offset = 0;
5641   int got_base = (target->got_ != NULL
5642                   ? (target->got_->current_data_size() >= 0x8000
5643                      ? 0x8000 : 0)
5644                   : 0);
5645   switch (r_type)
5646     {
5647     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
5648     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
5649     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
5650     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
5651     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
5652     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
5653     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
5654     case elfcpp::R_AARCH64_GOTREL64:
5655     case elfcpp::R_AARCH64_GOTREL32:
5656     case elfcpp::R_AARCH64_GOT_LD_PREL19:
5657     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
5658     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5659     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5660     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
5661       if (gsym != NULL)
5662         {
5663           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
5664           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
5665         }
5666       else
5667         {
5668           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5669           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
5670           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
5671                         - got_base);
5672         }
5673       have_got_offset = true;
5674       break;
5675
5676     default:
5677       break;
5678     }
5679
5680   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
5681   typename elfcpp::Elf_types<size>::Elf_Addr value;
5682   switch (r_type)
5683     {
5684     case elfcpp::R_AARCH64_NONE:
5685       break;
5686
5687     case elfcpp::R_AARCH64_ABS64:
5688       reloc_status = Reloc::template rela_ua<64>(
5689         view, object, psymval, addend, reloc_property);
5690       break;
5691
5692     case elfcpp::R_AARCH64_ABS32:
5693       reloc_status = Reloc::template rela_ua<32>(
5694         view, object, psymval, addend, reloc_property);
5695       break;
5696
5697     case elfcpp::R_AARCH64_ABS16:
5698       reloc_status = Reloc::template rela_ua<16>(
5699         view, object, psymval, addend, reloc_property);
5700       break;
5701
5702     case elfcpp::R_AARCH64_PREL64:
5703       reloc_status = Reloc::template pcrela_ua<64>(
5704         view, object, psymval, addend, address, reloc_property);
5705       break;
5706
5707     case elfcpp::R_AARCH64_PREL32:
5708       reloc_status = Reloc::template pcrela_ua<32>(
5709         view, object, psymval, addend, address, reloc_property);
5710       break;
5711
5712     case elfcpp::R_AARCH64_PREL16:
5713       reloc_status = Reloc::template pcrela_ua<16>(
5714         view, object, psymval, addend, address, reloc_property);
5715       break;
5716
5717     case elfcpp::R_AARCH64_LD_PREL_LO19:
5718       reloc_status = Reloc::template pcrela_general<32>(
5719           view, object, psymval, addend, address, reloc_property);
5720       break;
5721
5722     case elfcpp::R_AARCH64_ADR_PREL_LO21:
5723       reloc_status = Reloc::adr(view, object, psymval, addend,
5724                                 address, reloc_property);
5725       break;
5726
5727     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5728     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5729       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
5730                                  reloc_property);
5731       break;
5732
5733     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
5734     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
5735     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
5736     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
5737     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
5738     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5739       reloc_status = Reloc::template rela_general<32>(
5740         view, object, psymval, addend, reloc_property);
5741       break;
5742
5743     case elfcpp::R_AARCH64_CALL26:
5744       if (this->skip_call_tls_get_addr_)
5745         {
5746           // Double check that the TLSGD insn has been optimized away.
5747           typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
5748           Insntype insn = elfcpp::Swap<32, big_endian>::readval(
5749               reinterpret_cast<Insntype*>(view));
5750           gold_assert((insn & 0xff000000) == 0x91000000);
5751
5752           reloc_status = Reloc::STATUS_OKAY;
5753           this->skip_call_tls_get_addr_ = false;
5754           // Return false to stop further processing this reloc.
5755           return false;
5756         }
5757       // Fallthrough
5758     case elfcpp::R_AARCH64_JUMP26:
5759       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
5760                                   gsym, psymval, object,
5761                                   target->stub_group_size_))
5762         break;
5763       // Fallthrough
5764     case elfcpp::R_AARCH64_TSTBR14:
5765     case elfcpp::R_AARCH64_CONDBR19:
5766       reloc_status = Reloc::template pcrela_general<32>(
5767         view, object, psymval, addend, address, reloc_property);
5768       break;
5769
5770     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5771       gold_assert(have_got_offset);
5772       value = target->got_->address() + got_base + got_offset;
5773       reloc_status = Reloc::adrp(view, value + addend, address);
5774       break;
5775
5776     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5777       gold_assert(have_got_offset);
5778       value = target->got_->address() + got_base + got_offset;
5779       reloc_status = Reloc::template rela_general<32>(
5780         view, value, addend, reloc_property);
5781       break;
5782
5783     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5784     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5785     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5786     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5787     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5788     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5789     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5790     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5791     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5792     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5793     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5794     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5795     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5796     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5797     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5798     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5799     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5800     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5801     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5802     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5803     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5804     case elfcpp::R_AARCH64_TLSDESC_CALL:
5805       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
5806                                   gsym, psymval, view, address);
5807       break;
5808
5809     // These are dynamic relocations, which are unexpected when linking.
5810     case elfcpp::R_AARCH64_COPY:
5811     case elfcpp::R_AARCH64_GLOB_DAT:
5812     case elfcpp::R_AARCH64_JUMP_SLOT:
5813     case elfcpp::R_AARCH64_RELATIVE:
5814     case elfcpp::R_AARCH64_IRELATIVE:
5815     case elfcpp::R_AARCH64_TLS_DTPREL64:
5816     case elfcpp::R_AARCH64_TLS_DTPMOD64:
5817     case elfcpp::R_AARCH64_TLS_TPREL64:
5818     case elfcpp::R_AARCH64_TLSDESC:
5819       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5820                              _("unexpected reloc %u in object file"),
5821                              r_type);
5822       break;
5823
5824     default:
5825       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5826                              _("unsupported reloc %s"),
5827                              reloc_property->name().c_str());
5828       break;
5829     }
5830
5831   // Report any errors.
5832   switch (reloc_status)
5833     {
5834     case Reloc::STATUS_OKAY:
5835       break;
5836     case Reloc::STATUS_OVERFLOW:
5837       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5838                              _("relocation overflow in %s"),
5839                              reloc_property->name().c_str());
5840       break;
5841     case Reloc::STATUS_BAD_RELOC:
5842       gold_error_at_location(
5843           relinfo,
5844           relnum,
5845           rela.get_r_offset(),
5846           _("unexpected opcode while processing relocation %s"),
5847           reloc_property->name().c_str());
5848       break;
5849     default:
5850       gold_unreachable();
5851     }
5852
5853   return true;
5854 }
5855
5856
5857 template<int size, bool big_endian>
5858 inline
5859 typename AArch64_relocate_functions<size, big_endian>::Status
5860 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
5861     const Relocate_info<size, big_endian>* relinfo,
5862     Target_aarch64<size, big_endian>* target,
5863     size_t relnum,
5864     const elfcpp::Rela<size, big_endian>& rela,
5865     unsigned int r_type, const Sized_symbol<size>* gsym,
5866     const Symbol_value<size>* psymval,
5867     unsigned char* view,
5868     typename elfcpp::Elf_types<size>::Elf_Addr address)
5869 {
5870   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
5871   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
5872
5873   Output_segment* tls_segment = relinfo->layout->tls_segment();
5874   const elfcpp::Elf_Xword addend = rela.get_r_addend();
5875   const AArch64_reloc_property* reloc_property =
5876       aarch64_reloc_property_table->get_reloc_property(r_type);
5877   gold_assert(reloc_property != NULL);
5878
5879   const bool is_final = (gsym == NULL
5880                          ? !parameters->options().shared()
5881                          : gsym->final_value_is_known());
5882   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5883       optimize_tls_reloc(is_final, r_type);
5884
5885   Sized_relobj_file<size, big_endian>* object = relinfo->object;
5886   int tls_got_offset_type;
5887   switch (r_type)
5888     {
5889     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5890     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
5891       {
5892         if (tlsopt == tls::TLSOPT_TO_LE)
5893           {
5894             if (tls_segment == NULL)
5895               {
5896                 gold_assert(parameters->errors()->error_count() > 0
5897                             || issue_undefined_symbol_error(gsym));
5898                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
5899               }
5900             return tls_gd_to_le(relinfo, target, rela, r_type, view,
5901                                 psymval);
5902           }
5903         else if (tlsopt == tls::TLSOPT_NONE)
5904           {
5905             tls_got_offset_type = GOT_TYPE_TLS_PAIR;
5906             // Firstly get the address for the got entry.
5907             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
5908             if (gsym != NULL)
5909               {
5910                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
5911                 got_entry_address = target->got_->address() +
5912                                     gsym->got_offset(tls_got_offset_type);
5913               }
5914             else
5915               {
5916                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5917                 gold_assert(
5918                   object->local_has_got_offset(r_sym, tls_got_offset_type));
5919                 got_entry_address = target->got_->address() +
5920                   object->local_got_offset(r_sym, tls_got_offset_type);
5921               }
5922
5923             // Relocate the address into adrp/ld, adrp/add pair.
5924             switch (r_type)
5925               {
5926               case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5927                 return aarch64_reloc_funcs::adrp(
5928                   view, got_entry_address + addend, address);
5929
5930                 break;
5931
5932               case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5933                 return aarch64_reloc_funcs::template rela_general<32>(
5934                   view, got_entry_address, addend, reloc_property);
5935                 break;
5936
5937               default:
5938                 gold_unreachable();
5939               }
5940           }
5941         gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5942                                _("unsupported gd_to_ie relaxation on %u"),
5943                                r_type);
5944       }
5945       break;
5946
5947     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5948     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
5949       {
5950         if (tlsopt == tls::TLSOPT_TO_LE)
5951           {
5952             if (tls_segment == NULL)
5953               {
5954                 gold_assert(parameters->errors()->error_count() > 0
5955                             || issue_undefined_symbol_error(gsym));
5956                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
5957               }
5958             return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
5959                                       psymval);
5960           }
5961
5962         gold_assert(tlsopt == tls::TLSOPT_NONE);
5963         // Relocate the field with the offset of the GOT entry for
5964         // the module index.
5965         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
5966         got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
5967                              target->got_->address());
5968
5969         switch (r_type)
5970           {
5971           case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5972             return aarch64_reloc_funcs::adrp(
5973               view, got_entry_address + addend, address);
5974             break;
5975
5976           case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5977             return aarch64_reloc_funcs::template rela_general<32>(
5978               view, got_entry_address, addend, reloc_property);
5979             break;
5980
5981           default:
5982             gold_unreachable();
5983           }
5984       }
5985       break;
5986
5987     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5988     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5989     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5990     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
5991       {
5992         AArch64_address value = psymval->value(object, 0);
5993         if (tlsopt == tls::TLSOPT_TO_LE)
5994           {
5995             if (tls_segment == NULL)
5996               {
5997                 gold_assert(parameters->errors()->error_count() > 0
5998                             || issue_undefined_symbol_error(gsym));
5999                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6000               }
6001           }
6002         switch (r_type)
6003           {
6004           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6005             return aarch64_reloc_funcs::movnz(view, value + addend,
6006                                               reloc_property);
6007             break;
6008
6009           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6010           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6011           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6012             return aarch64_reloc_funcs::template rela_general<32>(
6013                 view, value, addend, reloc_property);
6014             break;
6015
6016           default:
6017             gold_unreachable();
6018           }
6019         // We should never reach here.
6020       }
6021       break;
6022
6023     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6024     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
6025       {
6026         if (tlsopt == tls::TLSOPT_TO_LE)
6027           {
6028             if (tls_segment == NULL)
6029               {
6030                 gold_assert(parameters->errors()->error_count() > 0
6031                             || issue_undefined_symbol_error(gsym));
6032                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6033               }
6034             return tls_ie_to_le(relinfo, target, rela, r_type, view,
6035                                 psymval);
6036           }
6037         tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
6038
6039         // Firstly get the address for the got entry.
6040         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6041         if (gsym != NULL)
6042           {
6043             gold_assert(gsym->has_got_offset(tls_got_offset_type));
6044             got_entry_address = target->got_->address() +
6045                                 gsym->got_offset(tls_got_offset_type);
6046           }
6047         else
6048           {
6049             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6050             gold_assert(
6051                 object->local_has_got_offset(r_sym, tls_got_offset_type));
6052             got_entry_address = target->got_->address() +
6053                 object->local_got_offset(r_sym, tls_got_offset_type);
6054           }
6055         // Relocate the address into adrp/ld, adrp/add pair.
6056         switch (r_type)
6057           {
6058           case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6059             return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
6060                                              address);
6061             break;
6062           case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6063             return aarch64_reloc_funcs::template rela_general<32>(
6064               view, got_entry_address, addend, reloc_property);
6065           default:
6066             gold_unreachable();
6067           }
6068       }
6069       // We shall never reach here.
6070       break;
6071
6072     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6073     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6074     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6075     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6076     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6077     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6078     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6079     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6080       {
6081         gold_assert(tls_segment != NULL);
6082         AArch64_address value = psymval->value(object, 0);
6083
6084         if (!parameters->options().shared())
6085           {
6086             AArch64_address aligned_tcb_size =
6087                 align_address(target->tcb_size(),
6088                               tls_segment->maximum_alignment());
6089             value += aligned_tcb_size;
6090             switch (r_type)
6091               {
6092               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6093               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6094               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6095                 return aarch64_reloc_funcs::movnz(view, value + addend,
6096                                                   reloc_property);
6097               default:
6098                 return aarch64_reloc_funcs::template
6099                   rela_general<32>(view,
6100                                    value,
6101                                    addend,
6102                                    reloc_property);
6103               }
6104           }
6105         else
6106           gold_error(_("%s: unsupported reloc %u "
6107                        "in non-static TLSLE mode."),
6108                      object->name().c_str(), r_type);
6109       }
6110       break;
6111
6112     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6113     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6114     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6115     case elfcpp::R_AARCH64_TLSDESC_CALL:
6116       {
6117         if (tlsopt == tls::TLSOPT_TO_LE)
6118           {
6119             if (tls_segment == NULL)
6120               {
6121                 gold_assert(parameters->errors()->error_count() > 0
6122                             || issue_undefined_symbol_error(gsym));
6123                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6124               }
6125             return tls_desc_gd_to_le(relinfo, target, rela, r_type,
6126                                      view, psymval);
6127           }
6128         else
6129           {
6130             tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
6131                                    ? GOT_TYPE_TLS_OFFSET
6132                                    : GOT_TYPE_TLS_DESC);
6133             unsigned int got_tlsdesc_offset = 0;
6134             if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
6135                 && tlsopt == tls::TLSOPT_NONE)
6136               {
6137                 // We created GOT entries in the .got.tlsdesc portion of the
6138                 // .got.plt section, but the offset stored in the symbol is the
6139                 // offset within .got.tlsdesc.
6140                 got_tlsdesc_offset = (target->got_->data_size()
6141                                       + target->got_plt_section()->data_size());
6142               }
6143             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6144             if (gsym != NULL)
6145               {
6146                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
6147                 got_entry_address = target->got_->address()
6148                                     + got_tlsdesc_offset
6149                                     + gsym->got_offset(tls_got_offset_type);
6150               }
6151             else
6152               {
6153                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6154                 gold_assert(
6155                     object->local_has_got_offset(r_sym, tls_got_offset_type));
6156                 got_entry_address = target->got_->address() +
6157                   got_tlsdesc_offset +
6158                   object->local_got_offset(r_sym, tls_got_offset_type);
6159               }
6160             if (tlsopt == tls::TLSOPT_TO_IE)
6161               {
6162                 if (tls_segment == NULL)
6163                   {
6164                     gold_assert(parameters->errors()->error_count() > 0
6165                                 || issue_undefined_symbol_error(gsym));
6166                     return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6167                   }
6168                 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
6169                                          view, psymval, got_entry_address,
6170                                          address);
6171               }
6172
6173             // Now do tlsdesc relocation.
6174             switch (r_type)
6175               {
6176               case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6177                 return aarch64_reloc_funcs::adrp(view,
6178                                                  got_entry_address + addend,
6179                                                  address);
6180                 break;
6181               case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6182               case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6183                 return aarch64_reloc_funcs::template rela_general<32>(
6184                   view, got_entry_address, addend, reloc_property);
6185                 break;
6186               case elfcpp::R_AARCH64_TLSDESC_CALL:
6187                 return aarch64_reloc_funcs::STATUS_OKAY;
6188                 break;
6189               default:
6190                 gold_unreachable();
6191               }
6192           }
6193         }
6194       break;
6195
6196     default:
6197       gold_error(_("%s: unsupported TLS reloc %u."),
6198                  object->name().c_str(), r_type);
6199     }
6200   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6201 }  // End of relocate_tls.
6202
6203
6204 template<int size, bool big_endian>
6205 inline
6206 typename AArch64_relocate_functions<size, big_endian>::Status
6207 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
6208              const Relocate_info<size, big_endian>* relinfo,
6209              Target_aarch64<size, big_endian>* target,
6210              const elfcpp::Rela<size, big_endian>& rela,
6211              unsigned int r_type,
6212              unsigned char* view,
6213              const Symbol_value<size>* psymval)
6214 {
6215   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6216   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6217   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6218
6219   Insntype* ip = reinterpret_cast<Insntype*>(view);
6220   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
6221   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
6222   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
6223
6224   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
6225     {
6226       // This is the 2nd relocs, optimization should already have been
6227       // done.
6228       gold_assert((insn1 & 0xfff00000) == 0x91400000);
6229       return aarch64_reloc_funcs::STATUS_OKAY;
6230     }
6231
6232   // The original sequence is -
6233   //   90000000        adrp    x0, 0 <main>
6234   //   91000000        add     x0, x0, #0x0
6235   //   94000000        bl      0 <__tls_get_addr>
6236   // optimized to sequence -
6237   //   d53bd040        mrs     x0, tpidr_el0
6238   //   91400000        add     x0, x0, #0x0, lsl #12
6239   //   91000000        add     x0, x0, #0x0
6240
6241   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
6242   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
6243   // have to change "bl tls_get_addr", which does not have a corresponding tls
6244   // relocation type. So before proceeding, we need to make sure compiler
6245   // does not change the sequence.
6246   if(!(insn1 == 0x90000000      // adrp x0,0
6247        && insn2 == 0x91000000   // add x0, x0, #0x0
6248        && insn3 == 0x94000000)) // bl 0
6249     {
6250       // Ideally we should give up gd_to_le relaxation and do gd access.
6251       // However the gd_to_le relaxation decision has been made early
6252       // in the scan stage, where we did not allocate any GOT entry for
6253       // this symbol. Therefore we have to exit and report error now.
6254       gold_error(_("unexpected reloc insn sequence while relaxing "
6255                    "tls gd to le for reloc %u."), r_type);
6256       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6257     }
6258
6259   // Write new insns.
6260   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
6261   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
6262   insn3 = 0x91000000;  // add x0, x0, #0x0
6263   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
6264   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
6265   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
6266
6267   // Calculate tprel value.
6268   Output_segment* tls_segment = relinfo->layout->tls_segment();
6269   gold_assert(tls_segment != NULL);
6270   AArch64_address value = psymval->value(relinfo->object, 0);
6271   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6272   AArch64_address aligned_tcb_size =
6273       align_address(target->tcb_size(), tls_segment->maximum_alignment());
6274   AArch64_address x = value + aligned_tcb_size;
6275
6276   // After new insns are written, apply TLSLE relocs.
6277   const AArch64_reloc_property* rp1 =
6278       aarch64_reloc_property_table->get_reloc_property(
6279           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
6280   const AArch64_reloc_property* rp2 =
6281       aarch64_reloc_property_table->get_reloc_property(
6282           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
6283   gold_assert(rp1 != NULL && rp2 != NULL);
6284
6285   typename aarch64_reloc_funcs::Status s1 =
6286       aarch64_reloc_funcs::template rela_general<32>(view + 4,
6287                                                      x,
6288                                                      addend,
6289                                                      rp1);
6290   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
6291     return s1;
6292
6293   typename aarch64_reloc_funcs::Status s2 =
6294       aarch64_reloc_funcs::template rela_general<32>(view + 8,
6295                                                      x,
6296                                                      addend,
6297                                                      rp2);
6298
6299   this->skip_call_tls_get_addr_ = true;
6300   return s2;
6301 }  // End of tls_gd_to_le
6302
6303
6304 template<int size, bool big_endian>
6305 inline
6306 typename AArch64_relocate_functions<size, big_endian>::Status
6307 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
6308              const Relocate_info<size, big_endian>* relinfo,
6309              Target_aarch64<size, big_endian>* target,
6310              const elfcpp::Rela<size, big_endian>& rela,
6311              unsigned int r_type,
6312              unsigned char* view,
6313              const Symbol_value<size>* psymval)
6314 {
6315   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6316   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6317   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6318
6319   Insntype* ip = reinterpret_cast<Insntype*>(view);
6320   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
6321   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
6322   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
6323
6324   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
6325     {
6326       // This is the 2nd relocs, optimization should already have been
6327       // done.
6328       gold_assert((insn1 & 0xfff00000) == 0x91400000);
6329       return aarch64_reloc_funcs::STATUS_OKAY;
6330     }
6331
6332   // The original sequence is -
6333   //   90000000        adrp    x0, 0 <main>
6334   //   91000000        add     x0, x0, #0x0
6335   //   94000000        bl      0 <__tls_get_addr>
6336   // optimized to sequence -
6337   //   d53bd040        mrs     x0, tpidr_el0
6338   //   91400000        add     x0, x0, #0x0, lsl #12
6339   //   91000000        add     x0, x0, #0x0
6340
6341   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
6342   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
6343   // have to change "bl tls_get_addr", which does not have a corresponding tls
6344   // relocation type. So before proceeding, we need to make sure compiler
6345   // does not change the sequence.
6346   if(!(insn1 == 0x90000000      // adrp x0,0
6347        && insn2 == 0x91000000   // add x0, x0, #0x0
6348        && insn3 == 0x94000000)) // bl 0
6349     {
6350       // Ideally we should give up gd_to_le relaxation and do gd access.
6351       // However the gd_to_le relaxation decision has been made early
6352       // in the scan stage, where we did not allocate any GOT entry for
6353       // this symbol. Therefore we have to exit and report error now.
6354       gold_error(_("unexpected reloc insn sequence while relaxing "
6355                    "tls gd to le for reloc %u."), r_type);
6356       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6357     }
6358
6359   // Write new insns.
6360   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
6361   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
6362   insn3 = 0x91000000;  // add x0, x0, #0x0
6363   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
6364   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
6365   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
6366
6367   // Calculate tprel value.
6368   Output_segment* tls_segment = relinfo->layout->tls_segment();
6369   gold_assert(tls_segment != NULL);
6370   AArch64_address value = psymval->value(relinfo->object, 0);
6371   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6372   AArch64_address aligned_tcb_size =
6373       align_address(target->tcb_size(), tls_segment->maximum_alignment());
6374   AArch64_address x = value + aligned_tcb_size;
6375
6376   // After new insns are written, apply TLSLE relocs.
6377   const AArch64_reloc_property* rp1 =
6378       aarch64_reloc_property_table->get_reloc_property(
6379           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
6380   const AArch64_reloc_property* rp2 =
6381       aarch64_reloc_property_table->get_reloc_property(
6382           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
6383   gold_assert(rp1 != NULL && rp2 != NULL);
6384
6385   typename aarch64_reloc_funcs::Status s1 =
6386       aarch64_reloc_funcs::template rela_general<32>(view + 4,
6387                                                      x,
6388                                                      addend,
6389                                                      rp1);
6390   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
6391     return s1;
6392
6393   typename aarch64_reloc_funcs::Status s2 =
6394       aarch64_reloc_funcs::template rela_general<32>(view + 8,
6395                                                      x,
6396                                                      addend,
6397                                                      rp2);
6398
6399   this->skip_call_tls_get_addr_ = true;
6400   return s2;
6401
6402 }  // End of tls_ld_to_le
6403
6404 template<int size, bool big_endian>
6405 inline
6406 typename AArch64_relocate_functions<size, big_endian>::Status
6407 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
6408              const Relocate_info<size, big_endian>* relinfo,
6409              Target_aarch64<size, big_endian>* target,
6410              const elfcpp::Rela<size, big_endian>& rela,
6411              unsigned int r_type,
6412              unsigned char* view,
6413              const Symbol_value<size>* psymval)
6414 {
6415   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6416   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6417   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6418
6419   AArch64_address value = psymval->value(relinfo->object, 0);
6420   Output_segment* tls_segment = relinfo->layout->tls_segment();
6421   AArch64_address aligned_tcb_address =
6422       align_address(target->tcb_size(), tls_segment->maximum_alignment());
6423   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6424   AArch64_address x = value + addend + aligned_tcb_address;
6425   // "x" is the offset to tp, we can only do this if x is within
6426   // range [0, 2^32-1]
6427   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
6428     {
6429       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
6430                  r_type);
6431       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6432     }
6433
6434   Insntype* ip = reinterpret_cast<Insntype*>(view);
6435   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
6436   unsigned int regno;
6437   Insntype newinsn;
6438   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
6439     {
6440       // Generate movz.
6441       regno = (insn & 0x1f);
6442       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
6443     }
6444   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
6445     {
6446       // Generate movk.
6447       regno = (insn & 0x1f);
6448       gold_assert(regno == ((insn >> 5) & 0x1f));
6449       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
6450     }
6451   else
6452     gold_unreachable();
6453
6454   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6455   return aarch64_reloc_funcs::STATUS_OKAY;
6456 }  // End of tls_ie_to_le
6457
6458
6459 template<int size, bool big_endian>
6460 inline
6461 typename AArch64_relocate_functions<size, big_endian>::Status
6462 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
6463              const Relocate_info<size, big_endian>* relinfo,
6464              Target_aarch64<size, big_endian>* target,
6465              const elfcpp::Rela<size, big_endian>& rela,
6466              unsigned int r_type,
6467              unsigned char* view,
6468              const Symbol_value<size>* psymval)
6469 {
6470   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6471   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6472   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6473
6474   // TLSDESC-GD sequence is like:
6475   //   adrp  x0, :tlsdesc:v1
6476   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
6477   //   add   x0, x0, :tlsdesc_lo12:v1
6478   //   .tlsdesccall    v1
6479   //   blr   x1
6480   // After desc_gd_to_le optimization, the sequence will be like:
6481   //   movz  x0, #0x0, lsl #16
6482   //   movk  x0, #0x10
6483   //   nop
6484   //   nop
6485
6486   // Calculate tprel value.
6487   Output_segment* tls_segment = relinfo->layout->tls_segment();
6488   gold_assert(tls_segment != NULL);
6489   Insntype* ip = reinterpret_cast<Insntype*>(view);
6490   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6491   AArch64_address value = psymval->value(relinfo->object, addend);
6492   AArch64_address aligned_tcb_size =
6493       align_address(target->tcb_size(), tls_segment->maximum_alignment());
6494   AArch64_address x = value + aligned_tcb_size;
6495   // x is the offset to tp, we can only do this if x is within range
6496   // [0, 2^32-1]. If x is out of range, fail and exit.
6497   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
6498     {
6499       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
6500                    "We Can't do gd_to_le relaxation.\n"), r_type);
6501       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6502     }
6503   Insntype newinsn;
6504   switch (r_type)
6505     {
6506     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6507     case elfcpp::R_AARCH64_TLSDESC_CALL:
6508       // Change to nop
6509       newinsn = 0xd503201f;
6510       break;
6511
6512     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6513       // Change to movz.
6514       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
6515       break;
6516
6517     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6518       // Change to movk.
6519       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
6520       break;
6521
6522     default:
6523       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
6524                  r_type);
6525       gold_unreachable();
6526     }
6527   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6528   return aarch64_reloc_funcs::STATUS_OKAY;
6529 }  // End of tls_desc_gd_to_le
6530
6531
6532 template<int size, bool big_endian>
6533 inline
6534 typename AArch64_relocate_functions<size, big_endian>::Status
6535 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
6536              const Relocate_info<size, big_endian>* /* relinfo */,
6537              Target_aarch64<size, big_endian>* /* target */,
6538              const elfcpp::Rela<size, big_endian>& rela,
6539              unsigned int r_type,
6540              unsigned char* view,
6541              const Symbol_value<size>* /* psymval */,
6542              typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
6543              typename elfcpp::Elf_types<size>::Elf_Addr address)
6544 {
6545   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6546   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6547
6548   // TLSDESC-GD sequence is like:
6549   //   adrp  x0, :tlsdesc:v1
6550   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
6551   //   add   x0, x0, :tlsdesc_lo12:v1
6552   //   .tlsdesccall    v1
6553   //   blr   x1
6554   // After desc_gd_to_ie optimization, the sequence will be like:
6555   //   adrp  x0, :tlsie:v1
6556   //   ldr   x0, [x0, :tlsie_lo12:v1]
6557   //   nop
6558   //   nop
6559
6560   Insntype* ip = reinterpret_cast<Insntype*>(view);
6561   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6562   Insntype newinsn;
6563   switch (r_type)
6564     {
6565     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6566     case elfcpp::R_AARCH64_TLSDESC_CALL:
6567       // Change to nop
6568       newinsn = 0xd503201f;
6569       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6570       break;
6571
6572     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6573       {
6574         return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
6575                                          address);
6576       }
6577       break;
6578
6579     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6580       {
6581        // Set ldr target register to be x0.
6582        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
6583        insn &= 0xffffffe0;
6584        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
6585        // Do relocation.
6586         const AArch64_reloc_property* reloc_property =
6587             aarch64_reloc_property_table->get_reloc_property(
6588               elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6589         return aarch64_reloc_funcs::template rela_general<32>(
6590                  view, got_entry_address, addend, reloc_property);
6591       }
6592       break;
6593
6594     default:
6595       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
6596                  r_type);
6597       gold_unreachable();
6598     }
6599   return aarch64_reloc_funcs::STATUS_OKAY;
6600 }  // End of tls_desc_gd_to_ie
6601
6602 // Relocate section data.
6603
6604 template<int size, bool big_endian>
6605 void
6606 Target_aarch64<size, big_endian>::relocate_section(
6607     const Relocate_info<size, big_endian>* relinfo,
6608     unsigned int sh_type,
6609     const unsigned char* prelocs,
6610     size_t reloc_count,
6611     Output_section* output_section,
6612     bool needs_special_offset_handling,
6613     unsigned char* view,
6614     typename elfcpp::Elf_types<size>::Elf_Addr address,
6615     section_size_type view_size,
6616     const Reloc_symbol_changes* reloc_symbol_changes)
6617 {
6618   gold_assert(sh_type == elfcpp::SHT_RELA);
6619   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
6620   gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
6621                          AArch64_relocate, gold::Default_comdat_behavior>(
6622     relinfo,
6623     this,
6624     prelocs,
6625     reloc_count,
6626     output_section,
6627     needs_special_offset_handling,
6628     view,
6629     address,
6630     view_size,
6631     reloc_symbol_changes);
6632 }
6633
6634 // Return the size of a relocation while scanning during a relocatable
6635 // link.
6636
6637 template<int size, bool big_endian>
6638 unsigned int
6639 Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
6640 get_size_for_reloc(
6641     unsigned int ,
6642     Relobj* )
6643 {
6644   // We will never support SHT_REL relocations.
6645   gold_unreachable();
6646   return 0;
6647 }
6648
6649 // Scan the relocs during a relocatable link.
6650
6651 template<int size, bool big_endian>
6652 void
6653 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
6654     Symbol_table* symtab,
6655     Layout* layout,
6656     Sized_relobj_file<size, big_endian>* object,
6657     unsigned int data_shndx,
6658     unsigned int sh_type,
6659     const unsigned char* prelocs,
6660     size_t reloc_count,
6661     Output_section* output_section,
6662     bool needs_special_offset_handling,
6663     size_t local_symbol_count,
6664     const unsigned char* plocal_symbols,
6665     Relocatable_relocs* rr)
6666 {
6667   gold_assert(sh_type == elfcpp::SHT_RELA);
6668
6669   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
6670     Relocatable_size_for_reloc> Scan_relocatable_relocs;
6671
6672   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
6673       Scan_relocatable_relocs>(
6674     symtab,
6675     layout,
6676     object,
6677     data_shndx,
6678     prelocs,
6679     reloc_count,
6680     output_section,
6681     needs_special_offset_handling,
6682     local_symbol_count,
6683     plocal_symbols,
6684     rr);
6685 }
6686
6687 // Relocate a section during a relocatable link.
6688
6689 template<int size, bool big_endian>
6690 void
6691 Target_aarch64<size, big_endian>::relocate_relocs(
6692     const Relocate_info<size, big_endian>* relinfo,
6693     unsigned int sh_type,
6694     const unsigned char* prelocs,
6695     size_t reloc_count,
6696     Output_section* output_section,
6697     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
6698     const Relocatable_relocs* rr,
6699     unsigned char* view,
6700     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
6701     section_size_type view_size,
6702     unsigned char* reloc_view,
6703     section_size_type reloc_view_size)
6704 {
6705   gold_assert(sh_type == elfcpp::SHT_RELA);
6706
6707   gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
6708     relinfo,
6709     prelocs,
6710     reloc_count,
6711     output_section,
6712     offset_in_output_section,
6713     rr,
6714     view,
6715     view_address,
6716     view_size,
6717     reloc_view,
6718     reloc_view_size);
6719 }
6720
6721
6722 // The selector for aarch64 object files.
6723
6724 template<int size, bool big_endian>
6725 class Target_selector_aarch64 : public Target_selector
6726 {
6727  public:
6728   Target_selector_aarch64();
6729
6730   virtual Target*
6731   do_instantiate_target()
6732   { return new Target_aarch64<size, big_endian>(); }
6733 };
6734
6735 template<>
6736 Target_selector_aarch64<32, true>::Target_selector_aarch64()
6737   : Target_selector(elfcpp::EM_AARCH64, 32, true,
6738                     "elf32-bigaarch64", "aarch64_elf32_be_vec")
6739 { }
6740
6741 template<>
6742 Target_selector_aarch64<32, false>::Target_selector_aarch64()
6743   : Target_selector(elfcpp::EM_AARCH64, 32, false,
6744                     "elf32-littleaarch64", "aarch64_elf32_le_vec")
6745 { }
6746
6747 template<>
6748 Target_selector_aarch64<64, true>::Target_selector_aarch64()
6749   : Target_selector(elfcpp::EM_AARCH64, 64, true,
6750                     "elf64-bigaarch64", "aarch64_elf64_be_vec")
6751 { }
6752
6753 template<>
6754 Target_selector_aarch64<64, false>::Target_selector_aarch64()
6755   : Target_selector(elfcpp::EM_AARCH64, 64, false,
6756                     "elf64-littleaarch64", "aarch64_elf64_le_vec")
6757 { }
6758
6759 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
6760 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
6761 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
6762 Target_selector_aarch64<64, false> target_selector_aarch64elf;
6763
6764 } // End anonymous namespace.