[gold] Rename '--fix-cortex-a53' to '--fix-cortex-a53-843419'.
[external/binutils.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2015 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "aarch64.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "freebsd.h"
43 #include "nacl.h"
44 #include "gc.h"
45 #include "icf.h"
46 #include "aarch64-reloc-property.h"
47
48 // The first three .got.plt entries are reserved.
49 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
50
51
52 namespace
53 {
54
55 using namespace gold;
56
57 template<int size, bool big_endian>
58 class Output_data_plt_aarch64;
59
60 template<int size, bool big_endian>
61 class Output_data_plt_aarch64_standard;
62
63 template<int size, bool big_endian>
64 class Target_aarch64;
65
66 template<int size, bool big_endian>
67 class AArch64_relocate_functions;
68
69 // Utility class dealing with insns. This is ported from macros in
70 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
71 // class is used in erratum sequence scanning.
72
73 template<bool big_endian>
74 class AArch64_insn_utilities
75 {
76 public:
77   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
78
79   static const int BYTES_PER_INSN = 4;
80
81   static unsigned int
82   aarch64_bit(Insntype insn, int pos)
83   { return ((1 << pos)  & insn) >> pos; }
84
85   static unsigned int
86   aarch64_bits(Insntype insn, int pos, int l)
87   { return (insn >> pos) & ((1 << l) - 1); }
88
89   static bool
90   is_adrp(const Insntype insn)
91   { return (insn & 0x9F000000) == 0x90000000; }
92
93   static unsigned int
94   aarch64_rm(const Insntype insn)
95   { return aarch64_bits(insn, 16, 5); }
96
97   static unsigned int
98   aarch64_rn(const Insntype insn)
99   { return aarch64_bits(insn, 5, 5); }
100
101   static unsigned int
102   aarch64_rd(const Insntype insn)
103   { return aarch64_bits(insn, 0, 5); }
104
105   static unsigned int
106   aarch64_rt(const Insntype insn)
107   { return aarch64_bits(insn, 0, 5); }
108
109   static unsigned int
110   aarch64_rt2(const Insntype insn)
111   { return aarch64_bits(insn, 10, 5); }
112
113   static bool
114   aarch64_b(const Insntype insn)
115   { return (insn & 0xFC000000) == 0x14000000; }
116
117   static bool
118   aarch64_bl(const Insntype insn)
119   { return (insn & 0xFC000000) == 0x94000000; }
120
121   static bool
122   aarch64_blr(const Insntype insn)
123   { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
124
125   static bool
126   aarch64_br(const Insntype insn)
127   { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
128
129   // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
130   // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
131   static bool
132   aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
133
134   static bool
135   aarch64_ldst(Insntype insn)
136   { return (insn & 0x0a000000) == 0x08000000; }
137
138   static bool
139   aarch64_ldst_ex(Insntype insn)
140   { return (insn & 0x3f000000) == 0x08000000; }
141
142   static bool
143   aarch64_ldst_pcrel(Insntype insn)
144   { return (insn & 0x3b000000) == 0x18000000; }
145
146   static bool
147   aarch64_ldst_nap(Insntype insn)
148   { return (insn & 0x3b800000) == 0x28000000; }
149
150   static bool
151   aarch64_ldstp_pi(Insntype insn)
152   { return (insn & 0x3b800000) == 0x28800000; }
153
154   static bool
155   aarch64_ldstp_o(Insntype insn)
156   { return (insn & 0x3b800000) == 0x29000000; }
157
158   static bool
159   aarch64_ldstp_pre(Insntype insn)
160   { return (insn & 0x3b800000) == 0x29800000; }
161
162   static bool
163   aarch64_ldst_ui(Insntype insn)
164   { return (insn & 0x3b200c00) == 0x38000000; }
165
166   static bool
167   aarch64_ldst_piimm(Insntype insn)
168   { return (insn & 0x3b200c00) == 0x38000400; }
169
170   static bool
171   aarch64_ldst_u(Insntype insn)
172   { return (insn & 0x3b200c00) == 0x38000800; }
173
174   static bool
175   aarch64_ldst_preimm(Insntype insn)
176   { return (insn & 0x3b200c00) == 0x38000c00; }
177
178   static bool
179   aarch64_ldst_ro(Insntype insn)
180   { return (insn & 0x3b200c00) == 0x38200800; }
181
182   static bool
183   aarch64_ldst_uimm(Insntype insn)
184   { return (insn & 0x3b000000) == 0x39000000; }
185
186   static bool
187   aarch64_ldst_simd_m(Insntype insn)
188   { return (insn & 0xbfbf0000) == 0x0c000000; }
189
190   static bool
191   aarch64_ldst_simd_m_pi(Insntype insn)
192   { return (insn & 0xbfa00000) == 0x0c800000; }
193
194   static bool
195   aarch64_ldst_simd_s(Insntype insn)
196   { return (insn & 0xbf9f0000) == 0x0d000000; }
197
198   static bool
199   aarch64_ldst_simd_s_pi(Insntype insn)
200   { return (insn & 0xbf800000) == 0x0d800000; }
201
202   // Classify an INSN if it is indeed a load/store. Return true if INSN is a
203   // LD/ST instruction otherwise return false. For scalar LD/ST instructions
204   // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
205   // instructions PAIR is TRUE, RT and RT2 are returned.
206   static bool
207   aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
208                    bool *pair, bool *load)
209   {
210     uint32_t opcode;
211     unsigned int r;
212     uint32_t opc = 0;
213     uint32_t v = 0;
214     uint32_t opc_v = 0;
215
216     /* Bail out quickly if INSN doesn't fall into the the load-store
217        encoding space.  */
218     if (!aarch64_ldst (insn))
219       return false;
220
221     *pair = false;
222     *load = false;
223     if (aarch64_ldst_ex (insn))
224       {
225         *rt = aarch64_rt (insn);
226         *rt2 = *rt;
227         if (aarch64_bit (insn, 21) == 1)
228           {
229             *pair = true;
230             *rt2 = aarch64_rt2 (insn);
231           }
232         *load = aarch64_ld (insn);
233         return true;
234       }
235     else if (aarch64_ldst_nap (insn)
236              || aarch64_ldstp_pi (insn)
237              || aarch64_ldstp_o (insn)
238              || aarch64_ldstp_pre (insn))
239       {
240         *pair = true;
241         *rt = aarch64_rt (insn);
242         *rt2 = aarch64_rt2 (insn);
243         *load = aarch64_ld (insn);
244         return true;
245       }
246     else if (aarch64_ldst_pcrel (insn)
247              || aarch64_ldst_ui (insn)
248              || aarch64_ldst_piimm (insn)
249              || aarch64_ldst_u (insn)
250              || aarch64_ldst_preimm (insn)
251              || aarch64_ldst_ro (insn)
252              || aarch64_ldst_uimm (insn))
253       {
254         *rt = aarch64_rt (insn);
255         *rt2 = *rt;
256         if (aarch64_ldst_pcrel (insn))
257           *load = true;
258         opc = aarch64_bits (insn, 22, 2);
259         v = aarch64_bit (insn, 26);
260         opc_v = opc | (v << 2);
261         *load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
262                   || opc_v == 5 || opc_v == 7);
263         return true;
264       }
265     else if (aarch64_ldst_simd_m (insn)
266              || aarch64_ldst_simd_m_pi (insn))
267       {
268         *rt = aarch64_rt (insn);
269         *load = aarch64_bit (insn, 22);
270         opcode = (insn >> 12) & 0xf;
271         switch (opcode)
272           {
273           case 0:
274           case 2:
275             *rt2 = *rt + 3;
276             break;
277
278           case 4:
279           case 6:
280             *rt2 = *rt + 2;
281             break;
282
283           case 7:
284             *rt2 = *rt;
285             break;
286
287           case 8:
288           case 10:
289             *rt2 = *rt + 1;
290             break;
291
292           default:
293             return false;
294           }
295         return true;
296       }
297     else if (aarch64_ldst_simd_s (insn)
298              || aarch64_ldst_simd_s_pi (insn))
299       {
300         *rt = aarch64_rt (insn);
301         r = (insn >> 21) & 1;
302         *load = aarch64_bit (insn, 22);
303         opcode = (insn >> 13) & 0x7;
304         switch (opcode)
305           {
306           case 0:
307           case 2:
308           case 4:
309             *rt2 = *rt + r;
310             break;
311
312           case 1:
313           case 3:
314           case 5:
315             *rt2 = *rt + (r == 0 ? 2 : 3);
316             break;
317
318           case 6:
319             *rt2 = *rt + r;
320             break;
321
322           case 7:
323             *rt2 = *rt + (r == 0 ? 2 : 3);
324             break;
325
326           default:
327             return false;
328           }
329         return true;
330       }
331     return false;
332   }
333 };
334
335
336 // Output_data_got_aarch64 class.
337
338 template<int size, bool big_endian>
339 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
340 {
341  public:
342   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
343   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
344     : Output_data_got<size, big_endian>(),
345       symbol_table_(symtab), layout_(layout)
346   { }
347
348   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
349   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
350   // applied in a static link.
351   void
352   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
353   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
354
355
356   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
357   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
358   // relocation that needs to be applied in a static link.
359   void
360   add_static_reloc(unsigned int got_offset, unsigned int r_type,
361                    Sized_relobj_file<size, big_endian>* relobj,
362                    unsigned int index)
363   {
364     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
365                                                 index));
366   }
367
368
369  protected:
370   // Write out the GOT table.
371   void
372   do_write(Output_file* of) {
373     // The first entry in the GOT is the address of the .dynamic section.
374     gold_assert(this->data_size() >= size / 8);
375     Output_section* dynamic = this->layout_->dynamic_section();
376     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
377     this->replace_constant(0, dynamic_addr);
378     Output_data_got<size, big_endian>::do_write(of);
379
380     // Handling static relocs
381     if (this->static_relocs_.empty())
382       return;
383
384     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
385
386     gold_assert(parameters->doing_static_link());
387     const off_t offset = this->offset();
388     const section_size_type oview_size =
389       convert_to_section_size_type(this->data_size());
390     unsigned char* const oview = of->get_output_view(offset, oview_size);
391
392     Output_segment* tls_segment = this->layout_->tls_segment();
393     gold_assert(tls_segment != NULL);
394
395     AArch64_address aligned_tcb_address =
396       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
397                     tls_segment->maximum_alignment());
398
399     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
400       {
401         Static_reloc& reloc(this->static_relocs_[i]);
402         AArch64_address value;
403
404         if (!reloc.symbol_is_global())
405           {
406             Sized_relobj_file<size, big_endian>* object = reloc.relobj();
407             const Symbol_value<size>* psymval =
408               reloc.relobj()->local_symbol(reloc.index());
409
410             // We are doing static linking.  Issue an error and skip this
411             // relocation if the symbol is undefined or in a discarded_section.
412             bool is_ordinary;
413             unsigned int shndx = psymval->input_shndx(&is_ordinary);
414             if ((shndx == elfcpp::SHN_UNDEF)
415                 || (is_ordinary
416                     && shndx != elfcpp::SHN_UNDEF
417                     && !object->is_section_included(shndx)
418                     && !this->symbol_table_->is_section_folded(object, shndx)))
419               {
420                 gold_error(_("undefined or discarded local symbol %u from "
421                              " object %s in GOT"),
422                            reloc.index(), reloc.relobj()->name().c_str());
423                 continue;
424               }
425             value = psymval->value(object, 0);
426           }
427         else
428           {
429             const Symbol* gsym = reloc.symbol();
430             gold_assert(gsym != NULL);
431             if (gsym->is_forwarder())
432               gsym = this->symbol_table_->resolve_forwards(gsym);
433
434             // We are doing static linking.  Issue an error and skip this
435             // relocation if the symbol is undefined or in a discarded_section
436             // unless it is a weakly_undefined symbol.
437             if ((gsym->is_defined_in_discarded_section()
438                  || gsym->is_undefined())
439                 && !gsym->is_weak_undefined())
440               {
441                 gold_error(_("undefined or discarded symbol %s in GOT"),
442                            gsym->name());
443                 continue;
444               }
445
446             if (!gsym->is_weak_undefined())
447               {
448                 const Sized_symbol<size>* sym =
449                   static_cast<const Sized_symbol<size>*>(gsym);
450                 value = sym->value();
451               }
452             else
453               value = 0;
454           }
455
456         unsigned got_offset = reloc.got_offset();
457         gold_assert(got_offset < oview_size);
458
459         typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
460         Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
461         Valtype x;
462         switch (reloc.r_type())
463           {
464           case elfcpp::R_AARCH64_TLS_DTPREL64:
465             x = value;
466             break;
467           case elfcpp::R_AARCH64_TLS_TPREL64:
468             x = value + aligned_tcb_address;
469             break;
470           default:
471             gold_unreachable();
472           }
473         elfcpp::Swap<size, big_endian>::writeval(wv, x);
474       }
475
476     of->write_output_view(offset, oview_size, oview);
477   }
478
479  private:
480   // Symbol table of the output object.
481   Symbol_table* symbol_table_;
482   // A pointer to the Layout class, so that we can find the .dynamic
483   // section when we write out the GOT section.
484   Layout* layout_;
485
486   // This class represent dynamic relocations that need to be applied by
487   // gold because we are using TLS relocations in a static link.
488   class Static_reloc
489   {
490    public:
491     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
492       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
493     { this->u_.global.symbol = gsym; }
494
495     Static_reloc(unsigned int got_offset, unsigned int r_type,
496           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
497       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
498     {
499       this->u_.local.relobj = relobj;
500       this->u_.local.index = index;
501     }
502
503     // Return the GOT offset.
504     unsigned int
505     got_offset() const
506     { return this->got_offset_; }
507
508     // Relocation type.
509     unsigned int
510     r_type() const
511     { return this->r_type_; }
512
513     // Whether the symbol is global or not.
514     bool
515     symbol_is_global() const
516     { return this->symbol_is_global_; }
517
518     // For a relocation against a global symbol, the global symbol.
519     Symbol*
520     symbol() const
521     {
522       gold_assert(this->symbol_is_global_);
523       return this->u_.global.symbol;
524     }
525
526     // For a relocation against a local symbol, the defining object.
527     Sized_relobj_file<size, big_endian>*
528     relobj() const
529     {
530       gold_assert(!this->symbol_is_global_);
531       return this->u_.local.relobj;
532     }
533
534     // For a relocation against a local symbol, the local symbol index.
535     unsigned int
536     index() const
537     {
538       gold_assert(!this->symbol_is_global_);
539       return this->u_.local.index;
540     }
541
542    private:
543     // GOT offset of the entry to which this relocation is applied.
544     unsigned int got_offset_;
545     // Type of relocation.
546     unsigned int r_type_;
547     // Whether this relocation is against a global symbol.
548     bool symbol_is_global_;
549     // A global or local symbol.
550     union
551     {
552       struct
553       {
554         // For a global symbol, the symbol itself.
555         Symbol* symbol;
556       } global;
557       struct
558       {
559         // For a local symbol, the object defining the symbol.
560         Sized_relobj_file<size, big_endian>* relobj;
561         // For a local symbol, the symbol index.
562         unsigned int index;
563       } local;
564     } u_;
565   };  // End of inner class Static_reloc
566
567   std::vector<Static_reloc> static_relocs_;
568 };  // End of Output_data_got_aarch64
569
570
571 template<int size, bool big_endian>
572 class AArch64_input_section;
573
574
575 template<int size, bool big_endian>
576 class AArch64_output_section;
577
578
579 // Reloc stub class.
580
581 template<int size, bool big_endian>
582 class Reloc_stub
583 {
584  public:
585   typedef Reloc_stub<size, big_endian> This;
586   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
587
588   // Do not change the value of the enums, they are used to index into
589   // stub_insns array.
590   typedef enum
591   {
592     ST_NONE = 0,
593
594     // Using adrp/add pair, 4 insns (including alignment) without mem access,
595     // the fastest stub. This has a limited jump distance, which is tested by
596     // aarch64_valid_for_adrp_p.
597     ST_ADRP_BRANCH = 1,
598
599     // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
600     // unlimited in jump distance.
601     ST_LONG_BRANCH_ABS = 2,
602
603     // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1 mem
604     // access, slowest one. Only used in position independent executables.
605     ST_LONG_BRANCH_PCREL = 3,
606
607   } Stub_type;
608
609   // Branch range. This is used to calculate the section group size, as well as
610   // determine whether a stub is needed.
611   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
612   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
613
614   // Constant used to determine if an offset fits in the adrp instruction
615   // encoding.
616   static const int MAX_ADRP_IMM = (1 << 20) - 1;
617   static const int MIN_ADRP_IMM = -(1 << 20);
618
619   static const int BYTES_PER_INSN = 4;
620   static const int STUB_ADDR_ALIGN = 4;
621
622   // Determine whether the offset fits in the jump/branch instruction.
623   static bool
624   aarch64_valid_branch_offset_p(int64_t offset)
625   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
626
627   // Determine whether the offset fits in the adrp immediate field.
628   static bool
629   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
630   {
631     typedef AArch64_relocate_functions<size, big_endian> Reloc;
632     int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
633     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
634   }
635
636   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
637   // needed.
638   static Stub_type
639   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
640                       AArch64_address target);
641
642   Reloc_stub(Stub_type stub_type)
643     : stub_type_(stub_type), offset_(invalid_offset),
644       destination_address_(invalid_address)
645   { }
646
647   ~Reloc_stub()
648   { }
649
650   // Return offset of code stub from beginning of its containing stub table.
651   section_offset_type
652   offset() const
653   {
654     gold_assert(this->offset_ != invalid_offset);
655     return this->offset_;
656   }
657
658   // Set offset of code stub from beginning of its containing stub table.
659   void
660   set_offset(section_offset_type offset)
661   { this->offset_ = offset; }
662
663   // Return destination address.
664   AArch64_address
665   destination_address() const
666   {
667     gold_assert(this->destination_address_ != this->invalid_address);
668     return this->destination_address_;
669   }
670
671   // Set destination address.
672   void
673   set_destination_address(AArch64_address address)
674   {
675     gold_assert(address != this->invalid_address);
676     this->destination_address_ = address;
677   }
678
679   // Reset the destination address.
680   void
681   reset_destination_address()
682   { this->destination_address_ = this->invalid_address; }
683
684   // Return the stub type.
685   Stub_type
686   stub_type() const
687   { return stub_type_; }
688
689   // Return the stub size.
690   uint32_t
691   stub_size() const
692   { return this->stub_insn_number() * BYTES_PER_INSN; }
693
694   // Return the instruction number of this stub instance.
695   int
696   stub_insn_number() const
697   { return stub_insns_[this->stub_type_][0]; }
698
699   // Note the first "insn" is the number of total insns in this array.
700   const uint32_t*
701   stub_insns() const
702   { return stub_insns_[this->stub_type_]; }
703
704   // Write stub to output file.
705   void
706   write(unsigned char* view, section_size_type view_size)
707   { this->do_write(view, view_size); }
708
709   // The key class used to index the stub instance in the stub table's stub map.
710   class Key
711   {
712    public:
713     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
714         unsigned int r_sym, int32_t addend)
715       : stub_type_(stub_type), addend_(addend)
716     {
717       if (symbol != NULL)
718         {
719           this->r_sym_ = Reloc_stub::invalid_index;
720           this->u_.symbol = symbol;
721         }
722       else
723         {
724           gold_assert(relobj != NULL && r_sym != invalid_index);
725           this->r_sym_ = r_sym;
726           this->u_.relobj = relobj;
727         }
728     }
729
730     ~Key()
731     { }
732
733     // Return stub type.
734     Stub_type
735     stub_type() const
736     { return this->stub_type_; }
737
738     // Return the local symbol index or invalid_index.
739     unsigned int
740     r_sym() const
741     { return this->r_sym_; }
742
743     // Return the symbol if there is one.
744     const Symbol*
745     symbol() const
746     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
747
748     // Return the relobj if there is one.
749     const Relobj*
750     relobj() const
751     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
752
753     // Whether this equals to another key k.
754     bool
755     eq(const Key& k) const
756     {
757       return ((this->stub_type_ == k.stub_type_)
758               && (this->r_sym_ == k.r_sym_)
759               && ((this->r_sym_ != Reloc_stub::invalid_index)
760                   ? (this->u_.relobj == k.u_.relobj)
761                   : (this->u_.symbol == k.u_.symbol))
762               && (this->addend_ == k.addend_));
763     }
764
765     // Return a hash value.
766     size_t
767     hash_value() const
768     {
769       size_t name_hash_value = gold::string_hash<char>(
770           (this->r_sym_ != Reloc_stub::invalid_index)
771           ? this->u_.relobj->name().c_str()
772           : this->u_.symbol->name());
773       // We only have 4 stub types.
774       size_t stub_type_hash_value = 0x03 & this->stub_type_;
775       return (name_hash_value
776               ^ stub_type_hash_value
777               ^ ((this->r_sym_ & 0x3fff) << 2)
778               ^ ((this->addend_ & 0xffff) << 16));
779     }
780
781     // Functors for STL associative containers.
782     struct hash
783     {
784       size_t
785       operator()(const Key& k) const
786       { return k.hash_value(); }
787     };
788
789     struct equal_to
790     {
791       bool
792       operator()(const Key& k1, const Key& k2) const
793       { return k1.eq(k2); }
794     };
795
796    private:
797     // Stub type.
798     const Stub_type stub_type_;
799     // If this is a local symbol, this is the index in the defining object.
800     // Otherwise, it is invalid_index for a global symbol.
801     unsigned int r_sym_;
802     // If r_sym_ is an invalid index, this points to a global symbol.
803     // Otherwise, it points to a relobj.  We used the unsized and target
804     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
805     // Arm_relobj, in order to avoid making the stub class a template
806     // as most of the stub machinery is endianness-neutral.  However, it
807     // may require a bit of casting done by users of this class.
808     union
809     {
810       const Symbol* symbol;
811       const Relobj* relobj;
812     } u_;
813     // Addend associated with a reloc.
814     int32_t addend_;
815   };  // End of inner class Reloc_stub::Key
816
817  protected:
818   // This may be overridden in the child class.
819   virtual void
820   do_write(unsigned char*, section_size_type);
821
822  private:
823   static const section_offset_type invalid_offset =
824       static_cast<section_offset_type>(-1);
825   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
826   static const AArch64_address invalid_address =
827       static_cast<AArch64_address>(-1);
828
829   static const uint32_t stub_insns_[][10];
830
831   const Stub_type stub_type_;
832   section_offset_type offset_;
833   AArch64_address destination_address_;
834 };  // End of Reloc_stub
835
836
837 // Write data to output file.
838
839 template<int size, bool big_endian>
840 void
841 Reloc_stub<size, big_endian>::
842 do_write(unsigned char* view, section_size_type)
843 {
844   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
845   const uint32_t* insns = this->stub_insns();
846   uint32_t num_insns = this->stub_insn_number();
847   Insntype* ip = reinterpret_cast<Insntype*>(view);
848   for (uint32_t i = 1; i <= num_insns; ++i)
849     elfcpp::Swap<32, big_endian>::writeval(ip + i - 1, insns[i]);
850 }
851
852
853 // Stubs instructions definition.
854
855 template<int size, bool big_endian>
856 const uint32_t
857 Reloc_stub<size, big_endian>::stub_insns_[][10] =
858   {
859     // The first element of each group is the num of the insns.
860
861     // ST_NONE
862     {0, 0},
863
864     // ST_ADRP_BRANCH
865     {
866         4,
867         0x90000010,     /*      adrp    ip0, X             */
868                         /*        ADR_PREL_PG_HI21(X)      */
869         0x91000210,     /*      add     ip0, ip0, :lo12:X  */
870                         /*        ADD_ABS_LO12_NC(X)       */
871         0xd61f0200,     /*      br      ip0                */
872         0x00000000,     /*      alignment padding          */
873     },
874
875     // ST_LONG_BRANCH_ABS
876     {
877         4,
878         0x58000050,     /*      ldr   ip0, 0x8             */
879         0xd61f0200,     /*      br    ip0                  */
880         0x00000000,     /*      address field              */
881         0x00000000,     /*      address fields             */
882     },
883
884     // ST_LONG_BRANCH_PCREL
885     {
886       8,
887         0x58000090,     /*      ldr   ip0, 0x10            */
888         0x10000011,     /*      adr   ip1, #0              */
889         0x8b110210,     /*      add   ip0, ip0, ip1        */
890         0xd61f0200,     /*      br    ip0                  */
891         0x00000000,     /*      address field              */
892         0x00000000,     /*      address field              */
893         0x00000000,     /*      alignment padding          */
894         0x00000000,     /*      alignment padding          */
895     }
896   };
897
898
899 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
900 // needed.
901
902 template<int size, bool big_endian>
903 inline
904 typename Reloc_stub<size, big_endian>::Stub_type
905 Reloc_stub<size, big_endian>::stub_type_for_reloc(
906     unsigned int r_type, AArch64_address location, AArch64_address dest)
907 {
908   int64_t branch_offset = 0;
909   switch(r_type)
910     {
911     case elfcpp::R_AARCH64_CALL26:
912     case elfcpp::R_AARCH64_JUMP26:
913       branch_offset = dest - location;
914       break;
915     default:
916       gold_unreachable();
917     }
918
919   if (aarch64_valid_branch_offset_p(branch_offset))
920     return ST_NONE;
921
922   if (aarch64_valid_for_adrp_p(location, dest))
923     return ST_ADRP_BRANCH;
924
925   if (parameters->options().output_is_position_independent()
926       && parameters->options().output_is_executable())
927     return ST_LONG_BRANCH_PCREL;
928
929   return ST_LONG_BRANCH_ABS;
930 }
931
932 // A class to hold stubs for the ARM target.
933
934 template<int size, bool big_endian>
935 class Stub_table : public Output_data
936 {
937  public:
938   typedef Target_aarch64<size, big_endian> The_target_aarch64;
939   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
940   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
941   typedef Reloc_stub<size, big_endian> The_reloc_stub;
942   typedef typename The_reloc_stub::Key The_reloc_stub_key;
943   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
944   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
945   typedef Stub_table<size, big_endian> The_stub_table;
946   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
947                         The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
948                         Reloc_stub_map;
949   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
950   typedef Relocate_info<size, big_endian> The_relocate_info;
951
952   Stub_table(The_aarch64_input_section* owner)
953     : Output_data(), owner_(owner), reloc_stubs_size_(0), prev_data_size_(0)
954   { }
955
956   ~Stub_table()
957   { }
958
959   The_aarch64_input_section*
960   owner() const
961   { return owner_; }
962
963   // Whether this stub table is empty.
964   bool
965   empty() const
966   { return reloc_stubs_.empty(); }
967
968   // Return the current data size.
969   off_t
970   current_data_size() const
971   { return this->current_data_size_for_child(); }
972
973   // Add a STUB using KEY.  The caller is responsible for avoiding addition
974   // if a STUB with the same key has already been added.
975   void
976   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
977
978   // Finalize stubs. No-op here, just for completeness.
979   void
980   finalize_stubs()
981   { }
982
983   // Look up a relocation stub using KEY. Return NULL if there is none.
984   The_reloc_stub*
985   find_reloc_stub(The_reloc_stub_key& key)
986   {
987     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
988     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
989   }
990
991   // Relocate stubs in this stub table.
992   void
993   relocate_stubs(const The_relocate_info*,
994                  The_target_aarch64*,
995                  Output_section*,
996                  unsigned char*,
997                  AArch64_address,
998                  section_size_type);
999
1000   // Update data size at the end of a relaxation pass.  Return true if data size
1001   // is different from that of the previous relaxation pass.
1002   bool
1003   update_data_size_changed_p()
1004   {
1005     // No addralign changed here.
1006     off_t s = this->reloc_stubs_size_;
1007     bool changed = (s != this->prev_data_size_);
1008     this->prev_data_size_ = s;
1009     return changed;
1010   }
1011
1012  protected:
1013   // Write out section contents.
1014   void
1015   do_write(Output_file*);
1016
1017   // Return the required alignment.
1018   uint64_t
1019   do_addralign() const
1020   { return The_reloc_stub::STUB_ADDR_ALIGN; }
1021
1022   // Reset address and file offset.
1023   void
1024   do_reset_address_and_file_offset()
1025   { this->set_current_data_size_for_child(this->prev_data_size_); }
1026
1027   // Set final data size.
1028   void
1029   set_final_data_size()
1030   { this->set_data_size(this->current_data_size()); }
1031
1032  private:
1033   // Relocate one stub.
1034   void
1035   relocate_stub(The_reloc_stub*,
1036                 const The_relocate_info*,
1037                 The_target_aarch64*,
1038                 Output_section*,
1039                 unsigned char*,
1040                 AArch64_address,
1041                 section_size_type);
1042
1043  private:
1044   // Owner of this stub table.
1045   The_aarch64_input_section* owner_;
1046   // The relocation stubs.
1047   Reloc_stub_map reloc_stubs_;
1048   // Size of reloc stubs.
1049   off_t reloc_stubs_size_;
1050   // data size of this in the previous pass.
1051   off_t prev_data_size_;
1052 };  // End of Stub_table
1053
1054
1055 // Add a STUB using KEY.  The caller is responsible for avoiding addition
1056 // if a STUB with the same key has already been added.
1057
1058 template<int size, bool big_endian>
1059 void
1060 Stub_table<size, big_endian>::add_reloc_stub(
1061     The_reloc_stub* stub, const The_reloc_stub_key& key)
1062 {
1063   gold_assert(stub->stub_type() == key.stub_type());
1064   this->reloc_stubs_[key] = stub;
1065
1066   // Assign stub offset early.  We can do this because we never remove
1067   // reloc stubs and they are in the beginning of the stub table.
1068   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1069                                           The_reloc_stub::STUB_ADDR_ALIGN);
1070   stub->set_offset(this->reloc_stubs_size_);
1071   this->reloc_stubs_size_ += stub->stub_size();
1072 }
1073
1074
1075 // Relocate all stubs in this stub table.
1076
1077 template<int size, bool big_endian>
1078 void
1079 Stub_table<size, big_endian>::
1080 relocate_stubs(const The_relocate_info* relinfo,
1081                The_target_aarch64* target_aarch64,
1082                Output_section* output_section,
1083                unsigned char* view,
1084                AArch64_address address,
1085                section_size_type view_size)
1086 {
1087   // "view_size" is the total size of the stub_table.
1088   gold_assert(address == this->address() &&
1089               view_size == static_cast<section_size_type>(this->data_size()));
1090   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1091       p != this->reloc_stubs_.end(); ++p)
1092     relocate_stub(p->second, relinfo, target_aarch64, output_section,
1093                   view, address, view_size);
1094 }
1095
1096
1097 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
1098
1099 template<int size, bool big_endian>
1100 void
1101 Stub_table<size, big_endian>::
1102 relocate_stub(The_reloc_stub* stub,
1103               const The_relocate_info* relinfo,
1104               The_target_aarch64* target_aarch64,
1105               Output_section* output_section,
1106               unsigned char* view,
1107               AArch64_address address,
1108               section_size_type view_size)
1109 {
1110   // "offset" is the offset from the beginning of the stub_table.
1111   section_size_type offset = stub->offset();
1112   section_size_type stub_size = stub->stub_size();
1113   // "view_size" is the total size of the stub_table.
1114   gold_assert(offset + stub_size <= view_size);
1115
1116   target_aarch64->relocate_stub(stub, relinfo, output_section,
1117                                 view + offset, address + offset, view_size);
1118 }
1119
1120
1121 // Write out the stubs to file.
1122
1123 template<int size, bool big_endian>
1124 void
1125 Stub_table<size, big_endian>::do_write(Output_file* of)
1126 {
1127   off_t offset = this->offset();
1128   const section_size_type oview_size =
1129     convert_to_section_size_type(this->data_size());
1130   unsigned char* const oview = of->get_output_view(offset, oview_size);
1131
1132   // Write relocation stubs.
1133   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1134       p != this->reloc_stubs_.end(); ++p)
1135     {
1136       The_reloc_stub* stub = p->second;
1137       AArch64_address address = this->address() + stub->offset();
1138       gold_assert(address ==
1139                   align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1140       stub->write(oview + stub->offset(), stub->stub_size());
1141     }
1142
1143   of->write_output_view(this->offset(), oview_size, oview);
1144 }
1145
1146
1147 // AArch64_relobj class.
1148
1149 template<int size, bool big_endian>
1150 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1151 {
1152  public:
1153   typedef AArch64_relobj<size, big_endian> This;
1154   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1155   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1156   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1157   typedef Stub_table<size, big_endian> The_stub_table;
1158   typedef std::vector<The_stub_table*> Stub_table_list;
1159   static const AArch64_address invalid_address =
1160       static_cast<AArch64_address>(-1);
1161
1162   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1163                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1164     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1165       stub_tables_()
1166   { }
1167
1168   ~AArch64_relobj()
1169   { }
1170
1171   // Return the stub table of the SHNDX-th section if there is one.
1172   The_stub_table*
1173   stub_table(unsigned int shndx) const
1174   {
1175     gold_assert(shndx < this->stub_tables_.size());
1176     return this->stub_tables_[shndx];
1177   }
1178
1179   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1180   void
1181   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1182   {
1183     gold_assert(shndx < this->stub_tables_.size());
1184     this->stub_tables_[shndx] = stub_table;
1185   }
1186
1187   // Entrance to erratum_843419 scanning.
1188   void
1189   scan_erratum_843419(unsigned int shndx,
1190                       const elfcpp::Shdr<size, big_endian>&,
1191                       Output_section*, const Symbol_table*,
1192                       The_target_aarch64*);
1193
1194   // Scan all relocation sections for stub generation.
1195   void
1196   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1197                           const Layout*);
1198
1199   // Whether a section is a scannable text section.
1200   bool
1201   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1202                             const Output_section*, const Symbol_table*);
1203
1204   // Convert regular input section with index SHNDX to a relaxed section.
1205   void
1206   convert_input_section_to_relaxed_section(unsigned /* shndx */)
1207   {
1208     // The stubs have relocations and we need to process them after writing
1209     // out the stubs.  So relocation now must follow section write.
1210     this->set_relocs_must_follow_section_writes();
1211   }
1212
1213   // Structure for mapping symbol position.
1214   struct Mapping_symbol_position
1215   {
1216     Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1217       shndx_(shndx), offset_(offset)
1218     {}
1219
1220     // "<" comparator used in ordered_map container.
1221     bool
1222     operator<(const Mapping_symbol_position& p) const
1223     {
1224       return (this->shndx_ < p.shndx_
1225               || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1226     }
1227
1228     // Section index.
1229     unsigned int shndx_;
1230
1231     // Section offset.
1232     AArch64_address offset_;
1233   };
1234
1235   typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1236
1237  protected:
1238   // Post constructor setup.
1239   void
1240   do_setup()
1241   {
1242     // Call parent's setup method.
1243     Sized_relobj_file<size, big_endian>::do_setup();
1244
1245     // Initialize look-up tables.
1246     this->stub_tables_.resize(this->shnum());
1247   }
1248
1249   virtual void
1250   do_relocate_sections(
1251       const Symbol_table* symtab, const Layout* layout,
1252       const unsigned char* pshdrs, Output_file* of,
1253       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1254
1255   // Count local symbols and (optionally) record mapping info.
1256   virtual void
1257   do_count_local_symbols(Stringpool_template<char>*,
1258                          Stringpool_template<char>*);
1259
1260  private:
1261   // Whether a section needs to be scanned for relocation stubs.
1262   bool
1263   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1264                                     const Relobj::Output_sections&,
1265                                     const Symbol_table*, const unsigned char*);
1266
1267   // List of stub tables.
1268   Stub_table_list stub_tables_;
1269
1270   // Mapping symbol information sorted by (section index, section_offset).
1271   Mapping_symbol_info mapping_symbol_info_;
1272 };  // End of AArch64_relobj
1273
1274
1275 // Override to record mapping symbol information.
1276 template<int size, bool big_endian>
1277 void
1278 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1279     Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1280 {
1281   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1282
1283   // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1284   // processing if not fixing erratum.
1285   if (!parameters->options().fix_cortex_a53_843419())
1286     return;
1287
1288   const unsigned int loccount = this->local_symbol_count();
1289   if (loccount == 0)
1290     return;
1291
1292   // Read the symbol table section header.
1293   const unsigned int symtab_shndx = this->symtab_shndx();
1294   elfcpp::Shdr<size, big_endian>
1295       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1296   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1297
1298   // Read the local symbols.
1299   const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1300   gold_assert(loccount == symtabshdr.get_sh_info());
1301   off_t locsize = loccount * sym_size;
1302   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1303                                               locsize, true, true);
1304
1305   // For mapping symbol processing, we need to read the symbol names.
1306   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1307   if (strtab_shndx >= this->shnum())
1308     {
1309       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1310       return;
1311     }
1312
1313   elfcpp::Shdr<size, big_endian>
1314     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1315   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1316     {
1317       this->error(_("symbol table name section has wrong type: %u"),
1318                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
1319       return;
1320     }
1321
1322   const char* pnames =
1323     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1324                                                  strtabshdr.get_sh_size(),
1325                                                  false, false));
1326
1327   // Skip the first dummy symbol.
1328   psyms += sym_size;
1329   typename Sized_relobj_file<size, big_endian>::Local_values*
1330     plocal_values = this->local_values();
1331   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1332     {
1333       elfcpp::Sym<size, big_endian> sym(psyms);
1334       Symbol_value<size>& lv((*plocal_values)[i]);
1335       AArch64_address input_value = lv.input_value();
1336
1337       // Check to see if this is a mapping symbol.
1338       const char* sym_name = pnames + sym.get_st_name();
1339       if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1340           && sym_name[2] == '\0')
1341         {
1342           bool is_ordinary;
1343           unsigned int input_shndx =
1344             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1345           gold_assert(is_ordinary);
1346
1347           Mapping_symbol_position msp(input_shndx, input_value);
1348           // Insert mapping_symbol_info into map whose ordering is defined by
1349           // (shndx, offset_within_section).
1350           this->mapping_symbol_info_[msp] = sym_name[1];
1351         }
1352    }
1353 }
1354
1355
1356 // Relocate sections.
1357
1358 template<int size, bool big_endian>
1359 void
1360 AArch64_relobj<size, big_endian>::do_relocate_sections(
1361     const Symbol_table* symtab, const Layout* layout,
1362     const unsigned char* pshdrs, Output_file* of,
1363     typename Sized_relobj_file<size, big_endian>::Views* pviews)
1364 {
1365   // Call parent to relocate sections.
1366   Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
1367                                                             pshdrs, of, pviews);
1368
1369   // We do not generate stubs if doing a relocatable link.
1370   if (parameters->options().relocatable())
1371     return;
1372
1373   Relocate_info<size, big_endian> relinfo;
1374   relinfo.symtab = symtab;
1375   relinfo.layout = layout;
1376   relinfo.object = this;
1377
1378   // Relocate stub tables.
1379   unsigned int shnum = this->shnum();
1380   The_target_aarch64* target = The_target_aarch64::current_target();
1381
1382   for (unsigned int i = 1; i < shnum; ++i)
1383     {
1384       The_aarch64_input_section* aarch64_input_section =
1385           target->find_aarch64_input_section(this, i);
1386       if (aarch64_input_section != NULL
1387           && aarch64_input_section->is_stub_table_owner()
1388           && !aarch64_input_section->stub_table()->empty())
1389         {
1390           Output_section* os = this->output_section(i);
1391           gold_assert(os != NULL);
1392
1393           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
1394           relinfo.reloc_shdr = NULL;
1395           relinfo.data_shndx = i;
1396           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
1397
1398           typename Sized_relobj_file<size, big_endian>::View_size&
1399               view_struct = (*pviews)[i];
1400           gold_assert(view_struct.view != NULL);
1401
1402           The_stub_table* stub_table = aarch64_input_section->stub_table();
1403           off_t offset = stub_table->address() - view_struct.address;
1404           unsigned char* view = view_struct.view + offset;
1405           AArch64_address address = stub_table->address();
1406           section_size_type view_size = stub_table->data_size();
1407           stub_table->relocate_stubs(&relinfo, target, os, view, address,
1408                                      view_size);
1409         }
1410     }
1411 }
1412
1413
1414 // Determine if an input section is scannable for stub processing.  SHDR is
1415 // the header of the section and SHNDX is the section index.  OS is the output
1416 // section for the input section and SYMTAB is the global symbol table used to
1417 // look up ICF information.
1418
1419 template<int size, bool big_endian>
1420 bool
1421 AArch64_relobj<size, big_endian>::text_section_is_scannable(
1422     const elfcpp::Shdr<size, big_endian>& text_shdr,
1423     unsigned int text_shndx,
1424     const Output_section* os,
1425     const Symbol_table* symtab)
1426 {
1427   // Skip any empty sections, unallocated sections or sections whose
1428   // type are not SHT_PROGBITS.
1429   if (text_shdr.get_sh_size() == 0
1430       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
1431       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
1432     return false;
1433
1434   // Skip any discarded or ICF'ed sections.
1435   if (os == NULL || symtab->is_section_folded(this, text_shndx))
1436     return false;
1437
1438   // Skip exception frame.
1439   if (strcmp(os->name(), ".eh_frame") == 0)
1440     return false ;
1441
1442   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
1443               os->find_relaxed_input_section(this, text_shndx) != NULL);
1444
1445   return true;
1446 }
1447
1448
1449 // Determine if we want to scan the SHNDX-th section for relocation stubs.
1450 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
1451
1452 template<int size, bool big_endian>
1453 bool
1454 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
1455     const elfcpp::Shdr<size, big_endian>& shdr,
1456     const Relobj::Output_sections& out_sections,
1457     const Symbol_table* symtab,
1458     const unsigned char* pshdrs)
1459 {
1460   unsigned int sh_type = shdr.get_sh_type();
1461   if (sh_type != elfcpp::SHT_RELA)
1462     return false;
1463
1464   // Ignore empty section.
1465   off_t sh_size = shdr.get_sh_size();
1466   if (sh_size == 0)
1467     return false;
1468
1469   // Ignore reloc section with unexpected symbol table.  The
1470   // error will be reported in the final link.
1471   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
1472     return false;
1473
1474   gold_assert(sh_type == elfcpp::SHT_RELA);
1475   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1476
1477   // Ignore reloc section with unexpected entsize or uneven size.
1478   // The error will be reported in the final link.
1479   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
1480     return false;
1481
1482   // Ignore reloc section with bad info.  This error will be
1483   // reported in the final link.
1484   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
1485   if (text_shndx >= this->shnum())
1486     return false;
1487
1488   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1489   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
1490                                                  text_shndx * shdr_size);
1491   return this->text_section_is_scannable(text_shdr, text_shndx,
1492                                          out_sections[text_shndx], symtab);
1493 }
1494
1495
1496 // Scan section SHNDX for erratum 843419.
1497
1498 template<int size, bool big_endian>
1499 void
1500 AArch64_relobj<size, big_endian>::scan_erratum_843419(
1501     unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
1502     Output_section* os, const Symbol_table* symtab,
1503     The_target_aarch64* target)
1504 {
1505   if (shdr.get_sh_size() == 0
1506       || (shdr.get_sh_flags() &
1507           (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
1508       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
1509     return;
1510
1511   if (!os || symtab->is_section_folded(this, shndx)) return;
1512
1513   AArch64_address output_offset = this->get_output_section_offset(shndx);
1514   AArch64_address output_address;
1515   if (output_offset != invalid_address)
1516     output_address = os->address() + output_offset;
1517   else
1518     {
1519       const Output_relaxed_input_section* poris =
1520         os->find_relaxed_input_section(this, shndx);
1521       if (!poris) return;
1522       output_address = poris->address();
1523     }
1524
1525   section_size_type input_view_size = 0;
1526   const unsigned char* input_view =
1527     this->section_contents(shndx, &input_view_size, false);
1528
1529   Mapping_symbol_position section_start(shndx, 0);
1530   // Find the first mapping symbol record within section shndx.
1531   typename Mapping_symbol_info::const_iterator p =
1532     this->mapping_symbol_info_.lower_bound(section_start);
1533   if (p == this->mapping_symbol_info_.end() || p->first.shndx_ != shndx)
1534     gold_warning(_("cannot scan executable section %u of %s for Cortex-A53 "
1535                    "erratum because it has no mapping symbols."),
1536                  shndx, this->name().c_str());
1537   while (p != this->mapping_symbol_info_.end() &&
1538          p->first.shndx_ == shndx)
1539     {
1540       typename Mapping_symbol_info::const_iterator prev = p;
1541       ++p;
1542       if (prev->second == 'x')
1543         {
1544           section_size_type span_start =
1545             convert_to_section_size_type(prev->first.offset_);
1546           section_size_type span_end;
1547           if (p != this->mapping_symbol_info_.end()
1548               && p->first.shndx_ == shndx)
1549             span_end = convert_to_section_size_type(p->first.offset_);
1550           else
1551             span_end = convert_to_section_size_type(shdr.get_sh_size());
1552           target->scan_erratum_843419_span(
1553               this, shndx, span_start, span_end,
1554               const_cast<unsigned char*>(input_view), output_address);
1555         }
1556     }
1557 }
1558
1559
1560 // Scan relocations for stub generation.
1561
1562 template<int size, bool big_endian>
1563 void
1564 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
1565     The_target_aarch64* target,
1566     const Symbol_table* symtab,
1567     const Layout* layout)
1568 {
1569   unsigned int shnum = this->shnum();
1570   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1571
1572   // Read the section headers.
1573   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
1574                                                shnum * shdr_size,
1575                                                true, true);
1576
1577   // To speed up processing, we set up hash tables for fast lookup of
1578   // input offsets to output addresses.
1579   this->initialize_input_to_output_maps();
1580
1581   const Relobj::Output_sections& out_sections(this->output_sections());
1582
1583   Relocate_info<size, big_endian> relinfo;
1584   relinfo.symtab = symtab;
1585   relinfo.layout = layout;
1586   relinfo.object = this;
1587
1588   // Do relocation stubs scanning.
1589   const unsigned char* p = pshdrs + shdr_size;
1590   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
1591     {
1592       const elfcpp::Shdr<size, big_endian> shdr(p);
1593       if (parameters->options().fix_cortex_a53_843419())
1594         scan_erratum_843419(i, shdr, out_sections[i], symtab, target);
1595       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
1596                                                   pshdrs))
1597         {
1598           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
1599           AArch64_address output_offset =
1600               this->get_output_section_offset(index);
1601           AArch64_address output_address;
1602           if (output_offset != invalid_address)
1603             {
1604               output_address = out_sections[index]->address() + output_offset;
1605             }
1606           else
1607             {
1608               // Currently this only happens for a relaxed section.
1609               const Output_relaxed_input_section* poris =
1610                   out_sections[index]->find_relaxed_input_section(this, index);
1611               gold_assert(poris != NULL);
1612               output_address = poris->address();
1613             }
1614
1615           // Get the relocations.
1616           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
1617                                                         shdr.get_sh_size(),
1618                                                         true, false);
1619
1620           // Get the section contents.
1621           section_size_type input_view_size = 0;
1622           const unsigned char* input_view =
1623               this->section_contents(index, &input_view_size, false);
1624
1625           relinfo.reloc_shndx = i;
1626           relinfo.data_shndx = index;
1627           unsigned int sh_type = shdr.get_sh_type();
1628           unsigned int reloc_size;
1629           gold_assert (sh_type == elfcpp::SHT_RELA);
1630           reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1631
1632           Output_section* os = out_sections[index];
1633           target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
1634                                          shdr.get_sh_size() / reloc_size,
1635                                          os,
1636                                          output_offset == invalid_address,
1637                                          input_view, output_address,
1638                                          input_view_size);
1639         }
1640     }
1641 }
1642
1643
1644 // A class to wrap an ordinary input section containing executable code.
1645
1646 template<int size, bool big_endian>
1647 class AArch64_input_section : public Output_relaxed_input_section
1648 {
1649  public:
1650   typedef Stub_table<size, big_endian> The_stub_table;
1651
1652   AArch64_input_section(Relobj* relobj, unsigned int shndx)
1653     : Output_relaxed_input_section(relobj, shndx, 1),
1654       stub_table_(NULL),
1655       original_contents_(NULL), original_size_(0),
1656       original_addralign_(1)
1657   { }
1658
1659   ~AArch64_input_section()
1660   { delete[] this->original_contents_; }
1661
1662   // Initialize.
1663   void
1664   init();
1665
1666   // Set the stub_table.
1667   void
1668   set_stub_table(The_stub_table* st)
1669   { this->stub_table_ = st; }
1670
1671   // Whether this is a stub table owner.
1672   bool
1673   is_stub_table_owner() const
1674   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1675
1676   // Return the original size of the section.
1677   uint32_t
1678   original_size() const
1679   { return this->original_size_; }
1680
1681   // Return the stub table.
1682   The_stub_table*
1683   stub_table()
1684   { return stub_table_; }
1685
1686  protected:
1687   // Write out this input section.
1688   void
1689   do_write(Output_file*);
1690
1691   // Return required alignment of this.
1692   uint64_t
1693   do_addralign() const
1694   {
1695     if (this->is_stub_table_owner())
1696       return std::max(this->stub_table_->addralign(),
1697                       static_cast<uint64_t>(this->original_addralign_));
1698     else
1699       return this->original_addralign_;
1700   }
1701
1702   // Finalize data size.
1703   void
1704   set_final_data_size();
1705
1706   // Reset address and file offset.
1707   void
1708   do_reset_address_and_file_offset();
1709
1710   // Output offset.
1711   bool
1712   do_output_offset(const Relobj* object, unsigned int shndx,
1713                    section_offset_type offset,
1714                    section_offset_type* poutput) const
1715   {
1716     if ((object == this->relobj())
1717         && (shndx == this->shndx())
1718         && (offset >= 0)
1719         && (offset <=
1720             convert_types<section_offset_type, uint32_t>(this->original_size_)))
1721       {
1722         *poutput = offset;
1723         return true;
1724       }
1725     else
1726       return false;
1727   }
1728
1729  private:
1730   // Copying is not allowed.
1731   AArch64_input_section(const AArch64_input_section&);
1732   AArch64_input_section& operator=(const AArch64_input_section&);
1733
1734   // The relocation stubs.
1735   The_stub_table* stub_table_;
1736   // Original section contents.  We have to make a copy here since the file
1737   // containing the original section may not be locked when we need to access
1738   // the contents.
1739   unsigned char* original_contents_;
1740   // Section size of the original input section.
1741   uint32_t original_size_;
1742   // Address alignment of the original input section.
1743   uint32_t original_addralign_;
1744 };  // End of AArch64_input_section
1745
1746
1747 // Finalize data size.
1748
1749 template<int size, bool big_endian>
1750 void
1751 AArch64_input_section<size, big_endian>::set_final_data_size()
1752 {
1753   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
1754
1755   if (this->is_stub_table_owner())
1756     {
1757       this->stub_table_->finalize_data_size();
1758       off = align_address(off, this->stub_table_->addralign());
1759       off += this->stub_table_->data_size();
1760     }
1761   this->set_data_size(off);
1762 }
1763
1764
1765 // Reset address and file offset.
1766
1767 template<int size, bool big_endian>
1768 void
1769 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
1770 {
1771   // Size of the original input section contents.
1772   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
1773
1774   // If this is a stub table owner, account for the stub table size.
1775   if (this->is_stub_table_owner())
1776     {
1777       The_stub_table* stub_table = this->stub_table_;
1778
1779       // Reset the stub table's address and file offset.  The
1780       // current data size for child will be updated after that.
1781       stub_table_->reset_address_and_file_offset();
1782       off = align_address(off, stub_table_->addralign());
1783       off += stub_table->current_data_size();
1784     }
1785
1786   this->set_current_data_size(off);
1787 }
1788
1789
1790 // Initialize an Arm_input_section.
1791
1792 template<int size, bool big_endian>
1793 void
1794 AArch64_input_section<size, big_endian>::init()
1795 {
1796   Relobj* relobj = this->relobj();
1797   unsigned int shndx = this->shndx();
1798
1799   // We have to cache original size, alignment and contents to avoid locking
1800   // the original file.
1801   this->original_addralign_ =
1802       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
1803
1804   // This is not efficient but we expect only a small number of relaxed
1805   // input sections for stubs.
1806   section_size_type section_size;
1807   const unsigned char* section_contents =
1808       relobj->section_contents(shndx, &section_size, false);
1809   this->original_size_ =
1810       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
1811
1812   gold_assert(this->original_contents_ == NULL);
1813   this->original_contents_ = new unsigned char[section_size];
1814   memcpy(this->original_contents_, section_contents, section_size);
1815
1816   // We want to make this look like the original input section after
1817   // output sections are finalized.
1818   Output_section* os = relobj->output_section(shndx);
1819   off_t offset = relobj->output_section_offset(shndx);
1820   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
1821   this->set_address(os->address() + offset);
1822   this->set_file_offset(os->offset() + offset);
1823   this->set_current_data_size(this->original_size_);
1824   this->finalize_data_size();
1825 }
1826
1827
1828 // Write data to output file.
1829
1830 template<int size, bool big_endian>
1831 void
1832 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
1833 {
1834   // We have to write out the original section content.
1835   gold_assert(this->original_contents_ != NULL);
1836   of->write(this->offset(), this->original_contents_,
1837             this->original_size_);
1838
1839   // If this owns a stub table and it is not empty, write it.
1840   if (this->is_stub_table_owner() && !this->stub_table_->empty())
1841     this->stub_table_->write(of);
1842 }
1843
1844
1845 // Arm output section class.  This is defined mainly to add a number of stub
1846 // generation methods.
1847
1848 template<int size, bool big_endian>
1849 class AArch64_output_section : public Output_section
1850 {
1851  public:
1852   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1853   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1854   typedef Stub_table<size, big_endian> The_stub_table;
1855   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1856
1857  public:
1858   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
1859                          elfcpp::Elf_Xword flags)
1860     : Output_section(name, type, flags)
1861   { }
1862
1863   ~AArch64_output_section() {}
1864
1865   // Group input sections for stub generation.
1866   void
1867   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
1868                  const Task*);
1869
1870  private:
1871   typedef Output_section::Input_section Input_section;
1872   typedef Output_section::Input_section_list Input_section_list;
1873
1874   // Create a stub group.
1875   void
1876   create_stub_group(Input_section_list::const_iterator,
1877                     Input_section_list::const_iterator,
1878                     Input_section_list::const_iterator,
1879                     The_target_aarch64*,
1880                     std::vector<Output_relaxed_input_section*>&,
1881                     const Task*);
1882 };  // End of AArch64_output_section
1883
1884
1885 // Create a stub group for input sections from FIRST to LAST. OWNER points to
1886 // the input section that will be the owner of the stub table.
1887
1888 template<int size, bool big_endian> void
1889 AArch64_output_section<size, big_endian>::create_stub_group(
1890     Input_section_list::const_iterator first,
1891     Input_section_list::const_iterator last,
1892     Input_section_list::const_iterator owner,
1893     The_target_aarch64* target,
1894     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
1895     const Task* task)
1896 {
1897   // Currently we convert ordinary input sections into relaxed sections only
1898   // at this point.
1899   The_aarch64_input_section* input_section;
1900   if (owner->is_relaxed_input_section())
1901     gold_unreachable();
1902   else
1903     {
1904       gold_assert(owner->is_input_section());
1905       // Create a new relaxed input section.  We need to lock the original
1906       // file.
1907       Task_lock_obj<Object> tl(task, owner->relobj());
1908       input_section =
1909           target->new_aarch64_input_section(owner->relobj(), owner->shndx());
1910       new_relaxed_sections.push_back(input_section);
1911     }
1912
1913   // Create a stub table.
1914   The_stub_table* stub_table =
1915       target->new_stub_table(input_section);
1916
1917   input_section->set_stub_table(stub_table);
1918
1919   Input_section_list::const_iterator p = first;
1920   // Look for input sections or relaxed input sections in [first ... last].
1921   do
1922     {
1923       if (p->is_input_section() || p->is_relaxed_input_section())
1924         {
1925           // The stub table information for input sections live
1926           // in their objects.
1927           The_aarch64_relobj* aarch64_relobj =
1928               static_cast<The_aarch64_relobj*>(p->relobj());
1929           aarch64_relobj->set_stub_table(p->shndx(), stub_table);
1930         }
1931     }
1932   while (p++ != last);
1933 }
1934
1935
1936 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
1937 // stub groups. We grow a stub group by adding input section until the size is
1938 // just below GROUP_SIZE. The last input section will be converted into a stub
1939 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
1940 // after the stub table, effectively doubling the group size.
1941 //
1942 // This is similar to the group_sections() function in elf32-arm.c but is
1943 // implemented differently.
1944
1945 template<int size, bool big_endian>
1946 void AArch64_output_section<size, big_endian>::group_sections(
1947     section_size_type group_size,
1948     bool stubs_always_after_branch,
1949     Target_aarch64<size, big_endian>* target,
1950     const Task* task)
1951 {
1952   typedef enum
1953   {
1954     NO_GROUP,
1955     FINDING_STUB_SECTION,
1956     HAS_STUB_SECTION
1957   } State;
1958
1959   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
1960
1961   State state = NO_GROUP;
1962   section_size_type off = 0;
1963   section_size_type group_begin_offset = 0;
1964   section_size_type group_end_offset = 0;
1965   section_size_type stub_table_end_offset = 0;
1966   Input_section_list::const_iterator group_begin =
1967       this->input_sections().end();
1968   Input_section_list::const_iterator stub_table =
1969       this->input_sections().end();
1970   Input_section_list::const_iterator group_end = this->input_sections().end();
1971   for (Input_section_list::const_iterator p = this->input_sections().begin();
1972        p != this->input_sections().end();
1973        ++p)
1974     {
1975       section_size_type section_begin_offset =
1976         align_address(off, p->addralign());
1977       section_size_type section_end_offset =
1978         section_begin_offset + p->data_size();
1979
1980       // Check to see if we should group the previously seen sections.
1981       switch (state)
1982         {
1983         case NO_GROUP:
1984           break;
1985
1986         case FINDING_STUB_SECTION:
1987           // Adding this section makes the group larger than GROUP_SIZE.
1988           if (section_end_offset - group_begin_offset >= group_size)
1989             {
1990               if (stubs_always_after_branch)
1991                 {
1992                   gold_assert(group_end != this->input_sections().end());
1993                   this->create_stub_group(group_begin, group_end, group_end,
1994                                           target, new_relaxed_sections,
1995                                           task);
1996                   state = NO_GROUP;
1997                 }
1998               else
1999                 {
2000                   // Input sections up to stub_group_size bytes after the stub
2001                   // table can be handled by it too.
2002                   state = HAS_STUB_SECTION;
2003                   stub_table = group_end;
2004                   stub_table_end_offset = group_end_offset;
2005                 }
2006             }
2007             break;
2008
2009         case HAS_STUB_SECTION:
2010           // Adding this section makes the post stub-section group larger
2011           // than GROUP_SIZE.
2012           gold_unreachable();
2013           // NOT SUPPORTED YET. For completeness only.
2014           if (section_end_offset - stub_table_end_offset >= group_size)
2015            {
2016              gold_assert(group_end != this->input_sections().end());
2017              this->create_stub_group(group_begin, group_end, stub_table,
2018                                      target, new_relaxed_sections, task);
2019              state = NO_GROUP;
2020            }
2021            break;
2022
2023           default:
2024             gold_unreachable();
2025         }
2026
2027       // If we see an input section and currently there is no group, start
2028       // a new one.  Skip any empty sections.  We look at the data size
2029       // instead of calling p->relobj()->section_size() to avoid locking.
2030       if ((p->is_input_section() || p->is_relaxed_input_section())
2031           && (p->data_size() != 0))
2032         {
2033           if (state == NO_GROUP)
2034             {
2035               state = FINDING_STUB_SECTION;
2036               group_begin = p;
2037               group_begin_offset = section_begin_offset;
2038             }
2039
2040           // Keep track of the last input section seen.
2041           group_end = p;
2042           group_end_offset = section_end_offset;
2043         }
2044
2045       off = section_end_offset;
2046     }
2047
2048   // Create a stub group for any ungrouped sections.
2049   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2050     {
2051       gold_assert(group_end != this->input_sections().end());
2052       this->create_stub_group(group_begin, group_end,
2053                               (state == FINDING_STUB_SECTION
2054                                ? group_end
2055                                : stub_table),
2056                               target, new_relaxed_sections, task);
2057     }
2058
2059   if (!new_relaxed_sections.empty())
2060     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2061
2062   // Update the section offsets
2063   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2064     {
2065       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2066           new_relaxed_sections[i]->relobj());
2067       unsigned int shndx = new_relaxed_sections[i]->shndx();
2068       // Tell AArch64_relobj that this input section is converted.
2069       relobj->convert_input_section_to_relaxed_section(shndx);
2070     }
2071 }  // End of AArch64_output_section::group_sections
2072
2073
2074 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2075
2076
2077 // The aarch64 target class.
2078 // See the ABI at
2079 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2080 template<int size, bool big_endian>
2081 class Target_aarch64 : public Sized_target<size, big_endian>
2082 {
2083  public:
2084   typedef Target_aarch64<size, big_endian> This;
2085   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2086       Reloc_section;
2087   typedef Relocate_info<size, big_endian> The_relocate_info;
2088   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2089   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2090   typedef Reloc_stub<size, big_endian> The_reloc_stub;
2091   typedef typename The_reloc_stub::Stub_type The_reloc_stub_type;
2092   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2093   typedef Stub_table<size, big_endian> The_stub_table;
2094   typedef std::vector<The_stub_table*> Stub_table_list;
2095   typedef typename Stub_table_list::iterator Stub_table_iterator;
2096   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2097   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2098   typedef Unordered_map<Section_id,
2099                         AArch64_input_section<size, big_endian>*,
2100                         Section_id_hash> AArch64_input_section_map;
2101   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2102   const static int TCB_SIZE = size / 8 * 2;
2103
2104   Target_aarch64(const Target::Target_info* info = &aarch64_info)
2105     : Sized_target<size, big_endian>(info),
2106       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2107       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2108       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2109       got_mod_index_offset_(-1U),
2110       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2111       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2112   { }
2113
2114   // Scan the relocations to determine unreferenced sections for
2115   // garbage collection.
2116   void
2117   gc_process_relocs(Symbol_table* symtab,
2118                     Layout* layout,
2119                     Sized_relobj_file<size, big_endian>* object,
2120                     unsigned int data_shndx,
2121                     unsigned int sh_type,
2122                     const unsigned char* prelocs,
2123                     size_t reloc_count,
2124                     Output_section* output_section,
2125                     bool needs_special_offset_handling,
2126                     size_t local_symbol_count,
2127                     const unsigned char* plocal_symbols);
2128
2129   // Scan the relocations to look for symbol adjustments.
2130   void
2131   scan_relocs(Symbol_table* symtab,
2132               Layout* layout,
2133               Sized_relobj_file<size, big_endian>* object,
2134               unsigned int data_shndx,
2135               unsigned int sh_type,
2136               const unsigned char* prelocs,
2137               size_t reloc_count,
2138               Output_section* output_section,
2139               bool needs_special_offset_handling,
2140               size_t local_symbol_count,
2141               const unsigned char* plocal_symbols);
2142
2143   // Finalize the sections.
2144   void
2145   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2146
2147   // Return the value to use for a dynamic which requires special
2148   // treatment.
2149   uint64_t
2150   do_dynsym_value(const Symbol*) const;
2151
2152   // Relocate a section.
2153   void
2154   relocate_section(const Relocate_info<size, big_endian>*,
2155                    unsigned int sh_type,
2156                    const unsigned char* prelocs,
2157                    size_t reloc_count,
2158                    Output_section* output_section,
2159                    bool needs_special_offset_handling,
2160                    unsigned char* view,
2161                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2162                    section_size_type view_size,
2163                    const Reloc_symbol_changes*);
2164
2165   // Scan the relocs during a relocatable link.
2166   void
2167   scan_relocatable_relocs(Symbol_table* symtab,
2168                           Layout* layout,
2169                           Sized_relobj_file<size, big_endian>* object,
2170                           unsigned int data_shndx,
2171                           unsigned int sh_type,
2172                           const unsigned char* prelocs,
2173                           size_t reloc_count,
2174                           Output_section* output_section,
2175                           bool needs_special_offset_handling,
2176                           size_t local_symbol_count,
2177                           const unsigned char* plocal_symbols,
2178                           Relocatable_relocs*);
2179
2180   // Relocate a section during a relocatable link.
2181   void
2182   relocate_relocs(
2183       const Relocate_info<size, big_endian>*,
2184       unsigned int sh_type,
2185       const unsigned char* prelocs,
2186       size_t reloc_count,
2187       Output_section* output_section,
2188       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2189       const Relocatable_relocs*,
2190       unsigned char* view,
2191       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2192       section_size_type view_size,
2193       unsigned char* reloc_view,
2194       section_size_type reloc_view_size);
2195
2196   // Return the symbol index to use for a target specific relocation.
2197   // The only target specific relocation is R_AARCH64_TLSDESC for a
2198   // local symbol, which is an absolute reloc.
2199   unsigned int
2200   do_reloc_symbol_index(void*, unsigned int r_type) const
2201   {
2202     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2203     return 0;
2204   }
2205
2206   // Return the addend to use for a target specific relocation.
2207   uint64_t
2208   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2209
2210   // Return the PLT section.
2211   uint64_t
2212   do_plt_address_for_global(const Symbol* gsym) const
2213   { return this->plt_section()->address_for_global(gsym); }
2214
2215   uint64_t
2216   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2217   { return this->plt_section()->address_for_local(relobj, symndx); }
2218
2219   // This function should be defined in targets that can use relocation
2220   // types to determine (implemented in local_reloc_may_be_function_pointer
2221   // and global_reloc_may_be_function_pointer)
2222   // if a function's pointer is taken.  ICF uses this in safe mode to only
2223   // fold those functions whose pointer is defintely not taken.
2224   bool
2225   do_can_check_for_function_pointers() const
2226   { return true; }
2227
2228   // Return the number of entries in the PLT.
2229   unsigned int
2230   plt_entry_count() const;
2231
2232   //Return the offset of the first non-reserved PLT entry.
2233   unsigned int
2234   first_plt_entry_offset() const;
2235
2236   // Return the size of each PLT entry.
2237   unsigned int
2238   plt_entry_size() const;
2239
2240   // Create a stub table.
2241   The_stub_table*
2242   new_stub_table(The_aarch64_input_section*);
2243
2244   // Create an aarch64 input section.
2245   The_aarch64_input_section*
2246   new_aarch64_input_section(Relobj*, unsigned int);
2247
2248   // Find an aarch64 input section instance for a given OBJ and SHNDX.
2249   The_aarch64_input_section*
2250   find_aarch64_input_section(Relobj*, unsigned int) const;
2251
2252   // Return the thread control block size.
2253   unsigned int
2254   tcb_size() const { return This::TCB_SIZE; }
2255
2256   // Scan a section for stub generation.
2257   void
2258   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2259                          const unsigned char*, size_t, Output_section*,
2260                          bool, const unsigned char*,
2261                          Address,
2262                          section_size_type);
2263
2264   // Scan a relocation section for stub.
2265   template<int sh_type>
2266   void
2267   scan_reloc_section_for_stubs(
2268       const The_relocate_info* relinfo,
2269       const unsigned char* prelocs,
2270       size_t reloc_count,
2271       Output_section* output_section,
2272       bool needs_special_offset_handling,
2273       const unsigned char* view,
2274       Address view_address,
2275       section_size_type);
2276
2277   // Relocate a single stub.
2278   void
2279   relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2280                 Output_section*, unsigned char*, Address,
2281                 section_size_type);
2282
2283   // Get the default AArch64 target.
2284   static This*
2285   current_target()
2286   {
2287     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2288                 && parameters->target().get_size() == size
2289                 && parameters->target().is_big_endian() == big_endian);
2290     return static_cast<This*>(parameters->sized_target<size, big_endian>());
2291   }
2292
2293
2294   // Scan erratum for a part of a section.
2295   void
2296   scan_erratum_843419_span(
2297     AArch64_relobj<size, big_endian>*,
2298     unsigned int shndx,
2299     const section_size_type,
2300     const section_size_type,
2301     unsigned char*,
2302     Address);
2303
2304  protected:
2305   void
2306   do_select_as_default_target()
2307   {
2308     gold_assert(aarch64_reloc_property_table == NULL);
2309     aarch64_reloc_property_table = new AArch64_reloc_property_table();
2310   }
2311
2312   // Add a new reloc argument, returning the index in the vector.
2313   size_t
2314   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
2315                    unsigned int r_sym)
2316   {
2317     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
2318     return this->tlsdesc_reloc_info_.size() - 1;
2319   }
2320
2321   virtual Output_data_plt_aarch64<size, big_endian>*
2322   do_make_data_plt(Layout* layout,
2323                    Output_data_got_aarch64<size, big_endian>* got,
2324                    Output_data_space* got_plt,
2325                    Output_data_space* got_irelative)
2326   {
2327     return new Output_data_plt_aarch64_standard<size, big_endian>(
2328       layout, got, got_plt, got_irelative);
2329   }
2330
2331
2332   // do_make_elf_object to override the same function in the base class.
2333   Object*
2334   do_make_elf_object(const std::string&, Input_file*, off_t,
2335                      const elfcpp::Ehdr<size, big_endian>&);
2336
2337   Output_data_plt_aarch64<size, big_endian>*
2338   make_data_plt(Layout* layout,
2339                 Output_data_got_aarch64<size, big_endian>* got,
2340                 Output_data_space* got_plt,
2341                 Output_data_space* got_irelative)
2342   {
2343     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
2344   }
2345
2346   // We only need to generate stubs, and hence perform relaxation if we are
2347   // not doing relocatable linking.
2348   virtual bool
2349   do_may_relax() const
2350   { return !parameters->options().relocatable(); }
2351
2352   // Relaxation hook.  This is where we do stub generation.
2353   virtual bool
2354   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2355
2356   void
2357   group_sections(Layout* layout,
2358                  section_size_type group_size,
2359                  bool stubs_always_after_branch,
2360                  const Task* task);
2361
2362   void
2363   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
2364                       const Sized_symbol<size>*, unsigned int,
2365                       const Symbol_value<size>*,
2366                       typename elfcpp::Elf_types<size>::Elf_Swxword,
2367                       Address Elf_Addr);
2368
2369   // Make an output section.
2370   Output_section*
2371   do_make_output_section(const char* name, elfcpp::Elf_Word type,
2372                          elfcpp::Elf_Xword flags)
2373   { return new The_aarch64_output_section(name, type, flags); }
2374
2375  private:
2376   // The class which scans relocations.
2377   class Scan
2378   {
2379   public:
2380     Scan()
2381       : issued_non_pic_error_(false)
2382     { }
2383
2384     inline void
2385     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
2386           Sized_relobj_file<size, big_endian>* object,
2387           unsigned int data_shndx,
2388           Output_section* output_section,
2389           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
2390           const elfcpp::Sym<size, big_endian>& lsym,
2391           bool is_discarded);
2392
2393     inline void
2394     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
2395            Sized_relobj_file<size, big_endian>* object,
2396            unsigned int data_shndx,
2397            Output_section* output_section,
2398            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
2399            Symbol* gsym);
2400
2401     inline bool
2402     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
2403                                         Target_aarch64<size, big_endian>* ,
2404                                         Sized_relobj_file<size, big_endian>* ,
2405                                         unsigned int ,
2406                                         Output_section* ,
2407                                         const elfcpp::Rela<size, big_endian>& ,
2408                                         unsigned int r_type,
2409                                         const elfcpp::Sym<size, big_endian>&);
2410
2411     inline bool
2412     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
2413                                          Target_aarch64<size, big_endian>* ,
2414                                          Sized_relobj_file<size, big_endian>* ,
2415                                          unsigned int ,
2416                                          Output_section* ,
2417                                          const elfcpp::Rela<size, big_endian>& ,
2418                                          unsigned int r_type,
2419                                          Symbol* gsym);
2420
2421   private:
2422     static void
2423     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
2424                             unsigned int r_type);
2425
2426     static void
2427     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
2428                              unsigned int r_type, Symbol*);
2429
2430     inline bool
2431     possible_function_pointer_reloc(unsigned int r_type);
2432
2433     void
2434     check_non_pic(Relobj*, unsigned int r_type);
2435
2436     bool
2437     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
2438                               unsigned int r_type);
2439
2440     // Whether we have issued an error about a non-PIC compilation.
2441     bool issued_non_pic_error_;
2442   };
2443
2444   // The class which implements relocation.
2445   class Relocate
2446   {
2447    public:
2448     Relocate()
2449       : skip_call_tls_get_addr_(false)
2450     { }
2451
2452     ~Relocate()
2453     { }
2454
2455     // Do a relocation.  Return false if the caller should not issue
2456     // any warnings about this relocation.
2457     inline bool
2458     relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
2459              Output_section*,
2460              size_t relnum, const elfcpp::Rela<size, big_endian>&,
2461              unsigned int r_type, const Sized_symbol<size>*,
2462              const Symbol_value<size>*,
2463              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
2464              section_size_type);
2465
2466   private:
2467     inline typename AArch64_relocate_functions<size, big_endian>::Status
2468     relocate_tls(const Relocate_info<size, big_endian>*,
2469                  Target_aarch64<size, big_endian>*,
2470                  size_t,
2471                  const elfcpp::Rela<size, big_endian>&,
2472                  unsigned int r_type, const Sized_symbol<size>*,
2473                  const Symbol_value<size>*,
2474                  unsigned char*,
2475                  typename elfcpp::Elf_types<size>::Elf_Addr);
2476
2477     inline typename AArch64_relocate_functions<size, big_endian>::Status
2478     tls_gd_to_le(
2479                  const Relocate_info<size, big_endian>*,
2480                  Target_aarch64<size, big_endian>*,
2481                  const elfcpp::Rela<size, big_endian>&,
2482                  unsigned int,
2483                  unsigned char*,
2484                  const Symbol_value<size>*);
2485
2486     inline typename AArch64_relocate_functions<size, big_endian>::Status
2487     tls_ld_to_le(
2488                  const Relocate_info<size, big_endian>*,
2489                  Target_aarch64<size, big_endian>*,
2490                  const elfcpp::Rela<size, big_endian>&,
2491                  unsigned int,
2492                  unsigned char*,
2493                  const Symbol_value<size>*);
2494
2495     inline typename AArch64_relocate_functions<size, big_endian>::Status
2496     tls_ie_to_le(
2497                  const Relocate_info<size, big_endian>*,
2498                  Target_aarch64<size, big_endian>*,
2499                  const elfcpp::Rela<size, big_endian>&,
2500                  unsigned int,
2501                  unsigned char*,
2502                  const Symbol_value<size>*);
2503
2504     inline typename AArch64_relocate_functions<size, big_endian>::Status
2505     tls_desc_gd_to_le(
2506                  const Relocate_info<size, big_endian>*,
2507                  Target_aarch64<size, big_endian>*,
2508                  const elfcpp::Rela<size, big_endian>&,
2509                  unsigned int,
2510                  unsigned char*,
2511                  const Symbol_value<size>*);
2512
2513     inline typename AArch64_relocate_functions<size, big_endian>::Status
2514     tls_desc_gd_to_ie(
2515                  const Relocate_info<size, big_endian>*,
2516                  Target_aarch64<size, big_endian>*,
2517                  const elfcpp::Rela<size, big_endian>&,
2518                  unsigned int,
2519                  unsigned char*,
2520                  const Symbol_value<size>*,
2521                  typename elfcpp::Elf_types<size>::Elf_Addr,
2522                  typename elfcpp::Elf_types<size>::Elf_Addr);
2523
2524     bool skip_call_tls_get_addr_;
2525
2526   };  // End of class Relocate
2527
2528   // A class which returns the size required for a relocation type,
2529   // used while scanning relocs during a relocatable link.
2530   class Relocatable_size_for_reloc
2531   {
2532    public:
2533     unsigned int
2534     get_size_for_reloc(unsigned int, Relobj*);
2535   };
2536
2537   // Adjust TLS relocation type based on the options and whether this
2538   // is a local symbol.
2539   static tls::Tls_optimization
2540   optimize_tls_reloc(bool is_final, int r_type);
2541
2542   // Get the GOT section, creating it if necessary.
2543   Output_data_got_aarch64<size, big_endian>*
2544   got_section(Symbol_table*, Layout*);
2545
2546   // Get the GOT PLT section.
2547   Output_data_space*
2548   got_plt_section() const
2549   {
2550     gold_assert(this->got_plt_ != NULL);
2551     return this->got_plt_;
2552   }
2553
2554   // Get the GOT section for TLSDESC entries.
2555   Output_data_got<size, big_endian>*
2556   got_tlsdesc_section() const
2557   {
2558     gold_assert(this->got_tlsdesc_ != NULL);
2559     return this->got_tlsdesc_;
2560   }
2561
2562   // Create the PLT section.
2563   void
2564   make_plt_section(Symbol_table* symtab, Layout* layout);
2565
2566   // Create a PLT entry for a global symbol.
2567   void
2568   make_plt_entry(Symbol_table*, Layout*, Symbol*);
2569
2570   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2571   void
2572   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2573                              Sized_relobj_file<size, big_endian>* relobj,
2574                              unsigned int local_sym_index);
2575
2576   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2577   void
2578   define_tls_base_symbol(Symbol_table*, Layout*);
2579
2580   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2581   void
2582   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
2583
2584   // Create a GOT entry for the TLS module index.
2585   unsigned int
2586   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2587                       Sized_relobj_file<size, big_endian>* object);
2588
2589   // Get the PLT section.
2590   Output_data_plt_aarch64<size, big_endian>*
2591   plt_section() const
2592   {
2593     gold_assert(this->plt_ != NULL);
2594     return this->plt_;
2595   }
2596
2597   // Return whether this is a 3-insn erratum sequence.
2598   bool is_erratum_843419_sequence(
2599       typename elfcpp::Swap<32,big_endian>::Valtype insn1,
2600       typename elfcpp::Swap<32,big_endian>::Valtype insn2,
2601       typename elfcpp::Swap<32,big_endian>::Valtype insn3);
2602
2603   // Get the dynamic reloc section, creating it if necessary.
2604   Reloc_section*
2605   rela_dyn_section(Layout*);
2606
2607   // Get the section to use for TLSDESC relocations.
2608   Reloc_section*
2609   rela_tlsdesc_section(Layout*) const;
2610
2611   // Get the section to use for IRELATIVE relocations.
2612   Reloc_section*
2613   rela_irelative_section(Layout*);
2614
2615   // Add a potential copy relocation.
2616   void
2617   copy_reloc(Symbol_table* symtab, Layout* layout,
2618              Sized_relobj_file<size, big_endian>* object,
2619              unsigned int shndx, Output_section* output_section,
2620              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
2621   {
2622     this->copy_relocs_.copy_reloc(symtab, layout,
2623                                   symtab->get_sized_symbol<size>(sym),
2624                                   object, shndx, output_section,
2625                                   reloc, this->rela_dyn_section(layout));
2626   }
2627
2628   // Information about this specific target which we pass to the
2629   // general Target structure.
2630   static const Target::Target_info aarch64_info;
2631
2632   // The types of GOT entries needed for this platform.
2633   // These values are exposed to the ABI in an incremental link.
2634   // Do not renumber existing values without changing the version
2635   // number of the .gnu_incremental_inputs section.
2636   enum Got_type
2637   {
2638     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
2639     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
2640     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
2641     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
2642   };
2643
2644   // This type is used as the argument to the target specific
2645   // relocation routines.  The only target specific reloc is
2646   // R_AARCh64_TLSDESC against a local symbol.
2647   struct Tlsdesc_info
2648   {
2649     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
2650                  unsigned int a_r_sym)
2651       : object(a_object), r_sym(a_r_sym)
2652     { }
2653
2654     // The object in which the local symbol is defined.
2655     Sized_relobj_file<size, big_endian>* object;
2656     // The local symbol index in the object.
2657     unsigned int r_sym;
2658   };
2659
2660   // The GOT section.
2661   Output_data_got_aarch64<size, big_endian>* got_;
2662   // The PLT section.
2663   Output_data_plt_aarch64<size, big_endian>* plt_;
2664   // The GOT PLT section.
2665   Output_data_space* got_plt_;
2666   // The GOT section for IRELATIVE relocations.
2667   Output_data_space* got_irelative_;
2668   // The GOT section for TLSDESC relocations.
2669   Output_data_got<size, big_endian>* got_tlsdesc_;
2670   // The _GLOBAL_OFFSET_TABLE_ symbol.
2671   Symbol* global_offset_table_;
2672   // The dynamic reloc section.
2673   Reloc_section* rela_dyn_;
2674   // The section to use for IRELATIVE relocs.
2675   Reloc_section* rela_irelative_;
2676   // Relocs saved to avoid a COPY reloc.
2677   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
2678   // Offset of the GOT entry for the TLS module index.
2679   unsigned int got_mod_index_offset_;
2680   // We handle R_AARCH64_TLSDESC against a local symbol as a target
2681   // specific relocation. Here we store the object and local symbol
2682   // index for the relocation.
2683   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
2684   // True if the _TLS_MODULE_BASE_ symbol has been defined.
2685   bool tls_base_symbol_defined_;
2686   // List of stub_tables
2687   Stub_table_list stub_tables_;
2688   // Actual stub group size
2689   section_size_type stub_group_size_;
2690   AArch64_input_section_map aarch64_input_section_map_;
2691 };  // End of Target_aarch64
2692
2693
2694 template<>
2695 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
2696 {
2697   64,                   // size
2698   false,                // is_big_endian
2699   elfcpp::EM_AARCH64,   // machine_code
2700   false,                // has_make_symbol
2701   false,                // has_resolve
2702   false,                // has_code_fill
2703   true,                 // is_default_stack_executable
2704   true,                 // can_icf_inline_merge_sections
2705   '\0',                 // wrap_char
2706   "/lib/ld.so.1",       // program interpreter
2707   0x400000,             // default_text_segment_address
2708   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2709   0x1000,               // common_pagesize (overridable by -z common-page-size)
2710   false,                // isolate_execinstr
2711   0,                    // rosegment_gap
2712   elfcpp::SHN_UNDEF,    // small_common_shndx
2713   elfcpp::SHN_UNDEF,    // large_common_shndx
2714   0,                    // small_common_section_flags
2715   0,                    // large_common_section_flags
2716   NULL,                 // attributes_section
2717   NULL,                 // attributes_vendor
2718   "_start"              // entry_symbol_name
2719 };
2720
2721 template<>
2722 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
2723 {
2724   32,                   // size
2725   false,                // is_big_endian
2726   elfcpp::EM_AARCH64,   // machine_code
2727   false,                // has_make_symbol
2728   false,                // has_resolve
2729   false,                // has_code_fill
2730   true,                 // is_default_stack_executable
2731   false,                // can_icf_inline_merge_sections
2732   '\0',                 // wrap_char
2733   "/lib/ld.so.1",       // program interpreter
2734   0x400000,             // default_text_segment_address
2735   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2736   0x1000,               // common_pagesize (overridable by -z common-page-size)
2737   false,                // isolate_execinstr
2738   0,                    // rosegment_gap
2739   elfcpp::SHN_UNDEF,    // small_common_shndx
2740   elfcpp::SHN_UNDEF,    // large_common_shndx
2741   0,                    // small_common_section_flags
2742   0,                    // large_common_section_flags
2743   NULL,                 // attributes_section
2744   NULL,                 // attributes_vendor
2745   "_start"              // entry_symbol_name
2746 };
2747
2748 template<>
2749 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
2750 {
2751   64,                   // size
2752   true,                 // is_big_endian
2753   elfcpp::EM_AARCH64,   // machine_code
2754   false,                // has_make_symbol
2755   false,                // has_resolve
2756   false,                // has_code_fill
2757   true,                 // is_default_stack_executable
2758   true,                 // can_icf_inline_merge_sections
2759   '\0',                 // wrap_char
2760   "/lib/ld.so.1",       // program interpreter
2761   0x400000,             // default_text_segment_address
2762   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2763   0x1000,               // common_pagesize (overridable by -z common-page-size)
2764   false,                // isolate_execinstr
2765   0,                    // rosegment_gap
2766   elfcpp::SHN_UNDEF,    // small_common_shndx
2767   elfcpp::SHN_UNDEF,    // large_common_shndx
2768   0,                    // small_common_section_flags
2769   0,                    // large_common_section_flags
2770   NULL,                 // attributes_section
2771   NULL,                 // attributes_vendor
2772   "_start"              // entry_symbol_name
2773 };
2774
2775 template<>
2776 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
2777 {
2778   32,                   // size
2779   true,                 // is_big_endian
2780   elfcpp::EM_AARCH64,   // machine_code
2781   false,                // has_make_symbol
2782   false,                // has_resolve
2783   false,                // has_code_fill
2784   true,                 // is_default_stack_executable
2785   false,                // can_icf_inline_merge_sections
2786   '\0',                 // wrap_char
2787   "/lib/ld.so.1",       // program interpreter
2788   0x400000,             // default_text_segment_address
2789   0x1000,               // abi_pagesize (overridable by -z max-page-size)
2790   0x1000,               // common_pagesize (overridable by -z common-page-size)
2791   false,                // isolate_execinstr
2792   0,                    // rosegment_gap
2793   elfcpp::SHN_UNDEF,    // small_common_shndx
2794   elfcpp::SHN_UNDEF,    // large_common_shndx
2795   0,                    // small_common_section_flags
2796   0,                    // large_common_section_flags
2797   NULL,                 // attributes_section
2798   NULL,                 // attributes_vendor
2799   "_start"              // entry_symbol_name
2800 };
2801
2802 // Get the GOT section, creating it if necessary.
2803
2804 template<int size, bool big_endian>
2805 Output_data_got_aarch64<size, big_endian>*
2806 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
2807                                               Layout* layout)
2808 {
2809   if (this->got_ == NULL)
2810     {
2811       gold_assert(symtab != NULL && layout != NULL);
2812
2813       // When using -z now, we can treat .got.plt as a relro section.
2814       // Without -z now, it is modified after program startup by lazy
2815       // PLT relocations.
2816       bool is_got_plt_relro = parameters->options().now();
2817       Output_section_order got_order = (is_got_plt_relro
2818                                         ? ORDER_RELRO
2819                                         : ORDER_RELRO_LAST);
2820       Output_section_order got_plt_order = (is_got_plt_relro
2821                                             ? ORDER_RELRO
2822                                             : ORDER_NON_RELRO_FIRST);
2823
2824       // Layout of .got and .got.plt sections.
2825       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
2826       // ...
2827       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
2828       // .gotplt[1] reserved for ld.so (resolver)
2829       // .gotplt[2] reserved
2830
2831       // Generate .got section.
2832       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
2833                                                                  layout);
2834       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2835                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
2836                                       this->got_, got_order, true);
2837       // The first word of GOT is reserved for the address of .dynamic.
2838       // We put 0 here now. The value will be replaced later in
2839       // Output_data_got_aarch64::do_write.
2840       this->got_->add_constant(0);
2841
2842       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
2843       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
2844       // even if there is a .got.plt section.
2845       this->global_offset_table_ =
2846         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2847                                       Symbol_table::PREDEFINED,
2848                                       this->got_,
2849                                       0, 0, elfcpp::STT_OBJECT,
2850                                       elfcpp::STB_LOCAL,
2851                                       elfcpp::STV_HIDDEN, 0,
2852                                       false, false);
2853
2854       // Generate .got.plt section.
2855       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
2856       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2857                                       (elfcpp::SHF_ALLOC
2858                                        | elfcpp::SHF_WRITE),
2859                                       this->got_plt_, got_plt_order,
2860                                       is_got_plt_relro);
2861
2862       // The first three entries are reserved.
2863       this->got_plt_->set_current_data_size(
2864         AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
2865
2866       // If there are any IRELATIVE relocations, they get GOT entries
2867       // in .got.plt after the jump slot entries.
2868       this->got_irelative_ = new Output_data_space(size / 8,
2869                                                    "** GOT IRELATIVE PLT");
2870       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2871                                       (elfcpp::SHF_ALLOC
2872                                        | elfcpp::SHF_WRITE),
2873                                       this->got_irelative_,
2874                                       got_plt_order,
2875                                       is_got_plt_relro);
2876
2877       // If there are any TLSDESC relocations, they get GOT entries in
2878       // .got.plt after the jump slot and IRELATIVE entries.
2879       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
2880       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2881                                       (elfcpp::SHF_ALLOC
2882                                        | elfcpp::SHF_WRITE),
2883                                       this->got_tlsdesc_,
2884                                       got_plt_order,
2885                                       is_got_plt_relro);
2886
2887       if (!is_got_plt_relro)
2888         {
2889           // Those bytes can go into the relro segment.
2890           layout->increase_relro(
2891             AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
2892         }
2893
2894     }
2895   return this->got_;
2896 }
2897
2898 // Get the dynamic reloc section, creating it if necessary.
2899
2900 template<int size, bool big_endian>
2901 typename Target_aarch64<size, big_endian>::Reloc_section*
2902 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
2903 {
2904   if (this->rela_dyn_ == NULL)
2905     {
2906       gold_assert(layout != NULL);
2907       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2908       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2909                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
2910                                       ORDER_DYNAMIC_RELOCS, false);
2911     }
2912   return this->rela_dyn_;
2913 }
2914
2915 // Get the section to use for IRELATIVE relocs, creating it if
2916 // necessary.  These go in .rela.dyn, but only after all other dynamic
2917 // relocations.  They need to follow the other dynamic relocations so
2918 // that they can refer to global variables initialized by those
2919 // relocs.
2920
2921 template<int size, bool big_endian>
2922 typename Target_aarch64<size, big_endian>::Reloc_section*
2923 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
2924 {
2925   if (this->rela_irelative_ == NULL)
2926     {
2927       // Make sure we have already created the dynamic reloc section.
2928       this->rela_dyn_section(layout);
2929       this->rela_irelative_ = new Reloc_section(false);
2930       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2931                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
2932                                       ORDER_DYNAMIC_RELOCS, false);
2933       gold_assert(this->rela_dyn_->output_section()
2934                   == this->rela_irelative_->output_section());
2935     }
2936   return this->rela_irelative_;
2937 }
2938
2939
2940 // do_make_elf_object to override the same function in the base class.  We need
2941 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
2942 // store backend specific information. Hence we need to have our own ELF object
2943 // creation.
2944
2945 template<int size, bool big_endian>
2946 Object*
2947 Target_aarch64<size, big_endian>::do_make_elf_object(
2948     const std::string& name,
2949     Input_file* input_file,
2950     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2951 {
2952   int et = ehdr.get_e_type();
2953   // ET_EXEC files are valid input for --just-symbols/-R,
2954   // and we treat them as relocatable objects.
2955   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
2956     return Sized_target<size, big_endian>::do_make_elf_object(
2957         name, input_file, offset, ehdr);
2958   else if (et == elfcpp::ET_REL)
2959     {
2960       AArch64_relobj<size, big_endian>* obj =
2961         new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
2962       obj->setup();
2963       return obj;
2964     }
2965   else if (et == elfcpp::ET_DYN)
2966     {
2967       // Keep base implementation.
2968       Sized_dynobj<size, big_endian>* obj =
2969           new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2970       obj->setup();
2971       return obj;
2972     }
2973   else
2974     {
2975       gold_error(_("%s: unsupported ELF file type %d"),
2976                  name.c_str(), et);
2977       return NULL;
2978     }
2979 }
2980
2981
2982 // Scan a relocation for stub generation.
2983
2984 template<int size, bool big_endian>
2985 void
2986 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
2987     const Relocate_info<size, big_endian>* relinfo,
2988     unsigned int r_type,
2989     const Sized_symbol<size>* gsym,
2990     unsigned int r_sym,
2991     const Symbol_value<size>* psymval,
2992     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
2993     Address address)
2994 {
2995   const AArch64_relobj<size, big_endian>* aarch64_relobj =
2996       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
2997
2998   Symbol_value<size> symval;
2999   if (gsym != NULL)
3000     {
3001       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3002         get_reloc_property(r_type);
3003       if (gsym->use_plt_offset(arp->reference_flags()))
3004         {
3005           // This uses a PLT, change the symbol value.
3006           symval.set_output_value(this->plt_section()->address()
3007                                   + gsym->plt_offset());
3008           psymval = &symval;
3009         }
3010       else if (gsym->is_undefined())
3011         // There is no need to generate a stub symbol is undefined.
3012         return;
3013     }
3014
3015   // Get the symbol value.
3016   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3017
3018   // Owing to pipelining, the PC relative branches below actually skip
3019   // two instructions when the branch offset is 0.
3020   Address destination = static_cast<Address>(-1);
3021   switch (r_type)
3022     {
3023     case elfcpp::R_AARCH64_CALL26:
3024     case elfcpp::R_AARCH64_JUMP26:
3025       destination = value + addend;
3026       break;
3027     default:
3028       gold_unreachable();
3029     }
3030
3031   typename The_reloc_stub::Stub_type stub_type = The_reloc_stub::
3032       stub_type_for_reloc(r_type, address, destination);
3033   if (stub_type == The_reloc_stub::ST_NONE)
3034     return;
3035
3036   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3037   gold_assert(stub_table != NULL);
3038
3039   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3040   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3041   if (stub == NULL)
3042     {
3043       stub = new The_reloc_stub(stub_type);
3044       stub_table->add_reloc_stub(stub, key);
3045     }
3046   stub->set_destination_address(destination);
3047 }  // End of Target_aarch64::scan_reloc_for_stub
3048
3049
3050 // This function scans a relocation section for stub generation.
3051 // The template parameter Relocate must be a class type which provides
3052 // a single function, relocate(), which implements the machine
3053 // specific part of a relocation.
3054
3055 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3056 // SHT_REL or SHT_RELA.
3057
3058 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
3059 // of relocs.  OUTPUT_SECTION is the output section.
3060 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3061 // mapped to output offsets.
3062
3063 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3064 // VIEW_SIZE is the size.  These refer to the input section, unless
3065 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3066 // the output section.
3067
3068 template<int size, bool big_endian>
3069 template<int sh_type>
3070 void inline
3071 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3072     const Relocate_info<size, big_endian>* relinfo,
3073     const unsigned char* prelocs,
3074     size_t reloc_count,
3075     Output_section* /*output_section*/,
3076     bool /*needs_special_offset_handling*/,
3077     const unsigned char* /*view*/,
3078     Address view_address,
3079     section_size_type)
3080 {
3081   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3082
3083   const int reloc_size =
3084       Reloc_types<sh_type,size,big_endian>::reloc_size;
3085   AArch64_relobj<size, big_endian>* object =
3086       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3087   unsigned int local_count = object->local_symbol_count();
3088
3089   gold::Default_comdat_behavior default_comdat_behavior;
3090   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3091
3092   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3093     {
3094       Reltype reloc(prelocs);
3095       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3096       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3097       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3098       if (r_type != elfcpp::R_AARCH64_CALL26
3099           && r_type != elfcpp::R_AARCH64_JUMP26)
3100         continue;
3101
3102       section_offset_type offset =
3103           convert_to_section_size_type(reloc.get_r_offset());
3104
3105       // Get the addend.
3106       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3107           reloc.get_r_addend();
3108
3109       const Sized_symbol<size>* sym;
3110       Symbol_value<size> symval;
3111       const Symbol_value<size> *psymval;
3112       bool is_defined_in_discarded_section;
3113       unsigned int shndx;
3114       if (r_sym < local_count)
3115         {
3116           sym = NULL;
3117           psymval = object->local_symbol(r_sym);
3118
3119           // If the local symbol belongs to a section we are discarding,
3120           // and that section is a debug section, try to find the
3121           // corresponding kept section and map this symbol to its
3122           // counterpart in the kept section.  The symbol must not
3123           // correspond to a section we are folding.
3124           bool is_ordinary;
3125           shndx = psymval->input_shndx(&is_ordinary);
3126           is_defined_in_discarded_section =
3127             (is_ordinary
3128              && shndx != elfcpp::SHN_UNDEF
3129              && !object->is_section_included(shndx)
3130              && !relinfo->symtab->is_section_folded(object, shndx));
3131
3132           // We need to compute the would-be final value of this local
3133           // symbol.
3134           if (!is_defined_in_discarded_section)
3135             {
3136               typedef Sized_relobj_file<size, big_endian> ObjType;
3137               typename ObjType::Compute_final_local_value_status status =
3138                 object->compute_final_local_value(r_sym, psymval, &symval,
3139                                                   relinfo->symtab);
3140               if (status == ObjType::CFLV_OK)
3141                 {
3142                   // Currently we cannot handle a branch to a target in
3143                   // a merged section.  If this is the case, issue an error
3144                   // and also free the merge symbol value.
3145                   if (!symval.has_output_value())
3146                     {
3147                       const std::string& section_name =
3148                         object->section_name(shndx);
3149                       object->error(_("cannot handle branch to local %u "
3150                                           "in a merged section %s"),
3151                                         r_sym, section_name.c_str());
3152                     }
3153                   psymval = &symval;
3154                 }
3155               else
3156                 {
3157                   // We cannot determine the final value.
3158                   continue;
3159                 }
3160             }
3161         }
3162       else
3163         {
3164           const Symbol* gsym;
3165           gsym = object->global_symbol(r_sym);
3166           gold_assert(gsym != NULL);
3167           if (gsym->is_forwarder())
3168             gsym = relinfo->symtab->resolve_forwards(gsym);
3169
3170           sym = static_cast<const Sized_symbol<size>*>(gsym);
3171           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3172             symval.set_output_symtab_index(sym->symtab_index());
3173           else
3174             symval.set_no_output_symtab_entry();
3175
3176           // We need to compute the would-be final value of this global
3177           // symbol.
3178           const Symbol_table* symtab = relinfo->symtab;
3179           const Sized_symbol<size>* sized_symbol =
3180               symtab->get_sized_symbol<size>(gsym);
3181           Symbol_table::Compute_final_value_status status;
3182           typename elfcpp::Elf_types<size>::Elf_Addr value =
3183               symtab->compute_final_value<size>(sized_symbol, &status);
3184
3185           // Skip this if the symbol has not output section.
3186           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3187             continue;
3188           symval.set_output_value(value);
3189
3190           if (gsym->type() == elfcpp::STT_TLS)
3191             symval.set_is_tls_symbol();
3192           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3193             symval.set_is_ifunc_symbol();
3194           psymval = &symval;
3195
3196           is_defined_in_discarded_section =
3197               (gsym->is_defined_in_discarded_section()
3198                && gsym->is_undefined());
3199           shndx = 0;
3200         }
3201
3202       Symbol_value<size> symval2;
3203       if (is_defined_in_discarded_section)
3204         {
3205           if (comdat_behavior == CB_UNDETERMINED)
3206             {
3207               std::string name = object->section_name(relinfo->data_shndx);
3208               comdat_behavior = default_comdat_behavior.get(name.c_str());
3209             }
3210           if (comdat_behavior == CB_PRETEND)
3211             {
3212               bool found;
3213               typename elfcpp::Elf_types<size>::Elf_Addr value =
3214                 object->map_to_kept_section(shndx, &found);
3215               if (found)
3216                 symval2.set_output_value(value + psymval->input_value());
3217               else
3218                 symval2.set_output_value(0);
3219             }
3220           else
3221             {
3222               if (comdat_behavior == CB_WARNING)
3223                 gold_warning_at_location(relinfo, i, offset,
3224                                          _("relocation refers to discarded "
3225                                            "section"));
3226               symval2.set_output_value(0);
3227             }
3228           symval2.set_no_output_symtab_entry();
3229           psymval = &symval2;
3230         }
3231
3232       // If symbol is a section symbol, we don't know the actual type of
3233       // destination.  Give up.
3234       if (psymval->is_section_symbol())
3235         continue;
3236
3237       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3238                                 addend, view_address + offset);
3239     }  // End of iterating relocs in a section
3240 }  // End of Target_aarch64::scan_reloc_section_for_stubs
3241
3242
3243 // Scan an input section for stub generation.
3244
3245 template<int size, bool big_endian>
3246 void
3247 Target_aarch64<size, big_endian>::scan_section_for_stubs(
3248     const Relocate_info<size, big_endian>* relinfo,
3249     unsigned int sh_type,
3250     const unsigned char* prelocs,
3251     size_t reloc_count,
3252     Output_section* output_section,
3253     bool needs_special_offset_handling,
3254     const unsigned char* view,
3255     Address view_address,
3256     section_size_type view_size)
3257 {
3258   gold_assert(sh_type == elfcpp::SHT_RELA);
3259   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3260       relinfo,
3261       prelocs,
3262       reloc_count,
3263       output_section,
3264       needs_special_offset_handling,
3265       view,
3266       view_address,
3267       view_size);
3268 }
3269
3270
3271 // Relocate a single stub.
3272
3273 template<int size, bool big_endian>
3274 void Target_aarch64<size, big_endian>::
3275 relocate_stub(The_reloc_stub* stub,
3276               const The_relocate_info*,
3277               Output_section*,
3278               unsigned char* view,
3279               Address address,
3280               section_size_type)
3281 {
3282   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
3283   typedef typename The_reloc_functions::Status The_reloc_functions_status;
3284   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
3285
3286   Insntype* ip = reinterpret_cast<Insntype*>(view);
3287   int insn_number = stub->stub_insn_number();
3288   const uint32_t* insns = stub->stub_insns();
3289   // Check the insns are really those stub insns.
3290   for (int i = 0; i < insn_number; ++i)
3291     {
3292       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
3293       gold_assert(((uint32_t)insn == insns[i+1]));
3294     }
3295
3296   Address dest = stub->destination_address();
3297
3298   switch(stub->stub_type())
3299     {
3300     case The_reloc_stub::ST_ADRP_BRANCH:
3301       {
3302         // 1st reloc is ADR_PREL_PG_HI21
3303         The_reloc_functions_status status =
3304             The_reloc_functions::adrp(view, dest, address);
3305         // An error should never arise in the above step. If so, please
3306         // check 'aarch64_valid_for_adrp_p'.
3307         gold_assert(status == The_reloc_functions::STATUS_OKAY);
3308
3309         // 2nd reloc is ADD_ABS_LO12_NC
3310         const AArch64_reloc_property* arp =
3311             aarch64_reloc_property_table->get_reloc_property(
3312                 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
3313         gold_assert(arp != NULL);
3314         status = The_reloc_functions::template
3315             rela_general<32>(view + 4, dest, 0, arp);
3316         // An error should never arise, it is an "_NC" relocation.
3317         gold_assert(status == The_reloc_functions::STATUS_OKAY);
3318       }
3319       break;
3320
3321     case The_reloc_stub::ST_LONG_BRANCH_ABS:
3322       // 1st reloc is R_AARCH64_PREL64, at offset 8
3323       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
3324       break;
3325
3326     case The_reloc_stub::ST_LONG_BRANCH_PCREL:
3327       {
3328         // "PC" calculation is the 2nd insn in the stub.
3329         uint64_t offset = dest - (address + 4);
3330         // Offset is placed at offset 4 and 5.
3331         elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
3332       }
3333       break;
3334
3335     default:
3336       gold_unreachable();
3337     }
3338 }
3339
3340
3341 // A class to handle the PLT data.
3342 // This is an abstract base class that handles most of the linker details
3343 // but does not know the actual contents of PLT entries.  The derived
3344 // classes below fill in those details.
3345
3346 template<int size, bool big_endian>
3347 class Output_data_plt_aarch64 : public Output_section_data
3348 {
3349  public:
3350   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3351       Reloc_section;
3352   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3353
3354   Output_data_plt_aarch64(Layout* layout,
3355                           uint64_t addralign,
3356                           Output_data_got_aarch64<size, big_endian>* got,
3357                           Output_data_space* got_plt,
3358                           Output_data_space* got_irelative)
3359     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
3360       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
3361       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
3362   { this->init(layout); }
3363
3364   // Initialize the PLT section.
3365   void
3366   init(Layout* layout);
3367
3368   // Add an entry to the PLT.
3369   void
3370   add_entry(Symbol_table*, Layout*, Symbol* gsym);
3371
3372   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
3373   unsigned int
3374   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
3375                         Sized_relobj_file<size, big_endian>* relobj,
3376                         unsigned int local_sym_index);
3377
3378   // Add the relocation for a PLT entry.
3379   void
3380   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
3381                  unsigned int got_offset);
3382
3383   // Add the reserved TLSDESC_PLT entry to the PLT.
3384   void
3385   reserve_tlsdesc_entry(unsigned int got_offset)
3386   { this->tlsdesc_got_offset_ = got_offset; }
3387
3388   // Return true if a TLSDESC_PLT entry has been reserved.
3389   bool
3390   has_tlsdesc_entry() const
3391   { return this->tlsdesc_got_offset_ != -1U; }
3392
3393   // Return the GOT offset for the reserved TLSDESC_PLT entry.
3394   unsigned int
3395   get_tlsdesc_got_offset() const
3396   { return this->tlsdesc_got_offset_; }
3397
3398   // Return the PLT offset of the reserved TLSDESC_PLT entry.
3399   unsigned int
3400   get_tlsdesc_plt_offset() const
3401   {
3402     return (this->first_plt_entry_offset() +
3403             (this->count_ + this->irelative_count_)
3404             * this->get_plt_entry_size());
3405   }
3406
3407   // Return the .rela.plt section data.
3408   Reloc_section*
3409   rela_plt()
3410   { return this->rel_; }
3411
3412   // Return where the TLSDESC relocations should go.
3413   Reloc_section*
3414   rela_tlsdesc(Layout*);
3415
3416   // Return where the IRELATIVE relocations should go in the PLT
3417   // relocations.
3418   Reloc_section*
3419   rela_irelative(Symbol_table*, Layout*);
3420
3421   // Return whether we created a section for IRELATIVE relocations.
3422   bool
3423   has_irelative_section() const
3424   { return this->irelative_rel_ != NULL; }
3425
3426   // Return the number of PLT entries.
3427   unsigned int
3428   entry_count() const
3429   { return this->count_ + this->irelative_count_; }
3430
3431   // Return the offset of the first non-reserved PLT entry.
3432   unsigned int
3433   first_plt_entry_offset() const
3434   { return this->do_first_plt_entry_offset(); }
3435
3436   // Return the size of a PLT entry.
3437   unsigned int
3438   get_plt_entry_size() const
3439   { return this->do_get_plt_entry_size(); }
3440
3441   // Return the reserved tlsdesc entry size.
3442   unsigned int
3443   get_plt_tlsdesc_entry_size() const
3444   { return this->do_get_plt_tlsdesc_entry_size(); }
3445
3446   // Return the PLT address to use for a global symbol.
3447   uint64_t
3448   address_for_global(const Symbol*);
3449
3450   // Return the PLT address to use for a local symbol.
3451   uint64_t
3452   address_for_local(const Relobj*, unsigned int symndx);
3453
3454  protected:
3455   // Fill in the first PLT entry.
3456   void
3457   fill_first_plt_entry(unsigned char* pov,
3458                        Address got_address,
3459                        Address plt_address)
3460   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
3461
3462   // Fill in a normal PLT entry.
3463   void
3464   fill_plt_entry(unsigned char* pov,
3465                  Address got_address,
3466                  Address plt_address,
3467                  unsigned int got_offset,
3468                  unsigned int plt_offset)
3469   {
3470     this->do_fill_plt_entry(pov, got_address, plt_address,
3471                             got_offset, plt_offset);
3472   }
3473
3474   // Fill in the reserved TLSDESC PLT entry.
3475   void
3476   fill_tlsdesc_entry(unsigned char* pov,
3477                      Address gotplt_address,
3478                      Address plt_address,
3479                      Address got_base,
3480                      unsigned int tlsdesc_got_offset,
3481                      unsigned int plt_offset)
3482   {
3483     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
3484                                 tlsdesc_got_offset, plt_offset);
3485   }
3486
3487   virtual unsigned int
3488   do_first_plt_entry_offset() const = 0;
3489
3490   virtual unsigned int
3491   do_get_plt_entry_size() const = 0;
3492
3493   virtual unsigned int
3494   do_get_plt_tlsdesc_entry_size() const = 0;
3495
3496   virtual void
3497   do_fill_first_plt_entry(unsigned char* pov,
3498                           Address got_addr,
3499                           Address plt_addr) = 0;
3500
3501   virtual void
3502   do_fill_plt_entry(unsigned char* pov,
3503                     Address got_address,
3504                     Address plt_address,
3505                     unsigned int got_offset,
3506                     unsigned int plt_offset) = 0;
3507
3508   virtual void
3509   do_fill_tlsdesc_entry(unsigned char* pov,
3510                         Address gotplt_address,
3511                         Address plt_address,
3512                         Address got_base,
3513                         unsigned int tlsdesc_got_offset,
3514                         unsigned int plt_offset) = 0;
3515
3516   void
3517   do_adjust_output_section(Output_section* os);
3518
3519   // Write to a map file.
3520   void
3521   do_print_to_mapfile(Mapfile* mapfile) const
3522   { mapfile->print_output_data(this, _("** PLT")); }
3523
3524  private:
3525   // Set the final size.
3526   void
3527   set_final_data_size();
3528
3529   // Write out the PLT data.
3530   void
3531   do_write(Output_file*);
3532
3533   // The reloc section.
3534   Reloc_section* rel_;
3535
3536   // The TLSDESC relocs, if necessary.  These must follow the regular
3537   // PLT relocs.
3538   Reloc_section* tlsdesc_rel_;
3539
3540   // The IRELATIVE relocs, if necessary.  These must follow the
3541   // regular PLT relocations.
3542   Reloc_section* irelative_rel_;
3543
3544   // The .got section.
3545   Output_data_got_aarch64<size, big_endian>* got_;
3546
3547   // The .got.plt section.
3548   Output_data_space* got_plt_;
3549
3550   // The part of the .got.plt section used for IRELATIVE relocs.
3551   Output_data_space* got_irelative_;
3552
3553   // The number of PLT entries.
3554   unsigned int count_;
3555
3556   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
3557   // follow the regular PLT entries.
3558   unsigned int irelative_count_;
3559
3560   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
3561   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
3562   // indicates an offset is not allocated.
3563   unsigned int tlsdesc_got_offset_;
3564 };
3565
3566 // Initialize the PLT section.
3567
3568 template<int size, bool big_endian>
3569 void
3570 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
3571 {
3572   this->rel_ = new Reloc_section(false);
3573   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3574                                   elfcpp::SHF_ALLOC, this->rel_,
3575                                   ORDER_DYNAMIC_PLT_RELOCS, false);
3576 }
3577
3578 template<int size, bool big_endian>
3579 void
3580 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
3581     Output_section* os)
3582 {
3583   os->set_entsize(this->get_plt_entry_size());
3584 }
3585
3586 // Add an entry to the PLT.
3587
3588 template<int size, bool big_endian>
3589 void
3590 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
3591     Layout* layout, Symbol* gsym)
3592 {
3593   gold_assert(!gsym->has_plt_offset());
3594
3595   unsigned int* pcount;
3596   unsigned int plt_reserved;
3597   Output_section_data_build* got;
3598
3599   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3600       && gsym->can_use_relative_reloc(false))
3601     {
3602       pcount = &this->irelative_count_;
3603       plt_reserved = 0;
3604       got = this->got_irelative_;
3605     }
3606   else
3607     {
3608       pcount = &this->count_;
3609       plt_reserved = this->first_plt_entry_offset();
3610       got = this->got_plt_;
3611     }
3612
3613   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
3614                        + plt_reserved);
3615
3616   ++*pcount;
3617
3618   section_offset_type got_offset = got->current_data_size();
3619
3620   // Every PLT entry needs a GOT entry which points back to the PLT
3621   // entry (this will be changed by the dynamic linker, normally
3622   // lazily when the function is called).
3623   got->set_current_data_size(got_offset + size / 8);
3624
3625   // Every PLT entry needs a reloc.
3626   this->add_relocation(symtab, layout, gsym, got_offset);
3627
3628   // Note that we don't need to save the symbol. The contents of the
3629   // PLT are independent of which symbols are used. The symbols only
3630   // appear in the relocations.
3631 }
3632
3633 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
3634 // the PLT offset.
3635
3636 template<int size, bool big_endian>
3637 unsigned int
3638 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
3639     Symbol_table* symtab,
3640     Layout* layout,
3641     Sized_relobj_file<size, big_endian>* relobj,
3642     unsigned int local_sym_index)
3643 {
3644   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
3645   ++this->irelative_count_;
3646
3647   section_offset_type got_offset = this->got_irelative_->current_data_size();
3648
3649   // Every PLT entry needs a GOT entry which points back to the PLT
3650   // entry.
3651   this->got_irelative_->set_current_data_size(got_offset + size / 8);
3652
3653   // Every PLT entry needs a reloc.
3654   Reloc_section* rela = this->rela_irelative(symtab, layout);
3655   rela->add_symbolless_local_addend(relobj, local_sym_index,
3656                                     elfcpp::R_AARCH64_IRELATIVE,
3657                                     this->got_irelative_, got_offset, 0);
3658
3659   return plt_offset;
3660 }
3661
3662 // Add the relocation for a PLT entry.
3663
3664 template<int size, bool big_endian>
3665 void
3666 Output_data_plt_aarch64<size, big_endian>::add_relocation(
3667     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
3668 {
3669   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3670       && gsym->can_use_relative_reloc(false))
3671     {
3672       Reloc_section* rela = this->rela_irelative(symtab, layout);
3673       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
3674                                          this->got_irelative_, got_offset, 0);
3675     }
3676   else
3677     {
3678       gsym->set_needs_dynsym_entry();
3679       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
3680                              got_offset, 0);
3681     }
3682 }
3683
3684 // Return where the TLSDESC relocations should go, creating it if
3685 // necessary.  These follow the JUMP_SLOT relocations.
3686
3687 template<int size, bool big_endian>
3688 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
3689 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
3690 {
3691   if (this->tlsdesc_rel_ == NULL)
3692     {
3693       this->tlsdesc_rel_ = new Reloc_section(false);
3694       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3695                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
3696                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3697       gold_assert(this->tlsdesc_rel_->output_section()
3698                   == this->rel_->output_section());
3699     }
3700   return this->tlsdesc_rel_;
3701 }
3702
3703 // Return where the IRELATIVE relocations should go in the PLT.  These
3704 // follow the JUMP_SLOT and the TLSDESC relocations.
3705
3706 template<int size, bool big_endian>
3707 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
3708 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
3709                                                           Layout* layout)
3710 {
3711   if (this->irelative_rel_ == NULL)
3712     {
3713       // Make sure we have a place for the TLSDESC relocations, in
3714       // case we see any later on.
3715       this->rela_tlsdesc(layout);
3716       this->irelative_rel_ = new Reloc_section(false);
3717       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3718                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
3719                                       ORDER_DYNAMIC_PLT_RELOCS, false);
3720       gold_assert(this->irelative_rel_->output_section()
3721                   == this->rel_->output_section());
3722
3723       if (parameters->doing_static_link())
3724         {
3725           // A statically linked executable will only have a .rela.plt
3726           // section to hold R_AARCH64_IRELATIVE relocs for
3727           // STT_GNU_IFUNC symbols.  The library will use these
3728           // symbols to locate the IRELATIVE relocs at program startup
3729           // time.
3730           symtab->define_in_output_data("__rela_iplt_start", NULL,
3731                                         Symbol_table::PREDEFINED,
3732                                         this->irelative_rel_, 0, 0,
3733                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3734                                         elfcpp::STV_HIDDEN, 0, false, true);
3735           symtab->define_in_output_data("__rela_iplt_end", NULL,
3736                                         Symbol_table::PREDEFINED,
3737                                         this->irelative_rel_, 0, 0,
3738                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3739                                         elfcpp::STV_HIDDEN, 0, true, true);
3740         }
3741     }
3742   return this->irelative_rel_;
3743 }
3744
3745 // Return the PLT address to use for a global symbol.
3746
3747 template<int size, bool big_endian>
3748 uint64_t
3749 Output_data_plt_aarch64<size, big_endian>::address_for_global(
3750   const Symbol* gsym)
3751 {
3752   uint64_t offset = 0;
3753   if (gsym->type() == elfcpp::STT_GNU_IFUNC
3754       && gsym->can_use_relative_reloc(false))
3755     offset = (this->first_plt_entry_offset() +
3756               this->count_ * this->get_plt_entry_size());
3757   return this->address() + offset + gsym->plt_offset();
3758 }
3759
3760 // Return the PLT address to use for a local symbol.  These are always
3761 // IRELATIVE relocs.
3762
3763 template<int size, bool big_endian>
3764 uint64_t
3765 Output_data_plt_aarch64<size, big_endian>::address_for_local(
3766     const Relobj* object,
3767     unsigned int r_sym)
3768 {
3769   return (this->address()
3770           + this->first_plt_entry_offset()
3771           + this->count_ * this->get_plt_entry_size()
3772           + object->local_plt_offset(r_sym));
3773 }
3774
3775 // Set the final size.
3776
3777 template<int size, bool big_endian>
3778 void
3779 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
3780 {
3781   unsigned int count = this->count_ + this->irelative_count_;
3782   unsigned int extra_size = 0;
3783   if (this->has_tlsdesc_entry())
3784     extra_size += this->get_plt_tlsdesc_entry_size();
3785   this->set_data_size(this->first_plt_entry_offset()
3786                       + count * this->get_plt_entry_size()
3787                       + extra_size);
3788 }
3789
3790 template<int size, bool big_endian>
3791 class Output_data_plt_aarch64_standard :
3792   public Output_data_plt_aarch64<size, big_endian>
3793 {
3794  public:
3795   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3796   Output_data_plt_aarch64_standard(
3797       Layout* layout,
3798       Output_data_got_aarch64<size, big_endian>* got,
3799       Output_data_space* got_plt,
3800       Output_data_space* got_irelative)
3801     : Output_data_plt_aarch64<size, big_endian>(layout,
3802                                                 size == 32 ? 4 : 8,
3803                                                 got, got_plt,
3804                                                 got_irelative)
3805   { }
3806
3807  protected:
3808   // Return the offset of the first non-reserved PLT entry.
3809   virtual unsigned int
3810   do_first_plt_entry_offset() const
3811   { return this->first_plt_entry_size; }
3812
3813   // Return the size of a PLT entry
3814   virtual unsigned int
3815   do_get_plt_entry_size() const
3816   { return this->plt_entry_size; }
3817
3818   // Return the size of a tlsdesc entry
3819   virtual unsigned int
3820   do_get_plt_tlsdesc_entry_size() const
3821   { return this->plt_tlsdesc_entry_size; }
3822
3823   virtual void
3824   do_fill_first_plt_entry(unsigned char* pov,
3825                           Address got_address,
3826                           Address plt_address);
3827
3828   virtual void
3829   do_fill_plt_entry(unsigned char* pov,
3830                     Address got_address,
3831                     Address plt_address,
3832                     unsigned int got_offset,
3833                     unsigned int plt_offset);
3834
3835   virtual void
3836   do_fill_tlsdesc_entry(unsigned char* pov,
3837                         Address gotplt_address,
3838                         Address plt_address,
3839                         Address got_base,
3840                         unsigned int tlsdesc_got_offset,
3841                         unsigned int plt_offset);
3842
3843  private:
3844   // The size of the first plt entry size.
3845   static const int first_plt_entry_size = 32;
3846   // The size of the plt entry size.
3847   static const int plt_entry_size = 16;
3848   // The size of the plt tlsdesc entry size.
3849   static const int plt_tlsdesc_entry_size = 32;
3850   // Template for the first PLT entry.
3851   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
3852   // Template for subsequent PLT entries.
3853   static const uint32_t plt_entry[plt_entry_size / 4];
3854   // The reserved TLSDESC entry in the PLT for an executable.
3855   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
3856 };
3857
3858 // The first entry in the PLT for an executable.
3859
3860 template<>
3861 const uint32_t
3862 Output_data_plt_aarch64_standard<32, false>::
3863     first_plt_entry[first_plt_entry_size / 4] =
3864 {
3865   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
3866   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
3867   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
3868   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
3869   0xd61f0220,   /* br x17  */
3870   0xd503201f,   /* nop */
3871   0xd503201f,   /* nop */
3872   0xd503201f,   /* nop */
3873 };
3874
3875
3876 template<>
3877 const uint32_t
3878 Output_data_plt_aarch64_standard<32, true>::
3879     first_plt_entry[first_plt_entry_size / 4] =
3880 {
3881   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
3882   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
3883   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
3884   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
3885   0xd61f0220,   /* br x17  */
3886   0xd503201f,   /* nop */
3887   0xd503201f,   /* nop */
3888   0xd503201f,   /* nop */
3889 };
3890
3891
3892 template<>
3893 const uint32_t
3894 Output_data_plt_aarch64_standard<64, false>::
3895     first_plt_entry[first_plt_entry_size / 4] =
3896 {
3897   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
3898   0x90000010,   /* adrp x16, PLT_GOT+16  */
3899   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
3900   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
3901   0xd61f0220,   /* br x17  */
3902   0xd503201f,   /* nop */
3903   0xd503201f,   /* nop */
3904   0xd503201f,   /* nop */
3905 };
3906
3907
3908 template<>
3909 const uint32_t
3910 Output_data_plt_aarch64_standard<64, true>::
3911     first_plt_entry[first_plt_entry_size / 4] =
3912 {
3913   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
3914   0x90000010,   /* adrp x16, PLT_GOT+16  */
3915   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
3916   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
3917   0xd61f0220,   /* br x17  */
3918   0xd503201f,   /* nop */
3919   0xd503201f,   /* nop */
3920   0xd503201f,   /* nop */
3921 };
3922
3923
3924 template<>
3925 const uint32_t
3926 Output_data_plt_aarch64_standard<32, false>::
3927     plt_entry[plt_entry_size / 4] =
3928 {
3929   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
3930   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
3931   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
3932   0xd61f0220,   /* br x17.  */
3933 };
3934
3935
3936 template<>
3937 const uint32_t
3938 Output_data_plt_aarch64_standard<32, true>::
3939     plt_entry[plt_entry_size / 4] =
3940 {
3941   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
3942   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
3943   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
3944   0xd61f0220,   /* br x17.  */
3945 };
3946
3947
3948 template<>
3949 const uint32_t
3950 Output_data_plt_aarch64_standard<64, false>::
3951     plt_entry[plt_entry_size / 4] =
3952 {
3953   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
3954   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
3955   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
3956   0xd61f0220,   /* br x17.  */
3957 };
3958
3959
3960 template<>
3961 const uint32_t
3962 Output_data_plt_aarch64_standard<64, true>::
3963     plt_entry[plt_entry_size / 4] =
3964 {
3965   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
3966   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
3967   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
3968   0xd61f0220,   /* br x17.  */
3969 };
3970
3971
3972 template<int size, bool big_endian>
3973 void
3974 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
3975     unsigned char* pov,
3976     Address got_address,
3977     Address plt_address)
3978 {
3979   // PLT0 of the small PLT looks like this in ELF64 -
3980   // stp x16, x30, [sp, #-16]!          Save the reloc and lr on stack.
3981   // adrp x16, PLT_GOT + 16             Get the page base of the GOTPLT
3982   // ldr  x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
3983   //                                    symbol resolver
3984   // add  x16, x16, #:lo12:PLT_GOT+16   Load the lo12 bits of the
3985   //                                    GOTPLT entry for this.
3986   // br   x17
3987   // PLT0 will be slightly different in ELF32 due to different got entry
3988   // size.
3989   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
3990   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
3991
3992   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
3993   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
3994   // FIXME: This only works for 64bit
3995   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
3996       gotplt_2nd_ent, plt_address + 4);
3997
3998   // Fill in R_AARCH64_LDST8_LO12
3999   elfcpp::Swap<32, big_endian>::writeval(
4000       pov + 8,
4001       ((this->first_plt_entry[2] & 0xffc003ff)
4002        | ((gotplt_2nd_ent & 0xff8) << 7)));
4003
4004   // Fill in R_AARCH64_ADD_ABS_LO12
4005   elfcpp::Swap<32, big_endian>::writeval(
4006       pov + 12,
4007       ((this->first_plt_entry[3] & 0xffc003ff)
4008        | ((gotplt_2nd_ent & 0xfff) << 10)));
4009 }
4010
4011
4012 // Subsequent entries in the PLT for an executable.
4013 // FIXME: This only works for 64bit
4014
4015 template<int size, bool big_endian>
4016 void
4017 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4018     unsigned char* pov,
4019     Address got_address,
4020     Address plt_address,
4021     unsigned int got_offset,
4022     unsigned int plt_offset)
4023 {
4024   memcpy(pov, this->plt_entry, this->plt_entry_size);
4025
4026   Address gotplt_entry_address = got_address + got_offset;
4027   Address plt_entry_address = plt_address + plt_offset;
4028
4029   // Fill in R_AARCH64_PCREL_ADR_HI21
4030   AArch64_relocate_functions<size, big_endian>::adrp(
4031       pov,
4032       gotplt_entry_address,
4033       plt_entry_address);
4034
4035   // Fill in R_AARCH64_LDST64_ABS_LO12
4036   elfcpp::Swap<32, big_endian>::writeval(
4037       pov + 4,
4038       ((this->plt_entry[1] & 0xffc003ff)
4039        | ((gotplt_entry_address & 0xff8) << 7)));
4040
4041   // Fill in R_AARCH64_ADD_ABS_LO12
4042   elfcpp::Swap<32, big_endian>::writeval(
4043       pov + 8,
4044       ((this->plt_entry[2] & 0xffc003ff)
4045        | ((gotplt_entry_address & 0xfff) <<10)));
4046
4047 }
4048
4049
4050 template<>
4051 const uint32_t
4052 Output_data_plt_aarch64_standard<32, false>::
4053     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4054 {
4055   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4056   0x90000002,   /* adrp x2, 0 */
4057   0x90000003,   /* adrp x3, 0 */
4058   0xb9400042,   /* ldr w2, [w2, #0] */
4059   0x11000063,   /* add w3, w3, 0 */
4060   0xd61f0040,   /* br x2 */
4061   0xd503201f,   /* nop */
4062   0xd503201f,   /* nop */
4063 };
4064
4065 template<>
4066 const uint32_t
4067 Output_data_plt_aarch64_standard<32, true>::
4068     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4069 {
4070   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4071   0x90000002,   /* adrp x2, 0 */
4072   0x90000003,   /* adrp x3, 0 */
4073   0xb9400042,   /* ldr w2, [w2, #0] */
4074   0x11000063,   /* add w3, w3, 0 */
4075   0xd61f0040,   /* br x2 */
4076   0xd503201f,   /* nop */
4077   0xd503201f,   /* nop */
4078 };
4079
4080 template<>
4081 const uint32_t
4082 Output_data_plt_aarch64_standard<64, false>::
4083     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4084 {
4085   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4086   0x90000002,   /* adrp x2, 0 */
4087   0x90000003,   /* adrp x3, 0 */
4088   0xf9400042,   /* ldr x2, [x2, #0] */
4089   0x91000063,   /* add x3, x3, 0 */
4090   0xd61f0040,   /* br x2 */
4091   0xd503201f,   /* nop */
4092   0xd503201f,   /* nop */
4093 };
4094
4095 template<>
4096 const uint32_t
4097 Output_data_plt_aarch64_standard<64, true>::
4098     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4099 {
4100   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4101   0x90000002,   /* adrp x2, 0 */
4102   0x90000003,   /* adrp x3, 0 */
4103   0xf9400042,   /* ldr x2, [x2, #0] */
4104   0x91000063,   /* add x3, x3, 0 */
4105   0xd61f0040,   /* br x2 */
4106   0xd503201f,   /* nop */
4107   0xd503201f,   /* nop */
4108 };
4109
4110 template<int size, bool big_endian>
4111 void
4112 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4113     unsigned char* pov,
4114     Address gotplt_address,
4115     Address plt_address,
4116     Address got_base,
4117     unsigned int tlsdesc_got_offset,
4118     unsigned int plt_offset)
4119 {
4120   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4121
4122   // move DT_TLSDESC_GOT address into x2
4123   // move .got.plt address into x3
4124   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4125   Address plt_entry_address = plt_address + plt_offset;
4126
4127   // R_AARCH64_ADR_PREL_PG_HI21
4128   AArch64_relocate_functions<size, big_endian>::adrp(
4129       pov + 4,
4130       tlsdesc_got_entry,
4131       plt_entry_address + 4);
4132
4133   // R_AARCH64_ADR_PREL_PG_HI21
4134   AArch64_relocate_functions<size, big_endian>::adrp(
4135       pov + 8,
4136       gotplt_address,
4137       plt_entry_address + 8);
4138
4139   // R_AARCH64_LDST64_ABS_LO12
4140   elfcpp::Swap<32, big_endian>::writeval(
4141       pov + 12,
4142       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4143        | ((tlsdesc_got_entry & 0xff8) << 7)));
4144
4145   // R_AARCH64_ADD_ABS_LO12
4146   elfcpp::Swap<32, big_endian>::writeval(
4147       pov + 16,
4148       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4149        | ((gotplt_address & 0xfff) << 10)));
4150 }
4151
4152 // Write out the PLT.  This uses the hand-coded instructions above,
4153 // and adjusts them as needed.  This is specified by the AMD64 ABI.
4154
4155 template<int size, bool big_endian>
4156 void
4157 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4158 {
4159   const off_t offset = this->offset();
4160   const section_size_type oview_size =
4161     convert_to_section_size_type(this->data_size());
4162   unsigned char* const oview = of->get_output_view(offset, oview_size);
4163
4164   const off_t got_file_offset = this->got_plt_->offset();
4165   gold_assert(got_file_offset + this->got_plt_->data_size()
4166               == this->got_irelative_->offset());
4167
4168   const section_size_type got_size =
4169       convert_to_section_size_type(this->got_plt_->data_size()
4170                                    + this->got_irelative_->data_size());
4171   unsigned char* const got_view = of->get_output_view(got_file_offset,
4172                                                       got_size);
4173
4174   unsigned char* pov = oview;
4175
4176   // The base address of the .plt section.
4177   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4178   // The base address of the PLT portion of the .got section.
4179   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4180       = this->got_plt_->address();
4181
4182   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4183   pov += this->first_plt_entry_offset();
4184
4185   // The first three entries in .got.plt are reserved.
4186   unsigned char* got_pov = got_view;
4187   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4188   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4189
4190   unsigned int plt_offset = this->first_plt_entry_offset();
4191   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4192   const unsigned int count = this->count_ + this->irelative_count_;
4193   for (unsigned int plt_index = 0;
4194        plt_index < count;
4195        ++plt_index,
4196          pov += this->get_plt_entry_size(),
4197          got_pov += size / 8,
4198          plt_offset += this->get_plt_entry_size(),
4199          got_offset += size / 8)
4200     {
4201       // Set and adjust the PLT entry itself.
4202       this->fill_plt_entry(pov, gotplt_address, plt_address,
4203                            got_offset, plt_offset);
4204
4205       // Set the entry in the GOT, which points to plt0.
4206       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4207     }
4208
4209   if (this->has_tlsdesc_entry())
4210     {
4211       // Set and adjust the reserved TLSDESC PLT entry.
4212       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4213       // The base address of the .base section.
4214       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4215           this->got_->address();
4216       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4217                                tlsdesc_got_offset, plt_offset);
4218       pov += this->get_plt_tlsdesc_entry_size();
4219     }
4220
4221   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4222   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4223
4224   of->write_output_view(offset, oview_size, oview);
4225   of->write_output_view(got_file_offset, got_size, got_view);
4226 }
4227
4228 // Telling how to update the immediate field of an instruction.
4229 struct AArch64_howto
4230 {
4231   // The immediate field mask.
4232   elfcpp::Elf_Xword dst_mask;
4233
4234   // The offset to apply relocation immediate
4235   int doffset;
4236
4237   // The second part offset, if the immediate field has two parts.
4238   // -1 if the immediate field has only one part.
4239   int doffset2;
4240 };
4241
4242 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4243 {
4244   {0, -1, -1},          // DATA
4245   {0x1fffe0, 5, -1},    // MOVW  [20:5]-imm16
4246   {0xffffe0, 5, -1},    // LD    [23:5]-imm19
4247   {0x60ffffe0, 29, 5},  // ADR   [30:29]-immlo  [23:5]-immhi
4248   {0x60ffffe0, 29, 5},  // ADRP  [30:29]-immlo  [23:5]-immhi
4249   {0x3ffc00, 10, -1},   // ADD   [21:10]-imm12
4250   {0x3ffc00, 10, -1},   // LDST  [21:10]-imm12
4251   {0x7ffe0, 5, -1},     // TBZNZ [18:5]-imm14
4252   {0xffffe0, 5, -1},    // CONDB [23:5]-imm19
4253   {0x3ffffff, 0, -1},   // B     [25:0]-imm26
4254   {0x3ffffff, 0, -1},   // CALL  [25:0]-imm26
4255 };
4256
4257 // AArch64 relocate function class
4258
4259 template<int size, bool big_endian>
4260 class AArch64_relocate_functions
4261 {
4262  public:
4263   typedef enum
4264   {
4265     STATUS_OKAY,        // No error during relocation.
4266     STATUS_OVERFLOW,    // Relocation overflow.
4267     STATUS_BAD_RELOC,   // Relocation cannot be applied.
4268   } Status;
4269
4270   typedef AArch64_relocate_functions<size, big_endian> This;
4271   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4272   typedef Relocate_info<size, big_endian> The_relocate_info;
4273   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
4274   typedef Reloc_stub<size, big_endian> The_reloc_stub;
4275   typedef typename The_reloc_stub::Stub_type The_reloc_stub_type;
4276   typedef Stub_table<size, big_endian> The_stub_table;
4277   typedef elfcpp::Rela<size, big_endian> The_rela;
4278   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
4279
4280   // Return the page address of the address.
4281   // Page(address) = address & ~0xFFF
4282
4283   static inline AArch64_valtype
4284   Page(Address address)
4285   {
4286     return (address & (~static_cast<Address>(0xFFF)));
4287   }
4288
4289  private:
4290   // Update instruction (pointed by view) with selected bits (immed).
4291   // val = (val & ~dst_mask) | (immed << doffset)
4292
4293   template<int valsize>
4294   static inline void
4295   update_view(unsigned char* view,
4296               AArch64_valtype immed,
4297               elfcpp::Elf_Xword doffset,
4298               elfcpp::Elf_Xword dst_mask)
4299   {
4300     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
4301     Valtype* wv = reinterpret_cast<Valtype*>(view);
4302     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
4303
4304     // Clear immediate fields.
4305     val &= ~dst_mask;
4306     elfcpp::Swap<valsize, big_endian>::writeval(wv,
4307       static_cast<Valtype>(val | (immed << doffset)));
4308   }
4309
4310   // Update two parts of an instruction (pointed by view) with selected
4311   // bits (immed1 and immed2).
4312   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
4313
4314   template<int valsize>
4315   static inline void
4316   update_view_two_parts(
4317     unsigned char* view,
4318     AArch64_valtype immed1,
4319     AArch64_valtype immed2,
4320     elfcpp::Elf_Xword doffset1,
4321     elfcpp::Elf_Xword doffset2,
4322     elfcpp::Elf_Xword dst_mask)
4323   {
4324     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
4325     Valtype* wv = reinterpret_cast<Valtype*>(view);
4326     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
4327     val &= ~dst_mask;
4328     elfcpp::Swap<valsize, big_endian>::writeval(wv,
4329       static_cast<Valtype>(val | (immed1 << doffset1) |
4330                            (immed2 << doffset2)));
4331   }
4332
4333   // Update adr or adrp instruction with immed.
4334   // In adr and adrp: [30:29] immlo   [23:5] immhi
4335
4336   static inline void
4337   update_adr(unsigned char* view, AArch64_valtype immed)
4338   {
4339     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
4340     This::template update_view_two_parts<32>(
4341       view,
4342       immed & 0x3,
4343       (immed & 0x1ffffc) >> 2,
4344       29,
4345       5,
4346       dst_mask);
4347   }
4348
4349   // Update movz/movn instruction with bits immed.
4350   // Set instruction to movz if is_movz is true, otherwise set instruction
4351   // to movn.
4352
4353   static inline void
4354   update_movnz(unsigned char* view,
4355                AArch64_valtype immed,
4356                bool is_movz)
4357   {
4358     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4359     Valtype* wv = reinterpret_cast<Valtype*>(view);
4360     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
4361
4362     const elfcpp::Elf_Xword doffset =
4363         aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
4364     const elfcpp::Elf_Xword dst_mask =
4365         aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
4366
4367     // Clear immediate fields and opc code.
4368     val &= ~(dst_mask | (0x3 << 29));
4369
4370     // Set instruction to movz or movn.
4371     // movz: [30:29] is 10   movn: [30:29] is 00
4372     if (is_movz)
4373       val |= (0x2 << 29);
4374
4375     elfcpp::Swap<32, big_endian>::writeval(wv,
4376       static_cast<Valtype>(val | (immed << doffset)));
4377   }
4378
4379   // Update selected bits in text.
4380
4381   template<int valsize>
4382   static inline typename This::Status
4383   reloc_common(unsigned char* view, Address x,
4384                 const AArch64_reloc_property* reloc_property)
4385   {
4386     // Select bits from X.
4387     Address immed = reloc_property->select_x_value(x);
4388
4389     // Update view.
4390     const AArch64_reloc_property::Reloc_inst inst =
4391       reloc_property->reloc_inst();
4392     // If it is a data relocation or instruction has 2 parts of immediate
4393     // fields, you should not call pcrela_general.
4394     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
4395                 aarch64_howto[inst].doffset != -1);
4396     This::template update_view<valsize>(view, immed,
4397                                         aarch64_howto[inst].doffset,
4398                                         aarch64_howto[inst].dst_mask);
4399
4400     // Do check overflow or alignment if needed.
4401     return (reloc_property->checkup_x_value(x)
4402             ? This::STATUS_OKAY
4403             : This::STATUS_OVERFLOW);
4404   }
4405
4406  public:
4407
4408   // Do a simple rela relocation at unaligned addresses.
4409
4410   template<int valsize>
4411   static inline typename This::Status
4412   rela_ua(unsigned char* view,
4413           const Sized_relobj_file<size, big_endian>* object,
4414           const Symbol_value<size>* psymval,
4415           AArch64_valtype addend,
4416           const AArch64_reloc_property* reloc_property)
4417   {
4418     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
4419       Valtype;
4420     typename elfcpp::Elf_types<size>::Elf_Addr x =
4421         psymval->value(object, addend);
4422     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
4423       static_cast<Valtype>(x));
4424     return (reloc_property->checkup_x_value(x)
4425             ? This::STATUS_OKAY
4426             : This::STATUS_OVERFLOW);
4427   }
4428
4429   // Do a simple pc-relative relocation at unaligned addresses.
4430
4431   template<int valsize>
4432   static inline typename This::Status
4433   pcrela_ua(unsigned char* view,
4434             const Sized_relobj_file<size, big_endian>* object,
4435             const Symbol_value<size>* psymval,
4436             AArch64_valtype addend,
4437             Address address,
4438             const AArch64_reloc_property* reloc_property)
4439   {
4440     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
4441       Valtype;
4442     Address x = psymval->value(object, addend) - address;
4443     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
4444       static_cast<Valtype>(x));
4445     return (reloc_property->checkup_x_value(x)
4446             ? This::STATUS_OKAY
4447             : This::STATUS_OVERFLOW);
4448   }
4449
4450   // Do a simple rela relocation at aligned addresses.
4451
4452   template<int valsize>
4453   static inline typename This::Status
4454   rela(
4455     unsigned char* view,
4456     const Sized_relobj_file<size, big_endian>* object,
4457     const Symbol_value<size>* psymval,
4458     AArch64_valtype addend,
4459     const AArch64_reloc_property* reloc_property)
4460   {
4461     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
4462     Valtype* wv = reinterpret_cast<Valtype*>(view);
4463     Address x = psymval->value(object, addend);
4464     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
4465     return (reloc_property->checkup_x_value(x)
4466             ? This::STATUS_OKAY
4467             : This::STATUS_OVERFLOW);
4468   }
4469
4470   // Do relocate. Update selected bits in text.
4471   // new_val = (val & ~dst_mask) | (immed << doffset)
4472
4473   template<int valsize>
4474   static inline typename This::Status
4475   rela_general(unsigned char* view,
4476                const Sized_relobj_file<size, big_endian>* object,
4477                const Symbol_value<size>* psymval,
4478                AArch64_valtype addend,
4479                const AArch64_reloc_property* reloc_property)
4480   {
4481     // Calculate relocation.
4482     Address x = psymval->value(object, addend);
4483     return This::template reloc_common<valsize>(view, x, reloc_property);
4484   }
4485
4486   // Do relocate. Update selected bits in text.
4487   // new val = (val & ~dst_mask) | (immed << doffset)
4488
4489   template<int valsize>
4490   static inline typename This::Status
4491   rela_general(
4492     unsigned char* view,
4493     AArch64_valtype s,
4494     AArch64_valtype addend,
4495     const AArch64_reloc_property* reloc_property)
4496   {
4497     // Calculate relocation.
4498     Address x = s + addend;
4499     return This::template reloc_common<valsize>(view, x, reloc_property);
4500   }
4501
4502   // Do address relative relocate. Update selected bits in text.
4503   // new val = (val & ~dst_mask) | (immed << doffset)
4504
4505   template<int valsize>
4506   static inline typename This::Status
4507   pcrela_general(
4508     unsigned char* view,
4509     const Sized_relobj_file<size, big_endian>* object,
4510     const Symbol_value<size>* psymval,
4511     AArch64_valtype addend,
4512     Address address,
4513     const AArch64_reloc_property* reloc_property)
4514   {
4515     // Calculate relocation.
4516     Address x = psymval->value(object, addend) - address;
4517     return This::template reloc_common<valsize>(view, x, reloc_property);
4518   }
4519
4520
4521   // Calculate (S + A) - address, update adr instruction.
4522
4523   static inline typename This::Status
4524   adr(unsigned char* view,
4525       const Sized_relobj_file<size, big_endian>* object,
4526       const Symbol_value<size>* psymval,
4527       Address addend,
4528       Address address,
4529       const AArch64_reloc_property* /* reloc_property */)
4530   {
4531     AArch64_valtype x = psymval->value(object, addend) - address;
4532     // Pick bits [20:0] of X.
4533     AArch64_valtype immed = x & 0x1fffff;
4534     update_adr(view, immed);
4535     // Check -2^20 <= X < 2^20
4536     return (size == 64 && Bits<21>::has_overflow((x))
4537             ? This::STATUS_OVERFLOW
4538             : This::STATUS_OKAY);
4539   }
4540
4541   // Calculate PG(S+A) - PG(address), update adrp instruction.
4542   // R_AARCH64_ADR_PREL_PG_HI21
4543
4544   static inline typename This::Status
4545   adrp(
4546     unsigned char* view,
4547     Address sa,
4548     Address address)
4549   {
4550     AArch64_valtype x = This::Page(sa) - This::Page(address);
4551     // Pick [32:12] of X.
4552     AArch64_valtype immed = (x >> 12) & 0x1fffff;
4553     update_adr(view, immed);
4554     // Check -2^32 <= X < 2^32
4555     return (size == 64 && Bits<33>::has_overflow((x))
4556             ? This::STATUS_OVERFLOW
4557             : This::STATUS_OKAY);
4558   }
4559
4560   // Calculate PG(S+A) - PG(address), update adrp instruction.
4561   // R_AARCH64_ADR_PREL_PG_HI21
4562
4563   static inline typename This::Status
4564   adrp(unsigned char* view,
4565        const Sized_relobj_file<size, big_endian>* object,
4566        const Symbol_value<size>* psymval,
4567        Address addend,
4568        Address address,
4569        const AArch64_reloc_property* reloc_property)
4570   {
4571     Address sa = psymval->value(object, addend);
4572     AArch64_valtype x = This::Page(sa) - This::Page(address);
4573     // Pick [32:12] of X.
4574     AArch64_valtype immed = (x >> 12) & 0x1fffff;
4575     update_adr(view, immed);
4576     return (reloc_property->checkup_x_value(x)
4577             ? This::STATUS_OKAY
4578             : This::STATUS_OVERFLOW);
4579   }
4580
4581   // Update mov[n/z] instruction. Check overflow if needed.
4582   // If X >=0, set the instruction to movz and its immediate value to the
4583   // selected bits S.
4584   // If X < 0, set the instruction to movn and its immediate value to
4585   // NOT (selected bits of).
4586
4587   static inline typename This::Status
4588   movnz(unsigned char* view,
4589         AArch64_valtype x,
4590         const AArch64_reloc_property* reloc_property)
4591   {
4592     // Select bits from X.
4593     Address immed;
4594     bool is_movz;
4595     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
4596     if (static_cast<SignedW>(x) >= 0)
4597       {
4598         immed = reloc_property->select_x_value(x);
4599         is_movz = true;
4600       }
4601     else
4602       {
4603         immed = reloc_property->select_x_value(~x);;
4604         is_movz = false;
4605       }
4606
4607     // Update movnz instruction.
4608     update_movnz(view, immed, is_movz);
4609
4610     // Do check overflow or alignment if needed.
4611     return (reloc_property->checkup_x_value(x)
4612             ? This::STATUS_OKAY
4613             : This::STATUS_OVERFLOW);
4614   }
4615
4616   static inline bool
4617   maybe_apply_stub(unsigned int,
4618                    const The_relocate_info*,
4619                    const The_rela&,
4620                    unsigned char*,
4621                    Address,
4622                    const Sized_symbol<size>*,
4623                    const Symbol_value<size>*,
4624                    const Sized_relobj_file<size, big_endian>*,
4625                    section_size_type);
4626
4627 };  // End of AArch64_relocate_functions
4628
4629
4630 // For a certain relocation type (usually jump/branch), test to see if the
4631 // destination needs a stub to fulfil. If so, re-route the destination of the
4632 // original instruction to the stub, note, at this time, the stub has already
4633 // been generated.
4634
4635 template<int size, bool big_endian>
4636 bool
4637 AArch64_relocate_functions<size, big_endian>::
4638 maybe_apply_stub(unsigned int r_type,
4639                  const The_relocate_info* relinfo,
4640                  const The_rela& rela,
4641                  unsigned char* view,
4642                  Address address,
4643                  const Sized_symbol<size>* gsym,
4644                  const Symbol_value<size>* psymval,
4645                  const Sized_relobj_file<size, big_endian>* object,
4646                  section_size_type current_group_size)
4647 {
4648   if (parameters->options().relocatable())
4649     return false;
4650
4651   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
4652   Address branch_target = psymval->value(object, 0) + addend;
4653   The_reloc_stub_type stub_type = The_reloc_stub::
4654     stub_type_for_reloc(r_type, address, branch_target);
4655   if (stub_type == The_reloc_stub::ST_NONE)
4656     return false;
4657
4658   const The_aarch64_relobj* aarch64_relobj =
4659       static_cast<const The_aarch64_relobj*>(object);
4660   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
4661   gold_assert(stub_table != NULL);
4662
4663   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4664   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4665   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4666   gold_assert(stub != NULL);
4667
4668   Address new_branch_target = stub_table->address() + stub->offset();
4669   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
4670       new_branch_target - address;
4671   const AArch64_reloc_property* arp =
4672       aarch64_reloc_property_table->get_reloc_property(r_type);
4673   gold_assert(arp != NULL);
4674   typename This::Status status = This::template
4675       rela_general<32>(view, branch_offset, 0, arp);
4676   if (status != This::STATUS_OKAY)
4677     gold_error(_("Stub is too far away, try a smaller value "
4678                  "for '--stub-group-size'. The current value is 0x%lx."),
4679                static_cast<unsigned long>(current_group_size));
4680   return true;
4681 }
4682
4683
4684 // Group input sections for stub generation.
4685 //
4686 // We group input sections in an output section so that the total size,
4687 // including any padding space due to alignment is smaller than GROUP_SIZE
4688 // unless the only input section in group is bigger than GROUP_SIZE already.
4689 // Then an ARM stub table is created to follow the last input section
4690 // in group.  For each group an ARM stub table is created an is placed
4691 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
4692 // extend the group after the stub table.
4693
4694 template<int size, bool big_endian>
4695 void
4696 Target_aarch64<size, big_endian>::group_sections(
4697     Layout* layout,
4698     section_size_type group_size,
4699     bool stubs_always_after_branch,
4700     const Task* task)
4701 {
4702   // Group input sections and insert stub table
4703   Layout::Section_list section_list;
4704   layout->get_executable_sections(&section_list);
4705   for (Layout::Section_list::const_iterator p = section_list.begin();
4706        p != section_list.end();
4707        ++p)
4708     {
4709       AArch64_output_section<size, big_endian>* output_section =
4710           static_cast<AArch64_output_section<size, big_endian>*>(*p);
4711       output_section->group_sections(group_size, stubs_always_after_branch,
4712                                      this, task);
4713     }
4714 }
4715
4716
4717 // Find the AArch64_input_section object corresponding to the SHNDX-th input
4718 // section of RELOBJ.
4719
4720 template<int size, bool big_endian>
4721 AArch64_input_section<size, big_endian>*
4722 Target_aarch64<size, big_endian>::find_aarch64_input_section(
4723     Relobj* relobj, unsigned int shndx) const
4724 {
4725   Section_id sid(relobj, shndx);
4726   typename AArch64_input_section_map::const_iterator p =
4727     this->aarch64_input_section_map_.find(sid);
4728   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
4729 }
4730
4731
4732 // Make a new AArch64_input_section object.
4733
4734 template<int size, bool big_endian>
4735 AArch64_input_section<size, big_endian>*
4736 Target_aarch64<size, big_endian>::new_aarch64_input_section(
4737     Relobj* relobj, unsigned int shndx)
4738 {
4739   Section_id sid(relobj, shndx);
4740
4741   AArch64_input_section<size, big_endian>* input_section =
4742       new AArch64_input_section<size, big_endian>(relobj, shndx);
4743   input_section->init();
4744
4745   // Register new AArch64_input_section in map for look-up.
4746   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
4747       this->aarch64_input_section_map_.insert(
4748           std::make_pair(sid, input_section));
4749
4750   // Make sure that it we have not created another AArch64_input_section
4751   // for this input section already.
4752   gold_assert(ins.second);
4753
4754   return input_section;
4755 }
4756
4757
4758 // Relaxation hook.  This is where we do stub generation.
4759
4760 template<int size, bool big_endian>
4761 bool
4762 Target_aarch64<size, big_endian>::do_relax(
4763     int pass,
4764     const Input_objects* input_objects,
4765     Symbol_table* symtab,
4766     Layout* layout ,
4767     const Task* task)
4768 {
4769   gold_assert(!parameters->options().relocatable());
4770   if (pass == 1)
4771     {
4772       // We don't handle negative stub_group_size right now.
4773       this->stub_group_size_ = abs(parameters->options().stub_group_size());
4774       if (this->stub_group_size_ == 1)
4775         {
4776           // Leave room for 4096 4-byte stub entries. If we exceed that, then we
4777           // will fail to link.  The user will have to relink with an explicit
4778           // group size option.
4779           this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
4780                                    4096 * 4;
4781         }
4782       group_sections(layout, this->stub_group_size_, true, task);
4783     }
4784   else
4785     {
4786       // If this is not the first pass, addresses and file offsets have
4787       // been reset at this point, set them here.
4788       for (Stub_table_iterator sp = this->stub_tables_.begin();
4789            sp != this->stub_tables_.end(); ++sp)
4790         {
4791           The_stub_table* stt = *sp;
4792           The_aarch64_input_section* owner = stt->owner();
4793           off_t off = align_address(owner->original_size(),
4794                                     stt->addralign());
4795           stt->set_address_and_file_offset(owner->address() + off,
4796                                            owner->offset() + off);
4797         }
4798     }
4799
4800   // Scan relocs for relocation stubs
4801   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
4802        op != input_objects->relobj_end();
4803        ++op)
4804     {
4805       The_aarch64_relobj* aarch64_relobj =
4806           static_cast<The_aarch64_relobj*>(*op);
4807       // Lock the object so we can read from it.  This is only called
4808       // single-threaded from Layout::finalize, so it is OK to lock.
4809       Task_lock_obj<Object> tl(task, aarch64_relobj);
4810       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
4811     }
4812
4813   bool any_stub_table_changed = false;
4814   for (Stub_table_iterator siter = this->stub_tables_.begin();
4815        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
4816     {
4817       The_stub_table* stub_table = *siter;
4818       if (stub_table->update_data_size_changed_p())
4819         {
4820           The_aarch64_input_section* owner = stub_table->owner();
4821           uint64_t address = owner->address();
4822           off_t offset = owner->offset();
4823           owner->reset_address_and_file_offset();
4824           owner->set_address_and_file_offset(address, offset);
4825
4826           any_stub_table_changed = true;
4827         }
4828     }
4829
4830   // Do not continue relaxation.
4831   bool continue_relaxation = any_stub_table_changed;
4832   if (!continue_relaxation)
4833     for (Stub_table_iterator sp = this->stub_tables_.begin();
4834          (sp != this->stub_tables_.end());
4835          ++sp)
4836       (*sp)->finalize_stubs();
4837
4838   return continue_relaxation;
4839 }
4840
4841
4842 // Make a new Stub_table.
4843
4844 template<int size, bool big_endian>
4845 Stub_table<size, big_endian>*
4846 Target_aarch64<size, big_endian>::new_stub_table(
4847     AArch64_input_section<size, big_endian>* owner)
4848 {
4849   Stub_table<size, big_endian>* stub_table =
4850       new Stub_table<size, big_endian>(owner);
4851   stub_table->set_address(align_address(
4852       owner->address() + owner->data_size(), 8));
4853   stub_table->set_file_offset(owner->offset() + owner->data_size());
4854   stub_table->finalize_data_size();
4855
4856   this->stub_tables_.push_back(stub_table);
4857
4858   return stub_table;
4859 }
4860
4861
4862 template<int size, bool big_endian>
4863 uint64_t
4864 Target_aarch64<size, big_endian>::do_reloc_addend(
4865     void* arg, unsigned int r_type, uint64_t) const
4866 {
4867   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
4868   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4869   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4870   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4871   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4872   gold_assert(psymval->is_tls_symbol());
4873   // The value of a TLS symbol is the offset in the TLS segment.
4874   return psymval->value(ti.object, 0);
4875 }
4876
4877 // Return the number of entries in the PLT.
4878
4879 template<int size, bool big_endian>
4880 unsigned int
4881 Target_aarch64<size, big_endian>::plt_entry_count() const
4882 {
4883   if (this->plt_ == NULL)
4884     return 0;
4885   return this->plt_->entry_count();
4886 }
4887
4888 // Return the offset of the first non-reserved PLT entry.
4889
4890 template<int size, bool big_endian>
4891 unsigned int
4892 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
4893 {
4894   return this->plt_->first_plt_entry_offset();
4895 }
4896
4897 // Return the size of each PLT entry.
4898
4899 template<int size, bool big_endian>
4900 unsigned int
4901 Target_aarch64<size, big_endian>::plt_entry_size() const
4902 {
4903   return this->plt_->get_plt_entry_size();
4904 }
4905
4906 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
4907
4908 template<int size, bool big_endian>
4909 void
4910 Target_aarch64<size, big_endian>::define_tls_base_symbol(
4911     Symbol_table* symtab, Layout* layout)
4912 {
4913   if (this->tls_base_symbol_defined_)
4914     return;
4915
4916   Output_segment* tls_segment = layout->tls_segment();
4917   if (tls_segment != NULL)
4918     {
4919       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
4920       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
4921                                        Symbol_table::PREDEFINED,
4922                                        tls_segment, 0, 0,
4923                                        elfcpp::STT_TLS,
4924                                        elfcpp::STB_LOCAL,
4925                                        elfcpp::STV_HIDDEN, 0,
4926                                        Symbol::SEGMENT_START,
4927                                        true);
4928     }
4929   this->tls_base_symbol_defined_ = true;
4930 }
4931
4932 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
4933
4934 template<int size, bool big_endian>
4935 void
4936 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
4937     Symbol_table* symtab, Layout* layout)
4938 {
4939   if (this->plt_ == NULL)
4940     this->make_plt_section(symtab, layout);
4941
4942   if (!this->plt_->has_tlsdesc_entry())
4943     {
4944       // Allocate the TLSDESC_GOT entry.
4945       Output_data_got_aarch64<size, big_endian>* got =
4946           this->got_section(symtab, layout);
4947       unsigned int got_offset = got->add_constant(0);
4948
4949       // Allocate the TLSDESC_PLT entry.
4950       this->plt_->reserve_tlsdesc_entry(got_offset);
4951     }
4952 }
4953
4954 // Create a GOT entry for the TLS module index.
4955
4956 template<int size, bool big_endian>
4957 unsigned int
4958 Target_aarch64<size, big_endian>::got_mod_index_entry(
4959     Symbol_table* symtab, Layout* layout,
4960     Sized_relobj_file<size, big_endian>* object)
4961 {
4962   if (this->got_mod_index_offset_ == -1U)
4963     {
4964       gold_assert(symtab != NULL && layout != NULL && object != NULL);
4965       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4966       Output_data_got_aarch64<size, big_endian>* got =
4967           this->got_section(symtab, layout);
4968       unsigned int got_offset = got->add_constant(0);
4969       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
4970                           got_offset, 0);
4971       got->add_constant(0);
4972       this->got_mod_index_offset_ = got_offset;
4973     }
4974   return this->got_mod_index_offset_;
4975 }
4976
4977 // Optimize the TLS relocation type based on what we know about the
4978 // symbol.  IS_FINAL is true if the final address of this symbol is
4979 // known at link time.
4980
4981 template<int size, bool big_endian>
4982 tls::Tls_optimization
4983 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
4984                                                      int r_type)
4985 {
4986   // If we are generating a shared library, then we can't do anything
4987   // in the linker
4988   if (parameters->options().shared())
4989     return tls::TLSOPT_NONE;
4990
4991   switch (r_type)
4992     {
4993     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
4994     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
4995     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
4996     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
4997     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
4998     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
4999     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5000     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5001     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5002     case elfcpp::R_AARCH64_TLSDESC_LDR:
5003     case elfcpp::R_AARCH64_TLSDESC_ADD:
5004     case elfcpp::R_AARCH64_TLSDESC_CALL:
5005       // These are General-Dynamic which permits fully general TLS
5006       // access.  Since we know that we are generating an executable,
5007       // we can convert this to Initial-Exec.  If we also know that
5008       // this is a local symbol, we can further switch to Local-Exec.
5009       if (is_final)
5010         return tls::TLSOPT_TO_LE;
5011       return tls::TLSOPT_TO_IE;
5012
5013     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5014     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5015     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5016     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5017     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5018     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5019       // These are Local-Dynamic, which refer to local symbols in the
5020       // dynamic TLS block. Since we know that we generating an
5021       // executable, we can switch to Local-Exec.
5022       return tls::TLSOPT_TO_LE;
5023
5024     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5025     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5026     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5027     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5028     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5029       // These are Initial-Exec relocs which get the thread offset
5030       // from the GOT. If we know that we are linking against the
5031       // local symbol, we can switch to Local-Exec, which links the
5032       // thread offset into the instruction.
5033       if (is_final)
5034         return tls::TLSOPT_TO_LE;
5035       return tls::TLSOPT_NONE;
5036
5037     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5038     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5039     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5040     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5041     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5042     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5043     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5044     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5045       // When we already have Local-Exec, there is nothing further we
5046       // can do.
5047       return tls::TLSOPT_NONE;
5048
5049     default:
5050       gold_unreachable();
5051     }
5052 }
5053
5054 // Returns true if this relocation type could be that of a function pointer.
5055
5056 template<int size, bool big_endian>
5057 inline bool
5058 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5059   unsigned int r_type)
5060 {
5061   switch (r_type)
5062     {
5063     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5064     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5065     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5066     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5067     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5068       {
5069         return true;
5070       }
5071     }
5072   return false;
5073 }
5074
5075 // For safe ICF, scan a relocation for a local symbol to check if it
5076 // corresponds to a function pointer being taken.  In that case mark
5077 // the function whose pointer was taken as not foldable.
5078
5079 template<int size, bool big_endian>
5080 inline bool
5081 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5082   Symbol_table* ,
5083   Layout* ,
5084   Target_aarch64<size, big_endian>* ,
5085   Sized_relobj_file<size, big_endian>* ,
5086   unsigned int ,
5087   Output_section* ,
5088   const elfcpp::Rela<size, big_endian>& ,
5089   unsigned int r_type,
5090   const elfcpp::Sym<size, big_endian>&)
5091 {
5092   // When building a shared library, do not fold any local symbols.
5093   return (parameters->options().shared()
5094           || possible_function_pointer_reloc(r_type));
5095 }
5096
5097 // For safe ICF, scan a relocation for a global symbol to check if it
5098 // corresponds to a function pointer being taken.  In that case mark
5099 // the function whose pointer was taken as not foldable.
5100
5101 template<int size, bool big_endian>
5102 inline bool
5103 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5104   Symbol_table* ,
5105   Layout* ,
5106   Target_aarch64<size, big_endian>* ,
5107   Sized_relobj_file<size, big_endian>* ,
5108   unsigned int ,
5109   Output_section* ,
5110   const elfcpp::Rela<size, big_endian>& ,
5111   unsigned int r_type,
5112   Symbol* gsym)
5113 {
5114   // When building a shared library, do not fold symbols whose visibility
5115   // is hidden, internal or protected.
5116   return ((parameters->options().shared()
5117            && (gsym->visibility() == elfcpp::STV_INTERNAL
5118                || gsym->visibility() == elfcpp::STV_PROTECTED
5119                || gsym->visibility() == elfcpp::STV_HIDDEN))
5120           || possible_function_pointer_reloc(r_type));
5121 }
5122
5123 // Report an unsupported relocation against a local symbol.
5124
5125 template<int size, bool big_endian>
5126 void
5127 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5128      Sized_relobj_file<size, big_endian>* object,
5129      unsigned int r_type)
5130 {
5131   gold_error(_("%s: unsupported reloc %u against local symbol"),
5132              object->name().c_str(), r_type);
5133 }
5134
5135 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5136 // dynamic linker does not support it, issue an error.
5137
5138 template<int size, bool big_endian>
5139 void
5140 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5141                                                       unsigned int r_type)
5142 {
5143   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5144
5145   switch (r_type)
5146     {
5147     // These are the relocation types supported by glibc for AARCH64.
5148     case elfcpp::R_AARCH64_NONE:
5149     case elfcpp::R_AARCH64_COPY:
5150     case elfcpp::R_AARCH64_GLOB_DAT:
5151     case elfcpp::R_AARCH64_JUMP_SLOT:
5152     case elfcpp::R_AARCH64_RELATIVE:
5153     case elfcpp::R_AARCH64_TLS_DTPREL64:
5154     case elfcpp::R_AARCH64_TLS_DTPMOD64:
5155     case elfcpp::R_AARCH64_TLS_TPREL64:
5156     case elfcpp::R_AARCH64_TLSDESC:
5157     case elfcpp::R_AARCH64_IRELATIVE:
5158     case elfcpp::R_AARCH64_ABS32:
5159     case elfcpp::R_AARCH64_ABS64:
5160       return;
5161
5162     default:
5163       break;
5164     }
5165
5166   // This prevents us from issuing more than one error per reloc
5167   // section. But we can still wind up issuing more than one
5168   // error per object file.
5169   if (this->issued_non_pic_error_)
5170     return;
5171   gold_assert(parameters->options().output_is_position_independent());
5172   object->error(_("requires unsupported dynamic reloc; "
5173                   "recompile with -fPIC"));
5174   this->issued_non_pic_error_ = true;
5175   return;
5176 }
5177
5178 // Return whether we need to make a PLT entry for a relocation of the
5179 // given type against a STT_GNU_IFUNC symbol.
5180
5181 template<int size, bool big_endian>
5182 bool
5183 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5184     Sized_relobj_file<size, big_endian>* object,
5185     unsigned int r_type)
5186 {
5187   const AArch64_reloc_property* arp =
5188       aarch64_reloc_property_table->get_reloc_property(r_type);
5189   gold_assert(arp != NULL);
5190
5191   int flags = arp->reference_flags();
5192   if (flags & Symbol::TLS_REF)
5193     {
5194       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5195                  object->name().c_str(), arp->name().c_str());
5196       return false;
5197     }
5198   return flags != 0;
5199 }
5200
5201 // Scan a relocation for a local symbol.
5202
5203 template<int size, bool big_endian>
5204 inline void
5205 Target_aarch64<size, big_endian>::Scan::local(
5206     Symbol_table* symtab,
5207     Layout* layout,
5208     Target_aarch64<size, big_endian>* target,
5209     Sized_relobj_file<size, big_endian>* object,
5210     unsigned int data_shndx,
5211     Output_section* output_section,
5212     const elfcpp::Rela<size, big_endian>& rela,
5213     unsigned int r_type,
5214     const elfcpp::Sym<size, big_endian>& lsym,
5215     bool is_discarded)
5216 {
5217   if (is_discarded)
5218     return;
5219
5220   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5221       Reloc_section;
5222   Output_data_got_aarch64<size, big_endian>* got =
5223       target->got_section(symtab, layout);
5224   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5225
5226   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5227   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5228   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5229     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5230
5231   switch (r_type)
5232     {
5233     case elfcpp::R_AARCH64_ABS32:
5234     case elfcpp::R_AARCH64_ABS16:
5235       if (parameters->options().output_is_position_independent())
5236         {
5237           gold_error(_("%s: unsupported reloc %u in pos independent link."),
5238                      object->name().c_str(), r_type);
5239         }
5240       break;
5241
5242     case elfcpp::R_AARCH64_ABS64:
5243       // If building a shared library or pie, we need to mark this as a dynmic
5244       // reloction, so that the dynamic loader can relocate it.
5245       if (parameters->options().output_is_position_independent())
5246         {
5247           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5248           rela_dyn->add_local_relative(object, r_sym,
5249                                        elfcpp::R_AARCH64_RELATIVE,
5250                                        output_section,
5251                                        data_shndx,
5252                                        rela.get_r_offset(),
5253                                        rela.get_r_addend(),
5254                                        is_ifunc);
5255         }
5256       break;
5257
5258     case elfcpp::R_AARCH64_PREL64:
5259     case elfcpp::R_AARCH64_PREL32:
5260     case elfcpp::R_AARCH64_PREL16:
5261       break;
5262
5263     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
5264     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
5265     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
5266     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
5267     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
5268     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
5269     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
5270     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
5271     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
5272     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
5273        break;
5274
5275     // Control flow, pc-relative. We don't need to do anything for a relative
5276     // addressing relocation against a local symbol if it does not reference
5277     // the GOT.
5278     case elfcpp::R_AARCH64_TSTBR14:
5279     case elfcpp::R_AARCH64_CONDBR19:
5280     case elfcpp::R_AARCH64_JUMP26:
5281     case elfcpp::R_AARCH64_CALL26:
5282       break;
5283
5284     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5285     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5286       {
5287         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5288           optimize_tls_reloc(!parameters->options().shared(), r_type);
5289         if (tlsopt == tls::TLSOPT_TO_LE)
5290           break;
5291
5292         layout->set_has_static_tls();
5293         // Create a GOT entry for the tp-relative offset.
5294         if (!parameters->doing_static_link())
5295           {
5296             got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
5297                                     target->rela_dyn_section(layout),
5298                                     elfcpp::R_AARCH64_TLS_TPREL64);
5299           }
5300         else if (!object->local_has_got_offset(r_sym,
5301                                                GOT_TYPE_TLS_OFFSET))
5302           {
5303             got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
5304             unsigned int got_offset =
5305                 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
5306             const elfcpp::Elf_Xword addend = rela.get_r_addend();
5307             gold_assert(addend == 0);
5308             got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
5309                                   object, r_sym);
5310           }
5311       }
5312       break;
5313
5314     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5315     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5316       {
5317         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5318             optimize_tls_reloc(!parameters->options().shared(), r_type);
5319         if (tlsopt == tls::TLSOPT_TO_LE)
5320           {
5321             layout->set_has_static_tls();
5322             break;
5323           }
5324         gold_assert(tlsopt == tls::TLSOPT_NONE);
5325
5326         got->add_local_pair_with_rel(object,r_sym, data_shndx,
5327                                      GOT_TYPE_TLS_PAIR,
5328                                      target->rela_dyn_section(layout),
5329                                      elfcpp::R_AARCH64_TLS_DTPMOD64);
5330       }
5331       break;
5332
5333     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5334     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5335     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5336     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5337     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5338     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5339     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5340     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5341       {
5342         layout->set_has_static_tls();
5343         bool output_is_shared = parameters->options().shared();
5344         if (output_is_shared)
5345           gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
5346                      object->name().c_str(), r_type);
5347       }
5348       break;
5349
5350     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5351     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5352       {
5353         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5354             optimize_tls_reloc(!parameters->options().shared(), r_type);
5355         if (tlsopt == tls::TLSOPT_NONE)
5356           {
5357             // Create a GOT entry for the module index.
5358             target->got_mod_index_entry(symtab, layout, object);
5359           }
5360         else if (tlsopt != tls::TLSOPT_TO_LE)
5361           unsupported_reloc_local(object, r_type);
5362       }
5363       break;
5364
5365     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5366     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5367     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5368     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5369       break;
5370
5371     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5372     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5373     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5374       {
5375         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5376             optimize_tls_reloc(!parameters->options().shared(), r_type);
5377         target->define_tls_base_symbol(symtab, layout);
5378         if (tlsopt == tls::TLSOPT_NONE)
5379           {
5380             // Create reserved PLT and GOT entries for the resolver.
5381             target->reserve_tlsdesc_entries(symtab, layout);
5382
5383             // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
5384             // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
5385             // entry needs to be in an area in .got.plt, not .got. Call
5386             // got_section to make sure the section has been created.
5387             target->got_section(symtab, layout);
5388             Output_data_got<size, big_endian>* got =
5389                 target->got_tlsdesc_section();
5390             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5391             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
5392               {
5393                 unsigned int got_offset = got->add_constant(0);
5394                 got->add_constant(0);
5395                 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
5396                                              got_offset);
5397                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
5398                 // We store the arguments we need in a vector, and use
5399                 // the index into the vector as the parameter to pass
5400                 // to the target specific routines.
5401                 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
5402                 void* arg = reinterpret_cast<void*>(intarg);
5403                 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
5404                                         got, got_offset, 0);
5405               }
5406           }
5407         else if (tlsopt != tls::TLSOPT_TO_LE)
5408           unsupported_reloc_local(object, r_type);
5409       }
5410       break;
5411
5412     case elfcpp::R_AARCH64_TLSDESC_CALL:
5413       break;
5414
5415     default:
5416       unsupported_reloc_local(object, r_type);
5417     }
5418 }
5419
5420
5421 // Report an unsupported relocation against a global symbol.
5422
5423 template<int size, bool big_endian>
5424 void
5425 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
5426     Sized_relobj_file<size, big_endian>* object,
5427     unsigned int r_type,
5428     Symbol* gsym)
5429 {
5430   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5431              object->name().c_str(), r_type, gsym->demangled_name().c_str());
5432 }
5433
5434 template<int size, bool big_endian>
5435 inline void
5436 Target_aarch64<size, big_endian>::Scan::global(
5437     Symbol_table* symtab,
5438     Layout* layout,
5439     Target_aarch64<size, big_endian>* target,
5440     Sized_relobj_file<size, big_endian> * object,
5441     unsigned int data_shndx,
5442     Output_section* output_section,
5443     const elfcpp::Rela<size, big_endian>& rela,
5444     unsigned int r_type,
5445     Symbol* gsym)
5446 {
5447   // A STT_GNU_IFUNC symbol may require a PLT entry.
5448   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5449       && this->reloc_needs_plt_for_ifunc(object, r_type))
5450     target->make_plt_entry(symtab, layout, gsym);
5451
5452   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5453     Reloc_section;
5454   const AArch64_reloc_property* arp =
5455       aarch64_reloc_property_table->get_reloc_property(r_type);
5456   gold_assert(arp != NULL);
5457
5458   switch (r_type)
5459     {
5460     case elfcpp::R_AARCH64_ABS16:
5461     case elfcpp::R_AARCH64_ABS32:
5462     case elfcpp::R_AARCH64_ABS64:
5463       {
5464         // Make a PLT entry if necessary.
5465         if (gsym->needs_plt_entry())
5466           {
5467             target->make_plt_entry(symtab, layout, gsym);
5468             // Since this is not a PC-relative relocation, we may be
5469             // taking the address of a function. In that case we need to
5470             // set the entry in the dynamic symbol table to the address of
5471             // the PLT entry.
5472             if (gsym->is_from_dynobj() && !parameters->options().shared())
5473               gsym->set_needs_dynsym_value();
5474           }
5475         // Make a dynamic relocation if necessary.
5476         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
5477           {
5478             if (!parameters->options().output_is_position_independent()
5479                 && gsym->may_need_copy_reloc())
5480               {
5481                 target->copy_reloc(symtab, layout, object,
5482                                    data_shndx, output_section, gsym, rela);
5483               }
5484             else if (r_type == elfcpp::R_AARCH64_ABS64
5485                      && gsym->type() == elfcpp::STT_GNU_IFUNC
5486                      && gsym->can_use_relative_reloc(false)
5487                      && !gsym->is_from_dynobj()
5488                      && !gsym->is_undefined()
5489                      && !gsym->is_preemptible())
5490               {
5491                 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
5492                 // symbol. This makes a function address in a PIE executable
5493                 // match the address in a shared library that it links against.
5494                 Reloc_section* rela_dyn =
5495                     target->rela_irelative_section(layout);
5496                 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
5497                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
5498                                                        output_section, object,
5499                                                        data_shndx,
5500                                                        rela.get_r_offset(),
5501                                                        rela.get_r_addend());
5502               }
5503             else if (r_type == elfcpp::R_AARCH64_ABS64
5504                      && gsym->can_use_relative_reloc(false))
5505               {
5506                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5507                 rela_dyn->add_global_relative(gsym,
5508                                               elfcpp::R_AARCH64_RELATIVE,
5509                                               output_section,
5510                                               object,
5511                                               data_shndx,
5512                                               rela.get_r_offset(),
5513                                               rela.get_r_addend(),
5514                                               false);
5515               }
5516             else
5517               {
5518                 check_non_pic(object, r_type);
5519                 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
5520                     rela_dyn = target->rela_dyn_section(layout);
5521                 rela_dyn->add_global(
5522                   gsym, r_type, output_section, object,
5523                   data_shndx, rela.get_r_offset(),rela.get_r_addend());
5524               }
5525           }
5526       }
5527       break;
5528
5529     case elfcpp::R_AARCH64_PREL16:
5530     case elfcpp::R_AARCH64_PREL32:
5531     case elfcpp::R_AARCH64_PREL64:
5532       // This is used to fill the GOT absolute address.
5533       if (gsym->needs_plt_entry())
5534         {
5535           target->make_plt_entry(symtab, layout, gsym);
5536         }
5537       break;
5538
5539     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
5540     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
5541     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
5542     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
5543     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
5544     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
5545     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
5546     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
5547     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
5548     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
5549       {
5550         if (gsym->needs_plt_entry())
5551           target->make_plt_entry(symtab, layout, gsym);
5552         // Make a dynamic relocation if necessary.
5553         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
5554           {
5555             if (parameters->options().output_is_executable()
5556                 && gsym->may_need_copy_reloc())
5557               {
5558                 target->copy_reloc(symtab, layout, object,
5559                                    data_shndx, output_section, gsym, rela);
5560               }
5561           }
5562         break;
5563       }
5564
5565     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5566     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5567       {
5568         // This pair of relocations is used to access a specific GOT entry.
5569         // Note a GOT entry is an *address* to a symbol.
5570         // The symbol requires a GOT entry
5571         Output_data_got_aarch64<size, big_endian>* got =
5572           target->got_section(symtab, layout);
5573         if (gsym->final_value_is_known())
5574           {
5575             // For a STT_GNU_IFUNC symbol we want the PLT address.
5576             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5577               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5578             else
5579               got->add_global(gsym, GOT_TYPE_STANDARD);
5580           }
5581         else
5582           {
5583             // If this symbol is not fully resolved, we need to add a dynamic
5584             // relocation for it.
5585             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5586
5587             // Use a GLOB_DAT rather than a RELATIVE reloc if:
5588             //
5589             // 1) The symbol may be defined in some other module.
5590             // 2) We are building a shared library and this is a protected
5591             // symbol; using GLOB_DAT means that the dynamic linker can use
5592             // the address of the PLT in the main executable when appropriate
5593             // so that function address comparisons work.
5594             // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
5595             // again so that function address comparisons work.
5596             if (gsym->is_from_dynobj()
5597                 || gsym->is_undefined()
5598                 || gsym->is_preemptible()
5599                 || (gsym->visibility() == elfcpp::STV_PROTECTED
5600                     && parameters->options().shared())
5601                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
5602                     && parameters->options().output_is_position_independent()))
5603               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
5604                                        rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
5605             else
5606               {
5607                 // For a STT_GNU_IFUNC symbol we want to write the PLT
5608                 // offset into the GOT, so that function pointer
5609                 // comparisons work correctly.
5610                 bool is_new;
5611                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
5612                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
5613                 else
5614                   {
5615                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5616                     // Tell the dynamic linker to use the PLT address
5617                     // when resolving relocations.
5618                     if (gsym->is_from_dynobj()
5619                         && !parameters->options().shared())
5620                       gsym->set_needs_dynsym_value();
5621                   }
5622                 if (is_new)
5623                   {
5624                     rela_dyn->add_global_relative(
5625                         gsym, elfcpp::R_AARCH64_RELATIVE,
5626                         got,
5627                         gsym->got_offset(GOT_TYPE_STANDARD),
5628                         0,
5629                         false);
5630                   }
5631               }
5632           }
5633         break;
5634       }
5635
5636     case elfcpp::R_AARCH64_TSTBR14:
5637     case elfcpp::R_AARCH64_CONDBR19:
5638     case elfcpp::R_AARCH64_JUMP26:
5639     case elfcpp::R_AARCH64_CALL26:
5640       {
5641         if (gsym->final_value_is_known())
5642           break;
5643
5644         if (gsym->is_defined() &&
5645             !gsym->is_from_dynobj() &&
5646             !gsym->is_preemptible())
5647           break;
5648
5649         // Make plt entry for function call.
5650         target->make_plt_entry(symtab, layout, gsym);
5651         break;
5652       }
5653
5654     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5655     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
5656       {
5657         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5658             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5659         if (tlsopt == tls::TLSOPT_TO_LE)
5660           {
5661             layout->set_has_static_tls();
5662             break;
5663           }
5664         gold_assert(tlsopt == tls::TLSOPT_NONE);
5665
5666         // General dynamic.
5667         Output_data_got_aarch64<size, big_endian>* got =
5668             target->got_section(symtab, layout);
5669         // Create 2 consecutive entries for module index and offset.
5670         got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
5671                                       target->rela_dyn_section(layout),
5672                                       elfcpp::R_AARCH64_TLS_DTPMOD64,
5673                                       elfcpp::R_AARCH64_TLS_DTPREL64);
5674       }
5675       break;
5676
5677     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5678     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
5679       {
5680         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5681             optimize_tls_reloc(!parameters->options().shared(), r_type);
5682         if (tlsopt == tls::TLSOPT_NONE)
5683           {
5684             // Create a GOT entry for the module index.
5685             target->got_mod_index_entry(symtab, layout, object);
5686           }
5687         else if (tlsopt != tls::TLSOPT_TO_LE)
5688           unsupported_reloc_local(object, r_type);
5689       }
5690       break;
5691
5692     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5693     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5694     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5695     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
5696       break;
5697
5698     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5699     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
5700       {
5701         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5702           optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5703         if (tlsopt == tls::TLSOPT_TO_LE)
5704           break;
5705
5706         layout->set_has_static_tls();
5707         // Create a GOT entry for the tp-relative offset.
5708         Output_data_got_aarch64<size, big_endian>* got
5709           = target->got_section(symtab, layout);
5710         if (!parameters->doing_static_link())
5711           {
5712             got->add_global_with_rel(
5713               gsym, GOT_TYPE_TLS_OFFSET,
5714               target->rela_dyn_section(layout),
5715               elfcpp::R_AARCH64_TLS_TPREL64);
5716           }
5717         if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
5718           {
5719             got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
5720             unsigned int got_offset =
5721               gsym->got_offset(GOT_TYPE_TLS_OFFSET);
5722             const elfcpp::Elf_Xword addend = rela.get_r_addend();
5723             gold_assert(addend == 0);
5724             got->add_static_reloc(got_offset,
5725                                   elfcpp::R_AARCH64_TLS_TPREL64, gsym);
5726           }
5727       }
5728       break;
5729
5730     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5731     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5732     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5733     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5734     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5735     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5736     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5737     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:  // Local executable
5738       layout->set_has_static_tls();
5739       if (parameters->options().shared())
5740         gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
5741                    object->name().c_str(), r_type);
5742       break;
5743
5744     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5745     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5746     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
5747       {
5748         target->define_tls_base_symbol(symtab, layout);
5749         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5750             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5751         if (tlsopt == tls::TLSOPT_NONE)
5752           {
5753             // Create reserved PLT and GOT entries for the resolver.
5754             target->reserve_tlsdesc_entries(symtab, layout);
5755
5756             // Create a double GOT entry with an R_AARCH64_TLSDESC
5757             // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
5758             // entry needs to be in an area in .got.plt, not .got. Call
5759             // got_section to make sure the section has been created.
5760             target->got_section(symtab, layout);
5761             Output_data_got<size, big_endian>* got =
5762                 target->got_tlsdesc_section();
5763             Reloc_section* rt = target->rela_tlsdesc_section(layout);
5764             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
5765                                           elfcpp::R_AARCH64_TLSDESC, 0);
5766           }
5767         else if (tlsopt == tls::TLSOPT_TO_IE)
5768           {
5769             // Create a GOT entry for the tp-relative offset.
5770             Output_data_got<size, big_endian>* got
5771                 = target->got_section(symtab, layout);
5772             got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
5773                                      target->rela_dyn_section(layout),
5774                                      elfcpp::R_AARCH64_TLS_TPREL64);
5775           }
5776         else if (tlsopt != tls::TLSOPT_TO_LE)
5777           unsupported_reloc_global(object, r_type, gsym);
5778       }
5779       break;
5780
5781     case elfcpp::R_AARCH64_TLSDESC_CALL:
5782       break;
5783
5784     default:
5785       gold_error(_("%s: unsupported reloc type in global scan"),
5786                  aarch64_reloc_property_table->
5787                  reloc_name_in_error_message(r_type).c_str());
5788     }
5789   return;
5790 }  // End of Scan::global
5791
5792
5793 // Create the PLT section.
5794 template<int size, bool big_endian>
5795 void
5796 Target_aarch64<size, big_endian>::make_plt_section(
5797   Symbol_table* symtab, Layout* layout)
5798 {
5799   if (this->plt_ == NULL)
5800     {
5801       // Create the GOT section first.
5802       this->got_section(symtab, layout);
5803
5804       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
5805                                        this->got_irelative_);
5806
5807       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
5808                                       (elfcpp::SHF_ALLOC
5809                                        | elfcpp::SHF_EXECINSTR),
5810                                       this->plt_, ORDER_PLT, false);
5811
5812       // Make the sh_info field of .rela.plt point to .plt.
5813       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
5814       rela_plt_os->set_info_section(this->plt_->output_section());
5815     }
5816 }
5817
5818 // Return the section for TLSDESC relocations.
5819
5820 template<int size, bool big_endian>
5821 typename Target_aarch64<size, big_endian>::Reloc_section*
5822 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
5823 {
5824   return this->plt_section()->rela_tlsdesc(layout);
5825 }
5826
5827 // Create a PLT entry for a global symbol.
5828
5829 template<int size, bool big_endian>
5830 void
5831 Target_aarch64<size, big_endian>::make_plt_entry(
5832     Symbol_table* symtab,
5833     Layout* layout,
5834     Symbol* gsym)
5835 {
5836   if (gsym->has_plt_offset())
5837     return;
5838
5839   if (this->plt_ == NULL)
5840     this->make_plt_section(symtab, layout);
5841
5842   this->plt_->add_entry(symtab, layout, gsym);
5843 }
5844
5845 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5846
5847 template<int size, bool big_endian>
5848 void
5849 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
5850     Symbol_table* symtab, Layout* layout,
5851     Sized_relobj_file<size, big_endian>* relobj,
5852     unsigned int local_sym_index)
5853 {
5854   if (relobj->local_has_plt_offset(local_sym_index))
5855     return;
5856   if (this->plt_ == NULL)
5857     this->make_plt_section(symtab, layout);
5858   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
5859                                                               relobj,
5860                                                               local_sym_index);
5861   relobj->set_local_plt_offset(local_sym_index, plt_offset);
5862 }
5863
5864 template<int size, bool big_endian>
5865 void
5866 Target_aarch64<size, big_endian>::gc_process_relocs(
5867     Symbol_table* symtab,
5868     Layout* layout,
5869     Sized_relobj_file<size, big_endian>* object,
5870     unsigned int data_shndx,
5871     unsigned int sh_type,
5872     const unsigned char* prelocs,
5873     size_t reloc_count,
5874     Output_section* output_section,
5875     bool needs_special_offset_handling,
5876     size_t local_symbol_count,
5877     const unsigned char* plocal_symbols)
5878 {
5879   if (sh_type == elfcpp::SHT_REL)
5880     {
5881       return;
5882     }
5883
5884   gold::gc_process_relocs<
5885     size, big_endian,
5886     Target_aarch64<size, big_endian>,
5887     elfcpp::SHT_RELA,
5888     typename Target_aarch64<size, big_endian>::Scan,
5889     typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
5890     symtab,
5891     layout,
5892     this,
5893     object,
5894     data_shndx,
5895     prelocs,
5896     reloc_count,
5897     output_section,
5898     needs_special_offset_handling,
5899     local_symbol_count,
5900     plocal_symbols);
5901 }
5902
5903 // Scan relocations for a section.
5904
5905 template<int size, bool big_endian>
5906 void
5907 Target_aarch64<size, big_endian>::scan_relocs(
5908     Symbol_table* symtab,
5909     Layout* layout,
5910     Sized_relobj_file<size, big_endian>* object,
5911     unsigned int data_shndx,
5912     unsigned int sh_type,
5913     const unsigned char* prelocs,
5914     size_t reloc_count,
5915     Output_section* output_section,
5916     bool needs_special_offset_handling,
5917     size_t local_symbol_count,
5918     const unsigned char* plocal_symbols)
5919 {
5920   if (sh_type == elfcpp::SHT_REL)
5921     {
5922       gold_error(_("%s: unsupported REL reloc section"),
5923                  object->name().c_str());
5924       return;
5925     }
5926   gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
5927     symtab,
5928     layout,
5929     this,
5930     object,
5931     data_shndx,
5932     prelocs,
5933     reloc_count,
5934     output_section,
5935     needs_special_offset_handling,
5936     local_symbol_count,
5937     plocal_symbols);
5938 }
5939
5940 // Return the value to use for a dynamic which requires special
5941 // treatment.  This is how we support equality comparisons of function
5942 // pointers across shared library boundaries, as described in the
5943 // processor specific ABI supplement.
5944
5945 template<int size, bool big_endian>
5946 uint64_t
5947 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
5948 {
5949   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5950   return this->plt_address_for_global(gsym);
5951 }
5952
5953
5954 // Finalize the sections.
5955
5956 template<int size, bool big_endian>
5957 void
5958 Target_aarch64<size, big_endian>::do_finalize_sections(
5959     Layout* layout,
5960     const Input_objects*,
5961     Symbol_table* symtab)
5962 {
5963   const Reloc_section* rel_plt = (this->plt_ == NULL
5964                                   ? NULL
5965                                   : this->plt_->rela_plt());
5966   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
5967                                   this->rela_dyn_, true, false);
5968
5969   // Emit any relocs we saved in an attempt to avoid generating COPY
5970   // relocs.
5971   if (this->copy_relocs_.any_saved_relocs())
5972     this->copy_relocs_.emit(this->rela_dyn_section(layout));
5973
5974   // Fill in some more dynamic tags.
5975   Output_data_dynamic* const odyn = layout->dynamic_data();
5976   if (odyn != NULL)
5977     {
5978       if (this->plt_ != NULL
5979           && this->plt_->output_section() != NULL
5980           && this->plt_ ->has_tlsdesc_entry())
5981         {
5982           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
5983           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
5984           this->got_->finalize_data_size();
5985           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
5986                                         this->plt_, plt_offset);
5987           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
5988                                         this->got_, got_offset);
5989         }
5990     }
5991
5992   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
5993   // the .got.plt section.
5994   Symbol* sym = this->global_offset_table_;
5995   if (sym != NULL)
5996     {
5997       uint64_t data_size = this->got_plt_->current_data_size();
5998       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
5999
6000       // If the .got section is more than 0x8000 bytes, we add
6001       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6002       // bit relocations have a greater chance of working.
6003       if (data_size >= 0x8000)
6004         symtab->get_sized_symbol<size>(sym)->set_value(
6005           symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6006     }
6007
6008   if (parameters->doing_static_link()
6009       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6010     {
6011       // If linking statically, make sure that the __rela_iplt symbols
6012       // were defined if necessary, even if we didn't create a PLT.
6013       static const Define_symbol_in_segment syms[] =
6014         {
6015           {
6016             "__rela_iplt_start",        // name
6017             elfcpp::PT_LOAD,            // segment_type
6018             elfcpp::PF_W,               // segment_flags_set
6019             elfcpp::PF(0),              // segment_flags_clear
6020             0,                          // value
6021             0,                          // size
6022             elfcpp::STT_NOTYPE,         // type
6023             elfcpp::STB_GLOBAL,         // binding
6024             elfcpp::STV_HIDDEN,         // visibility
6025             0,                          // nonvis
6026             Symbol::SEGMENT_START,      // offset_from_base
6027             true                        // only_if_ref
6028           },
6029           {
6030             "__rela_iplt_end",          // name
6031             elfcpp::PT_LOAD,            // segment_type
6032             elfcpp::PF_W,               // segment_flags_set
6033             elfcpp::PF(0),              // segment_flags_clear
6034             0,                          // value
6035             0,                          // size
6036             elfcpp::STT_NOTYPE,         // type
6037             elfcpp::STB_GLOBAL,         // binding
6038             elfcpp::STV_HIDDEN,         // visibility
6039             0,                          // nonvis
6040             Symbol::SEGMENT_START,      // offset_from_base
6041             true                        // only_if_ref
6042           }
6043         };
6044
6045       symtab->define_symbols(layout, 2, syms,
6046                              layout->script_options()->saw_sections_clause());
6047     }
6048
6049   return;
6050 }
6051
6052 // Perform a relocation.
6053
6054 template<int size, bool big_endian>
6055 inline bool
6056 Target_aarch64<size, big_endian>::Relocate::relocate(
6057     const Relocate_info<size, big_endian>* relinfo,
6058     Target_aarch64<size, big_endian>* target,
6059     Output_section* ,
6060     size_t relnum,
6061     const elfcpp::Rela<size, big_endian>& rela,
6062     unsigned int r_type,
6063     const Sized_symbol<size>* gsym,
6064     const Symbol_value<size>* psymval,
6065     unsigned char* view,
6066     typename elfcpp::Elf_types<size>::Elf_Addr address,
6067     section_size_type /* view_size */)
6068 {
6069   if (view == NULL)
6070     return true;
6071
6072   typedef AArch64_relocate_functions<size, big_endian> Reloc;
6073
6074   const AArch64_reloc_property* reloc_property =
6075       aarch64_reloc_property_table->get_reloc_property(r_type);
6076
6077   if (reloc_property == NULL)
6078     {
6079       std::string reloc_name =
6080           aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6081       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6082                              _("cannot relocate %s in object file"),
6083                              reloc_name.c_str());
6084       return true;
6085     }
6086
6087   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6088
6089   // Pick the value to use for symbols defined in the PLT.
6090   Symbol_value<size> symval;
6091   if (gsym != NULL
6092       && gsym->use_plt_offset(reloc_property->reference_flags()))
6093     {
6094       symval.set_output_value(target->plt_address_for_global(gsym));
6095       psymval = &symval;
6096     }
6097   else if (gsym == NULL && psymval->is_ifunc_symbol())
6098     {
6099       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6100       if (object->local_has_plt_offset(r_sym))
6101         {
6102           symval.set_output_value(target->plt_address_for_local(object, r_sym));
6103           psymval = &symval;
6104         }
6105     }
6106
6107   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6108
6109   // Get the GOT offset if needed.
6110   // For aarch64, the GOT pointer points to the start of the GOT section.
6111   bool have_got_offset = false;
6112   int got_offset = 0;
6113   int got_base = (target->got_ != NULL
6114                   ? (target->got_->current_data_size() >= 0x8000
6115                      ? 0x8000 : 0)
6116                   : 0);
6117   switch (r_type)
6118     {
6119     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6120     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6121     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6122     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6123     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6124     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6125     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6126     case elfcpp::R_AARCH64_GOTREL64:
6127     case elfcpp::R_AARCH64_GOTREL32:
6128     case elfcpp::R_AARCH64_GOT_LD_PREL19:
6129     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6130     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6131     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6132     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6133       if (gsym != NULL)
6134         {
6135           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6136           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6137         }
6138       else
6139         {
6140           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6141           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6142           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6143                         - got_base);
6144         }
6145       have_got_offset = true;
6146       break;
6147
6148     default:
6149       break;
6150     }
6151
6152   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6153   typename elfcpp::Elf_types<size>::Elf_Addr value;
6154   switch (r_type)
6155     {
6156     case elfcpp::R_AARCH64_NONE:
6157       break;
6158
6159     case elfcpp::R_AARCH64_ABS64:
6160       reloc_status = Reloc::template rela_ua<64>(
6161         view, object, psymval, addend, reloc_property);
6162       break;
6163
6164     case elfcpp::R_AARCH64_ABS32:
6165       reloc_status = Reloc::template rela_ua<32>(
6166         view, object, psymval, addend, reloc_property);
6167       break;
6168
6169     case elfcpp::R_AARCH64_ABS16:
6170       reloc_status = Reloc::template rela_ua<16>(
6171         view, object, psymval, addend, reloc_property);
6172       break;
6173
6174     case elfcpp::R_AARCH64_PREL64:
6175       reloc_status = Reloc::template pcrela_ua<64>(
6176         view, object, psymval, addend, address, reloc_property);
6177       break;
6178
6179     case elfcpp::R_AARCH64_PREL32:
6180       reloc_status = Reloc::template pcrela_ua<32>(
6181         view, object, psymval, addend, address, reloc_property);
6182       break;
6183
6184     case elfcpp::R_AARCH64_PREL16:
6185       reloc_status = Reloc::template pcrela_ua<16>(
6186         view, object, psymval, addend, address, reloc_property);
6187       break;
6188
6189     case elfcpp::R_AARCH64_LD_PREL_LO19:
6190       reloc_status = Reloc::template pcrela_general<32>(
6191           view, object, psymval, addend, address, reloc_property);
6192       break;
6193
6194     case elfcpp::R_AARCH64_ADR_PREL_LO21:
6195       reloc_status = Reloc::adr(view, object, psymval, addend,
6196                                 address, reloc_property);
6197       break;
6198
6199     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
6200     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
6201       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
6202                                  reloc_property);
6203       break;
6204
6205     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
6206     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
6207     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
6208     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
6209     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
6210     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
6211       reloc_status = Reloc::template rela_general<32>(
6212         view, object, psymval, addend, reloc_property);
6213       break;
6214
6215     case elfcpp::R_AARCH64_CALL26:
6216       if (this->skip_call_tls_get_addr_)
6217         {
6218           // Double check that the TLSGD insn has been optimized away.
6219           typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6220           Insntype insn = elfcpp::Swap<32, big_endian>::readval(
6221               reinterpret_cast<Insntype*>(view));
6222           gold_assert((insn & 0xff000000) == 0x91000000);
6223
6224           reloc_status = Reloc::STATUS_OKAY;
6225           this->skip_call_tls_get_addr_ = false;
6226           // Return false to stop further processing this reloc.
6227           return false;
6228         }
6229       // Fallthrough
6230     case elfcpp::R_AARCH64_JUMP26:
6231       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
6232                                   gsym, psymval, object,
6233                                   target->stub_group_size_))
6234         break;
6235       // Fallthrough
6236     case elfcpp::R_AARCH64_TSTBR14:
6237     case elfcpp::R_AARCH64_CONDBR19:
6238       reloc_status = Reloc::template pcrela_general<32>(
6239         view, object, psymval, addend, address, reloc_property);
6240       break;
6241
6242     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6243       gold_assert(have_got_offset);
6244       value = target->got_->address() + got_base + got_offset;
6245       reloc_status = Reloc::adrp(view, value + addend, address);
6246       break;
6247
6248     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6249       gold_assert(have_got_offset);
6250       value = target->got_->address() + got_base + got_offset;
6251       reloc_status = Reloc::template rela_general<32>(
6252         view, value, addend, reloc_property);
6253       break;
6254
6255     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6256     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6257     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6258     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6259     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6260     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6261     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6262     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6263     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6264     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6265     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6266     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6267     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6268     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6269     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6270     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6271     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6272     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6273     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6274     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6275     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6276     case elfcpp::R_AARCH64_TLSDESC_CALL:
6277       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
6278                                   gsym, psymval, view, address);
6279       break;
6280
6281     // These are dynamic relocations, which are unexpected when linking.
6282     case elfcpp::R_AARCH64_COPY:
6283     case elfcpp::R_AARCH64_GLOB_DAT:
6284     case elfcpp::R_AARCH64_JUMP_SLOT:
6285     case elfcpp::R_AARCH64_RELATIVE:
6286     case elfcpp::R_AARCH64_IRELATIVE:
6287     case elfcpp::R_AARCH64_TLS_DTPREL64:
6288     case elfcpp::R_AARCH64_TLS_DTPMOD64:
6289     case elfcpp::R_AARCH64_TLS_TPREL64:
6290     case elfcpp::R_AARCH64_TLSDESC:
6291       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6292                              _("unexpected reloc %u in object file"),
6293                              r_type);
6294       break;
6295
6296     default:
6297       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6298                              _("unsupported reloc %s"),
6299                              reloc_property->name().c_str());
6300       break;
6301     }
6302
6303   // Report any errors.
6304   switch (reloc_status)
6305     {
6306     case Reloc::STATUS_OKAY:
6307       break;
6308     case Reloc::STATUS_OVERFLOW:
6309       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6310                              _("relocation overflow in %s"),
6311                              reloc_property->name().c_str());
6312       break;
6313     case Reloc::STATUS_BAD_RELOC:
6314       gold_error_at_location(
6315           relinfo,
6316           relnum,
6317           rela.get_r_offset(),
6318           _("unexpected opcode while processing relocation %s"),
6319           reloc_property->name().c_str());
6320       break;
6321     default:
6322       gold_unreachable();
6323     }
6324
6325   return true;
6326 }
6327
6328
6329 template<int size, bool big_endian>
6330 inline
6331 typename AArch64_relocate_functions<size, big_endian>::Status
6332 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
6333     const Relocate_info<size, big_endian>* relinfo,
6334     Target_aarch64<size, big_endian>* target,
6335     size_t relnum,
6336     const elfcpp::Rela<size, big_endian>& rela,
6337     unsigned int r_type, const Sized_symbol<size>* gsym,
6338     const Symbol_value<size>* psymval,
6339     unsigned char* view,
6340     typename elfcpp::Elf_types<size>::Elf_Addr address)
6341 {
6342   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6343   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6344
6345   Output_segment* tls_segment = relinfo->layout->tls_segment();
6346   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6347   const AArch64_reloc_property* reloc_property =
6348       aarch64_reloc_property_table->get_reloc_property(r_type);
6349   gold_assert(reloc_property != NULL);
6350
6351   const bool is_final = (gsym == NULL
6352                          ? !parameters->options().shared()
6353                          : gsym->final_value_is_known());
6354   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6355       optimize_tls_reloc(is_final, r_type);
6356
6357   Sized_relobj_file<size, big_endian>* object = relinfo->object;
6358   int tls_got_offset_type;
6359   switch (r_type)
6360     {
6361     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6362     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
6363       {
6364         if (tlsopt == tls::TLSOPT_TO_LE)
6365           {
6366             if (tls_segment == NULL)
6367               {
6368                 gold_assert(parameters->errors()->error_count() > 0
6369                             || issue_undefined_symbol_error(gsym));
6370                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6371               }
6372             return tls_gd_to_le(relinfo, target, rela, r_type, view,
6373                                 psymval);
6374           }
6375         else if (tlsopt == tls::TLSOPT_NONE)
6376           {
6377             tls_got_offset_type = GOT_TYPE_TLS_PAIR;
6378             // Firstly get the address for the got entry.
6379             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6380             if (gsym != NULL)
6381               {
6382                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
6383                 got_entry_address = target->got_->address() +
6384                                     gsym->got_offset(tls_got_offset_type);
6385               }
6386             else
6387               {
6388                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6389                 gold_assert(
6390                   object->local_has_got_offset(r_sym, tls_got_offset_type));
6391                 got_entry_address = target->got_->address() +
6392                   object->local_got_offset(r_sym, tls_got_offset_type);
6393               }
6394
6395             // Relocate the address into adrp/ld, adrp/add pair.
6396             switch (r_type)
6397               {
6398               case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6399                 return aarch64_reloc_funcs::adrp(
6400                   view, got_entry_address + addend, address);
6401
6402                 break;
6403
6404               case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6405                 return aarch64_reloc_funcs::template rela_general<32>(
6406                   view, got_entry_address, addend, reloc_property);
6407                 break;
6408
6409               default:
6410                 gold_unreachable();
6411               }
6412           }
6413         gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6414                                _("unsupported gd_to_ie relaxation on %u"),
6415                                r_type);
6416       }
6417       break;
6418
6419     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6420     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
6421       {
6422         if (tlsopt == tls::TLSOPT_TO_LE)
6423           {
6424             if (tls_segment == NULL)
6425               {
6426                 gold_assert(parameters->errors()->error_count() > 0
6427                             || issue_undefined_symbol_error(gsym));
6428                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6429               }
6430             return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
6431                                       psymval);
6432           }
6433
6434         gold_assert(tlsopt == tls::TLSOPT_NONE);
6435         // Relocate the field with the offset of the GOT entry for
6436         // the module index.
6437         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6438         got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
6439                              target->got_->address());
6440
6441         switch (r_type)
6442           {
6443           case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6444             return aarch64_reloc_funcs::adrp(
6445               view, got_entry_address + addend, address);
6446             break;
6447
6448           case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6449             return aarch64_reloc_funcs::template rela_general<32>(
6450               view, got_entry_address, addend, reloc_property);
6451             break;
6452
6453           default:
6454             gold_unreachable();
6455           }
6456       }
6457       break;
6458
6459     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6460     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6461     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6462     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
6463       {
6464         AArch64_address value = psymval->value(object, 0);
6465         if (tlsopt == tls::TLSOPT_TO_LE)
6466           {
6467             if (tls_segment == NULL)
6468               {
6469                 gold_assert(parameters->errors()->error_count() > 0
6470                             || issue_undefined_symbol_error(gsym));
6471                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6472               }
6473           }
6474         switch (r_type)
6475           {
6476           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6477             return aarch64_reloc_funcs::movnz(view, value + addend,
6478                                               reloc_property);
6479             break;
6480
6481           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6482           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6483           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6484             return aarch64_reloc_funcs::template rela_general<32>(
6485                 view, value, addend, reloc_property);
6486             break;
6487
6488           default:
6489             gold_unreachable();
6490           }
6491         // We should never reach here.
6492       }
6493       break;
6494
6495     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6496     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
6497       {
6498         if (tlsopt == tls::TLSOPT_TO_LE)
6499           {
6500             if (tls_segment == NULL)
6501               {
6502                 gold_assert(parameters->errors()->error_count() > 0
6503                             || issue_undefined_symbol_error(gsym));
6504                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6505               }
6506             return tls_ie_to_le(relinfo, target, rela, r_type, view,
6507                                 psymval);
6508           }
6509         tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
6510
6511         // Firstly get the address for the got entry.
6512         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6513         if (gsym != NULL)
6514           {
6515             gold_assert(gsym->has_got_offset(tls_got_offset_type));
6516             got_entry_address = target->got_->address() +
6517                                 gsym->got_offset(tls_got_offset_type);
6518           }
6519         else
6520           {
6521             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6522             gold_assert(
6523                 object->local_has_got_offset(r_sym, tls_got_offset_type));
6524             got_entry_address = target->got_->address() +
6525                 object->local_got_offset(r_sym, tls_got_offset_type);
6526           }
6527         // Relocate the address into adrp/ld, adrp/add pair.
6528         switch (r_type)
6529           {
6530           case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6531             return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
6532                                              address);
6533             break;
6534           case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6535             return aarch64_reloc_funcs::template rela_general<32>(
6536               view, got_entry_address, addend, reloc_property);
6537           default:
6538             gold_unreachable();
6539           }
6540       }
6541       // We shall never reach here.
6542       break;
6543
6544     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6545     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6546     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6547     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6548     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6549     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6550     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6551     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6552       {
6553         gold_assert(tls_segment != NULL);
6554         AArch64_address value = psymval->value(object, 0);
6555
6556         if (!parameters->options().shared())
6557           {
6558             AArch64_address aligned_tcb_size =
6559                 align_address(target->tcb_size(),
6560                               tls_segment->maximum_alignment());
6561             value += aligned_tcb_size;
6562             switch (r_type)
6563               {
6564               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6565               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6566               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6567                 return aarch64_reloc_funcs::movnz(view, value + addend,
6568                                                   reloc_property);
6569               default:
6570                 return aarch64_reloc_funcs::template
6571                   rela_general<32>(view,
6572                                    value,
6573                                    addend,
6574                                    reloc_property);
6575               }
6576           }
6577         else
6578           gold_error(_("%s: unsupported reloc %u "
6579                        "in non-static TLSLE mode."),
6580                      object->name().c_str(), r_type);
6581       }
6582       break;
6583
6584     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6585     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6586     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6587     case elfcpp::R_AARCH64_TLSDESC_CALL:
6588       {
6589         if (tlsopt == tls::TLSOPT_TO_LE)
6590           {
6591             if (tls_segment == NULL)
6592               {
6593                 gold_assert(parameters->errors()->error_count() > 0
6594                             || issue_undefined_symbol_error(gsym));
6595                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6596               }
6597             return tls_desc_gd_to_le(relinfo, target, rela, r_type,
6598                                      view, psymval);
6599           }
6600         else
6601           {
6602             tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
6603                                    ? GOT_TYPE_TLS_OFFSET
6604                                    : GOT_TYPE_TLS_DESC);
6605             unsigned int got_tlsdesc_offset = 0;
6606             if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
6607                 && tlsopt == tls::TLSOPT_NONE)
6608               {
6609                 // We created GOT entries in the .got.tlsdesc portion of the
6610                 // .got.plt section, but the offset stored in the symbol is the
6611                 // offset within .got.tlsdesc.
6612                 got_tlsdesc_offset = (target->got_->data_size()
6613                                       + target->got_plt_section()->data_size());
6614               }
6615             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6616             if (gsym != NULL)
6617               {
6618                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
6619                 got_entry_address = target->got_->address()
6620                                     + got_tlsdesc_offset
6621                                     + gsym->got_offset(tls_got_offset_type);
6622               }
6623             else
6624               {
6625                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6626                 gold_assert(
6627                     object->local_has_got_offset(r_sym, tls_got_offset_type));
6628                 got_entry_address = target->got_->address() +
6629                   got_tlsdesc_offset +
6630                   object->local_got_offset(r_sym, tls_got_offset_type);
6631               }
6632             if (tlsopt == tls::TLSOPT_TO_IE)
6633               {
6634                 if (tls_segment == NULL)
6635                   {
6636                     gold_assert(parameters->errors()->error_count() > 0
6637                                 || issue_undefined_symbol_error(gsym));
6638                     return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6639                   }
6640                 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
6641                                          view, psymval, got_entry_address,
6642                                          address);
6643               }
6644
6645             // Now do tlsdesc relocation.
6646             switch (r_type)
6647               {
6648               case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6649                 return aarch64_reloc_funcs::adrp(view,
6650                                                  got_entry_address + addend,
6651                                                  address);
6652                 break;
6653               case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6654               case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6655                 return aarch64_reloc_funcs::template rela_general<32>(
6656                   view, got_entry_address, addend, reloc_property);
6657                 break;
6658               case elfcpp::R_AARCH64_TLSDESC_CALL:
6659                 return aarch64_reloc_funcs::STATUS_OKAY;
6660                 break;
6661               default:
6662                 gold_unreachable();
6663               }
6664           }
6665         }
6666       break;
6667
6668     default:
6669       gold_error(_("%s: unsupported TLS reloc %u."),
6670                  object->name().c_str(), r_type);
6671     }
6672   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6673 }  // End of relocate_tls.
6674
6675
6676 template<int size, bool big_endian>
6677 inline
6678 typename AArch64_relocate_functions<size, big_endian>::Status
6679 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
6680              const Relocate_info<size, big_endian>* relinfo,
6681              Target_aarch64<size, big_endian>* target,
6682              const elfcpp::Rela<size, big_endian>& rela,
6683              unsigned int r_type,
6684              unsigned char* view,
6685              const Symbol_value<size>* psymval)
6686 {
6687   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6688   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6689   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6690
6691   Insntype* ip = reinterpret_cast<Insntype*>(view);
6692   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
6693   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
6694   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
6695
6696   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
6697     {
6698       // This is the 2nd relocs, optimization should already have been
6699       // done.
6700       gold_assert((insn1 & 0xfff00000) == 0x91400000);
6701       return aarch64_reloc_funcs::STATUS_OKAY;
6702     }
6703
6704   // The original sequence is -
6705   //   90000000        adrp    x0, 0 <main>
6706   //   91000000        add     x0, x0, #0x0
6707   //   94000000        bl      0 <__tls_get_addr>
6708   // optimized to sequence -
6709   //   d53bd040        mrs     x0, tpidr_el0
6710   //   91400000        add     x0, x0, #0x0, lsl #12
6711   //   91000000        add     x0, x0, #0x0
6712
6713   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
6714   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
6715   // have to change "bl tls_get_addr", which does not have a corresponding tls
6716   // relocation type. So before proceeding, we need to make sure compiler
6717   // does not change the sequence.
6718   if(!(insn1 == 0x90000000      // adrp x0,0
6719        && insn2 == 0x91000000   // add x0, x0, #0x0
6720        && insn3 == 0x94000000)) // bl 0
6721     {
6722       // Ideally we should give up gd_to_le relaxation and do gd access.
6723       // However the gd_to_le relaxation decision has been made early
6724       // in the scan stage, where we did not allocate any GOT entry for
6725       // this symbol. Therefore we have to exit and report error now.
6726       gold_error(_("unexpected reloc insn sequence while relaxing "
6727                    "tls gd to le for reloc %u."), r_type);
6728       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6729     }
6730
6731   // Write new insns.
6732   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
6733   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
6734   insn3 = 0x91000000;  // add x0, x0, #0x0
6735   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
6736   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
6737   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
6738
6739   // Calculate tprel value.
6740   Output_segment* tls_segment = relinfo->layout->tls_segment();
6741   gold_assert(tls_segment != NULL);
6742   AArch64_address value = psymval->value(relinfo->object, 0);
6743   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6744   AArch64_address aligned_tcb_size =
6745       align_address(target->tcb_size(), tls_segment->maximum_alignment());
6746   AArch64_address x = value + aligned_tcb_size;
6747
6748   // After new insns are written, apply TLSLE relocs.
6749   const AArch64_reloc_property* rp1 =
6750       aarch64_reloc_property_table->get_reloc_property(
6751           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
6752   const AArch64_reloc_property* rp2 =
6753       aarch64_reloc_property_table->get_reloc_property(
6754           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
6755   gold_assert(rp1 != NULL && rp2 != NULL);
6756
6757   typename aarch64_reloc_funcs::Status s1 =
6758       aarch64_reloc_funcs::template rela_general<32>(view + 4,
6759                                                      x,
6760                                                      addend,
6761                                                      rp1);
6762   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
6763     return s1;
6764
6765   typename aarch64_reloc_funcs::Status s2 =
6766       aarch64_reloc_funcs::template rela_general<32>(view + 8,
6767                                                      x,
6768                                                      addend,
6769                                                      rp2);
6770
6771   this->skip_call_tls_get_addr_ = true;
6772   return s2;
6773 }  // End of tls_gd_to_le
6774
6775
6776 template<int size, bool big_endian>
6777 inline
6778 typename AArch64_relocate_functions<size, big_endian>::Status
6779 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
6780              const Relocate_info<size, big_endian>* relinfo,
6781              Target_aarch64<size, big_endian>* target,
6782              const elfcpp::Rela<size, big_endian>& rela,
6783              unsigned int r_type,
6784              unsigned char* view,
6785              const Symbol_value<size>* psymval)
6786 {
6787   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6788   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6789   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6790
6791   Insntype* ip = reinterpret_cast<Insntype*>(view);
6792   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
6793   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
6794   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
6795
6796   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
6797     {
6798       // This is the 2nd relocs, optimization should already have been
6799       // done.
6800       gold_assert((insn1 & 0xfff00000) == 0x91400000);
6801       return aarch64_reloc_funcs::STATUS_OKAY;
6802     }
6803
6804   // The original sequence is -
6805   //   90000000        adrp    x0, 0 <main>
6806   //   91000000        add     x0, x0, #0x0
6807   //   94000000        bl      0 <__tls_get_addr>
6808   // optimized to sequence -
6809   //   d53bd040        mrs     x0, tpidr_el0
6810   //   91400000        add     x0, x0, #0x0, lsl #12
6811   //   91000000        add     x0, x0, #0x0
6812
6813   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
6814   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
6815   // have to change "bl tls_get_addr", which does not have a corresponding tls
6816   // relocation type. So before proceeding, we need to make sure compiler
6817   // does not change the sequence.
6818   if(!(insn1 == 0x90000000      // adrp x0,0
6819        && insn2 == 0x91000000   // add x0, x0, #0x0
6820        && insn3 == 0x94000000)) // bl 0
6821     {
6822       // Ideally we should give up gd_to_le relaxation and do gd access.
6823       // However the gd_to_le relaxation decision has been made early
6824       // in the scan stage, where we did not allocate any GOT entry for
6825       // this symbol. Therefore we have to exit and report error now.
6826       gold_error(_("unexpected reloc insn sequence while relaxing "
6827                    "tls gd to le for reloc %u."), r_type);
6828       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6829     }
6830
6831   // Write new insns.
6832   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
6833   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
6834   insn3 = 0x91000000;  // add x0, x0, #0x0
6835   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
6836   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
6837   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
6838
6839   // Calculate tprel value.
6840   Output_segment* tls_segment = relinfo->layout->tls_segment();
6841   gold_assert(tls_segment != NULL);
6842   AArch64_address value = psymval->value(relinfo->object, 0);
6843   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6844   AArch64_address aligned_tcb_size =
6845       align_address(target->tcb_size(), tls_segment->maximum_alignment());
6846   AArch64_address x = value + aligned_tcb_size;
6847
6848   // After new insns are written, apply TLSLE relocs.
6849   const AArch64_reloc_property* rp1 =
6850       aarch64_reloc_property_table->get_reloc_property(
6851           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
6852   const AArch64_reloc_property* rp2 =
6853       aarch64_reloc_property_table->get_reloc_property(
6854           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
6855   gold_assert(rp1 != NULL && rp2 != NULL);
6856
6857   typename aarch64_reloc_funcs::Status s1 =
6858       aarch64_reloc_funcs::template rela_general<32>(view + 4,
6859                                                      x,
6860                                                      addend,
6861                                                      rp1);
6862   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
6863     return s1;
6864
6865   typename aarch64_reloc_funcs::Status s2 =
6866       aarch64_reloc_funcs::template rela_general<32>(view + 8,
6867                                                      x,
6868                                                      addend,
6869                                                      rp2);
6870
6871   this->skip_call_tls_get_addr_ = true;
6872   return s2;
6873
6874 }  // End of tls_ld_to_le
6875
6876 template<int size, bool big_endian>
6877 inline
6878 typename AArch64_relocate_functions<size, big_endian>::Status
6879 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
6880              const Relocate_info<size, big_endian>* relinfo,
6881              Target_aarch64<size, big_endian>* target,
6882              const elfcpp::Rela<size, big_endian>& rela,
6883              unsigned int r_type,
6884              unsigned char* view,
6885              const Symbol_value<size>* psymval)
6886 {
6887   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6888   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6889   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6890
6891   AArch64_address value = psymval->value(relinfo->object, 0);
6892   Output_segment* tls_segment = relinfo->layout->tls_segment();
6893   AArch64_address aligned_tcb_address =
6894       align_address(target->tcb_size(), tls_segment->maximum_alignment());
6895   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6896   AArch64_address x = value + addend + aligned_tcb_address;
6897   // "x" is the offset to tp, we can only do this if x is within
6898   // range [0, 2^32-1]
6899   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
6900     {
6901       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
6902                  r_type);
6903       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6904     }
6905
6906   Insntype* ip = reinterpret_cast<Insntype*>(view);
6907   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
6908   unsigned int regno;
6909   Insntype newinsn;
6910   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
6911     {
6912       // Generate movz.
6913       regno = (insn & 0x1f);
6914       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
6915     }
6916   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
6917     {
6918       // Generate movk.
6919       regno = (insn & 0x1f);
6920       gold_assert(regno == ((insn >> 5) & 0x1f));
6921       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
6922     }
6923   else
6924     gold_unreachable();
6925
6926   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6927   return aarch64_reloc_funcs::STATUS_OKAY;
6928 }  // End of tls_ie_to_le
6929
6930
6931 template<int size, bool big_endian>
6932 inline
6933 typename AArch64_relocate_functions<size, big_endian>::Status
6934 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
6935              const Relocate_info<size, big_endian>* relinfo,
6936              Target_aarch64<size, big_endian>* target,
6937              const elfcpp::Rela<size, big_endian>& rela,
6938              unsigned int r_type,
6939              unsigned char* view,
6940              const Symbol_value<size>* psymval)
6941 {
6942   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6943   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6944   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6945
6946   // TLSDESC-GD sequence is like:
6947   //   adrp  x0, :tlsdesc:v1
6948   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
6949   //   add   x0, x0, :tlsdesc_lo12:v1
6950   //   .tlsdesccall    v1
6951   //   blr   x1
6952   // After desc_gd_to_le optimization, the sequence will be like:
6953   //   movz  x0, #0x0, lsl #16
6954   //   movk  x0, #0x10
6955   //   nop
6956   //   nop
6957
6958   // Calculate tprel value.
6959   Output_segment* tls_segment = relinfo->layout->tls_segment();
6960   gold_assert(tls_segment != NULL);
6961   Insntype* ip = reinterpret_cast<Insntype*>(view);
6962   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6963   AArch64_address value = psymval->value(relinfo->object, addend);
6964   AArch64_address aligned_tcb_size =
6965       align_address(target->tcb_size(), tls_segment->maximum_alignment());
6966   AArch64_address x = value + aligned_tcb_size;
6967   // x is the offset to tp, we can only do this if x is within range
6968   // [0, 2^32-1]. If x is out of range, fail and exit.
6969   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
6970     {
6971       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
6972                    "We Can't do gd_to_le relaxation.\n"), r_type);
6973       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6974     }
6975   Insntype newinsn;
6976   switch (r_type)
6977     {
6978     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6979     case elfcpp::R_AARCH64_TLSDESC_CALL:
6980       // Change to nop
6981       newinsn = 0xd503201f;
6982       break;
6983
6984     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6985       // Change to movz.
6986       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
6987       break;
6988
6989     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6990       // Change to movk.
6991       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
6992       break;
6993
6994     default:
6995       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
6996                  r_type);
6997       gold_unreachable();
6998     }
6999   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7000   return aarch64_reloc_funcs::STATUS_OKAY;
7001 }  // End of tls_desc_gd_to_le
7002
7003
7004 template<int size, bool big_endian>
7005 inline
7006 typename AArch64_relocate_functions<size, big_endian>::Status
7007 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7008              const Relocate_info<size, big_endian>* /* relinfo */,
7009              Target_aarch64<size, big_endian>* /* target */,
7010              const elfcpp::Rela<size, big_endian>& rela,
7011              unsigned int r_type,
7012              unsigned char* view,
7013              const Symbol_value<size>* /* psymval */,
7014              typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7015              typename elfcpp::Elf_types<size>::Elf_Addr address)
7016 {
7017   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7018   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7019
7020   // TLSDESC-GD sequence is like:
7021   //   adrp  x0, :tlsdesc:v1
7022   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7023   //   add   x0, x0, :tlsdesc_lo12:v1
7024   //   .tlsdesccall    v1
7025   //   blr   x1
7026   // After desc_gd_to_ie optimization, the sequence will be like:
7027   //   adrp  x0, :tlsie:v1
7028   //   ldr   x0, [x0, :tlsie_lo12:v1]
7029   //   nop
7030   //   nop
7031
7032   Insntype* ip = reinterpret_cast<Insntype*>(view);
7033   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7034   Insntype newinsn;
7035   switch (r_type)
7036     {
7037     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7038     case elfcpp::R_AARCH64_TLSDESC_CALL:
7039       // Change to nop
7040       newinsn = 0xd503201f;
7041       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7042       break;
7043
7044     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7045       {
7046         return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7047                                          address);
7048       }
7049       break;
7050
7051     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7052       {
7053        // Set ldr target register to be x0.
7054        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7055        insn &= 0xffffffe0;
7056        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7057        // Do relocation.
7058         const AArch64_reloc_property* reloc_property =
7059             aarch64_reloc_property_table->get_reloc_property(
7060               elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7061         return aarch64_reloc_funcs::template rela_general<32>(
7062                  view, got_entry_address, addend, reloc_property);
7063       }
7064       break;
7065
7066     default:
7067       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7068                  r_type);
7069       gold_unreachable();
7070     }
7071   return aarch64_reloc_funcs::STATUS_OKAY;
7072 }  // End of tls_desc_gd_to_ie
7073
7074 // Relocate section data.
7075
7076 template<int size, bool big_endian>
7077 void
7078 Target_aarch64<size, big_endian>::relocate_section(
7079     const Relocate_info<size, big_endian>* relinfo,
7080     unsigned int sh_type,
7081     const unsigned char* prelocs,
7082     size_t reloc_count,
7083     Output_section* output_section,
7084     bool needs_special_offset_handling,
7085     unsigned char* view,
7086     typename elfcpp::Elf_types<size>::Elf_Addr address,
7087     section_size_type view_size,
7088     const Reloc_symbol_changes* reloc_symbol_changes)
7089 {
7090   gold_assert(sh_type == elfcpp::SHT_RELA);
7091   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7092   gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
7093                          AArch64_relocate, gold::Default_comdat_behavior>(
7094     relinfo,
7095     this,
7096     prelocs,
7097     reloc_count,
7098     output_section,
7099     needs_special_offset_handling,
7100     view,
7101     address,
7102     view_size,
7103     reloc_symbol_changes);
7104 }
7105
7106 // Return the size of a relocation while scanning during a relocatable
7107 // link.
7108
7109 template<int size, bool big_endian>
7110 unsigned int
7111 Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
7112 get_size_for_reloc(
7113     unsigned int ,
7114     Relobj* )
7115 {
7116   // We will never support SHT_REL relocations.
7117   gold_unreachable();
7118   return 0;
7119 }
7120
7121 // Scan the relocs during a relocatable link.
7122
7123 template<int size, bool big_endian>
7124 void
7125 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
7126     Symbol_table* symtab,
7127     Layout* layout,
7128     Sized_relobj_file<size, big_endian>* object,
7129     unsigned int data_shndx,
7130     unsigned int sh_type,
7131     const unsigned char* prelocs,
7132     size_t reloc_count,
7133     Output_section* output_section,
7134     bool needs_special_offset_handling,
7135     size_t local_symbol_count,
7136     const unsigned char* plocal_symbols,
7137     Relocatable_relocs* rr)
7138 {
7139   gold_assert(sh_type == elfcpp::SHT_RELA);
7140
7141   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
7142     Relocatable_size_for_reloc> Scan_relocatable_relocs;
7143
7144   gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7145       Scan_relocatable_relocs>(
7146     symtab,
7147     layout,
7148     object,
7149     data_shndx,
7150     prelocs,
7151     reloc_count,
7152     output_section,
7153     needs_special_offset_handling,
7154     local_symbol_count,
7155     plocal_symbols,
7156     rr);
7157 }
7158
7159 // Relocate a section during a relocatable link.
7160
7161 template<int size, bool big_endian>
7162 void
7163 Target_aarch64<size, big_endian>::relocate_relocs(
7164     const Relocate_info<size, big_endian>* relinfo,
7165     unsigned int sh_type,
7166     const unsigned char* prelocs,
7167     size_t reloc_count,
7168     Output_section* output_section,
7169     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7170     const Relocatable_relocs* rr,
7171     unsigned char* view,
7172     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
7173     section_size_type view_size,
7174     unsigned char* reloc_view,
7175     section_size_type reloc_view_size)
7176 {
7177   gold_assert(sh_type == elfcpp::SHT_RELA);
7178
7179   gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
7180     relinfo,
7181     prelocs,
7182     reloc_count,
7183     output_section,
7184     offset_in_output_section,
7185     rr,
7186     view,
7187     view_address,
7188     view_size,
7189     reloc_view,
7190     reloc_view_size);
7191 }
7192
7193
7194 // Return whether this is a 3-insn erratum sequence.
7195
7196 template<int size, bool big_endian>
7197 bool
7198 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
7199     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7200     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
7201     typename elfcpp::Swap<32,big_endian>::Valtype insn3)
7202 {
7203   unsigned rt1, rt2;
7204   bool load, pair;
7205
7206   // The 2nd insn is a single register load or store; or register pair
7207   // store.
7208   if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
7209       && (!pair || (pair && !load)))
7210     {
7211       // The 3rd insn is a load or store instruction from the "Load/store
7212       // register (unsigned immediate)" encoding class, using Rn as the
7213       // base address register.
7214       if (Insn_utilities::aarch64_ldst_uimm(insn3)
7215           && (Insn_utilities::aarch64_rn(insn3)
7216               == Insn_utilities::aarch64_rd(insn1)))
7217         return true;
7218     }
7219   return false;
7220 }
7221
7222
7223 // Scan erratum for section SHNDX range
7224 // [output_address + span_start, output_address + span_end).
7225
7226 template<int size, bool big_endian>
7227 void
7228 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
7229     AArch64_relobj<size, big_endian>*  relobj,
7230     unsigned int shndx,
7231     const section_size_type span_start,
7232     const section_size_type span_end,
7233     unsigned char* input_view,
7234     Address output_address)
7235 {
7236   typedef typename Insn_utilities::Insntype Insntype;
7237
7238   // Adjust output_address and view to the start of span.
7239   output_address += span_start;
7240   input_view += span_start;
7241
7242   if ((output_address & 0x03) != 0)
7243     return;
7244
7245   section_size_type offset = 0;
7246   section_size_type span_length = span_end - span_start;
7247   // The first instruction must be ending at 0xFF8 or 0xFFC.
7248   unsigned int page_offset = output_address & 0xFFF;
7249   // Make sure starting position, that is "output_address+offset",
7250   // starts at page position 0xff8 or 0xffc.
7251   if (page_offset < 0xff8)
7252     offset = 0xff8 - page_offset;
7253   while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
7254     {
7255       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
7256       Insntype insn1 = ip[0];
7257       if (Insn_utilities::is_adrp(insn1))
7258         {
7259           Insntype insn2 = ip[1];
7260           Insntype insn3 = ip[2];
7261           bool do_report = false;
7262           if (is_erratum_843419_sequence(insn1, insn2, insn3))
7263             do_report = true;
7264           else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
7265             {
7266               // Optionally we can have an insn between ins2 and ins3
7267               Insntype insn_opt = ip[2];
7268               // And insn_opt must not be a branch.
7269               if (!Insn_utilities::aarch64_b(insn_opt)
7270                   && !Insn_utilities::aarch64_bl(insn_opt)
7271                   && !Insn_utilities::aarch64_blr(insn_opt)
7272                   && !Insn_utilities::aarch64_br(insn_opt))
7273                 {
7274                   // And insn_opt must not write to dest reg in insn1. However
7275                   // we do a conservative scan, which means we may fix/report
7276                   // more than necessary, but it doesn't hurt.
7277
7278                   Insntype insn4 = ip[3];
7279                   if (is_erratum_843419_sequence(insn1, insn2, insn4))
7280                     do_report = true;
7281                 }
7282             }
7283           if (do_report)
7284             {
7285               gold_error(_("Erratum 943419 found at \"%s\", section %d, "
7286                            "offset 0x%08x."),
7287                          relobj->name().c_str(), shndx,
7288                          (unsigned int)(span_start + offset));
7289             }
7290         }
7291
7292       // Advance to next candidate instruction. We only consider instruction
7293       // sequences starting at a page offset of 0xff8 or 0xffc.
7294       page_offset = (output_address + offset) & 0xfff;
7295       if (page_offset == 0xff8)
7296         offset += 4;
7297       else  // (page_offset == 0xffc), we move to next page's 0xff8.
7298         offset += 0xffc;
7299     }
7300 }
7301
7302
7303 // The selector for aarch64 object files.
7304
7305 template<int size, bool big_endian>
7306 class Target_selector_aarch64 : public Target_selector
7307 {
7308  public:
7309   Target_selector_aarch64();
7310
7311   virtual Target*
7312   do_instantiate_target()
7313   { return new Target_aarch64<size, big_endian>(); }
7314 };
7315
7316 template<>
7317 Target_selector_aarch64<32, true>::Target_selector_aarch64()
7318   : Target_selector(elfcpp::EM_AARCH64, 32, true,
7319                     "elf32-bigaarch64", "aarch64_elf32_be_vec")
7320 { }
7321
7322 template<>
7323 Target_selector_aarch64<32, false>::Target_selector_aarch64()
7324   : Target_selector(elfcpp::EM_AARCH64, 32, false,
7325                     "elf32-littleaarch64", "aarch64_elf32_le_vec")
7326 { }
7327
7328 template<>
7329 Target_selector_aarch64<64, true>::Target_selector_aarch64()
7330   : Target_selector(elfcpp::EM_AARCH64, 64, true,
7331                     "elf64-bigaarch64", "aarch64_elf64_be_vec")
7332 { }
7333
7334 template<>
7335 Target_selector_aarch64<64, false>::Target_selector_aarch64()
7336   : Target_selector(elfcpp::EM_AARCH64, 64, false,
7337                     "elf64-littleaarch64", "aarch64_elf64_le_vec")
7338 { }
7339
7340 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
7341 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
7342 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
7343 Target_selector_aarch64<64, false> target_selector_aarch64elf;
7344
7345 } // End anonymous namespace.