[GOLD] Don't install branch-to-stub for TLS relaxed ERRATUM 843419 sequences on AArch64
[external/binutils.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2017 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80   static const int BYTES_PER_INSN;
81
82   // Zero register encoding - 31.
83   static const unsigned int AARCH64_ZR;
84
85   static unsigned int
86   aarch64_bit(Insntype insn, int pos)
87   { return ((1 << pos)  & insn) >> pos; }
88
89   static unsigned int
90   aarch64_bits(Insntype insn, int pos, int l)
91   { return (insn >> pos) & ((1 << l) - 1); }
92
93   // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94   // the name defined in armv8 insn manual C3.5.9.
95   static unsigned int
96   aarch64_op31(Insntype insn)
97   { return aarch64_bits(insn, 21, 3); }
98
99   // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100   // third source register. See armv8 insn manual C3.5.9.
101   static unsigned int
102   aarch64_ra(Insntype insn)
103   { return aarch64_bits(insn, 10, 5); }
104
105   static bool
106   is_adr(const Insntype insn)
107   { return (insn & 0x9F000000) == 0x10000000; }
108
109   static bool
110   is_adrp(const Insntype insn)
111   { return (insn & 0x9F000000) == 0x90000000; }
112
113   static bool
114   is_mrs_tpidr_el0(const Insntype insn)
115   { return (insn & 0xFFFFFFE0) == 0xd53bd040; }
116
117   static unsigned int
118   aarch64_rm(const Insntype insn)
119   { return aarch64_bits(insn, 16, 5); }
120
121   static unsigned int
122   aarch64_rn(const Insntype insn)
123   { return aarch64_bits(insn, 5, 5); }
124
125   static unsigned int
126   aarch64_rd(const Insntype insn)
127   { return aarch64_bits(insn, 0, 5); }
128
129   static unsigned int
130   aarch64_rt(const Insntype insn)
131   { return aarch64_bits(insn, 0, 5); }
132
133   static unsigned int
134   aarch64_rt2(const Insntype insn)
135   { return aarch64_bits(insn, 10, 5); }
136
137   // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
138   static Insntype
139   aarch64_adr_encode_imm(Insntype adr, int imm21)
140   {
141     gold_assert(is_adr(adr));
142     gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
143     const int mask19 = (1 << 19) - 1;
144     const int mask2 = 3;
145     adr &= ~((mask19 << 5) | (mask2 << 29));
146     adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
147     return adr;
148   }
149
150   // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151   // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152   // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
153   static int64_t
154   aarch64_adrp_decode_imm(const Insntype adrp)
155   {
156     const int mask19 = (1 << 19) - 1;
157     const int mask2 = 3;
158     gold_assert(is_adrp(adrp));
159     // 21-bit imm encoded in adrp.
160     uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
161     // Retrieve msb of 21-bit-signed imm for sign extension.
162     uint64_t msbt = (imm >> 20) & 1;
163     // Real value is imm multiplied by 4k. Value now has 33-bit information.
164     int64_t value = imm << 12;
165     // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
166     // with value.
167     return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
168   }
169
170   static bool
171   aarch64_b(const Insntype insn)
172   { return (insn & 0xFC000000) == 0x14000000; }
173
174   static bool
175   aarch64_bl(const Insntype insn)
176   { return (insn & 0xFC000000) == 0x94000000; }
177
178   static bool
179   aarch64_blr(const Insntype insn)
180   { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
181
182   static bool
183   aarch64_br(const Insntype insn)
184   { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
185
186   // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
187   // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
188   static bool
189   aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
190
191   static bool
192   aarch64_ldst(Insntype insn)
193   { return (insn & 0x0a000000) == 0x08000000; }
194
195   static bool
196   aarch64_ldst_ex(Insntype insn)
197   { return (insn & 0x3f000000) == 0x08000000; }
198
199   static bool
200   aarch64_ldst_pcrel(Insntype insn)
201   { return (insn & 0x3b000000) == 0x18000000; }
202
203   static bool
204   aarch64_ldst_nap(Insntype insn)
205   { return (insn & 0x3b800000) == 0x28000000; }
206
207   static bool
208   aarch64_ldstp_pi(Insntype insn)
209   { return (insn & 0x3b800000) == 0x28800000; }
210
211   static bool
212   aarch64_ldstp_o(Insntype insn)
213   { return (insn & 0x3b800000) == 0x29000000; }
214
215   static bool
216   aarch64_ldstp_pre(Insntype insn)
217   { return (insn & 0x3b800000) == 0x29800000; }
218
219   static bool
220   aarch64_ldst_ui(Insntype insn)
221   { return (insn & 0x3b200c00) == 0x38000000; }
222
223   static bool
224   aarch64_ldst_piimm(Insntype insn)
225   { return (insn & 0x3b200c00) == 0x38000400; }
226
227   static bool
228   aarch64_ldst_u(Insntype insn)
229   { return (insn & 0x3b200c00) == 0x38000800; }
230
231   static bool
232   aarch64_ldst_preimm(Insntype insn)
233   { return (insn & 0x3b200c00) == 0x38000c00; }
234
235   static bool
236   aarch64_ldst_ro(Insntype insn)
237   { return (insn & 0x3b200c00) == 0x38200800; }
238
239   static bool
240   aarch64_ldst_uimm(Insntype insn)
241   { return (insn & 0x3b000000) == 0x39000000; }
242
243   static bool
244   aarch64_ldst_simd_m(Insntype insn)
245   { return (insn & 0xbfbf0000) == 0x0c000000; }
246
247   static bool
248   aarch64_ldst_simd_m_pi(Insntype insn)
249   { return (insn & 0xbfa00000) == 0x0c800000; }
250
251   static bool
252   aarch64_ldst_simd_s(Insntype insn)
253   { return (insn & 0xbf9f0000) == 0x0d000000; }
254
255   static bool
256   aarch64_ldst_simd_s_pi(Insntype insn)
257   { return (insn & 0xbf800000) == 0x0d800000; }
258
259   // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260   // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261   // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262   // instructions PAIR is TRUE, RT and RT2 are returned.
263   static bool
264   aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
265                    bool *pair, bool *load)
266   {
267     uint32_t opcode;
268     unsigned int r;
269     uint32_t opc = 0;
270     uint32_t v = 0;
271     uint32_t opc_v = 0;
272
273     /* Bail out quickly if INSN doesn't fall into the the load-store
274        encoding space.  */
275     if (!aarch64_ldst (insn))
276       return false;
277
278     *pair = false;
279     *load = false;
280     if (aarch64_ldst_ex (insn))
281       {
282         *rt = aarch64_rt (insn);
283         *rt2 = *rt;
284         if (aarch64_bit (insn, 21) == 1)
285           {
286             *pair = true;
287             *rt2 = aarch64_rt2 (insn);
288           }
289         *load = aarch64_ld (insn);
290         return true;
291       }
292     else if (aarch64_ldst_nap (insn)
293              || aarch64_ldstp_pi (insn)
294              || aarch64_ldstp_o (insn)
295              || aarch64_ldstp_pre (insn))
296       {
297         *pair = true;
298         *rt = aarch64_rt (insn);
299         *rt2 = aarch64_rt2 (insn);
300         *load = aarch64_ld (insn);
301         return true;
302       }
303     else if (aarch64_ldst_pcrel (insn)
304              || aarch64_ldst_ui (insn)
305              || aarch64_ldst_piimm (insn)
306              || aarch64_ldst_u (insn)
307              || aarch64_ldst_preimm (insn)
308              || aarch64_ldst_ro (insn)
309              || aarch64_ldst_uimm (insn))
310       {
311         *rt = aarch64_rt (insn);
312         *rt2 = *rt;
313         if (aarch64_ldst_pcrel (insn))
314           *load = true;
315         opc = aarch64_bits (insn, 22, 2);
316         v = aarch64_bit (insn, 26);
317         opc_v = opc | (v << 2);
318         *load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
319                   || opc_v == 5 || opc_v == 7);
320         return true;
321       }
322     else if (aarch64_ldst_simd_m (insn)
323              || aarch64_ldst_simd_m_pi (insn))
324       {
325         *rt = aarch64_rt (insn);
326         *load = aarch64_bit (insn, 22);
327         opcode = (insn >> 12) & 0xf;
328         switch (opcode)
329           {
330           case 0:
331           case 2:
332             *rt2 = *rt + 3;
333             break;
334
335           case 4:
336           case 6:
337             *rt2 = *rt + 2;
338             break;
339
340           case 7:
341             *rt2 = *rt;
342             break;
343
344           case 8:
345           case 10:
346             *rt2 = *rt + 1;
347             break;
348
349           default:
350             return false;
351           }
352         return true;
353       }
354     else if (aarch64_ldst_simd_s (insn)
355              || aarch64_ldst_simd_s_pi (insn))
356       {
357         *rt = aarch64_rt (insn);
358         r = (insn >> 21) & 1;
359         *load = aarch64_bit (insn, 22);
360         opcode = (insn >> 13) & 0x7;
361         switch (opcode)
362           {
363           case 0:
364           case 2:
365           case 4:
366             *rt2 = *rt + r;
367             break;
368
369           case 1:
370           case 3:
371           case 5:
372             *rt2 = *rt + (r == 0 ? 2 : 3);
373             break;
374
375           case 6:
376             *rt2 = *rt + r;
377             break;
378
379           case 7:
380             *rt2 = *rt + (r == 0 ? 2 : 3);
381             break;
382
383           default:
384             return false;
385           }
386         return true;
387       }
388     return false;
389   }  // End of "aarch64_mem_op_p".
390
391   // Return true if INSN is mac insn.
392   static bool
393   aarch64_mac(Insntype insn)
394   { return (insn & 0xff000000) == 0x9b000000; }
395
396   // Return true if INSN is multiply-accumulate.
397   // (This is similar to implementaton in elfnn-aarch64.c.)
398   static bool
399   aarch64_mlxl(Insntype insn)
400   {
401     uint32_t op31 = aarch64_op31(insn);
402     if (aarch64_mac(insn)
403         && (op31 == 0 || op31 == 1 || op31 == 5)
404         /* Exclude MUL instructions which are encoded as a multiple-accumulate
405            with RA = XZR.  */
406         && aarch64_ra(insn) != AARCH64_ZR)
407       {
408         return true;
409       }
410     return false;
411   }
412 };  // End of "AArch64_insn_utilities".
413
414
415 // Insn length in byte.
416
417 template<bool big_endian>
418 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
419
420
421 // Zero register encoding - 31.
422
423 template<bool big_endian>
424 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
425
426
427 // Output_data_got_aarch64 class.
428
429 template<int size, bool big_endian>
430 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
431 {
432  public:
433   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
434   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
435     : Output_data_got<size, big_endian>(),
436       symbol_table_(symtab), layout_(layout)
437   { }
438
439   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
440   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441   // applied in a static link.
442   void
443   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
444   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
445
446
447   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
448   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
449   // relocation that needs to be applied in a static link.
450   void
451   add_static_reloc(unsigned int got_offset, unsigned int r_type,
452                    Sized_relobj_file<size, big_endian>* relobj,
453                    unsigned int index)
454   {
455     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
456                                                 index));
457   }
458
459
460  protected:
461   // Write out the GOT table.
462   void
463   do_write(Output_file* of) {
464     // The first entry in the GOT is the address of the .dynamic section.
465     gold_assert(this->data_size() >= size / 8);
466     Output_section* dynamic = this->layout_->dynamic_section();
467     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
468     this->replace_constant(0, dynamic_addr);
469     Output_data_got<size, big_endian>::do_write(of);
470
471     // Handling static relocs
472     if (this->static_relocs_.empty())
473       return;
474
475     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
476
477     gold_assert(parameters->doing_static_link());
478     const off_t offset = this->offset();
479     const section_size_type oview_size =
480       convert_to_section_size_type(this->data_size());
481     unsigned char* const oview = of->get_output_view(offset, oview_size);
482
483     Output_segment* tls_segment = this->layout_->tls_segment();
484     gold_assert(tls_segment != NULL);
485
486     AArch64_address aligned_tcb_address =
487       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
488                     tls_segment->maximum_alignment());
489
490     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
491       {
492         Static_reloc& reloc(this->static_relocs_[i]);
493         AArch64_address value;
494
495         if (!reloc.symbol_is_global())
496           {
497             Sized_relobj_file<size, big_endian>* object = reloc.relobj();
498             const Symbol_value<size>* psymval =
499               reloc.relobj()->local_symbol(reloc.index());
500
501             // We are doing static linking.  Issue an error and skip this
502             // relocation if the symbol is undefined or in a discarded_section.
503             bool is_ordinary;
504             unsigned int shndx = psymval->input_shndx(&is_ordinary);
505             if ((shndx == elfcpp::SHN_UNDEF)
506                 || (is_ordinary
507                     && shndx != elfcpp::SHN_UNDEF
508                     && !object->is_section_included(shndx)
509                     && !this->symbol_table_->is_section_folded(object, shndx)))
510               {
511                 gold_error(_("undefined or discarded local symbol %u from "
512                              " object %s in GOT"),
513                            reloc.index(), reloc.relobj()->name().c_str());
514                 continue;
515               }
516             value = psymval->value(object, 0);
517           }
518         else
519           {
520             const Symbol* gsym = reloc.symbol();
521             gold_assert(gsym != NULL);
522             if (gsym->is_forwarder())
523               gsym = this->symbol_table_->resolve_forwards(gsym);
524
525             // We are doing static linking.  Issue an error and skip this
526             // relocation if the symbol is undefined or in a discarded_section
527             // unless it is a weakly_undefined symbol.
528             if ((gsym->is_defined_in_discarded_section()
529                  || gsym->is_undefined())
530                 && !gsym->is_weak_undefined())
531               {
532                 gold_error(_("undefined or discarded symbol %s in GOT"),
533                            gsym->name());
534                 continue;
535               }
536
537             if (!gsym->is_weak_undefined())
538               {
539                 const Sized_symbol<size>* sym =
540                   static_cast<const Sized_symbol<size>*>(gsym);
541                 value = sym->value();
542               }
543             else
544               value = 0;
545           }
546
547         unsigned got_offset = reloc.got_offset();
548         gold_assert(got_offset < oview_size);
549
550         typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
551         Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
552         Valtype x;
553         switch (reloc.r_type())
554           {
555           case elfcpp::R_AARCH64_TLS_DTPREL64:
556             x = value;
557             break;
558           case elfcpp::R_AARCH64_TLS_TPREL64:
559             x = value + aligned_tcb_address;
560             break;
561           default:
562             gold_unreachable();
563           }
564         elfcpp::Swap<size, big_endian>::writeval(wv, x);
565       }
566
567     of->write_output_view(offset, oview_size, oview);
568   }
569
570  private:
571   // Symbol table of the output object.
572   Symbol_table* symbol_table_;
573   // A pointer to the Layout class, so that we can find the .dynamic
574   // section when we write out the GOT section.
575   Layout* layout_;
576
577   // This class represent dynamic relocations that need to be applied by
578   // gold because we are using TLS relocations in a static link.
579   class Static_reloc
580   {
581    public:
582     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
583       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
584     { this->u_.global.symbol = gsym; }
585
586     Static_reloc(unsigned int got_offset, unsigned int r_type,
587           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
588       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
589     {
590       this->u_.local.relobj = relobj;
591       this->u_.local.index = index;
592     }
593
594     // Return the GOT offset.
595     unsigned int
596     got_offset() const
597     { return this->got_offset_; }
598
599     // Relocation type.
600     unsigned int
601     r_type() const
602     { return this->r_type_; }
603
604     // Whether the symbol is global or not.
605     bool
606     symbol_is_global() const
607     { return this->symbol_is_global_; }
608
609     // For a relocation against a global symbol, the global symbol.
610     Symbol*
611     symbol() const
612     {
613       gold_assert(this->symbol_is_global_);
614       return this->u_.global.symbol;
615     }
616
617     // For a relocation against a local symbol, the defining object.
618     Sized_relobj_file<size, big_endian>*
619     relobj() const
620     {
621       gold_assert(!this->symbol_is_global_);
622       return this->u_.local.relobj;
623     }
624
625     // For a relocation against a local symbol, the local symbol index.
626     unsigned int
627     index() const
628     {
629       gold_assert(!this->symbol_is_global_);
630       return this->u_.local.index;
631     }
632
633    private:
634     // GOT offset of the entry to which this relocation is applied.
635     unsigned int got_offset_;
636     // Type of relocation.
637     unsigned int r_type_;
638     // Whether this relocation is against a global symbol.
639     bool symbol_is_global_;
640     // A global or local symbol.
641     union
642     {
643       struct
644       {
645         // For a global symbol, the symbol itself.
646         Symbol* symbol;
647       } global;
648       struct
649       {
650         // For a local symbol, the object defining the symbol.
651         Sized_relobj_file<size, big_endian>* relobj;
652         // For a local symbol, the symbol index.
653         unsigned int index;
654       } local;
655     } u_;
656   };  // End of inner class Static_reloc
657
658   std::vector<Static_reloc> static_relocs_;
659 };  // End of Output_data_got_aarch64
660
661
662 template<int size, bool big_endian>
663 class AArch64_input_section;
664
665
666 template<int size, bool big_endian>
667 class AArch64_output_section;
668
669
670 template<int size, bool big_endian>
671 class AArch64_relobj;
672
673
674 // Stub type enum constants.
675
676 enum
677 {
678   ST_NONE = 0,
679
680   // Using adrp/add pair, 4 insns (including alignment) without mem access,
681   // the fastest stub. This has a limited jump distance, which is tested by
682   // aarch64_valid_for_adrp_p.
683   ST_ADRP_BRANCH = 1,
684
685   // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686   // unlimited in jump distance.
687   ST_LONG_BRANCH_ABS = 2,
688
689   // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690   // mem access, slowest one. Only used in position independent executables.
691   ST_LONG_BRANCH_PCREL = 3,
692
693   // Stub for erratum 843419 handling.
694   ST_E_843419 = 4,
695
696   // Stub for erratum 835769 handling.
697   ST_E_835769 = 5,
698
699   // Number of total stub types.
700   ST_NUMBER = 6
701 };
702
703
704 // Struct that wraps insns for a particular stub. All stub templates are
705 // created/initialized as constants by Stub_template_repertoire.
706
707 template<bool big_endian>
708 struct Stub_template
709 {
710   const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
711   const int insn_num;
712 };
713
714
715 // Simple singleton class that creates/initializes/stores all types of stub
716 // templates.
717
718 template<bool big_endian>
719 class Stub_template_repertoire
720 {
721 public:
722   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
723
724   // Single static method to get stub template for a given stub type.
725   static const Stub_template<big_endian>*
726   get_stub_template(int type)
727   {
728     static Stub_template_repertoire<big_endian> singleton;
729     return singleton.stub_templates_[type];
730   }
731
732 private:
733   // Constructor - creates/initializes all stub templates.
734   Stub_template_repertoire();
735   ~Stub_template_repertoire()
736   { }
737
738   // Disallowing copy ctor and copy assignment operator.
739   Stub_template_repertoire(Stub_template_repertoire&);
740   Stub_template_repertoire& operator=(Stub_template_repertoire&);
741
742   // Data that stores all insn templates.
743   const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
744 };  // End of "class Stub_template_repertoire".
745
746
747 // Constructor - creates/initilizes all stub templates.
748
749 template<bool big_endian>
750 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
751 {
752   // Insn array definitions.
753   const static Insntype ST_NONE_INSNS[] = {};
754
755   const static Insntype ST_ADRP_BRANCH_INSNS[] =
756     {
757       0x90000010,       /*      adrp    ip0, X             */
758                         /*        ADR_PREL_PG_HI21(X)      */
759       0x91000210,       /*      add     ip0, ip0, :lo12:X  */
760                         /*        ADD_ABS_LO12_NC(X)       */
761       0xd61f0200,       /*      br      ip0                */
762       0x00000000,       /*      alignment padding          */
763     };
764
765   const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
766     {
767       0x58000050,       /*      ldr   ip0, 0x8             */
768       0xd61f0200,       /*      br    ip0                  */
769       0x00000000,       /*      address field              */
770       0x00000000,       /*      address fields             */
771     };
772
773   const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
774     {
775       0x58000090,       /*      ldr   ip0, 0x10            */
776       0x10000011,       /*      adr   ip1, #0              */
777       0x8b110210,       /*      add   ip0, ip0, ip1        */
778       0xd61f0200,       /*      br    ip0                  */
779       0x00000000,       /*      address field              */
780       0x00000000,       /*      address field              */
781       0x00000000,       /*      alignment padding          */
782       0x00000000,       /*      alignment padding          */
783     };
784
785   const static Insntype ST_E_843419_INSNS[] =
786     {
787       0x00000000,    /* Placeholder for erratum insn. */
788       0x14000000,    /* b <label> */
789     };
790
791   // ST_E_835769 has the same stub template as ST_E_843419
792   // but we reproduce the array here so that the sizeof
793   // expressions in install_insn_template will work.
794   const static Insntype ST_E_835769_INSNS[] =
795     {
796       0x00000000,    /* Placeholder for erratum insn. */
797       0x14000000,    /* b <label> */
798     };
799
800 #define install_insn_template(T) \
801   const static Stub_template<big_endian> template_##T = {  \
802     T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803   this->stub_templates_[T] = &template_##T
804
805   install_insn_template(ST_NONE);
806   install_insn_template(ST_ADRP_BRANCH);
807   install_insn_template(ST_LONG_BRANCH_ABS);
808   install_insn_template(ST_LONG_BRANCH_PCREL);
809   install_insn_template(ST_E_843419);
810   install_insn_template(ST_E_835769);
811
812 #undef install_insn_template
813 }
814
815
816 // Base class for stubs.
817
818 template<int size, bool big_endian>
819 class Stub_base
820 {
821 public:
822   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
823   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
824
825   static const AArch64_address invalid_address =
826     static_cast<AArch64_address>(-1);
827
828   static const section_offset_type invalid_offset =
829     static_cast<section_offset_type>(-1);
830
831   Stub_base(int type)
832     : destination_address_(invalid_address),
833       offset_(invalid_offset),
834       type_(type)
835   {}
836
837   ~Stub_base()
838   {}
839
840   // Get stub type.
841   int
842   type() const
843   { return this->type_; }
844
845   // Get stub template that provides stub insn information.
846   const Stub_template<big_endian>*
847   stub_template() const
848   {
849     return Stub_template_repertoire<big_endian>::
850       get_stub_template(this->type());
851   }
852
853   // Get destination address.
854   AArch64_address
855   destination_address() const
856   {
857     gold_assert(this->destination_address_ != this->invalid_address);
858     return this->destination_address_;
859   }
860
861   // Set destination address.
862   void
863   set_destination_address(AArch64_address address)
864   {
865     gold_assert(address != this->invalid_address);
866     this->destination_address_ = address;
867   }
868
869   // Reset the destination address.
870   void
871   reset_destination_address()
872   { this->destination_address_ = this->invalid_address; }
873
874   // Get offset of code stub. For Reloc_stub, it is the offset from the
875   // beginning of its containing stub table; for Erratum_stub, it is the offset
876   // from the end of reloc_stubs.
877   section_offset_type
878   offset() const
879   {
880     gold_assert(this->offset_ != this->invalid_offset);
881     return this->offset_;
882   }
883
884   // Set stub offset.
885   void
886   set_offset(section_offset_type offset)
887   { this->offset_ = offset; }
888
889   // Return the stub insn.
890   const Insntype*
891   insns() const
892   { return this->stub_template()->insns; }
893
894   // Return num of stub insns.
895   unsigned int
896   insn_num() const
897   { return this->stub_template()->insn_num; }
898
899   // Get size of the stub.
900   int
901   stub_size() const
902   {
903     return this->insn_num() *
904       AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
905   }
906
907   // Write stub to output file.
908   void
909   write(unsigned char* view, section_size_type view_size)
910   { this->do_write(view, view_size); }
911
912 protected:
913   // Abstract method to be implemented by sub-classes.
914   virtual void
915   do_write(unsigned char*, section_size_type) = 0;
916
917 private:
918   // The last insn of a stub is a jump to destination insn. This field records
919   // the destination address.
920   AArch64_address destination_address_;
921   // The stub offset. Note this has difference interpretations between an
922   // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923   // beginning of the containing stub_table, whereas for Erratum_stub, this is
924   // the offset from the end of reloc_stubs.
925   section_offset_type offset_;
926   // Stub type.
927   const int type_;
928 };  // End of "Stub_base".
929
930
931 // Erratum stub class. An erratum stub differs from a reloc stub in that for
932 // each erratum occurrence, we generate an erratum stub. We never share erratum
933 // stubs, whereas for reloc stubs, different branches insns share a single reloc
934 // stub as long as the branch targets are the same. (More to the point, reloc
935 // stubs can be shared because they're used to reach a specific target, whereas
936 // erratum stubs branch back to the original control flow.)
937
938 template<int size, bool big_endian>
939 class Erratum_stub : public Stub_base<size, big_endian>
940 {
941 public:
942   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
943   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
944   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
945   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
946
947   static const int STUB_ADDR_ALIGN;
948
949   static const Insntype invalid_insn = static_cast<Insntype>(-1);
950
951   Erratum_stub(The_aarch64_relobj* relobj, int type,
952                unsigned shndx, unsigned int sh_offset)
953     : Stub_base<size, big_endian>(type), relobj_(relobj),
954       shndx_(shndx), sh_offset_(sh_offset),
955       erratum_insn_(invalid_insn),
956       erratum_address_(this->invalid_address)
957   {}
958
959   ~Erratum_stub() {}
960
961   // Return the object that contains the erratum.
962   The_aarch64_relobj*
963   relobj()
964   { return this->relobj_; }
965
966   // Get section index of the erratum.
967   unsigned int
968   shndx() const
969   { return this->shndx_; }
970
971   // Get section offset of the erratum.
972   unsigned int
973   sh_offset() const
974   { return this->sh_offset_; }
975
976   // Get the erratum insn. This is the insn located at erratum_insn_address.
977   Insntype
978   erratum_insn() const
979   {
980     gold_assert(this->erratum_insn_ != this->invalid_insn);
981     return this->erratum_insn_;
982   }
983
984   // Set the insn that the erratum happens to.
985   void
986   set_erratum_insn(Insntype insn)
987   { this->erratum_insn_ = insn; }
988
989   // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990   // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991   // is no longer the one we want to write out to the stub, update erratum_insn_
992   // with relocated version. Also note that in this case xn must not be "PC", so
993   // it is safe to move the erratum insn from the origin place to the stub. For
994   // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995   // relocation spot (assertion added though).
996   void
997   update_erratum_insn(Insntype insn)
998   {
999     gold_assert(this->erratum_insn_ != this->invalid_insn);
1000     switch (this->type())
1001       {
1002       case ST_E_843419:
1003         gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
1004         gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005         gold_assert(Insn_utilities::aarch64_rd(insn) ==
1006                     Insn_utilities::aarch64_rd(this->erratum_insn()));
1007         gold_assert(Insn_utilities::aarch64_rn(insn) ==
1008                     Insn_utilities::aarch64_rn(this->erratum_insn()));
1009         // Update plain ld/st insn with relocated insn.
1010         this->erratum_insn_ = insn;
1011         break;
1012       case ST_E_835769:
1013         gold_assert(insn == this->erratum_insn());
1014         break;
1015       default:
1016         gold_unreachable();
1017       }
1018   }
1019
1020
1021   // Return the address where an erratum must be done.
1022   AArch64_address
1023   erratum_address() const
1024   {
1025     gold_assert(this->erratum_address_ != this->invalid_address);
1026     return this->erratum_address_;
1027   }
1028
1029   // Set the address where an erratum must be done.
1030   void
1031   set_erratum_address(AArch64_address addr)
1032   { this->erratum_address_ = addr; }
1033
1034   // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1035   // sh_offset). We do not include 'type' in the calculation, because there is
1036   // at most one stub type at (obj, shndx, sh_offset).
1037   bool
1038   operator<(const Erratum_stub<size, big_endian>& k) const
1039   {
1040     if (this == &k)
1041       return false;
1042     // We group stubs by relobj.
1043     if (this->relobj_ != k.relobj_)
1044       return this->relobj_ < k.relobj_;
1045     // Then by section index.
1046     if (this->shndx_ != k.shndx_)
1047       return this->shndx_ < k.shndx_;
1048     // Lastly by section offset.
1049     return this->sh_offset_ < k.sh_offset_;
1050   }
1051
1052 protected:
1053   virtual void
1054   do_write(unsigned char*, section_size_type);
1055
1056 private:
1057   // The object that needs to be fixed.
1058   The_aarch64_relobj* relobj_;
1059   // The shndx in the object that needs to be fixed.
1060   const unsigned int shndx_;
1061   // The section offset in the obejct that needs to be fixed.
1062   const unsigned int sh_offset_;
1063   // The insn to be fixed.
1064   Insntype erratum_insn_;
1065   // The address of the above insn.
1066   AArch64_address erratum_address_;
1067 };  // End of "Erratum_stub".
1068
1069
1070 // Erratum sub class to wrap additional info needed by 843419.  In fixing this
1071 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1072 // adrp's code position (two or three insns before erratum insn itself).
1073
1074 template<int size, bool big_endian>
1075 class E843419_stub : public Erratum_stub<size, big_endian>
1076 {
1077 public:
1078   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1079
1080   E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1081                       unsigned int shndx, unsigned int sh_offset,
1082                       unsigned int adrp_sh_offset)
1083     : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1084       adrp_sh_offset_(adrp_sh_offset)
1085   {}
1086
1087   unsigned int
1088   adrp_sh_offset() const
1089   { return this->adrp_sh_offset_; }
1090
1091 private:
1092   // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1093   // can can obtain it from its parent.)
1094   const unsigned int adrp_sh_offset_;
1095 };
1096
1097
1098 template<int size, bool big_endian>
1099 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1100
1101 // Comparator used in set definition.
1102 template<int size, bool big_endian>
1103 struct Erratum_stub_less
1104 {
1105   bool
1106   operator()(const Erratum_stub<size, big_endian>* s1,
1107              const Erratum_stub<size, big_endian>* s2) const
1108   { return *s1 < *s2; }
1109 };
1110
1111 // Erratum_stub implementation for writing stub to output file.
1112
1113 template<int size, bool big_endian>
1114 void
1115 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1116 {
1117   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1118   const Insntype* insns = this->insns();
1119   uint32_t num_insns = this->insn_num();
1120   Insntype* ip = reinterpret_cast<Insntype*>(view);
1121   // For current implemented erratum 843419 and 835769, the first insn in the
1122   // stub is always a copy of the problematic insn (in 843419, the mem access
1123   // insn, in 835769, the mac insn), followed by a jump-back.
1124   elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1125   for (uint32_t i = 1; i < num_insns; ++i)
1126     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1127 }
1128
1129
1130 // Reloc stub class.
1131
1132 template<int size, bool big_endian>
1133 class Reloc_stub : public Stub_base<size, big_endian>
1134 {
1135  public:
1136   typedef Reloc_stub<size, big_endian> This;
1137   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1138
1139   // Branch range. This is used to calculate the section group size, as well as
1140   // determine whether a stub is needed.
1141   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1142   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1143
1144   // Constant used to determine if an offset fits in the adrp instruction
1145   // encoding.
1146   static const int MAX_ADRP_IMM = (1 << 20) - 1;
1147   static const int MIN_ADRP_IMM = -(1 << 20);
1148
1149   static const int BYTES_PER_INSN = 4;
1150   static const int STUB_ADDR_ALIGN;
1151
1152   // Determine whether the offset fits in the jump/branch instruction.
1153   static bool
1154   aarch64_valid_branch_offset_p(int64_t offset)
1155   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1156
1157   // Determine whether the offset fits in the adrp immediate field.
1158   static bool
1159   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1160   {
1161     typedef AArch64_relocate_functions<size, big_endian> Reloc;
1162     int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1163     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1164   }
1165
1166   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1167   // needed.
1168   static int
1169   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1170                       AArch64_address target);
1171
1172   Reloc_stub(int type)
1173     : Stub_base<size, big_endian>(type)
1174   { }
1175
1176   ~Reloc_stub()
1177   { }
1178
1179   // The key class used to index the stub instance in the stub table's stub map.
1180   class Key
1181   {
1182    public:
1183     Key(int type, const Symbol* symbol, const Relobj* relobj,
1184         unsigned int r_sym, int32_t addend)
1185       : type_(type), addend_(addend)
1186     {
1187       if (symbol != NULL)
1188         {
1189           this->r_sym_ = Reloc_stub::invalid_index;
1190           this->u_.symbol = symbol;
1191         }
1192       else
1193         {
1194           gold_assert(relobj != NULL && r_sym != invalid_index);
1195           this->r_sym_ = r_sym;
1196           this->u_.relobj = relobj;
1197         }
1198     }
1199
1200     ~Key()
1201     { }
1202
1203     // Return stub type.
1204     int
1205     type() const
1206     { return this->type_; }
1207
1208     // Return the local symbol index or invalid_index.
1209     unsigned int
1210     r_sym() const
1211     { return this->r_sym_; }
1212
1213     // Return the symbol if there is one.
1214     const Symbol*
1215     symbol() const
1216     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1217
1218     // Return the relobj if there is one.
1219     const Relobj*
1220     relobj() const
1221     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1222
1223     // Whether this equals to another key k.
1224     bool
1225     eq(const Key& k) const
1226     {
1227       return ((this->type_ == k.type_)
1228               && (this->r_sym_ == k.r_sym_)
1229               && ((this->r_sym_ != Reloc_stub::invalid_index)
1230                   ? (this->u_.relobj == k.u_.relobj)
1231                   : (this->u_.symbol == k.u_.symbol))
1232               && (this->addend_ == k.addend_));
1233     }
1234
1235     // Return a hash value.
1236     size_t
1237     hash_value() const
1238     {
1239       size_t name_hash_value = gold::string_hash<char>(
1240           (this->r_sym_ != Reloc_stub::invalid_index)
1241           ? this->u_.relobj->name().c_str()
1242           : this->u_.symbol->name());
1243       // We only have 4 stub types.
1244       size_t stub_type_hash_value = 0x03 & this->type_;
1245       return (name_hash_value
1246               ^ stub_type_hash_value
1247               ^ ((this->r_sym_ & 0x3fff) << 2)
1248               ^ ((this->addend_ & 0xffff) << 16));
1249     }
1250
1251     // Functors for STL associative containers.
1252     struct hash
1253     {
1254       size_t
1255       operator()(const Key& k) const
1256       { return k.hash_value(); }
1257     };
1258
1259     struct equal_to
1260     {
1261       bool
1262       operator()(const Key& k1, const Key& k2) const
1263       { return k1.eq(k2); }
1264     };
1265
1266    private:
1267     // Stub type.
1268     const int type_;
1269     // If this is a local symbol, this is the index in the defining object.
1270     // Otherwise, it is invalid_index for a global symbol.
1271     unsigned int r_sym_;
1272     // If r_sym_ is an invalid index, this points to a global symbol.
1273     // Otherwise, it points to a relobj.  We used the unsized and target
1274     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1275     // Arm_relobj, in order to avoid making the stub class a template
1276     // as most of the stub machinery is endianness-neutral.  However, it
1277     // may require a bit of casting done by users of this class.
1278     union
1279     {
1280       const Symbol* symbol;
1281       const Relobj* relobj;
1282     } u_;
1283     // Addend associated with a reloc.
1284     int32_t addend_;
1285   };  // End of inner class Reloc_stub::Key
1286
1287  protected:
1288   // This may be overridden in the child class.
1289   virtual void
1290   do_write(unsigned char*, section_size_type);
1291
1292  private:
1293   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1294 };  // End of Reloc_stub
1295
1296 template<int size, bool big_endian>
1297 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1298
1299 // Write data to output file.
1300
1301 template<int size, bool big_endian>
1302 void
1303 Reloc_stub<size, big_endian>::
1304 do_write(unsigned char* view, section_size_type)
1305 {
1306   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1307   const uint32_t* insns = this->insns();
1308   uint32_t num_insns = this->insn_num();
1309   Insntype* ip = reinterpret_cast<Insntype*>(view);
1310   for (uint32_t i = 0; i < num_insns; ++i)
1311     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1312 }
1313
1314
1315 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1316 // needed.
1317
1318 template<int size, bool big_endian>
1319 inline int
1320 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1321     unsigned int r_type, AArch64_address location, AArch64_address dest)
1322 {
1323   int64_t branch_offset = 0;
1324   switch(r_type)
1325     {
1326     case elfcpp::R_AARCH64_CALL26:
1327     case elfcpp::R_AARCH64_JUMP26:
1328       branch_offset = dest - location;
1329       break;
1330     default:
1331       gold_unreachable();
1332     }
1333
1334   if (aarch64_valid_branch_offset_p(branch_offset))
1335     return ST_NONE;
1336
1337   if (aarch64_valid_for_adrp_p(location, dest))
1338     return ST_ADRP_BRANCH;
1339
1340   // Always use PC-relative addressing in case of -shared or -pie.
1341   if (parameters->options().output_is_position_independent())
1342     return ST_LONG_BRANCH_PCREL;
1343
1344   // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1345   // But is only applicable to non-shared or non-pie.
1346   return ST_LONG_BRANCH_ABS;
1347 }
1348
1349 // A class to hold stubs for the ARM target.
1350
1351 template<int size, bool big_endian>
1352 class Stub_table : public Output_data
1353 {
1354  public:
1355   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1356   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1357   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1358   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1359   typedef Reloc_stub<size, big_endian> The_reloc_stub;
1360   typedef typename The_reloc_stub::Key The_reloc_stub_key;
1361   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1362   typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1363   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1364   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1365   typedef Stub_table<size, big_endian> The_stub_table;
1366   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1367                         The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1368                         Reloc_stub_map;
1369   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1370   typedef Relocate_info<size, big_endian> The_relocate_info;
1371
1372   typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1373   typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1374
1375   Stub_table(The_aarch64_input_section* owner)
1376     : Output_data(), owner_(owner), reloc_stubs_size_(0),
1377       erratum_stubs_size_(0), prev_data_size_(0)
1378   { }
1379
1380   ~Stub_table()
1381   { }
1382
1383   The_aarch64_input_section*
1384   owner() const
1385   { return owner_; }
1386
1387   // Whether this stub table is empty.
1388   bool
1389   empty() const
1390   { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1391
1392   // Return the current data size.
1393   off_t
1394   current_data_size() const
1395   { return this->current_data_size_for_child(); }
1396
1397   // Add a STUB using KEY.  The caller is responsible for avoiding addition
1398   // if a STUB with the same key has already been added.
1399   void
1400   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1401
1402   // Add an erratum stub into the erratum stub set. The set is ordered by
1403   // (relobj, shndx, sh_offset).
1404   void
1405   add_erratum_stub(The_erratum_stub* stub);
1406
1407   // Find if such erratum exists for any given (obj, shndx, sh_offset).
1408   The_erratum_stub*
1409   find_erratum_stub(The_aarch64_relobj* a64relobj,
1410                     unsigned int shndx, unsigned int sh_offset);
1411
1412   // Find all the erratums for a given input section. The return value is a pair
1413   // of iterators [begin, end).
1414   std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1415   find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1416                                        unsigned int shndx);
1417
1418   // Compute the erratum stub address.
1419   AArch64_address
1420   erratum_stub_address(The_erratum_stub* stub) const
1421   {
1422     AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1423                                       The_erratum_stub::STUB_ADDR_ALIGN);
1424     r += stub->offset();
1425     return r;
1426   }
1427
1428   // Finalize stubs. No-op here, just for completeness.
1429   void
1430   finalize_stubs()
1431   { }
1432
1433   // Look up a relocation stub using KEY. Return NULL if there is none.
1434   The_reloc_stub*
1435   find_reloc_stub(The_reloc_stub_key& key)
1436   {
1437     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1438     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1439   }
1440
1441   // Relocate stubs in this stub table.
1442   void
1443   relocate_stubs(const The_relocate_info*,
1444                  The_target_aarch64*,
1445                  Output_section*,
1446                  unsigned char*,
1447                  AArch64_address,
1448                  section_size_type);
1449
1450   // Update data size at the end of a relaxation pass.  Return true if data size
1451   // is different from that of the previous relaxation pass.
1452   bool
1453   update_data_size_changed_p()
1454   {
1455     // No addralign changed here.
1456     off_t s = align_address(this->reloc_stubs_size_,
1457                             The_erratum_stub::STUB_ADDR_ALIGN)
1458               + this->erratum_stubs_size_;
1459     bool changed = (s != this->prev_data_size_);
1460     this->prev_data_size_ = s;
1461     return changed;
1462   }
1463
1464  protected:
1465   // Write out section contents.
1466   void
1467   do_write(Output_file*);
1468
1469   // Return the required alignment.
1470   uint64_t
1471   do_addralign() const
1472   {
1473     return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1474                     The_erratum_stub::STUB_ADDR_ALIGN);
1475   }
1476
1477   // Reset address and file offset.
1478   void
1479   do_reset_address_and_file_offset()
1480   { this->set_current_data_size_for_child(this->prev_data_size_); }
1481
1482   // Set final data size.
1483   void
1484   set_final_data_size()
1485   { this->set_data_size(this->current_data_size()); }
1486
1487  private:
1488   // Relocate one stub.
1489   void
1490   relocate_stub(The_reloc_stub*,
1491                 const The_relocate_info*,
1492                 The_target_aarch64*,
1493                 Output_section*,
1494                 unsigned char*,
1495                 AArch64_address,
1496                 section_size_type);
1497
1498  private:
1499   // Owner of this stub table.
1500   The_aarch64_input_section* owner_;
1501   // The relocation stubs.
1502   Reloc_stub_map reloc_stubs_;
1503   // The erratum stubs.
1504   Erratum_stub_set erratum_stubs_;
1505   // Size of reloc stubs.
1506   off_t reloc_stubs_size_;
1507   // Size of erratum stubs.
1508   off_t erratum_stubs_size_;
1509   // data size of this in the previous pass.
1510   off_t prev_data_size_;
1511 };  // End of Stub_table
1512
1513
1514 // Add an erratum stub into the erratum stub set. The set is ordered by
1515 // (relobj, shndx, sh_offset).
1516
1517 template<int size, bool big_endian>
1518 void
1519 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1520 {
1521   std::pair<Erratum_stub_set_iter, bool> ret =
1522     this->erratum_stubs_.insert(stub);
1523   gold_assert(ret.second);
1524   this->erratum_stubs_size_ = align_address(
1525         this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1526   stub->set_offset(this->erratum_stubs_size_);
1527   this->erratum_stubs_size_ += stub->stub_size();
1528 }
1529
1530
1531 // Find if such erratum exists for given (obj, shndx, sh_offset).
1532
1533 template<int size, bool big_endian>
1534 Erratum_stub<size, big_endian>*
1535 Stub_table<size, big_endian>::find_erratum_stub(
1536     The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1537 {
1538   // A dummy object used as key to search in the set.
1539   The_erratum_stub key(a64relobj, ST_NONE,
1540                          shndx, sh_offset);
1541   Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1542   if (i != this->erratum_stubs_.end())
1543     {
1544         The_erratum_stub* stub(*i);
1545         gold_assert(stub->erratum_insn() != 0);
1546         return stub;
1547     }
1548   return NULL;
1549 }
1550
1551
1552 // Find all the errata for a given input section. The return value is a pair of
1553 // iterators [begin, end).
1554
1555 template<int size, bool big_endian>
1556 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1557           typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1558 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1559     The_aarch64_relobj* a64relobj, unsigned int shndx)
1560 {
1561   typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1562   Erratum_stub_set_iter start, end;
1563   The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1564   start = this->erratum_stubs_.lower_bound(&low_key);
1565   if (start == this->erratum_stubs_.end())
1566     return Result_pair(this->erratum_stubs_.end(),
1567                        this->erratum_stubs_.end());
1568   end = start;
1569   while (end != this->erratum_stubs_.end() &&
1570          (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1571     ++end;
1572   return Result_pair(start, end);
1573 }
1574
1575
1576 // Add a STUB using KEY.  The caller is responsible for avoiding addition
1577 // if a STUB with the same key has already been added.
1578
1579 template<int size, bool big_endian>
1580 void
1581 Stub_table<size, big_endian>::add_reloc_stub(
1582     The_reloc_stub* stub, const The_reloc_stub_key& key)
1583 {
1584   gold_assert(stub->type() == key.type());
1585   this->reloc_stubs_[key] = stub;
1586
1587   // Assign stub offset early.  We can do this because we never remove
1588   // reloc stubs and they are in the beginning of the stub table.
1589   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1590                                           The_reloc_stub::STUB_ADDR_ALIGN);
1591   stub->set_offset(this->reloc_stubs_size_);
1592   this->reloc_stubs_size_ += stub->stub_size();
1593 }
1594
1595
1596 // Relocate all stubs in this stub table.
1597
1598 template<int size, bool big_endian>
1599 void
1600 Stub_table<size, big_endian>::
1601 relocate_stubs(const The_relocate_info* relinfo,
1602                The_target_aarch64* target_aarch64,
1603                Output_section* output_section,
1604                unsigned char* view,
1605                AArch64_address address,
1606                section_size_type view_size)
1607 {
1608   // "view_size" is the total size of the stub_table.
1609   gold_assert(address == this->address() &&
1610               view_size == static_cast<section_size_type>(this->data_size()));
1611   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1612       p != this->reloc_stubs_.end(); ++p)
1613     relocate_stub(p->second, relinfo, target_aarch64, output_section,
1614                   view, address, view_size);
1615
1616   // Just for convenience.
1617   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1618
1619   // Now 'relocate' erratum stubs.
1620   for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1621       i != this->erratum_stubs_.end(); ++i)
1622     {
1623       AArch64_address stub_address = this->erratum_stub_address(*i);
1624       // The address of "b" in the stub that is to be "relocated".
1625       AArch64_address stub_b_insn_address;
1626       // Branch offset that is to be filled in "b" insn.
1627       int b_offset = 0;
1628       switch ((*i)->type())
1629         {
1630         case ST_E_843419:
1631         case ST_E_835769:
1632           // The 1st insn of the erratum could be a relocation spot,
1633           // in this case we need to fix it with
1634           // "(*i)->erratum_insn()".
1635           elfcpp::Swap<32, big_endian>::writeval(
1636               view + (stub_address - this->address()),
1637               (*i)->erratum_insn());
1638           // For the erratum, the 2nd insn is a b-insn to be patched
1639           // (relocated).
1640           stub_b_insn_address = stub_address + 1 * BPI;
1641           b_offset = (*i)->destination_address() - stub_b_insn_address;
1642           AArch64_relocate_functions<size, big_endian>::construct_b(
1643               view + (stub_b_insn_address - this->address()),
1644               ((unsigned int)(b_offset)) & 0xfffffff);
1645           break;
1646         default:
1647           gold_unreachable();
1648           break;
1649         }
1650     }
1651 }
1652
1653
1654 // Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
1655
1656 template<int size, bool big_endian>
1657 void
1658 Stub_table<size, big_endian>::
1659 relocate_stub(The_reloc_stub* stub,
1660               const The_relocate_info* relinfo,
1661               The_target_aarch64* target_aarch64,
1662               Output_section* output_section,
1663               unsigned char* view,
1664               AArch64_address address,
1665               section_size_type view_size)
1666 {
1667   // "offset" is the offset from the beginning of the stub_table.
1668   section_size_type offset = stub->offset();
1669   section_size_type stub_size = stub->stub_size();
1670   // "view_size" is the total size of the stub_table.
1671   gold_assert(offset + stub_size <= view_size);
1672
1673   target_aarch64->relocate_stub(stub, relinfo, output_section,
1674                                 view + offset, address + offset, view_size);
1675 }
1676
1677
1678 // Write out the stubs to file.
1679
1680 template<int size, bool big_endian>
1681 void
1682 Stub_table<size, big_endian>::do_write(Output_file* of)
1683 {
1684   off_t offset = this->offset();
1685   const section_size_type oview_size =
1686     convert_to_section_size_type(this->data_size());
1687   unsigned char* const oview = of->get_output_view(offset, oview_size);
1688
1689   // Write relocation stubs.
1690   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1691       p != this->reloc_stubs_.end(); ++p)
1692     {
1693       The_reloc_stub* stub = p->second;
1694       AArch64_address address = this->address() + stub->offset();
1695       gold_assert(address ==
1696                   align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1697       stub->write(oview + stub->offset(), stub->stub_size());
1698     }
1699
1700   // Write erratum stubs.
1701   unsigned int erratum_stub_start_offset =
1702     align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1703   for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1704        p != this->erratum_stubs_.end(); ++p)
1705     {
1706       The_erratum_stub* stub(*p);
1707       stub->write(oview + erratum_stub_start_offset + stub->offset(),
1708                   stub->stub_size());
1709     }
1710
1711   of->write_output_view(this->offset(), oview_size, oview);
1712 }
1713
1714
1715 // AArch64_relobj class.
1716
1717 template<int size, bool big_endian>
1718 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1719 {
1720  public:
1721   typedef AArch64_relobj<size, big_endian> This;
1722   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1723   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1724   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1725   typedef Stub_table<size, big_endian> The_stub_table;
1726   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1727   typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1728   typedef std::vector<The_stub_table*> Stub_table_list;
1729   static const AArch64_address invalid_address =
1730       static_cast<AArch64_address>(-1);
1731
1732   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1733                  const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1734     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1735       stub_tables_()
1736   { }
1737
1738   ~AArch64_relobj()
1739   { }
1740
1741   // Return the stub table of the SHNDX-th section if there is one.
1742   The_stub_table*
1743   stub_table(unsigned int shndx) const
1744   {
1745     gold_assert(shndx < this->stub_tables_.size());
1746     return this->stub_tables_[shndx];
1747   }
1748
1749   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1750   void
1751   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1752   {
1753     gold_assert(shndx < this->stub_tables_.size());
1754     this->stub_tables_[shndx] = stub_table;
1755   }
1756
1757   // Entrance to errata scanning.
1758   void
1759   scan_errata(unsigned int shndx,
1760               const elfcpp::Shdr<size, big_endian>&,
1761               Output_section*, const Symbol_table*,
1762               The_target_aarch64*);
1763
1764   // Scan all relocation sections for stub generation.
1765   void
1766   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1767                           const Layout*);
1768
1769   // Whether a section is a scannable text section.
1770   bool
1771   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1772                             const Output_section*, const Symbol_table*);
1773
1774   // Convert regular input section with index SHNDX to a relaxed section.
1775   void
1776   convert_input_section_to_relaxed_section(unsigned shndx)
1777   {
1778     // The stubs have relocations and we need to process them after writing
1779     // out the stubs.  So relocation now must follow section write.
1780     this->set_section_offset(shndx, -1ULL);
1781     this->set_relocs_must_follow_section_writes();
1782   }
1783
1784   // Structure for mapping symbol position.
1785   struct Mapping_symbol_position
1786   {
1787     Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1788       shndx_(shndx), offset_(offset)
1789     {}
1790
1791     // "<" comparator used in ordered_map container.
1792     bool
1793     operator<(const Mapping_symbol_position& p) const
1794     {
1795       return (this->shndx_ < p.shndx_
1796               || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1797     }
1798
1799     // Section index.
1800     unsigned int shndx_;
1801
1802     // Section offset.
1803     AArch64_address offset_;
1804   };
1805
1806   typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1807
1808  protected:
1809   // Post constructor setup.
1810   void
1811   do_setup()
1812   {
1813     // Call parent's setup method.
1814     Sized_relobj_file<size, big_endian>::do_setup();
1815
1816     // Initialize look-up tables.
1817     this->stub_tables_.resize(this->shnum());
1818   }
1819
1820   virtual void
1821   do_relocate_sections(
1822       const Symbol_table* symtab, const Layout* layout,
1823       const unsigned char* pshdrs, Output_file* of,
1824       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1825
1826   // Count local symbols and (optionally) record mapping info.
1827   virtual void
1828   do_count_local_symbols(Stringpool_template<char>*,
1829                          Stringpool_template<char>*);
1830
1831  private:
1832   // Fix all errata in the object.
1833   void
1834   fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1835
1836   // Try to fix erratum 843419 in an optimized way. Return true if patch is
1837   // applied.
1838   bool
1839   try_fix_erratum_843419_optimized(
1840       The_erratum_stub*,
1841       typename Sized_relobj_file<size, big_endian>::View_size&);
1842
1843   // Whether a section needs to be scanned for relocation stubs.
1844   bool
1845   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1846                                     const Relobj::Output_sections&,
1847                                     const Symbol_table*, const unsigned char*);
1848
1849   // List of stub tables.
1850   Stub_table_list stub_tables_;
1851
1852   // Mapping symbol information sorted by (section index, section_offset).
1853   Mapping_symbol_info mapping_symbol_info_;
1854 };  // End of AArch64_relobj
1855
1856
1857 // Override to record mapping symbol information.
1858 template<int size, bool big_endian>
1859 void
1860 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1861     Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1862 {
1863   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1864
1865   // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1866   // processing if not fixing erratum.
1867   if (!parameters->options().fix_cortex_a53_843419()
1868       && !parameters->options().fix_cortex_a53_835769())
1869     return;
1870
1871   const unsigned int loccount = this->local_symbol_count();
1872   if (loccount == 0)
1873     return;
1874
1875   // Read the symbol table section header.
1876   const unsigned int symtab_shndx = this->symtab_shndx();
1877   elfcpp::Shdr<size, big_endian>
1878       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1879   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1880
1881   // Read the local symbols.
1882   const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1883   gold_assert(loccount == symtabshdr.get_sh_info());
1884   off_t locsize = loccount * sym_size;
1885   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1886                                               locsize, true, true);
1887
1888   // For mapping symbol processing, we need to read the symbol names.
1889   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1890   if (strtab_shndx >= this->shnum())
1891     {
1892       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1893       return;
1894     }
1895
1896   elfcpp::Shdr<size, big_endian>
1897     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1898   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1899     {
1900       this->error(_("symbol table name section has wrong type: %u"),
1901                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
1902       return;
1903     }
1904
1905   const char* pnames =
1906     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1907                                                  strtabshdr.get_sh_size(),
1908                                                  false, false));
1909
1910   // Skip the first dummy symbol.
1911   psyms += sym_size;
1912   typename Sized_relobj_file<size, big_endian>::Local_values*
1913     plocal_values = this->local_values();
1914   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1915     {
1916       elfcpp::Sym<size, big_endian> sym(psyms);
1917       Symbol_value<size>& lv((*plocal_values)[i]);
1918       AArch64_address input_value = lv.input_value();
1919
1920       // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1921       // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1922       // symbols.
1923       // Mapping symbols could be one of the following 4 forms -
1924       //   a) $x
1925       //   b) $x.<any...>
1926       //   c) $d
1927       //   d) $d.<any...>
1928       const char* sym_name = pnames + sym.get_st_name();
1929       if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1930           && (sym_name[2] == '\0' || sym_name[2] == '.'))
1931         {
1932           bool is_ordinary;
1933           unsigned int input_shndx =
1934             this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1935           gold_assert(is_ordinary);
1936
1937           Mapping_symbol_position msp(input_shndx, input_value);
1938           // Insert mapping_symbol_info into map whose ordering is defined by
1939           // (shndx, offset_within_section).
1940           this->mapping_symbol_info_[msp] = sym_name[1];
1941         }
1942    }
1943 }
1944
1945
1946 // Fix all errata in the object.
1947
1948 template<int size, bool big_endian>
1949 void
1950 AArch64_relobj<size, big_endian>::fix_errata(
1951     typename Sized_relobj_file<size, big_endian>::Views* pviews)
1952 {
1953   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1954   unsigned int shnum = this->shnum();
1955   for (unsigned int i = 1; i < shnum; ++i)
1956     {
1957       The_stub_table* stub_table = this->stub_table(i);
1958       if (!stub_table)
1959         continue;
1960       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1961         ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1962       Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1963       while (p != end)
1964         {
1965           The_erratum_stub* stub = *p;
1966           typename Sized_relobj_file<size, big_endian>::View_size&
1967             pview((*pviews)[i]);
1968
1969           // Double check data before fix.
1970           gold_assert(pview.address + stub->sh_offset()
1971                       == stub->erratum_address());
1972
1973           // Update previously recorded erratum insn with relocated
1974           // version.
1975           Insntype* ip =
1976             reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1977           Insntype insn_to_fix = ip[0];
1978           stub->update_erratum_insn(insn_to_fix);
1979
1980           // First try to see if erratum is 843419 and if it can be fixed
1981           // without using branch-to-stub.
1982           if (!try_fix_erratum_843419_optimized(stub, pview))
1983             {
1984               // Replace the erratum insn with a branch-to-stub.
1985               AArch64_address stub_address =
1986                 stub_table->erratum_stub_address(stub);
1987               unsigned int b_offset = stub_address - stub->erratum_address();
1988               AArch64_relocate_functions<size, big_endian>::construct_b(
1989                 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1990             }
1991           ++p;
1992         }
1993     }
1994 }
1995
1996
1997 // This is an optimization for 843419. This erratum requires the sequence begin
1998 // with 'adrp', when final value calculated by adrp fits in adr, we can just
1999 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2000 // in this case, we do not delete the erratum stub (too late to do so), it is
2001 // merely generated without ever being called.)
2002
2003 template<int size, bool big_endian>
2004 bool
2005 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
2006     The_erratum_stub* stub,
2007     typename Sized_relobj_file<size, big_endian>::View_size& pview)
2008 {
2009   if (stub->type() != ST_E_843419)
2010     return false;
2011
2012   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2013   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2014   E843419_stub<size, big_endian>* e843419_stub =
2015     reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2016   AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2017   unsigned int adrp_offset = e843419_stub->adrp_sh_offset ();
2018   Insntype* adrp_view = reinterpret_cast<Insntype*>(pview.view + adrp_offset);
2019   Insntype adrp_insn = adrp_view[0];
2020
2021   // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2022   // from IE -> LE relaxation etc.  This is a side-effect of TLS relaxation that
2023   // ADRP has been turned into MRS, there is no erratum risk anymore.
2024   // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2025   if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn))
2026     return true;
2027
2028   // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2029   // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2030   // Like the above case, there is no erratum risk any more, we can safely
2031   // return true.
2032   if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset)
2033     {
2034       Insntype* prev_view
2035         = reinterpret_cast<Insntype*>(pview.view + adrp_offset - 4);
2036       Insntype prev_insn = prev_view[0];
2037
2038       if (Insn_utilities::is_mrs_tpidr_el0(prev_insn))
2039         return true;
2040     }
2041
2042   /* If we reach here, the first instruction must be ADRP.  */
2043   gold_assert(Insn_utilities::is_adrp(adrp_insn));
2044   // Get adrp 33-bit signed imm value.
2045   int64_t adrp_imm = Insn_utilities::
2046     aarch64_adrp_decode_imm(adrp_insn);
2047   // adrp - final value transferred to target register is calculated as:
2048   //     PC[11:0] = Zeros(12)
2049   //     adrp_dest_value = PC + adrp_imm;
2050   int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2051   // adr -final value transferred to target register is calucalted as:
2052   //     PC + adr_imm
2053   // So we have:
2054   //     PC + adr_imm = adrp_dest_value
2055   //   ==>
2056   //     adr_imm = adrp_dest_value - PC
2057   int64_t adr_imm = adrp_dest_value - pc;
2058   // Check if imm fits in adr (21-bit signed).
2059   if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2060     {
2061       // Convert 'adrp' into 'adr'.
2062       Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2063       adr_insn = Insn_utilities::
2064         aarch64_adr_encode_imm(adr_insn, adr_imm);
2065       elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2066       return true;
2067     }
2068   return false;
2069 }
2070
2071
2072 // Relocate sections.
2073
2074 template<int size, bool big_endian>
2075 void
2076 AArch64_relobj<size, big_endian>::do_relocate_sections(
2077     const Symbol_table* symtab, const Layout* layout,
2078     const unsigned char* pshdrs, Output_file* of,
2079     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2080 {
2081   // Relocate the section data.
2082   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2083                                1, this->shnum() - 1);
2084
2085   // We do not generate stubs if doing a relocatable link.
2086   if (parameters->options().relocatable())
2087     return;
2088
2089   if (parameters->options().fix_cortex_a53_843419()
2090       || parameters->options().fix_cortex_a53_835769())
2091     this->fix_errata(pviews);
2092
2093   Relocate_info<size, big_endian> relinfo;
2094   relinfo.symtab = symtab;
2095   relinfo.layout = layout;
2096   relinfo.object = this;
2097
2098   // Relocate stub tables.
2099   unsigned int shnum = this->shnum();
2100   The_target_aarch64* target = The_target_aarch64::current_target();
2101
2102   for (unsigned int i = 1; i < shnum; ++i)
2103     {
2104       The_aarch64_input_section* aarch64_input_section =
2105           target->find_aarch64_input_section(this, i);
2106       if (aarch64_input_section != NULL
2107           && aarch64_input_section->is_stub_table_owner()
2108           && !aarch64_input_section->stub_table()->empty())
2109         {
2110           Output_section* os = this->output_section(i);
2111           gold_assert(os != NULL);
2112
2113           relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2114           relinfo.reloc_shdr = NULL;
2115           relinfo.data_shndx = i;
2116           relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2117
2118           typename Sized_relobj_file<size, big_endian>::View_size&
2119               view_struct = (*pviews)[i];
2120           gold_assert(view_struct.view != NULL);
2121
2122           The_stub_table* stub_table = aarch64_input_section->stub_table();
2123           off_t offset = stub_table->address() - view_struct.address;
2124           unsigned char* view = view_struct.view + offset;
2125           AArch64_address address = stub_table->address();
2126           section_size_type view_size = stub_table->data_size();
2127           stub_table->relocate_stubs(&relinfo, target, os, view, address,
2128                                      view_size);
2129         }
2130     }
2131 }
2132
2133
2134 // Determine if an input section is scannable for stub processing.  SHDR is
2135 // the header of the section and SHNDX is the section index.  OS is the output
2136 // section for the input section and SYMTAB is the global symbol table used to
2137 // look up ICF information.
2138
2139 template<int size, bool big_endian>
2140 bool
2141 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2142     const elfcpp::Shdr<size, big_endian>& text_shdr,
2143     unsigned int text_shndx,
2144     const Output_section* os,
2145     const Symbol_table* symtab)
2146 {
2147   // Skip any empty sections, unallocated sections or sections whose
2148   // type are not SHT_PROGBITS.
2149   if (text_shdr.get_sh_size() == 0
2150       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2151       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2152     return false;
2153
2154   // Skip any discarded or ICF'ed sections.
2155   if (os == NULL || symtab->is_section_folded(this, text_shndx))
2156     return false;
2157
2158   // Skip exception frame.
2159   if (strcmp(os->name(), ".eh_frame") == 0)
2160     return false ;
2161
2162   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2163               os->find_relaxed_input_section(this, text_shndx) != NULL);
2164
2165   return true;
2166 }
2167
2168
2169 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2170 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2171
2172 template<int size, bool big_endian>
2173 bool
2174 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2175     const elfcpp::Shdr<size, big_endian>& shdr,
2176     const Relobj::Output_sections& out_sections,
2177     const Symbol_table* symtab,
2178     const unsigned char* pshdrs)
2179 {
2180   unsigned int sh_type = shdr.get_sh_type();
2181   if (sh_type != elfcpp::SHT_RELA)
2182     return false;
2183
2184   // Ignore empty section.
2185   off_t sh_size = shdr.get_sh_size();
2186   if (sh_size == 0)
2187     return false;
2188
2189   // Ignore reloc section with unexpected symbol table.  The
2190   // error will be reported in the final link.
2191   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2192     return false;
2193
2194   gold_assert(sh_type == elfcpp::SHT_RELA);
2195   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2196
2197   // Ignore reloc section with unexpected entsize or uneven size.
2198   // The error will be reported in the final link.
2199   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2200     return false;
2201
2202   // Ignore reloc section with bad info.  This error will be
2203   // reported in the final link.
2204   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2205   if (text_shndx >= this->shnum())
2206     return false;
2207
2208   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2209   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2210                                                  text_shndx * shdr_size);
2211   return this->text_section_is_scannable(text_shdr, text_shndx,
2212                                          out_sections[text_shndx], symtab);
2213 }
2214
2215
2216 // Scan section SHNDX for erratum 843419 and 835769.
2217
2218 template<int size, bool big_endian>
2219 void
2220 AArch64_relobj<size, big_endian>::scan_errata(
2221     unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2222     Output_section* os, const Symbol_table* symtab,
2223     The_target_aarch64* target)
2224 {
2225   if (shdr.get_sh_size() == 0
2226       || (shdr.get_sh_flags() &
2227           (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2228       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2229     return;
2230
2231   if (!os || symtab->is_section_folded(this, shndx)) return;
2232
2233   AArch64_address output_offset = this->get_output_section_offset(shndx);
2234   AArch64_address output_address;
2235   if (output_offset != invalid_address)
2236     output_address = os->address() + output_offset;
2237   else
2238     {
2239       const Output_relaxed_input_section* poris =
2240         os->find_relaxed_input_section(this, shndx);
2241       if (!poris) return;
2242       output_address = poris->address();
2243     }
2244
2245   section_size_type input_view_size = 0;
2246   const unsigned char* input_view =
2247     this->section_contents(shndx, &input_view_size, false);
2248
2249   Mapping_symbol_position section_start(shndx, 0);
2250   // Find the first mapping symbol record within section shndx.
2251   typename Mapping_symbol_info::const_iterator p =
2252     this->mapping_symbol_info_.lower_bound(section_start);
2253   while (p != this->mapping_symbol_info_.end() &&
2254          p->first.shndx_ == shndx)
2255     {
2256       typename Mapping_symbol_info::const_iterator prev = p;
2257       ++p;
2258       if (prev->second == 'x')
2259         {
2260           section_size_type span_start =
2261             convert_to_section_size_type(prev->first.offset_);
2262           section_size_type span_end;
2263           if (p != this->mapping_symbol_info_.end()
2264               && p->first.shndx_ == shndx)
2265             span_end = convert_to_section_size_type(p->first.offset_);
2266           else
2267             span_end = convert_to_section_size_type(shdr.get_sh_size());
2268
2269           // Here we do not share the scanning code of both errata. For 843419,
2270           // only the last few insns of each page are examined, which is fast,
2271           // whereas, for 835769, every insn pair needs to be checked.
2272
2273           if (parameters->options().fix_cortex_a53_843419())
2274             target->scan_erratum_843419_span(
2275               this, shndx, span_start, span_end,
2276               const_cast<unsigned char*>(input_view), output_address);
2277
2278           if (parameters->options().fix_cortex_a53_835769())
2279             target->scan_erratum_835769_span(
2280               this, shndx, span_start, span_end,
2281               const_cast<unsigned char*>(input_view), output_address);
2282         }
2283     }
2284 }
2285
2286
2287 // Scan relocations for stub generation.
2288
2289 template<int size, bool big_endian>
2290 void
2291 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2292     The_target_aarch64* target,
2293     const Symbol_table* symtab,
2294     const Layout* layout)
2295 {
2296   unsigned int shnum = this->shnum();
2297   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2298
2299   // Read the section headers.
2300   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2301                                                shnum * shdr_size,
2302                                                true, true);
2303
2304   // To speed up processing, we set up hash tables for fast lookup of
2305   // input offsets to output addresses.
2306   this->initialize_input_to_output_maps();
2307
2308   const Relobj::Output_sections& out_sections(this->output_sections());
2309
2310   Relocate_info<size, big_endian> relinfo;
2311   relinfo.symtab = symtab;
2312   relinfo.layout = layout;
2313   relinfo.object = this;
2314
2315   // Do relocation stubs scanning.
2316   const unsigned char* p = pshdrs + shdr_size;
2317   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2318     {
2319       const elfcpp::Shdr<size, big_endian> shdr(p);
2320       if (parameters->options().fix_cortex_a53_843419()
2321           || parameters->options().fix_cortex_a53_835769())
2322         scan_errata(i, shdr, out_sections[i], symtab, target);
2323       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2324                                                   pshdrs))
2325         {
2326           unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2327           AArch64_address output_offset =
2328               this->get_output_section_offset(index);
2329           AArch64_address output_address;
2330           if (output_offset != invalid_address)
2331             {
2332               output_address = out_sections[index]->address() + output_offset;
2333             }
2334           else
2335             {
2336               // Currently this only happens for a relaxed section.
2337               const Output_relaxed_input_section* poris =
2338                   out_sections[index]->find_relaxed_input_section(this, index);
2339               gold_assert(poris != NULL);
2340               output_address = poris->address();
2341             }
2342
2343           // Get the relocations.
2344           const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2345                                                         shdr.get_sh_size(),
2346                                                         true, false);
2347
2348           // Get the section contents.
2349           section_size_type input_view_size = 0;
2350           const unsigned char* input_view =
2351               this->section_contents(index, &input_view_size, false);
2352
2353           relinfo.reloc_shndx = i;
2354           relinfo.data_shndx = index;
2355           unsigned int sh_type = shdr.get_sh_type();
2356           unsigned int reloc_size;
2357           gold_assert (sh_type == elfcpp::SHT_RELA);
2358           reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2359
2360           Output_section* os = out_sections[index];
2361           target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2362                                          shdr.get_sh_size() / reloc_size,
2363                                          os,
2364                                          output_offset == invalid_address,
2365                                          input_view, output_address,
2366                                          input_view_size);
2367         }
2368     }
2369 }
2370
2371
2372 // A class to wrap an ordinary input section containing executable code.
2373
2374 template<int size, bool big_endian>
2375 class AArch64_input_section : public Output_relaxed_input_section
2376 {
2377  public:
2378   typedef Stub_table<size, big_endian> The_stub_table;
2379
2380   AArch64_input_section(Relobj* relobj, unsigned int shndx)
2381     : Output_relaxed_input_section(relobj, shndx, 1),
2382       stub_table_(NULL),
2383       original_contents_(NULL), original_size_(0),
2384       original_addralign_(1)
2385   { }
2386
2387   ~AArch64_input_section()
2388   { delete[] this->original_contents_; }
2389
2390   // Initialize.
2391   void
2392   init();
2393
2394   // Set the stub_table.
2395   void
2396   set_stub_table(The_stub_table* st)
2397   { this->stub_table_ = st; }
2398
2399   // Whether this is a stub table owner.
2400   bool
2401   is_stub_table_owner() const
2402   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2403
2404   // Return the original size of the section.
2405   uint32_t
2406   original_size() const
2407   { return this->original_size_; }
2408
2409   // Return the stub table.
2410   The_stub_table*
2411   stub_table()
2412   { return stub_table_; }
2413
2414  protected:
2415   // Write out this input section.
2416   void
2417   do_write(Output_file*);
2418
2419   // Return required alignment of this.
2420   uint64_t
2421   do_addralign() const
2422   {
2423     if (this->is_stub_table_owner())
2424       return std::max(this->stub_table_->addralign(),
2425                       static_cast<uint64_t>(this->original_addralign_));
2426     else
2427       return this->original_addralign_;
2428   }
2429
2430   // Finalize data size.
2431   void
2432   set_final_data_size();
2433
2434   // Reset address and file offset.
2435   void
2436   do_reset_address_and_file_offset();
2437
2438   // Output offset.
2439   bool
2440   do_output_offset(const Relobj* object, unsigned int shndx,
2441                    section_offset_type offset,
2442                    section_offset_type* poutput) const
2443   {
2444     if ((object == this->relobj())
2445         && (shndx == this->shndx())
2446         && (offset >= 0)
2447         && (offset <=
2448             convert_types<section_offset_type, uint32_t>(this->original_size_)))
2449       {
2450         *poutput = offset;
2451         return true;
2452       }
2453     else
2454       return false;
2455   }
2456
2457  private:
2458   // Copying is not allowed.
2459   AArch64_input_section(const AArch64_input_section&);
2460   AArch64_input_section& operator=(const AArch64_input_section&);
2461
2462   // The relocation stubs.
2463   The_stub_table* stub_table_;
2464   // Original section contents.  We have to make a copy here since the file
2465   // containing the original section may not be locked when we need to access
2466   // the contents.
2467   unsigned char* original_contents_;
2468   // Section size of the original input section.
2469   uint32_t original_size_;
2470   // Address alignment of the original input section.
2471   uint32_t original_addralign_;
2472 };  // End of AArch64_input_section
2473
2474
2475 // Finalize data size.
2476
2477 template<int size, bool big_endian>
2478 void
2479 AArch64_input_section<size, big_endian>::set_final_data_size()
2480 {
2481   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2482
2483   if (this->is_stub_table_owner())
2484     {
2485       this->stub_table_->finalize_data_size();
2486       off = align_address(off, this->stub_table_->addralign());
2487       off += this->stub_table_->data_size();
2488     }
2489   this->set_data_size(off);
2490 }
2491
2492
2493 // Reset address and file offset.
2494
2495 template<int size, bool big_endian>
2496 void
2497 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2498 {
2499   // Size of the original input section contents.
2500   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2501
2502   // If this is a stub table owner, account for the stub table size.
2503   if (this->is_stub_table_owner())
2504     {
2505       The_stub_table* stub_table = this->stub_table_;
2506
2507       // Reset the stub table's address and file offset.  The
2508       // current data size for child will be updated after that.
2509       stub_table_->reset_address_and_file_offset();
2510       off = align_address(off, stub_table_->addralign());
2511       off += stub_table->current_data_size();
2512     }
2513
2514   this->set_current_data_size(off);
2515 }
2516
2517
2518 // Initialize an Arm_input_section.
2519
2520 template<int size, bool big_endian>
2521 void
2522 AArch64_input_section<size, big_endian>::init()
2523 {
2524   Relobj* relobj = this->relobj();
2525   unsigned int shndx = this->shndx();
2526
2527   // We have to cache original size, alignment and contents to avoid locking
2528   // the original file.
2529   this->original_addralign_ =
2530       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2531
2532   // This is not efficient but we expect only a small number of relaxed
2533   // input sections for stubs.
2534   section_size_type section_size;
2535   const unsigned char* section_contents =
2536       relobj->section_contents(shndx, &section_size, false);
2537   this->original_size_ =
2538       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2539
2540   gold_assert(this->original_contents_ == NULL);
2541   this->original_contents_ = new unsigned char[section_size];
2542   memcpy(this->original_contents_, section_contents, section_size);
2543
2544   // We want to make this look like the original input section after
2545   // output sections are finalized.
2546   Output_section* os = relobj->output_section(shndx);
2547   off_t offset = relobj->output_section_offset(shndx);
2548   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2549   this->set_address(os->address() + offset);
2550   this->set_file_offset(os->offset() + offset);
2551   this->set_current_data_size(this->original_size_);
2552   this->finalize_data_size();
2553 }
2554
2555
2556 // Write data to output file.
2557
2558 template<int size, bool big_endian>
2559 void
2560 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2561 {
2562   // We have to write out the original section content.
2563   gold_assert(this->original_contents_ != NULL);
2564   of->write(this->offset(), this->original_contents_,
2565             this->original_size_);
2566
2567   // If this owns a stub table and it is not empty, write it.
2568   if (this->is_stub_table_owner() && !this->stub_table_->empty())
2569     this->stub_table_->write(of);
2570 }
2571
2572
2573 // Arm output section class.  This is defined mainly to add a number of stub
2574 // generation methods.
2575
2576 template<int size, bool big_endian>
2577 class AArch64_output_section : public Output_section
2578 {
2579  public:
2580   typedef Target_aarch64<size, big_endian> The_target_aarch64;
2581   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2582   typedef Stub_table<size, big_endian> The_stub_table;
2583   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2584
2585  public:
2586   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2587                          elfcpp::Elf_Xword flags)
2588     : Output_section(name, type, flags)
2589   { }
2590
2591   ~AArch64_output_section() {}
2592
2593   // Group input sections for stub generation.
2594   void
2595   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2596                  const Task*);
2597
2598  private:
2599   typedef Output_section::Input_section Input_section;
2600   typedef Output_section::Input_section_list Input_section_list;
2601
2602   // Create a stub group.
2603   void
2604   create_stub_group(Input_section_list::const_iterator,
2605                     Input_section_list::const_iterator,
2606                     Input_section_list::const_iterator,
2607                     The_target_aarch64*,
2608                     std::vector<Output_relaxed_input_section*>&,
2609                     const Task*);
2610 };  // End of AArch64_output_section
2611
2612
2613 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2614 // the input section that will be the owner of the stub table.
2615
2616 template<int size, bool big_endian> void
2617 AArch64_output_section<size, big_endian>::create_stub_group(
2618     Input_section_list::const_iterator first,
2619     Input_section_list::const_iterator last,
2620     Input_section_list::const_iterator owner,
2621     The_target_aarch64* target,
2622     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2623     const Task* task)
2624 {
2625   // Currently we convert ordinary input sections into relaxed sections only
2626   // at this point.
2627   The_aarch64_input_section* input_section;
2628   if (owner->is_relaxed_input_section())
2629     gold_unreachable();
2630   else
2631     {
2632       gold_assert(owner->is_input_section());
2633       // Create a new relaxed input section.  We need to lock the original
2634       // file.
2635       Task_lock_obj<Object> tl(task, owner->relobj());
2636       input_section =
2637           target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2638       new_relaxed_sections.push_back(input_section);
2639     }
2640
2641   // Create a stub table.
2642   The_stub_table* stub_table =
2643       target->new_stub_table(input_section);
2644
2645   input_section->set_stub_table(stub_table);
2646
2647   Input_section_list::const_iterator p = first;
2648   // Look for input sections or relaxed input sections in [first ... last].
2649   do
2650     {
2651       if (p->is_input_section() || p->is_relaxed_input_section())
2652         {
2653           // The stub table information for input sections live
2654           // in their objects.
2655           The_aarch64_relobj* aarch64_relobj =
2656               static_cast<The_aarch64_relobj*>(p->relobj());
2657           aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2658         }
2659     }
2660   while (p++ != last);
2661 }
2662
2663
2664 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2665 // stub groups. We grow a stub group by adding input section until the size is
2666 // just below GROUP_SIZE. The last input section will be converted into a stub
2667 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2668 // after the stub table, effectively doubling the group size.
2669 //
2670 // This is similar to the group_sections() function in elf32-arm.c but is
2671 // implemented differently.
2672
2673 template<int size, bool big_endian>
2674 void AArch64_output_section<size, big_endian>::group_sections(
2675     section_size_type group_size,
2676     bool stubs_always_after_branch,
2677     Target_aarch64<size, big_endian>* target,
2678     const Task* task)
2679 {
2680   typedef enum
2681   {
2682     NO_GROUP,
2683     FINDING_STUB_SECTION,
2684     HAS_STUB_SECTION
2685   } State;
2686
2687   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2688
2689   State state = NO_GROUP;
2690   section_size_type off = 0;
2691   section_size_type group_begin_offset = 0;
2692   section_size_type group_end_offset = 0;
2693   section_size_type stub_table_end_offset = 0;
2694   Input_section_list::const_iterator group_begin =
2695       this->input_sections().end();
2696   Input_section_list::const_iterator stub_table =
2697       this->input_sections().end();
2698   Input_section_list::const_iterator group_end = this->input_sections().end();
2699   for (Input_section_list::const_iterator p = this->input_sections().begin();
2700        p != this->input_sections().end();
2701        ++p)
2702     {
2703       section_size_type section_begin_offset =
2704         align_address(off, p->addralign());
2705       section_size_type section_end_offset =
2706         section_begin_offset + p->data_size();
2707
2708       // Check to see if we should group the previously seen sections.
2709       switch (state)
2710         {
2711         case NO_GROUP:
2712           break;
2713
2714         case FINDING_STUB_SECTION:
2715           // Adding this section makes the group larger than GROUP_SIZE.
2716           if (section_end_offset - group_begin_offset >= group_size)
2717             {
2718               if (stubs_always_after_branch)
2719                 {
2720                   gold_assert(group_end != this->input_sections().end());
2721                   this->create_stub_group(group_begin, group_end, group_end,
2722                                           target, new_relaxed_sections,
2723                                           task);
2724                   state = NO_GROUP;
2725                 }
2726               else
2727                 {
2728                   // Input sections up to stub_group_size bytes after the stub
2729                   // table can be handled by it too.
2730                   state = HAS_STUB_SECTION;
2731                   stub_table = group_end;
2732                   stub_table_end_offset = group_end_offset;
2733                 }
2734             }
2735             break;
2736
2737         case HAS_STUB_SECTION:
2738           // Adding this section makes the post stub-section group larger
2739           // than GROUP_SIZE.
2740           gold_unreachable();
2741           // NOT SUPPORTED YET. For completeness only.
2742           if (section_end_offset - stub_table_end_offset >= group_size)
2743            {
2744              gold_assert(group_end != this->input_sections().end());
2745              this->create_stub_group(group_begin, group_end, stub_table,
2746                                      target, new_relaxed_sections, task);
2747              state = NO_GROUP;
2748            }
2749            break;
2750
2751           default:
2752             gold_unreachable();
2753         }
2754
2755       // If we see an input section and currently there is no group, start
2756       // a new one.  Skip any empty sections.  We look at the data size
2757       // instead of calling p->relobj()->section_size() to avoid locking.
2758       if ((p->is_input_section() || p->is_relaxed_input_section())
2759           && (p->data_size() != 0))
2760         {
2761           if (state == NO_GROUP)
2762             {
2763               state = FINDING_STUB_SECTION;
2764               group_begin = p;
2765               group_begin_offset = section_begin_offset;
2766             }
2767
2768           // Keep track of the last input section seen.
2769           group_end = p;
2770           group_end_offset = section_end_offset;
2771         }
2772
2773       off = section_end_offset;
2774     }
2775
2776   // Create a stub group for any ungrouped sections.
2777   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2778     {
2779       gold_assert(group_end != this->input_sections().end());
2780       this->create_stub_group(group_begin, group_end,
2781                               (state == FINDING_STUB_SECTION
2782                                ? group_end
2783                                : stub_table),
2784                               target, new_relaxed_sections, task);
2785     }
2786
2787   if (!new_relaxed_sections.empty())
2788     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2789
2790   // Update the section offsets
2791   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2792     {
2793       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2794           new_relaxed_sections[i]->relobj());
2795       unsigned int shndx = new_relaxed_sections[i]->shndx();
2796       // Tell AArch64_relobj that this input section is converted.
2797       relobj->convert_input_section_to_relaxed_section(shndx);
2798     }
2799 }  // End of AArch64_output_section::group_sections
2800
2801
2802 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2803
2804
2805 // The aarch64 target class.
2806 // See the ABI at
2807 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2808 template<int size, bool big_endian>
2809 class Target_aarch64 : public Sized_target<size, big_endian>
2810 {
2811  public:
2812   typedef Target_aarch64<size, big_endian> This;
2813   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2814       Reloc_section;
2815   typedef Relocate_info<size, big_endian> The_relocate_info;
2816   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2817   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2818   typedef Reloc_stub<size, big_endian> The_reloc_stub;
2819   typedef Erratum_stub<size, big_endian> The_erratum_stub;
2820   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2821   typedef Stub_table<size, big_endian> The_stub_table;
2822   typedef std::vector<The_stub_table*> Stub_table_list;
2823   typedef typename Stub_table_list::iterator Stub_table_iterator;
2824   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2825   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2826   typedef Unordered_map<Section_id,
2827                         AArch64_input_section<size, big_endian>*,
2828                         Section_id_hash> AArch64_input_section_map;
2829   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2830   const static int TCB_SIZE = size / 8 * 2;
2831
2832   Target_aarch64(const Target::Target_info* info = &aarch64_info)
2833     : Sized_target<size, big_endian>(info),
2834       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2835       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2836       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2837       got_mod_index_offset_(-1U),
2838       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2839       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2840   { }
2841
2842   // Scan the relocations to determine unreferenced sections for
2843   // garbage collection.
2844   void
2845   gc_process_relocs(Symbol_table* symtab,
2846                     Layout* layout,
2847                     Sized_relobj_file<size, big_endian>* object,
2848                     unsigned int data_shndx,
2849                     unsigned int sh_type,
2850                     const unsigned char* prelocs,
2851                     size_t reloc_count,
2852                     Output_section* output_section,
2853                     bool needs_special_offset_handling,
2854                     size_t local_symbol_count,
2855                     const unsigned char* plocal_symbols);
2856
2857   // Scan the relocations to look for symbol adjustments.
2858   void
2859   scan_relocs(Symbol_table* symtab,
2860               Layout* layout,
2861               Sized_relobj_file<size, big_endian>* object,
2862               unsigned int data_shndx,
2863               unsigned int sh_type,
2864               const unsigned char* prelocs,
2865               size_t reloc_count,
2866               Output_section* output_section,
2867               bool needs_special_offset_handling,
2868               size_t local_symbol_count,
2869               const unsigned char* plocal_symbols);
2870
2871   // Finalize the sections.
2872   void
2873   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2874
2875   // Return the value to use for a dynamic which requires special
2876   // treatment.
2877   uint64_t
2878   do_dynsym_value(const Symbol*) const;
2879
2880   // Relocate a section.
2881   void
2882   relocate_section(const Relocate_info<size, big_endian>*,
2883                    unsigned int sh_type,
2884                    const unsigned char* prelocs,
2885                    size_t reloc_count,
2886                    Output_section* output_section,
2887                    bool needs_special_offset_handling,
2888                    unsigned char* view,
2889                    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2890                    section_size_type view_size,
2891                    const Reloc_symbol_changes*);
2892
2893   // Scan the relocs during a relocatable link.
2894   void
2895   scan_relocatable_relocs(Symbol_table* symtab,
2896                           Layout* layout,
2897                           Sized_relobj_file<size, big_endian>* object,
2898                           unsigned int data_shndx,
2899                           unsigned int sh_type,
2900                           const unsigned char* prelocs,
2901                           size_t reloc_count,
2902                           Output_section* output_section,
2903                           bool needs_special_offset_handling,
2904                           size_t local_symbol_count,
2905                           const unsigned char* plocal_symbols,
2906                           Relocatable_relocs*);
2907
2908   // Scan the relocs for --emit-relocs.
2909   void
2910   emit_relocs_scan(Symbol_table* symtab,
2911                    Layout* layout,
2912                    Sized_relobj_file<size, big_endian>* object,
2913                    unsigned int data_shndx,
2914                    unsigned int sh_type,
2915                    const unsigned char* prelocs,
2916                    size_t reloc_count,
2917                    Output_section* output_section,
2918                    bool needs_special_offset_handling,
2919                    size_t local_symbol_count,
2920                    const unsigned char* plocal_syms,
2921                    Relocatable_relocs* rr);
2922
2923   // Relocate a section during a relocatable link.
2924   void
2925   relocate_relocs(
2926       const Relocate_info<size, big_endian>*,
2927       unsigned int sh_type,
2928       const unsigned char* prelocs,
2929       size_t reloc_count,
2930       Output_section* output_section,
2931       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2932       unsigned char* view,
2933       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2934       section_size_type view_size,
2935       unsigned char* reloc_view,
2936       section_size_type reloc_view_size);
2937
2938   // Return the symbol index to use for a target specific relocation.
2939   // The only target specific relocation is R_AARCH64_TLSDESC for a
2940   // local symbol, which is an absolute reloc.
2941   unsigned int
2942   do_reloc_symbol_index(void*, unsigned int r_type) const
2943   {
2944     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2945     return 0;
2946   }
2947
2948   // Return the addend to use for a target specific relocation.
2949   uint64_t
2950   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2951
2952   // Return the PLT section.
2953   uint64_t
2954   do_plt_address_for_global(const Symbol* gsym) const
2955   { return this->plt_section()->address_for_global(gsym); }
2956
2957   uint64_t
2958   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2959   { return this->plt_section()->address_for_local(relobj, symndx); }
2960
2961   // This function should be defined in targets that can use relocation
2962   // types to determine (implemented in local_reloc_may_be_function_pointer
2963   // and global_reloc_may_be_function_pointer)
2964   // if a function's pointer is taken.  ICF uses this in safe mode to only
2965   // fold those functions whose pointer is defintely not taken.
2966   bool
2967   do_can_check_for_function_pointers() const
2968   { return true; }
2969
2970   // Return the number of entries in the PLT.
2971   unsigned int
2972   plt_entry_count() const;
2973
2974   //Return the offset of the first non-reserved PLT entry.
2975   unsigned int
2976   first_plt_entry_offset() const;
2977
2978   // Return the size of each PLT entry.
2979   unsigned int
2980   plt_entry_size() const;
2981
2982   // Create a stub table.
2983   The_stub_table*
2984   new_stub_table(The_aarch64_input_section*);
2985
2986   // Create an aarch64 input section.
2987   The_aarch64_input_section*
2988   new_aarch64_input_section(Relobj*, unsigned int);
2989
2990   // Find an aarch64 input section instance for a given OBJ and SHNDX.
2991   The_aarch64_input_section*
2992   find_aarch64_input_section(Relobj*, unsigned int) const;
2993
2994   // Return the thread control block size.
2995   unsigned int
2996   tcb_size() const { return This::TCB_SIZE; }
2997
2998   // Scan a section for stub generation.
2999   void
3000   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
3001                          const unsigned char*, size_t, Output_section*,
3002                          bool, const unsigned char*,
3003                          Address,
3004                          section_size_type);
3005
3006   // Scan a relocation section for stub.
3007   template<int sh_type>
3008   void
3009   scan_reloc_section_for_stubs(
3010       const The_relocate_info* relinfo,
3011       const unsigned char* prelocs,
3012       size_t reloc_count,
3013       Output_section* output_section,
3014       bool needs_special_offset_handling,
3015       const unsigned char* view,
3016       Address view_address,
3017       section_size_type);
3018
3019   // Relocate a single stub.
3020   void
3021   relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
3022                 Output_section*, unsigned char*, Address,
3023                 section_size_type);
3024
3025   // Get the default AArch64 target.
3026   static This*
3027   current_target()
3028   {
3029     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
3030                 && parameters->target().get_size() == size
3031                 && parameters->target().is_big_endian() == big_endian);
3032     return static_cast<This*>(parameters->sized_target<size, big_endian>());
3033   }
3034
3035
3036   // Scan erratum 843419 for a part of a section.
3037   void
3038   scan_erratum_843419_span(
3039     AArch64_relobj<size, big_endian>*,
3040     unsigned int,
3041     const section_size_type,
3042     const section_size_type,
3043     unsigned char*,
3044     Address);
3045
3046   // Scan erratum 835769 for a part of a section.
3047   void
3048   scan_erratum_835769_span(
3049     AArch64_relobj<size, big_endian>*,
3050     unsigned int,
3051     const section_size_type,
3052     const section_size_type,
3053     unsigned char*,
3054     Address);
3055
3056  protected:
3057   void
3058   do_select_as_default_target()
3059   {
3060     gold_assert(aarch64_reloc_property_table == NULL);
3061     aarch64_reloc_property_table = new AArch64_reloc_property_table();
3062   }
3063
3064   // Add a new reloc argument, returning the index in the vector.
3065   size_t
3066   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3067                    unsigned int r_sym)
3068   {
3069     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3070     return this->tlsdesc_reloc_info_.size() - 1;
3071   }
3072
3073   virtual Output_data_plt_aarch64<size, big_endian>*
3074   do_make_data_plt(Layout* layout,
3075                    Output_data_got_aarch64<size, big_endian>* got,
3076                    Output_data_space* got_plt,
3077                    Output_data_space* got_irelative)
3078   {
3079     return new Output_data_plt_aarch64_standard<size, big_endian>(
3080       layout, got, got_plt, got_irelative);
3081   }
3082
3083
3084   // do_make_elf_object to override the same function in the base class.
3085   Object*
3086   do_make_elf_object(const std::string&, Input_file*, off_t,
3087                      const elfcpp::Ehdr<size, big_endian>&);
3088
3089   Output_data_plt_aarch64<size, big_endian>*
3090   make_data_plt(Layout* layout,
3091                 Output_data_got_aarch64<size, big_endian>* got,
3092                 Output_data_space* got_plt,
3093                 Output_data_space* got_irelative)
3094   {
3095     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3096   }
3097
3098   // We only need to generate stubs, and hence perform relaxation if we are
3099   // not doing relocatable linking.
3100   virtual bool
3101   do_may_relax() const
3102   { return !parameters->options().relocatable(); }
3103
3104   // Relaxation hook.  This is where we do stub generation.
3105   virtual bool
3106   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3107
3108   void
3109   group_sections(Layout* layout,
3110                  section_size_type group_size,
3111                  bool stubs_always_after_branch,
3112                  const Task* task);
3113
3114   void
3115   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3116                       const Sized_symbol<size>*, unsigned int,
3117                       const Symbol_value<size>*,
3118                       typename elfcpp::Elf_types<size>::Elf_Swxword,
3119                       Address Elf_Addr);
3120
3121   // Make an output section.
3122   Output_section*
3123   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3124                          elfcpp::Elf_Xword flags)
3125   { return new The_aarch64_output_section(name, type, flags); }
3126
3127  private:
3128   // The class which scans relocations.
3129   class Scan
3130   {
3131   public:
3132     Scan()
3133       : issued_non_pic_error_(false)
3134     { }
3135
3136     inline void
3137     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3138           Sized_relobj_file<size, big_endian>* object,
3139           unsigned int data_shndx,
3140           Output_section* output_section,
3141           const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3142           const elfcpp::Sym<size, big_endian>& lsym,
3143           bool is_discarded);
3144
3145     inline void
3146     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3147            Sized_relobj_file<size, big_endian>* object,
3148            unsigned int data_shndx,
3149            Output_section* output_section,
3150            const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3151            Symbol* gsym);
3152
3153     inline bool
3154     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3155                                         Target_aarch64<size, big_endian>* ,
3156                                         Sized_relobj_file<size, big_endian>* ,
3157                                         unsigned int ,
3158                                         Output_section* ,
3159                                         const elfcpp::Rela<size, big_endian>& ,
3160                                         unsigned int r_type,
3161                                         const elfcpp::Sym<size, big_endian>&);
3162
3163     inline bool
3164     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3165                                          Target_aarch64<size, big_endian>* ,
3166                                          Sized_relobj_file<size, big_endian>* ,
3167                                          unsigned int ,
3168                                          Output_section* ,
3169                                          const elfcpp::Rela<size, big_endian>& ,
3170                                          unsigned int r_type,
3171                                          Symbol* gsym);
3172
3173   private:
3174     static void
3175     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3176                             unsigned int r_type);
3177
3178     static void
3179     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3180                              unsigned int r_type, Symbol*);
3181
3182     inline bool
3183     possible_function_pointer_reloc(unsigned int r_type);
3184
3185     void
3186     check_non_pic(Relobj*, unsigned int r_type);
3187
3188     bool
3189     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3190                               unsigned int r_type);
3191
3192     // Whether we have issued an error about a non-PIC compilation.
3193     bool issued_non_pic_error_;
3194   };
3195
3196   // The class which implements relocation.
3197   class Relocate
3198   {
3199    public:
3200     Relocate()
3201       : skip_call_tls_get_addr_(false)
3202     { }
3203
3204     ~Relocate()
3205     { }
3206
3207     // Do a relocation.  Return false if the caller should not issue
3208     // any warnings about this relocation.
3209     inline bool
3210     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3211              Target_aarch64*, Output_section*, size_t, const unsigned char*,
3212              const Sized_symbol<size>*, const Symbol_value<size>*,
3213              unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3214              section_size_type);
3215
3216   private:
3217     inline typename AArch64_relocate_functions<size, big_endian>::Status
3218     relocate_tls(const Relocate_info<size, big_endian>*,
3219                  Target_aarch64<size, big_endian>*,
3220                  size_t,
3221                  const elfcpp::Rela<size, big_endian>&,
3222                  unsigned int r_type, const Sized_symbol<size>*,
3223                  const Symbol_value<size>*,
3224                  unsigned char*,
3225                  typename elfcpp::Elf_types<size>::Elf_Addr);
3226
3227     inline typename AArch64_relocate_functions<size, big_endian>::Status
3228     tls_gd_to_le(
3229                  const Relocate_info<size, big_endian>*,
3230                  Target_aarch64<size, big_endian>*,
3231                  const elfcpp::Rela<size, big_endian>&,
3232                  unsigned int,
3233                  unsigned char*,
3234                  const Symbol_value<size>*);
3235
3236     inline typename AArch64_relocate_functions<size, big_endian>::Status
3237     tls_ld_to_le(
3238                  const Relocate_info<size, big_endian>*,
3239                  Target_aarch64<size, big_endian>*,
3240                  const elfcpp::Rela<size, big_endian>&,
3241                  unsigned int,
3242                  unsigned char*,
3243                  const Symbol_value<size>*);
3244
3245     inline typename AArch64_relocate_functions<size, big_endian>::Status
3246     tls_ie_to_le(
3247                  const Relocate_info<size, big_endian>*,
3248                  Target_aarch64<size, big_endian>*,
3249                  const elfcpp::Rela<size, big_endian>&,
3250                  unsigned int,
3251                  unsigned char*,
3252                  const Symbol_value<size>*);
3253
3254     inline typename AArch64_relocate_functions<size, big_endian>::Status
3255     tls_desc_gd_to_le(
3256                  const Relocate_info<size, big_endian>*,
3257                  Target_aarch64<size, big_endian>*,
3258                  const elfcpp::Rela<size, big_endian>&,
3259                  unsigned int,
3260                  unsigned char*,
3261                  const Symbol_value<size>*);
3262
3263     inline typename AArch64_relocate_functions<size, big_endian>::Status
3264     tls_desc_gd_to_ie(
3265                  const Relocate_info<size, big_endian>*,
3266                  Target_aarch64<size, big_endian>*,
3267                  const elfcpp::Rela<size, big_endian>&,
3268                  unsigned int,
3269                  unsigned char*,
3270                  const Symbol_value<size>*,
3271                  typename elfcpp::Elf_types<size>::Elf_Addr,
3272                  typename elfcpp::Elf_types<size>::Elf_Addr);
3273
3274     bool skip_call_tls_get_addr_;
3275
3276   };  // End of class Relocate
3277
3278   // Adjust TLS relocation type based on the options and whether this
3279   // is a local symbol.
3280   static tls::Tls_optimization
3281   optimize_tls_reloc(bool is_final, int r_type);
3282
3283   // Get the GOT section, creating it if necessary.
3284   Output_data_got_aarch64<size, big_endian>*
3285   got_section(Symbol_table*, Layout*);
3286
3287   // Get the GOT PLT section.
3288   Output_data_space*
3289   got_plt_section() const
3290   {
3291     gold_assert(this->got_plt_ != NULL);
3292     return this->got_plt_;
3293   }
3294
3295   // Get the GOT section for TLSDESC entries.
3296   Output_data_got<size, big_endian>*
3297   got_tlsdesc_section() const
3298   {
3299     gold_assert(this->got_tlsdesc_ != NULL);
3300     return this->got_tlsdesc_;
3301   }
3302
3303   // Create the PLT section.
3304   void
3305   make_plt_section(Symbol_table* symtab, Layout* layout);
3306
3307   // Create a PLT entry for a global symbol.
3308   void
3309   make_plt_entry(Symbol_table*, Layout*, Symbol*);
3310
3311   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3312   void
3313   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3314                              Sized_relobj_file<size, big_endian>* relobj,
3315                              unsigned int local_sym_index);
3316
3317   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3318   void
3319   define_tls_base_symbol(Symbol_table*, Layout*);
3320
3321   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3322   void
3323   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3324
3325   // Create a GOT entry for the TLS module index.
3326   unsigned int
3327   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3328                       Sized_relobj_file<size, big_endian>* object);
3329
3330   // Get the PLT section.
3331   Output_data_plt_aarch64<size, big_endian>*
3332   plt_section() const
3333   {
3334     gold_assert(this->plt_ != NULL);
3335     return this->plt_;
3336   }
3337
3338   // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3339   // ST_E_843419, we need an additional field for adrp offset.
3340   void create_erratum_stub(
3341     AArch64_relobj<size, big_endian>* relobj,
3342     unsigned int shndx,
3343     section_size_type erratum_insn_offset,
3344     Address erratum_address,
3345     typename Insn_utilities::Insntype erratum_insn,
3346     int erratum_type,
3347     unsigned int e843419_adrp_offset=0);
3348
3349   // Return whether this is a 3-insn erratum sequence.
3350   bool is_erratum_843419_sequence(
3351       typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3352       typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3353       typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3354
3355   // Return whether this is a 835769 sequence.
3356   // (Similarly implemented as in elfnn-aarch64.c.)
3357   bool is_erratum_835769_sequence(
3358       typename elfcpp::Swap<32,big_endian>::Valtype,
3359       typename elfcpp::Swap<32,big_endian>::Valtype);
3360
3361   // Get the dynamic reloc section, creating it if necessary.
3362   Reloc_section*
3363   rela_dyn_section(Layout*);
3364
3365   // Get the section to use for TLSDESC relocations.
3366   Reloc_section*
3367   rela_tlsdesc_section(Layout*) const;
3368
3369   // Get the section to use for IRELATIVE relocations.
3370   Reloc_section*
3371   rela_irelative_section(Layout*);
3372
3373   // Add a potential copy relocation.
3374   void
3375   copy_reloc(Symbol_table* symtab, Layout* layout,
3376              Sized_relobj_file<size, big_endian>* object,
3377              unsigned int shndx, Output_section* output_section,
3378              Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3379   {
3380     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3381     this->copy_relocs_.copy_reloc(symtab, layout,
3382                                   symtab->get_sized_symbol<size>(sym),
3383                                   object, shndx, output_section,
3384                                   r_type, reloc.get_r_offset(),
3385                                   reloc.get_r_addend(),
3386                                   this->rela_dyn_section(layout));
3387   }
3388
3389   // Information about this specific target which we pass to the
3390   // general Target structure.
3391   static const Target::Target_info aarch64_info;
3392
3393   // The types of GOT entries needed for this platform.
3394   // These values are exposed to the ABI in an incremental link.
3395   // Do not renumber existing values without changing the version
3396   // number of the .gnu_incremental_inputs section.
3397   enum Got_type
3398   {
3399     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
3400     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
3401     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
3402     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
3403   };
3404
3405   // This type is used as the argument to the target specific
3406   // relocation routines.  The only target specific reloc is
3407   // R_AARCh64_TLSDESC against a local symbol.
3408   struct Tlsdesc_info
3409   {
3410     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3411                  unsigned int a_r_sym)
3412       : object(a_object), r_sym(a_r_sym)
3413     { }
3414
3415     // The object in which the local symbol is defined.
3416     Sized_relobj_file<size, big_endian>* object;
3417     // The local symbol index in the object.
3418     unsigned int r_sym;
3419   };
3420
3421   // The GOT section.
3422   Output_data_got_aarch64<size, big_endian>* got_;
3423   // The PLT section.
3424   Output_data_plt_aarch64<size, big_endian>* plt_;
3425   // The GOT PLT section.
3426   Output_data_space* got_plt_;
3427   // The GOT section for IRELATIVE relocations.
3428   Output_data_space* got_irelative_;
3429   // The GOT section for TLSDESC relocations.
3430   Output_data_got<size, big_endian>* got_tlsdesc_;
3431   // The _GLOBAL_OFFSET_TABLE_ symbol.
3432   Symbol* global_offset_table_;
3433   // The dynamic reloc section.
3434   Reloc_section* rela_dyn_;
3435   // The section to use for IRELATIVE relocs.
3436   Reloc_section* rela_irelative_;
3437   // Relocs saved to avoid a COPY reloc.
3438   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3439   // Offset of the GOT entry for the TLS module index.
3440   unsigned int got_mod_index_offset_;
3441   // We handle R_AARCH64_TLSDESC against a local symbol as a target
3442   // specific relocation. Here we store the object and local symbol
3443   // index for the relocation.
3444   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3445   // True if the _TLS_MODULE_BASE_ symbol has been defined.
3446   bool tls_base_symbol_defined_;
3447   // List of stub_tables
3448   Stub_table_list stub_tables_;
3449   // Actual stub group size
3450   section_size_type stub_group_size_;
3451   AArch64_input_section_map aarch64_input_section_map_;
3452 };  // End of Target_aarch64
3453
3454
3455 template<>
3456 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3457 {
3458   64,                   // size
3459   false,                // is_big_endian
3460   elfcpp::EM_AARCH64,   // machine_code
3461   false,                // has_make_symbol
3462   false,                // has_resolve
3463   false,                // has_code_fill
3464   true,                 // is_default_stack_executable
3465   true,                 // can_icf_inline_merge_sections
3466   '\0',                 // wrap_char
3467   "/lib/ld.so.1",       // program interpreter
3468   0x400000,             // default_text_segment_address
3469   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3470   0x1000,               // common_pagesize (overridable by -z common-page-size)
3471   false,                // isolate_execinstr
3472   0,                    // rosegment_gap
3473   elfcpp::SHN_UNDEF,    // small_common_shndx
3474   elfcpp::SHN_UNDEF,    // large_common_shndx
3475   0,                    // small_common_section_flags
3476   0,                    // large_common_section_flags
3477   NULL,                 // attributes_section
3478   NULL,                 // attributes_vendor
3479   "_start",             // entry_symbol_name
3480   32,                   // hash_entry_size
3481 };
3482
3483 template<>
3484 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3485 {
3486   32,                   // size
3487   false,                // is_big_endian
3488   elfcpp::EM_AARCH64,   // machine_code
3489   false,                // has_make_symbol
3490   false,                // has_resolve
3491   false,                // has_code_fill
3492   true,                 // is_default_stack_executable
3493   false,                // can_icf_inline_merge_sections
3494   '\0',                 // wrap_char
3495   "/lib/ld.so.1",       // program interpreter
3496   0x400000,             // default_text_segment_address
3497   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3498   0x1000,               // common_pagesize (overridable by -z common-page-size)
3499   false,                // isolate_execinstr
3500   0,                    // rosegment_gap
3501   elfcpp::SHN_UNDEF,    // small_common_shndx
3502   elfcpp::SHN_UNDEF,    // large_common_shndx
3503   0,                    // small_common_section_flags
3504   0,                    // large_common_section_flags
3505   NULL,                 // attributes_section
3506   NULL,                 // attributes_vendor
3507   "_start",             // entry_symbol_name
3508   32,                   // hash_entry_size
3509 };
3510
3511 template<>
3512 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3513 {
3514   64,                   // size
3515   true,                 // is_big_endian
3516   elfcpp::EM_AARCH64,   // machine_code
3517   false,                // has_make_symbol
3518   false,                // has_resolve
3519   false,                // has_code_fill
3520   true,                 // is_default_stack_executable
3521   true,                 // can_icf_inline_merge_sections
3522   '\0',                 // wrap_char
3523   "/lib/ld.so.1",       // program interpreter
3524   0x400000,             // default_text_segment_address
3525   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3526   0x1000,               // common_pagesize (overridable by -z common-page-size)
3527   false,                // isolate_execinstr
3528   0,                    // rosegment_gap
3529   elfcpp::SHN_UNDEF,    // small_common_shndx
3530   elfcpp::SHN_UNDEF,    // large_common_shndx
3531   0,                    // small_common_section_flags
3532   0,                    // large_common_section_flags
3533   NULL,                 // attributes_section
3534   NULL,                 // attributes_vendor
3535   "_start",             // entry_symbol_name
3536   32,                   // hash_entry_size
3537 };
3538
3539 template<>
3540 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3541 {
3542   32,                   // size
3543   true,                 // is_big_endian
3544   elfcpp::EM_AARCH64,   // machine_code
3545   false,                // has_make_symbol
3546   false,                // has_resolve
3547   false,                // has_code_fill
3548   true,                 // is_default_stack_executable
3549   false,                // can_icf_inline_merge_sections
3550   '\0',                 // wrap_char
3551   "/lib/ld.so.1",       // program interpreter
3552   0x400000,             // default_text_segment_address
3553   0x10000,              // abi_pagesize (overridable by -z max-page-size)
3554   0x1000,               // common_pagesize (overridable by -z common-page-size)
3555   false,                // isolate_execinstr
3556   0,                    // rosegment_gap
3557   elfcpp::SHN_UNDEF,    // small_common_shndx
3558   elfcpp::SHN_UNDEF,    // large_common_shndx
3559   0,                    // small_common_section_flags
3560   0,                    // large_common_section_flags
3561   NULL,                 // attributes_section
3562   NULL,                 // attributes_vendor
3563   "_start",             // entry_symbol_name
3564   32,                   // hash_entry_size
3565 };
3566
3567 // Get the GOT section, creating it if necessary.
3568
3569 template<int size, bool big_endian>
3570 Output_data_got_aarch64<size, big_endian>*
3571 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3572                                               Layout* layout)
3573 {
3574   if (this->got_ == NULL)
3575     {
3576       gold_assert(symtab != NULL && layout != NULL);
3577
3578       // When using -z now, we can treat .got.plt as a relro section.
3579       // Without -z now, it is modified after program startup by lazy
3580       // PLT relocations.
3581       bool is_got_plt_relro = parameters->options().now();
3582       Output_section_order got_order = (is_got_plt_relro
3583                                         ? ORDER_RELRO
3584                                         : ORDER_RELRO_LAST);
3585       Output_section_order got_plt_order = (is_got_plt_relro
3586                                             ? ORDER_RELRO
3587                                             : ORDER_NON_RELRO_FIRST);
3588
3589       // Layout of .got and .got.plt sections.
3590       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
3591       // ...
3592       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
3593       // .gotplt[1] reserved for ld.so (resolver)
3594       // .gotplt[2] reserved
3595
3596       // Generate .got section.
3597       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3598                                                                  layout);
3599       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3600                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3601                                       this->got_, got_order, true);
3602       // The first word of GOT is reserved for the address of .dynamic.
3603       // We put 0 here now. The value will be replaced later in
3604       // Output_data_got_aarch64::do_write.
3605       this->got_->add_constant(0);
3606
3607       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3608       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3609       // even if there is a .got.plt section.
3610       this->global_offset_table_ =
3611         symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3612                                       Symbol_table::PREDEFINED,
3613                                       this->got_,
3614                                       0, 0, elfcpp::STT_OBJECT,
3615                                       elfcpp::STB_LOCAL,
3616                                       elfcpp::STV_HIDDEN, 0,
3617                                       false, false);
3618
3619       // Generate .got.plt section.
3620       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3621       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3622                                       (elfcpp::SHF_ALLOC
3623                                        | elfcpp::SHF_WRITE),
3624                                       this->got_plt_, got_plt_order,
3625                                       is_got_plt_relro);
3626
3627       // The first three entries are reserved.
3628       this->got_plt_->set_current_data_size(
3629         AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3630
3631       // If there are any IRELATIVE relocations, they get GOT entries
3632       // in .got.plt after the jump slot entries.
3633       this->got_irelative_ = new Output_data_space(size / 8,
3634                                                    "** GOT IRELATIVE PLT");
3635       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3636                                       (elfcpp::SHF_ALLOC
3637                                        | elfcpp::SHF_WRITE),
3638                                       this->got_irelative_,
3639                                       got_plt_order,
3640                                       is_got_plt_relro);
3641
3642       // If there are any TLSDESC relocations, they get GOT entries in
3643       // .got.plt after the jump slot and IRELATIVE entries.
3644       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3645       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3646                                       (elfcpp::SHF_ALLOC
3647                                        | elfcpp::SHF_WRITE),
3648                                       this->got_tlsdesc_,
3649                                       got_plt_order,
3650                                       is_got_plt_relro);
3651
3652       if (!is_got_plt_relro)
3653         {
3654           // Those bytes can go into the relro segment.
3655           layout->increase_relro(
3656             AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3657         }
3658
3659     }
3660   return this->got_;
3661 }
3662
3663 // Get the dynamic reloc section, creating it if necessary.
3664
3665 template<int size, bool big_endian>
3666 typename Target_aarch64<size, big_endian>::Reloc_section*
3667 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3668 {
3669   if (this->rela_dyn_ == NULL)
3670     {
3671       gold_assert(layout != NULL);
3672       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3673       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3674                                       elfcpp::SHF_ALLOC, this->rela_dyn_,
3675                                       ORDER_DYNAMIC_RELOCS, false);
3676     }
3677   return this->rela_dyn_;
3678 }
3679
3680 // Get the section to use for IRELATIVE relocs, creating it if
3681 // necessary.  These go in .rela.dyn, but only after all other dynamic
3682 // relocations.  They need to follow the other dynamic relocations so
3683 // that they can refer to global variables initialized by those
3684 // relocs.
3685
3686 template<int size, bool big_endian>
3687 typename Target_aarch64<size, big_endian>::Reloc_section*
3688 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3689 {
3690   if (this->rela_irelative_ == NULL)
3691     {
3692       // Make sure we have already created the dynamic reloc section.
3693       this->rela_dyn_section(layout);
3694       this->rela_irelative_ = new Reloc_section(false);
3695       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3696                                       elfcpp::SHF_ALLOC, this->rela_irelative_,
3697                                       ORDER_DYNAMIC_RELOCS, false);
3698       gold_assert(this->rela_dyn_->output_section()
3699                   == this->rela_irelative_->output_section());
3700     }
3701   return this->rela_irelative_;
3702 }
3703
3704
3705 // do_make_elf_object to override the same function in the base class.  We need
3706 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3707 // store backend specific information. Hence we need to have our own ELF object
3708 // creation.
3709
3710 template<int size, bool big_endian>
3711 Object*
3712 Target_aarch64<size, big_endian>::do_make_elf_object(
3713     const std::string& name,
3714     Input_file* input_file,
3715     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3716 {
3717   int et = ehdr.get_e_type();
3718   // ET_EXEC files are valid input for --just-symbols/-R,
3719   // and we treat them as relocatable objects.
3720   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3721     return Sized_target<size, big_endian>::do_make_elf_object(
3722         name, input_file, offset, ehdr);
3723   else if (et == elfcpp::ET_REL)
3724     {
3725       AArch64_relobj<size, big_endian>* obj =
3726         new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3727       obj->setup();
3728       return obj;
3729     }
3730   else if (et == elfcpp::ET_DYN)
3731     {
3732       // Keep base implementation.
3733       Sized_dynobj<size, big_endian>* obj =
3734           new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3735       obj->setup();
3736       return obj;
3737     }
3738   else
3739     {
3740       gold_error(_("%s: unsupported ELF file type %d"),
3741                  name.c_str(), et);
3742       return NULL;
3743     }
3744 }
3745
3746
3747 // Scan a relocation for stub generation.
3748
3749 template<int size, bool big_endian>
3750 void
3751 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3752     const Relocate_info<size, big_endian>* relinfo,
3753     unsigned int r_type,
3754     const Sized_symbol<size>* gsym,
3755     unsigned int r_sym,
3756     const Symbol_value<size>* psymval,
3757     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3758     Address address)
3759 {
3760   const AArch64_relobj<size, big_endian>* aarch64_relobj =
3761       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3762
3763   Symbol_value<size> symval;
3764   if (gsym != NULL)
3765     {
3766       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3767         get_reloc_property(r_type);
3768       if (gsym->use_plt_offset(arp->reference_flags()))
3769         {
3770           // This uses a PLT, change the symbol value.
3771           symval.set_output_value(this->plt_section()->address()
3772                                   + gsym->plt_offset());
3773           psymval = &symval;
3774         }
3775       else if (gsym->is_undefined())
3776         {
3777           // There is no need to generate a stub symbol is undefined.
3778           gold_debug(DEBUG_TARGET,
3779                      "stub: not creating a stub for undefined symbol %s in file %s",
3780                      gsym->name(), aarch64_relobj->name().c_str());
3781           return;
3782         }
3783     }
3784
3785   // Get the symbol value.
3786   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3787
3788   // Owing to pipelining, the PC relative branches below actually skip
3789   // two instructions when the branch offset is 0.
3790   Address destination = static_cast<Address>(-1);
3791   switch (r_type)
3792     {
3793     case elfcpp::R_AARCH64_CALL26:
3794     case elfcpp::R_AARCH64_JUMP26:
3795       destination = value + addend;
3796       break;
3797     default:
3798       gold_unreachable();
3799     }
3800
3801   int stub_type = The_reloc_stub::
3802       stub_type_for_reloc(r_type, address, destination);
3803   if (stub_type == ST_NONE)
3804     return;
3805
3806   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3807   gold_assert(stub_table != NULL);
3808
3809   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3810   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3811   if (stub == NULL)
3812     {
3813       stub = new The_reloc_stub(stub_type);
3814       stub_table->add_reloc_stub(stub, key);
3815     }
3816   stub->set_destination_address(destination);
3817 }  // End of Target_aarch64::scan_reloc_for_stub
3818
3819
3820 // This function scans a relocation section for stub generation.
3821 // The template parameter Relocate must be a class type which provides
3822 // a single function, relocate(), which implements the machine
3823 // specific part of a relocation.
3824
3825 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3826 // SHT_REL or SHT_RELA.
3827
3828 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
3829 // of relocs.  OUTPUT_SECTION is the output section.
3830 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3831 // mapped to output offsets.
3832
3833 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3834 // VIEW_SIZE is the size.  These refer to the input section, unless
3835 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3836 // the output section.
3837
3838 template<int size, bool big_endian>
3839 template<int sh_type>
3840 void inline
3841 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3842     const Relocate_info<size, big_endian>* relinfo,
3843     const unsigned char* prelocs,
3844     size_t reloc_count,
3845     Output_section* /*output_section*/,
3846     bool /*needs_special_offset_handling*/,
3847     const unsigned char* /*view*/,
3848     Address view_address,
3849     section_size_type)
3850 {
3851   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3852
3853   const int reloc_size =
3854       Reloc_types<sh_type,size,big_endian>::reloc_size;
3855   AArch64_relobj<size, big_endian>* object =
3856       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3857   unsigned int local_count = object->local_symbol_count();
3858
3859   gold::Default_comdat_behavior default_comdat_behavior;
3860   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3861
3862   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3863     {
3864       Reltype reloc(prelocs);
3865       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3866       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3867       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3868       if (r_type != elfcpp::R_AARCH64_CALL26
3869           && r_type != elfcpp::R_AARCH64_JUMP26)
3870         continue;
3871
3872       section_offset_type offset =
3873           convert_to_section_size_type(reloc.get_r_offset());
3874
3875       // Get the addend.
3876       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3877           reloc.get_r_addend();
3878
3879       const Sized_symbol<size>* sym;
3880       Symbol_value<size> symval;
3881       const Symbol_value<size> *psymval;
3882       bool is_defined_in_discarded_section;
3883       unsigned int shndx;
3884       if (r_sym < local_count)
3885         {
3886           sym = NULL;
3887           psymval = object->local_symbol(r_sym);
3888
3889           // If the local symbol belongs to a section we are discarding,
3890           // and that section is a debug section, try to find the
3891           // corresponding kept section and map this symbol to its
3892           // counterpart in the kept section.  The symbol must not
3893           // correspond to a section we are folding.
3894           bool is_ordinary;
3895           shndx = psymval->input_shndx(&is_ordinary);
3896           is_defined_in_discarded_section =
3897             (is_ordinary
3898              && shndx != elfcpp::SHN_UNDEF
3899              && !object->is_section_included(shndx)
3900              && !relinfo->symtab->is_section_folded(object, shndx));
3901
3902           // We need to compute the would-be final value of this local
3903           // symbol.
3904           if (!is_defined_in_discarded_section)
3905             {
3906               typedef Sized_relobj_file<size, big_endian> ObjType;
3907               if (psymval->is_section_symbol())
3908                 symval.set_is_section_symbol();
3909               typename ObjType::Compute_final_local_value_status status =
3910                 object->compute_final_local_value(r_sym, psymval, &symval,
3911                                                   relinfo->symtab);
3912               if (status == ObjType::CFLV_OK)
3913                 {
3914                   // Currently we cannot handle a branch to a target in
3915                   // a merged section.  If this is the case, issue an error
3916                   // and also free the merge symbol value.
3917                   if (!symval.has_output_value())
3918                     {
3919                       const std::string& section_name =
3920                         object->section_name(shndx);
3921                       object->error(_("cannot handle branch to local %u "
3922                                           "in a merged section %s"),
3923                                         r_sym, section_name.c_str());
3924                     }
3925                   psymval = &symval;
3926                 }
3927               else
3928                 {
3929                   // We cannot determine the final value.
3930                   continue;
3931                 }
3932             }
3933         }
3934       else
3935         {
3936           const Symbol* gsym;
3937           gsym = object->global_symbol(r_sym);
3938           gold_assert(gsym != NULL);
3939           if (gsym->is_forwarder())
3940             gsym = relinfo->symtab->resolve_forwards(gsym);
3941
3942           sym = static_cast<const Sized_symbol<size>*>(gsym);
3943           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3944             symval.set_output_symtab_index(sym->symtab_index());
3945           else
3946             symval.set_no_output_symtab_entry();
3947
3948           // We need to compute the would-be final value of this global
3949           // symbol.
3950           const Symbol_table* symtab = relinfo->symtab;
3951           const Sized_symbol<size>* sized_symbol =
3952               symtab->get_sized_symbol<size>(gsym);
3953           Symbol_table::Compute_final_value_status status;
3954           typename elfcpp::Elf_types<size>::Elf_Addr value =
3955               symtab->compute_final_value<size>(sized_symbol, &status);
3956
3957           // Skip this if the symbol has not output section.
3958           if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3959             continue;
3960           symval.set_output_value(value);
3961
3962           if (gsym->type() == elfcpp::STT_TLS)
3963             symval.set_is_tls_symbol();
3964           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3965             symval.set_is_ifunc_symbol();
3966           psymval = &symval;
3967
3968           is_defined_in_discarded_section =
3969               (gsym->is_defined_in_discarded_section()
3970                && gsym->is_undefined());
3971           shndx = 0;
3972         }
3973
3974       Symbol_value<size> symval2;
3975       if (is_defined_in_discarded_section)
3976         {
3977           if (comdat_behavior == CB_UNDETERMINED)
3978             {
3979               std::string name = object->section_name(relinfo->data_shndx);
3980               comdat_behavior = default_comdat_behavior.get(name.c_str());
3981             }
3982           if (comdat_behavior == CB_PRETEND)
3983             {
3984               bool found;
3985               typename elfcpp::Elf_types<size>::Elf_Addr value =
3986                 object->map_to_kept_section(shndx, &found);
3987               if (found)
3988                 symval2.set_output_value(value + psymval->input_value());
3989               else
3990                 symval2.set_output_value(0);
3991             }
3992           else
3993             {
3994               if (comdat_behavior == CB_WARNING)
3995                 gold_warning_at_location(relinfo, i, offset,
3996                                          _("relocation refers to discarded "
3997                                            "section"));
3998               symval2.set_output_value(0);
3999             }
4000           symval2.set_no_output_symtab_entry();
4001           psymval = &symval2;
4002         }
4003
4004       // If symbol is a section symbol, we don't know the actual type of
4005       // destination.  Give up.
4006       if (psymval->is_section_symbol())
4007         continue;
4008
4009       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
4010                                 addend, view_address + offset);
4011     }  // End of iterating relocs in a section
4012 }  // End of Target_aarch64::scan_reloc_section_for_stubs
4013
4014
4015 // Scan an input section for stub generation.
4016
4017 template<int size, bool big_endian>
4018 void
4019 Target_aarch64<size, big_endian>::scan_section_for_stubs(
4020     const Relocate_info<size, big_endian>* relinfo,
4021     unsigned int sh_type,
4022     const unsigned char* prelocs,
4023     size_t reloc_count,
4024     Output_section* output_section,
4025     bool needs_special_offset_handling,
4026     const unsigned char* view,
4027     Address view_address,
4028     section_size_type view_size)
4029 {
4030   gold_assert(sh_type == elfcpp::SHT_RELA);
4031   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
4032       relinfo,
4033       prelocs,
4034       reloc_count,
4035       output_section,
4036       needs_special_offset_handling,
4037       view,
4038       view_address,
4039       view_size);
4040 }
4041
4042
4043 // Relocate a single stub.
4044
4045 template<int size, bool big_endian>
4046 void Target_aarch64<size, big_endian>::
4047 relocate_stub(The_reloc_stub* stub,
4048               const The_relocate_info*,
4049               Output_section*,
4050               unsigned char* view,
4051               Address address,
4052               section_size_type)
4053 {
4054   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4055   typedef typename The_reloc_functions::Status The_reloc_functions_status;
4056   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4057
4058   Insntype* ip = reinterpret_cast<Insntype*>(view);
4059   int insn_number = stub->insn_num();
4060   const uint32_t* insns = stub->insns();
4061   // Check the insns are really those stub insns.
4062   for (int i = 0; i < insn_number; ++i)
4063     {
4064       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4065       gold_assert(((uint32_t)insn == insns[i]));
4066     }
4067
4068   Address dest = stub->destination_address();
4069
4070   switch(stub->type())
4071     {
4072     case ST_ADRP_BRANCH:
4073       {
4074         // 1st reloc is ADR_PREL_PG_HI21
4075         The_reloc_functions_status status =
4076             The_reloc_functions::adrp(view, dest, address);
4077         // An error should never arise in the above step. If so, please
4078         // check 'aarch64_valid_for_adrp_p'.
4079         gold_assert(status == The_reloc_functions::STATUS_OKAY);
4080
4081         // 2nd reloc is ADD_ABS_LO12_NC
4082         const AArch64_reloc_property* arp =
4083             aarch64_reloc_property_table->get_reloc_property(
4084                 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4085         gold_assert(arp != NULL);
4086         status = The_reloc_functions::template
4087             rela_general<32>(view + 4, dest, 0, arp);
4088         // An error should never arise, it is an "_NC" relocation.
4089         gold_assert(status == The_reloc_functions::STATUS_OKAY);
4090       }
4091       break;
4092
4093     case ST_LONG_BRANCH_ABS:
4094       // 1st reloc is R_AARCH64_PREL64, at offset 8
4095       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4096       break;
4097
4098     case ST_LONG_BRANCH_PCREL:
4099       {
4100         // "PC" calculation is the 2nd insn in the stub.
4101         uint64_t offset = dest - (address + 4);
4102         // Offset is placed at offset 4 and 5.
4103         elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4104       }
4105       break;
4106
4107     default:
4108       gold_unreachable();
4109     }
4110 }
4111
4112
4113 // A class to handle the PLT data.
4114 // This is an abstract base class that handles most of the linker details
4115 // but does not know the actual contents of PLT entries.  The derived
4116 // classes below fill in those details.
4117
4118 template<int size, bool big_endian>
4119 class Output_data_plt_aarch64 : public Output_section_data
4120 {
4121  public:
4122   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4123       Reloc_section;
4124   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4125
4126   Output_data_plt_aarch64(Layout* layout,
4127                           uint64_t addralign,
4128                           Output_data_got_aarch64<size, big_endian>* got,
4129                           Output_data_space* got_plt,
4130                           Output_data_space* got_irelative)
4131     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4132       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4133       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4134   { this->init(layout); }
4135
4136   // Initialize the PLT section.
4137   void
4138   init(Layout* layout);
4139
4140   // Add an entry to the PLT.
4141   void
4142   add_entry(Symbol_table*, Layout*, Symbol* gsym);
4143
4144   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4145   unsigned int
4146   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4147                         Sized_relobj_file<size, big_endian>* relobj,
4148                         unsigned int local_sym_index);
4149
4150   // Add the relocation for a PLT entry.
4151   void
4152   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4153                  unsigned int got_offset);
4154
4155   // Add the reserved TLSDESC_PLT entry to the PLT.
4156   void
4157   reserve_tlsdesc_entry(unsigned int got_offset)
4158   { this->tlsdesc_got_offset_ = got_offset; }
4159
4160   // Return true if a TLSDESC_PLT entry has been reserved.
4161   bool
4162   has_tlsdesc_entry() const
4163   { return this->tlsdesc_got_offset_ != -1U; }
4164
4165   // Return the GOT offset for the reserved TLSDESC_PLT entry.
4166   unsigned int
4167   get_tlsdesc_got_offset() const
4168   { return this->tlsdesc_got_offset_; }
4169
4170   // Return the PLT offset of the reserved TLSDESC_PLT entry.
4171   unsigned int
4172   get_tlsdesc_plt_offset() const
4173   {
4174     return (this->first_plt_entry_offset() +
4175             (this->count_ + this->irelative_count_)
4176             * this->get_plt_entry_size());
4177   }
4178
4179   // Return the .rela.plt section data.
4180   Reloc_section*
4181   rela_plt()
4182   { return this->rel_; }
4183
4184   // Return where the TLSDESC relocations should go.
4185   Reloc_section*
4186   rela_tlsdesc(Layout*);
4187
4188   // Return where the IRELATIVE relocations should go in the PLT
4189   // relocations.
4190   Reloc_section*
4191   rela_irelative(Symbol_table*, Layout*);
4192
4193   // Return whether we created a section for IRELATIVE relocations.
4194   bool
4195   has_irelative_section() const
4196   { return this->irelative_rel_ != NULL; }
4197
4198   // Return the number of PLT entries.
4199   unsigned int
4200   entry_count() const
4201   { return this->count_ + this->irelative_count_; }
4202
4203   // Return the offset of the first non-reserved PLT entry.
4204   unsigned int
4205   first_plt_entry_offset() const
4206   { return this->do_first_plt_entry_offset(); }
4207
4208   // Return the size of a PLT entry.
4209   unsigned int
4210   get_plt_entry_size() const
4211   { return this->do_get_plt_entry_size(); }
4212
4213   // Return the reserved tlsdesc entry size.
4214   unsigned int
4215   get_plt_tlsdesc_entry_size() const
4216   { return this->do_get_plt_tlsdesc_entry_size(); }
4217
4218   // Return the PLT address to use for a global symbol.
4219   uint64_t
4220   address_for_global(const Symbol*);
4221
4222   // Return the PLT address to use for a local symbol.
4223   uint64_t
4224   address_for_local(const Relobj*, unsigned int symndx);
4225
4226  protected:
4227   // Fill in the first PLT entry.
4228   void
4229   fill_first_plt_entry(unsigned char* pov,
4230                        Address got_address,
4231                        Address plt_address)
4232   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4233
4234   // Fill in a normal PLT entry.
4235   void
4236   fill_plt_entry(unsigned char* pov,
4237                  Address got_address,
4238                  Address plt_address,
4239                  unsigned int got_offset,
4240                  unsigned int plt_offset)
4241   {
4242     this->do_fill_plt_entry(pov, got_address, plt_address,
4243                             got_offset, plt_offset);
4244   }
4245
4246   // Fill in the reserved TLSDESC PLT entry.
4247   void
4248   fill_tlsdesc_entry(unsigned char* pov,
4249                      Address gotplt_address,
4250                      Address plt_address,
4251                      Address got_base,
4252                      unsigned int tlsdesc_got_offset,
4253                      unsigned int plt_offset)
4254   {
4255     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4256                                 tlsdesc_got_offset, plt_offset);
4257   }
4258
4259   virtual unsigned int
4260   do_first_plt_entry_offset() const = 0;
4261
4262   virtual unsigned int
4263   do_get_plt_entry_size() const = 0;
4264
4265   virtual unsigned int
4266   do_get_plt_tlsdesc_entry_size() const = 0;
4267
4268   virtual void
4269   do_fill_first_plt_entry(unsigned char* pov,
4270                           Address got_addr,
4271                           Address plt_addr) = 0;
4272
4273   virtual void
4274   do_fill_plt_entry(unsigned char* pov,
4275                     Address got_address,
4276                     Address plt_address,
4277                     unsigned int got_offset,
4278                     unsigned int plt_offset) = 0;
4279
4280   virtual void
4281   do_fill_tlsdesc_entry(unsigned char* pov,
4282                         Address gotplt_address,
4283                         Address plt_address,
4284                         Address got_base,
4285                         unsigned int tlsdesc_got_offset,
4286                         unsigned int plt_offset) = 0;
4287
4288   void
4289   do_adjust_output_section(Output_section* os);
4290
4291   // Write to a map file.
4292   void
4293   do_print_to_mapfile(Mapfile* mapfile) const
4294   { mapfile->print_output_data(this, _("** PLT")); }
4295
4296  private:
4297   // Set the final size.
4298   void
4299   set_final_data_size();
4300
4301   // Write out the PLT data.
4302   void
4303   do_write(Output_file*);
4304
4305   // The reloc section.
4306   Reloc_section* rel_;
4307
4308   // The TLSDESC relocs, if necessary.  These must follow the regular
4309   // PLT relocs.
4310   Reloc_section* tlsdesc_rel_;
4311
4312   // The IRELATIVE relocs, if necessary.  These must follow the
4313   // regular PLT relocations.
4314   Reloc_section* irelative_rel_;
4315
4316   // The .got section.
4317   Output_data_got_aarch64<size, big_endian>* got_;
4318
4319   // The .got.plt section.
4320   Output_data_space* got_plt_;
4321
4322   // The part of the .got.plt section used for IRELATIVE relocs.
4323   Output_data_space* got_irelative_;
4324
4325   // The number of PLT entries.
4326   unsigned int count_;
4327
4328   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
4329   // follow the regular PLT entries.
4330   unsigned int irelative_count_;
4331
4332   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4333   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4334   // indicates an offset is not allocated.
4335   unsigned int tlsdesc_got_offset_;
4336 };
4337
4338 // Initialize the PLT section.
4339
4340 template<int size, bool big_endian>
4341 void
4342 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4343 {
4344   this->rel_ = new Reloc_section(false);
4345   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4346                                   elfcpp::SHF_ALLOC, this->rel_,
4347                                   ORDER_DYNAMIC_PLT_RELOCS, false);
4348 }
4349
4350 template<int size, bool big_endian>
4351 void
4352 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4353     Output_section* os)
4354 {
4355   os->set_entsize(this->get_plt_entry_size());
4356 }
4357
4358 // Add an entry to the PLT.
4359
4360 template<int size, bool big_endian>
4361 void
4362 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4363     Layout* layout, Symbol* gsym)
4364 {
4365   gold_assert(!gsym->has_plt_offset());
4366
4367   unsigned int* pcount;
4368   unsigned int plt_reserved;
4369   Output_section_data_build* got;
4370
4371   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4372       && gsym->can_use_relative_reloc(false))
4373     {
4374       pcount = &this->irelative_count_;
4375       plt_reserved = 0;
4376       got = this->got_irelative_;
4377     }
4378   else
4379     {
4380       pcount = &this->count_;
4381       plt_reserved = this->first_plt_entry_offset();
4382       got = this->got_plt_;
4383     }
4384
4385   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4386                        + plt_reserved);
4387
4388   ++*pcount;
4389
4390   section_offset_type got_offset = got->current_data_size();
4391
4392   // Every PLT entry needs a GOT entry which points back to the PLT
4393   // entry (this will be changed by the dynamic linker, normally
4394   // lazily when the function is called).
4395   got->set_current_data_size(got_offset + size / 8);
4396
4397   // Every PLT entry needs a reloc.
4398   this->add_relocation(symtab, layout, gsym, got_offset);
4399
4400   // Note that we don't need to save the symbol. The contents of the
4401   // PLT are independent of which symbols are used. The symbols only
4402   // appear in the relocations.
4403 }
4404
4405 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
4406 // the PLT offset.
4407
4408 template<int size, bool big_endian>
4409 unsigned int
4410 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4411     Symbol_table* symtab,
4412     Layout* layout,
4413     Sized_relobj_file<size, big_endian>* relobj,
4414     unsigned int local_sym_index)
4415 {
4416   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4417   ++this->irelative_count_;
4418
4419   section_offset_type got_offset = this->got_irelative_->current_data_size();
4420
4421   // Every PLT entry needs a GOT entry which points back to the PLT
4422   // entry.
4423   this->got_irelative_->set_current_data_size(got_offset + size / 8);
4424
4425   // Every PLT entry needs a reloc.
4426   Reloc_section* rela = this->rela_irelative(symtab, layout);
4427   rela->add_symbolless_local_addend(relobj, local_sym_index,
4428                                     elfcpp::R_AARCH64_IRELATIVE,
4429                                     this->got_irelative_, got_offset, 0);
4430
4431   return plt_offset;
4432 }
4433
4434 // Add the relocation for a PLT entry.
4435
4436 template<int size, bool big_endian>
4437 void
4438 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4439     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4440 {
4441   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4442       && gsym->can_use_relative_reloc(false))
4443     {
4444       Reloc_section* rela = this->rela_irelative(symtab, layout);
4445       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4446                                          this->got_irelative_, got_offset, 0);
4447     }
4448   else
4449     {
4450       gsym->set_needs_dynsym_entry();
4451       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4452                              got_offset, 0);
4453     }
4454 }
4455
4456 // Return where the TLSDESC relocations should go, creating it if
4457 // necessary.  These follow the JUMP_SLOT relocations.
4458
4459 template<int size, bool big_endian>
4460 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4461 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4462 {
4463   if (this->tlsdesc_rel_ == NULL)
4464     {
4465       this->tlsdesc_rel_ = new Reloc_section(false);
4466       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4467                                       elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4468                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4469       gold_assert(this->tlsdesc_rel_->output_section()
4470                   == this->rel_->output_section());
4471     }
4472   return this->tlsdesc_rel_;
4473 }
4474
4475 // Return where the IRELATIVE relocations should go in the PLT.  These
4476 // follow the JUMP_SLOT and the TLSDESC relocations.
4477
4478 template<int size, bool big_endian>
4479 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4480 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4481                                                           Layout* layout)
4482 {
4483   if (this->irelative_rel_ == NULL)
4484     {
4485       // Make sure we have a place for the TLSDESC relocations, in
4486       // case we see any later on.
4487       this->rela_tlsdesc(layout);
4488       this->irelative_rel_ = new Reloc_section(false);
4489       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4490                                       elfcpp::SHF_ALLOC, this->irelative_rel_,
4491                                       ORDER_DYNAMIC_PLT_RELOCS, false);
4492       gold_assert(this->irelative_rel_->output_section()
4493                   == this->rel_->output_section());
4494
4495       if (parameters->doing_static_link())
4496         {
4497           // A statically linked executable will only have a .rela.plt
4498           // section to hold R_AARCH64_IRELATIVE relocs for
4499           // STT_GNU_IFUNC symbols.  The library will use these
4500           // symbols to locate the IRELATIVE relocs at program startup
4501           // time.
4502           symtab->define_in_output_data("__rela_iplt_start", NULL,
4503                                         Symbol_table::PREDEFINED,
4504                                         this->irelative_rel_, 0, 0,
4505                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4506                                         elfcpp::STV_HIDDEN, 0, false, true);
4507           symtab->define_in_output_data("__rela_iplt_end", NULL,
4508                                         Symbol_table::PREDEFINED,
4509                                         this->irelative_rel_, 0, 0,
4510                                         elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4511                                         elfcpp::STV_HIDDEN, 0, true, true);
4512         }
4513     }
4514   return this->irelative_rel_;
4515 }
4516
4517 // Return the PLT address to use for a global symbol.
4518
4519 template<int size, bool big_endian>
4520 uint64_t
4521 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4522   const Symbol* gsym)
4523 {
4524   uint64_t offset = 0;
4525   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4526       && gsym->can_use_relative_reloc(false))
4527     offset = (this->first_plt_entry_offset() +
4528               this->count_ * this->get_plt_entry_size());
4529   return this->address() + offset + gsym->plt_offset();
4530 }
4531
4532 // Return the PLT address to use for a local symbol.  These are always
4533 // IRELATIVE relocs.
4534
4535 template<int size, bool big_endian>
4536 uint64_t
4537 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4538     const Relobj* object,
4539     unsigned int r_sym)
4540 {
4541   return (this->address()
4542           + this->first_plt_entry_offset()
4543           + this->count_ * this->get_plt_entry_size()
4544           + object->local_plt_offset(r_sym));
4545 }
4546
4547 // Set the final size.
4548
4549 template<int size, bool big_endian>
4550 void
4551 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4552 {
4553   unsigned int count = this->count_ + this->irelative_count_;
4554   unsigned int extra_size = 0;
4555   if (this->has_tlsdesc_entry())
4556     extra_size += this->get_plt_tlsdesc_entry_size();
4557   this->set_data_size(this->first_plt_entry_offset()
4558                       + count * this->get_plt_entry_size()
4559                       + extra_size);
4560 }
4561
4562 template<int size, bool big_endian>
4563 class Output_data_plt_aarch64_standard :
4564   public Output_data_plt_aarch64<size, big_endian>
4565 {
4566  public:
4567   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4568   Output_data_plt_aarch64_standard(
4569       Layout* layout,
4570       Output_data_got_aarch64<size, big_endian>* got,
4571       Output_data_space* got_plt,
4572       Output_data_space* got_irelative)
4573     : Output_data_plt_aarch64<size, big_endian>(layout,
4574                                                 size == 32 ? 4 : 8,
4575                                                 got, got_plt,
4576                                                 got_irelative)
4577   { }
4578
4579  protected:
4580   // Return the offset of the first non-reserved PLT entry.
4581   virtual unsigned int
4582   do_first_plt_entry_offset() const
4583   { return this->first_plt_entry_size; }
4584
4585   // Return the size of a PLT entry
4586   virtual unsigned int
4587   do_get_plt_entry_size() const
4588   { return this->plt_entry_size; }
4589
4590   // Return the size of a tlsdesc entry
4591   virtual unsigned int
4592   do_get_plt_tlsdesc_entry_size() const
4593   { return this->plt_tlsdesc_entry_size; }
4594
4595   virtual void
4596   do_fill_first_plt_entry(unsigned char* pov,
4597                           Address got_address,
4598                           Address plt_address);
4599
4600   virtual void
4601   do_fill_plt_entry(unsigned char* pov,
4602                     Address got_address,
4603                     Address plt_address,
4604                     unsigned int got_offset,
4605                     unsigned int plt_offset);
4606
4607   virtual void
4608   do_fill_tlsdesc_entry(unsigned char* pov,
4609                         Address gotplt_address,
4610                         Address plt_address,
4611                         Address got_base,
4612                         unsigned int tlsdesc_got_offset,
4613                         unsigned int plt_offset);
4614
4615  private:
4616   // The size of the first plt entry size.
4617   static const int first_plt_entry_size = 32;
4618   // The size of the plt entry size.
4619   static const int plt_entry_size = 16;
4620   // The size of the plt tlsdesc entry size.
4621   static const int plt_tlsdesc_entry_size = 32;
4622   // Template for the first PLT entry.
4623   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4624   // Template for subsequent PLT entries.
4625   static const uint32_t plt_entry[plt_entry_size / 4];
4626   // The reserved TLSDESC entry in the PLT for an executable.
4627   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4628 };
4629
4630 // The first entry in the PLT for an executable.
4631
4632 template<>
4633 const uint32_t
4634 Output_data_plt_aarch64_standard<32, false>::
4635     first_plt_entry[first_plt_entry_size / 4] =
4636 {
4637   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4638   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
4639   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
4640   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
4641   0xd61f0220,   /* br x17  */
4642   0xd503201f,   /* nop */
4643   0xd503201f,   /* nop */
4644   0xd503201f,   /* nop */
4645 };
4646
4647
4648 template<>
4649 const uint32_t
4650 Output_data_plt_aarch64_standard<32, true>::
4651     first_plt_entry[first_plt_entry_size / 4] =
4652 {
4653   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4654   0x90000010,   /* adrp x16, PLT_GOT+0x8  */
4655   0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
4656   0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
4657   0xd61f0220,   /* br x17  */
4658   0xd503201f,   /* nop */
4659   0xd503201f,   /* nop */
4660   0xd503201f,   /* nop */
4661 };
4662
4663
4664 template<>
4665 const uint32_t
4666 Output_data_plt_aarch64_standard<64, false>::
4667     first_plt_entry[first_plt_entry_size / 4] =
4668 {
4669   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4670   0x90000010,   /* adrp x16, PLT_GOT+16  */
4671   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
4672   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
4673   0xd61f0220,   /* br x17  */
4674   0xd503201f,   /* nop */
4675   0xd503201f,   /* nop */
4676   0xd503201f,   /* nop */
4677 };
4678
4679
4680 template<>
4681 const uint32_t
4682 Output_data_plt_aarch64_standard<64, true>::
4683     first_plt_entry[first_plt_entry_size / 4] =
4684 {
4685   0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
4686   0x90000010,   /* adrp x16, PLT_GOT+16  */
4687   0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
4688   0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
4689   0xd61f0220,   /* br x17  */
4690   0xd503201f,   /* nop */
4691   0xd503201f,   /* nop */
4692   0xd503201f,   /* nop */
4693 };
4694
4695
4696 template<>
4697 const uint32_t
4698 Output_data_plt_aarch64_standard<32, false>::
4699     plt_entry[plt_entry_size / 4] =
4700 {
4701   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
4702   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
4703   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
4704   0xd61f0220,   /* br x17.  */
4705 };
4706
4707
4708 template<>
4709 const uint32_t
4710 Output_data_plt_aarch64_standard<32, true>::
4711     plt_entry[plt_entry_size / 4] =
4712 {
4713   0x90000010,   /* adrp x16, PLTGOT + n * 4  */
4714   0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
4715   0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
4716   0xd61f0220,   /* br x17.  */
4717 };
4718
4719
4720 template<>
4721 const uint32_t
4722 Output_data_plt_aarch64_standard<64, false>::
4723     plt_entry[plt_entry_size / 4] =
4724 {
4725   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
4726   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
4727   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
4728   0xd61f0220,   /* br x17.  */
4729 };
4730
4731
4732 template<>
4733 const uint32_t
4734 Output_data_plt_aarch64_standard<64, true>::
4735     plt_entry[plt_entry_size / 4] =
4736 {
4737   0x90000010,   /* adrp x16, PLTGOT + n * 8  */
4738   0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
4739   0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
4740   0xd61f0220,   /* br x17.  */
4741 };
4742
4743
4744 template<int size, bool big_endian>
4745 void
4746 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4747     unsigned char* pov,
4748     Address got_address,
4749     Address plt_address)
4750 {
4751   // PLT0 of the small PLT looks like this in ELF64 -
4752   // stp x16, x30, [sp, #-16]!          Save the reloc and lr on stack.
4753   // adrp x16, PLT_GOT + 16             Get the page base of the GOTPLT
4754   // ldr  x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4755   //                                    symbol resolver
4756   // add  x16, x16, #:lo12:PLT_GOT+16   Load the lo12 bits of the
4757   //                                    GOTPLT entry for this.
4758   // br   x17
4759   // PLT0 will be slightly different in ELF32 due to different got entry
4760   // size.
4761   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4762   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4763
4764   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4765   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4766   // FIXME: This only works for 64bit
4767   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4768       gotplt_2nd_ent, plt_address + 4);
4769
4770   // Fill in R_AARCH64_LDST8_LO12
4771   elfcpp::Swap<32, big_endian>::writeval(
4772       pov + 8,
4773       ((this->first_plt_entry[2] & 0xffc003ff)
4774        | ((gotplt_2nd_ent & 0xff8) << 7)));
4775
4776   // Fill in R_AARCH64_ADD_ABS_LO12
4777   elfcpp::Swap<32, big_endian>::writeval(
4778       pov + 12,
4779       ((this->first_plt_entry[3] & 0xffc003ff)
4780        | ((gotplt_2nd_ent & 0xfff) << 10)));
4781 }
4782
4783
4784 // Subsequent entries in the PLT for an executable.
4785 // FIXME: This only works for 64bit
4786
4787 template<int size, bool big_endian>
4788 void
4789 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4790     unsigned char* pov,
4791     Address got_address,
4792     Address plt_address,
4793     unsigned int got_offset,
4794     unsigned int plt_offset)
4795 {
4796   memcpy(pov, this->plt_entry, this->plt_entry_size);
4797
4798   Address gotplt_entry_address = got_address + got_offset;
4799   Address plt_entry_address = plt_address + plt_offset;
4800
4801   // Fill in R_AARCH64_PCREL_ADR_HI21
4802   AArch64_relocate_functions<size, big_endian>::adrp(
4803       pov,
4804       gotplt_entry_address,
4805       plt_entry_address);
4806
4807   // Fill in R_AARCH64_LDST64_ABS_LO12
4808   elfcpp::Swap<32, big_endian>::writeval(
4809       pov + 4,
4810       ((this->plt_entry[1] & 0xffc003ff)
4811        | ((gotplt_entry_address & 0xff8) << 7)));
4812
4813   // Fill in R_AARCH64_ADD_ABS_LO12
4814   elfcpp::Swap<32, big_endian>::writeval(
4815       pov + 8,
4816       ((this->plt_entry[2] & 0xffc003ff)
4817        | ((gotplt_entry_address & 0xfff) <<10)));
4818
4819 }
4820
4821
4822 template<>
4823 const uint32_t
4824 Output_data_plt_aarch64_standard<32, false>::
4825     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4826 {
4827   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4828   0x90000002,   /* adrp x2, 0 */
4829   0x90000003,   /* adrp x3, 0 */
4830   0xb9400042,   /* ldr w2, [w2, #0] */
4831   0x11000063,   /* add w3, w3, 0 */
4832   0xd61f0040,   /* br x2 */
4833   0xd503201f,   /* nop */
4834   0xd503201f,   /* nop */
4835 };
4836
4837 template<>
4838 const uint32_t
4839 Output_data_plt_aarch64_standard<32, true>::
4840     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4841 {
4842   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4843   0x90000002,   /* adrp x2, 0 */
4844   0x90000003,   /* adrp x3, 0 */
4845   0xb9400042,   /* ldr w2, [w2, #0] */
4846   0x11000063,   /* add w3, w3, 0 */
4847   0xd61f0040,   /* br x2 */
4848   0xd503201f,   /* nop */
4849   0xd503201f,   /* nop */
4850 };
4851
4852 template<>
4853 const uint32_t
4854 Output_data_plt_aarch64_standard<64, false>::
4855     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4856 {
4857   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4858   0x90000002,   /* adrp x2, 0 */
4859   0x90000003,   /* adrp x3, 0 */
4860   0xf9400042,   /* ldr x2, [x2, #0] */
4861   0x91000063,   /* add x3, x3, 0 */
4862   0xd61f0040,   /* br x2 */
4863   0xd503201f,   /* nop */
4864   0xd503201f,   /* nop */
4865 };
4866
4867 template<>
4868 const uint32_t
4869 Output_data_plt_aarch64_standard<64, true>::
4870     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4871 {
4872   0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
4873   0x90000002,   /* adrp x2, 0 */
4874   0x90000003,   /* adrp x3, 0 */
4875   0xf9400042,   /* ldr x2, [x2, #0] */
4876   0x91000063,   /* add x3, x3, 0 */
4877   0xd61f0040,   /* br x2 */
4878   0xd503201f,   /* nop */
4879   0xd503201f,   /* nop */
4880 };
4881
4882 template<int size, bool big_endian>
4883 void
4884 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4885     unsigned char* pov,
4886     Address gotplt_address,
4887     Address plt_address,
4888     Address got_base,
4889     unsigned int tlsdesc_got_offset,
4890     unsigned int plt_offset)
4891 {
4892   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4893
4894   // move DT_TLSDESC_GOT address into x2
4895   // move .got.plt address into x3
4896   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4897   Address plt_entry_address = plt_address + plt_offset;
4898
4899   // R_AARCH64_ADR_PREL_PG_HI21
4900   AArch64_relocate_functions<size, big_endian>::adrp(
4901       pov + 4,
4902       tlsdesc_got_entry,
4903       plt_entry_address + 4);
4904
4905   // R_AARCH64_ADR_PREL_PG_HI21
4906   AArch64_relocate_functions<size, big_endian>::adrp(
4907       pov + 8,
4908       gotplt_address,
4909       plt_entry_address + 8);
4910
4911   // R_AARCH64_LDST64_ABS_LO12
4912   elfcpp::Swap<32, big_endian>::writeval(
4913       pov + 12,
4914       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4915        | ((tlsdesc_got_entry & 0xff8) << 7)));
4916
4917   // R_AARCH64_ADD_ABS_LO12
4918   elfcpp::Swap<32, big_endian>::writeval(
4919       pov + 16,
4920       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4921        | ((gotplt_address & 0xfff) << 10)));
4922 }
4923
4924 // Write out the PLT.  This uses the hand-coded instructions above,
4925 // and adjusts them as needed.  This is specified by the AMD64 ABI.
4926
4927 template<int size, bool big_endian>
4928 void
4929 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4930 {
4931   const off_t offset = this->offset();
4932   const section_size_type oview_size =
4933     convert_to_section_size_type(this->data_size());
4934   unsigned char* const oview = of->get_output_view(offset, oview_size);
4935
4936   const off_t got_file_offset = this->got_plt_->offset();
4937   gold_assert(got_file_offset + this->got_plt_->data_size()
4938               == this->got_irelative_->offset());
4939
4940   const section_size_type got_size =
4941       convert_to_section_size_type(this->got_plt_->data_size()
4942                                    + this->got_irelative_->data_size());
4943   unsigned char* const got_view = of->get_output_view(got_file_offset,
4944                                                       got_size);
4945
4946   unsigned char* pov = oview;
4947
4948   // The base address of the .plt section.
4949   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4950   // The base address of the PLT portion of the .got section.
4951   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4952       = this->got_plt_->address();
4953
4954   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4955   pov += this->first_plt_entry_offset();
4956
4957   // The first three entries in .got.plt are reserved.
4958   unsigned char* got_pov = got_view;
4959   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4960   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4961
4962   unsigned int plt_offset = this->first_plt_entry_offset();
4963   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4964   const unsigned int count = this->count_ + this->irelative_count_;
4965   for (unsigned int plt_index = 0;
4966        plt_index < count;
4967        ++plt_index,
4968          pov += this->get_plt_entry_size(),
4969          got_pov += size / 8,
4970          plt_offset += this->get_plt_entry_size(),
4971          got_offset += size / 8)
4972     {
4973       // Set and adjust the PLT entry itself.
4974       this->fill_plt_entry(pov, gotplt_address, plt_address,
4975                            got_offset, plt_offset);
4976
4977       // Set the entry in the GOT, which points to plt0.
4978       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4979     }
4980
4981   if (this->has_tlsdesc_entry())
4982     {
4983       // Set and adjust the reserved TLSDESC PLT entry.
4984       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4985       // The base address of the .base section.
4986       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4987           this->got_->address();
4988       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4989                                tlsdesc_got_offset, plt_offset);
4990       pov += this->get_plt_tlsdesc_entry_size();
4991     }
4992
4993   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4994   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4995
4996   of->write_output_view(offset, oview_size, oview);
4997   of->write_output_view(got_file_offset, got_size, got_view);
4998 }
4999
5000 // Telling how to update the immediate field of an instruction.
5001 struct AArch64_howto
5002 {
5003   // The immediate field mask.
5004   elfcpp::Elf_Xword dst_mask;
5005
5006   // The offset to apply relocation immediate
5007   int doffset;
5008
5009   // The second part offset, if the immediate field has two parts.
5010   // -1 if the immediate field has only one part.
5011   int doffset2;
5012 };
5013
5014 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
5015 {
5016   {0, -1, -1},          // DATA
5017   {0x1fffe0, 5, -1},    // MOVW  [20:5]-imm16
5018   {0xffffe0, 5, -1},    // LD    [23:5]-imm19
5019   {0x60ffffe0, 29, 5},  // ADR   [30:29]-immlo  [23:5]-immhi
5020   {0x60ffffe0, 29, 5},  // ADRP  [30:29]-immlo  [23:5]-immhi
5021   {0x3ffc00, 10, -1},   // ADD   [21:10]-imm12
5022   {0x3ffc00, 10, -1},   // LDST  [21:10]-imm12
5023   {0x7ffe0, 5, -1},     // TBZNZ [18:5]-imm14
5024   {0xffffe0, 5, -1},    // CONDB [23:5]-imm19
5025   {0x3ffffff, 0, -1},   // B     [25:0]-imm26
5026   {0x3ffffff, 0, -1},   // CALL  [25:0]-imm26
5027 };
5028
5029 // AArch64 relocate function class
5030
5031 template<int size, bool big_endian>
5032 class AArch64_relocate_functions
5033 {
5034  public:
5035   typedef enum
5036   {
5037     STATUS_OKAY,        // No error during relocation.
5038     STATUS_OVERFLOW,    // Relocation overflow.
5039     STATUS_BAD_RELOC,   // Relocation cannot be applied.
5040   } Status;
5041
5042   typedef AArch64_relocate_functions<size, big_endian> This;
5043   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5044   typedef Relocate_info<size, big_endian> The_relocate_info;
5045   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5046   typedef Reloc_stub<size, big_endian> The_reloc_stub;
5047   typedef Stub_table<size, big_endian> The_stub_table;
5048   typedef elfcpp::Rela<size, big_endian> The_rela;
5049   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5050
5051   // Return the page address of the address.
5052   // Page(address) = address & ~0xFFF
5053
5054   static inline AArch64_valtype
5055   Page(Address address)
5056   {
5057     return (address & (~static_cast<Address>(0xFFF)));
5058   }
5059
5060  private:
5061   // Update instruction (pointed by view) with selected bits (immed).
5062   // val = (val & ~dst_mask) | (immed << doffset)
5063
5064   template<int valsize>
5065   static inline void
5066   update_view(unsigned char* view,
5067               AArch64_valtype immed,
5068               elfcpp::Elf_Xword doffset,
5069               elfcpp::Elf_Xword dst_mask)
5070   {
5071     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5072     Valtype* wv = reinterpret_cast<Valtype*>(view);
5073     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5074
5075     // Clear immediate fields.
5076     val &= ~dst_mask;
5077     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5078       static_cast<Valtype>(val | (immed << doffset)));
5079   }
5080
5081   // Update two parts of an instruction (pointed by view) with selected
5082   // bits (immed1 and immed2).
5083   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5084
5085   template<int valsize>
5086   static inline void
5087   update_view_two_parts(
5088     unsigned char* view,
5089     AArch64_valtype immed1,
5090     AArch64_valtype immed2,
5091     elfcpp::Elf_Xword doffset1,
5092     elfcpp::Elf_Xword doffset2,
5093     elfcpp::Elf_Xword dst_mask)
5094   {
5095     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5096     Valtype* wv = reinterpret_cast<Valtype*>(view);
5097     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5098     val &= ~dst_mask;
5099     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5100       static_cast<Valtype>(val | (immed1 << doffset1) |
5101                            (immed2 << doffset2)));
5102   }
5103
5104   // Update adr or adrp instruction with immed.
5105   // In adr and adrp: [30:29] immlo   [23:5] immhi
5106
5107   static inline void
5108   update_adr(unsigned char* view, AArch64_valtype immed)
5109   {
5110     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5111     This::template update_view_two_parts<32>(
5112       view,
5113       immed & 0x3,
5114       (immed & 0x1ffffc) >> 2,
5115       29,
5116       5,
5117       dst_mask);
5118   }
5119
5120   // Update movz/movn instruction with bits immed.
5121   // Set instruction to movz if is_movz is true, otherwise set instruction
5122   // to movn.
5123
5124   static inline void
5125   update_movnz(unsigned char* view,
5126                AArch64_valtype immed,
5127                bool is_movz)
5128   {
5129     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5130     Valtype* wv = reinterpret_cast<Valtype*>(view);
5131     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5132
5133     const elfcpp::Elf_Xword doffset =
5134         aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5135     const elfcpp::Elf_Xword dst_mask =
5136         aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5137
5138     // Clear immediate fields and opc code.
5139     val &= ~(dst_mask | (0x3 << 29));
5140
5141     // Set instruction to movz or movn.
5142     // movz: [30:29] is 10   movn: [30:29] is 00
5143     if (is_movz)
5144       val |= (0x2 << 29);
5145
5146     elfcpp::Swap<32, big_endian>::writeval(wv,
5147       static_cast<Valtype>(val | (immed << doffset)));
5148   }
5149
5150  public:
5151
5152   // Update selected bits in text.
5153
5154   template<int valsize>
5155   static inline typename This::Status
5156   reloc_common(unsigned char* view, Address x,
5157                 const AArch64_reloc_property* reloc_property)
5158   {
5159     // Select bits from X.
5160     Address immed = reloc_property->select_x_value(x);
5161
5162     // Update view.
5163     const AArch64_reloc_property::Reloc_inst inst =
5164       reloc_property->reloc_inst();
5165     // If it is a data relocation or instruction has 2 parts of immediate
5166     // fields, you should not call pcrela_general.
5167     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5168                 aarch64_howto[inst].doffset != -1);
5169     This::template update_view<valsize>(view, immed,
5170                                         aarch64_howto[inst].doffset,
5171                                         aarch64_howto[inst].dst_mask);
5172
5173     // Do check overflow or alignment if needed.
5174     return (reloc_property->checkup_x_value(x)
5175             ? This::STATUS_OKAY
5176             : This::STATUS_OVERFLOW);
5177   }
5178
5179   // Construct a B insn. Note, although we group it here with other relocation
5180   // operation, there is actually no 'relocation' involved here.
5181   static inline void
5182   construct_b(unsigned char* view, unsigned int branch_offset)
5183   {
5184     update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5185                               26, 0, 0xffffffff);
5186   }
5187
5188   // Do a simple rela relocation at unaligned addresses.
5189
5190   template<int valsize>
5191   static inline typename This::Status
5192   rela_ua(unsigned char* view,
5193           const Sized_relobj_file<size, big_endian>* object,
5194           const Symbol_value<size>* psymval,
5195           AArch64_valtype addend,
5196           const AArch64_reloc_property* reloc_property)
5197   {
5198     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5199       Valtype;
5200     typename elfcpp::Elf_types<size>::Elf_Addr x =
5201         psymval->value(object, addend);
5202     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5203       static_cast<Valtype>(x));
5204     return (reloc_property->checkup_x_value(x)
5205             ? This::STATUS_OKAY
5206             : This::STATUS_OVERFLOW);
5207   }
5208
5209   // Do a simple pc-relative relocation at unaligned addresses.
5210
5211   template<int valsize>
5212   static inline typename This::Status
5213   pcrela_ua(unsigned char* view,
5214             const Sized_relobj_file<size, big_endian>* object,
5215             const Symbol_value<size>* psymval,
5216             AArch64_valtype addend,
5217             Address address,
5218             const AArch64_reloc_property* reloc_property)
5219   {
5220     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5221       Valtype;
5222     Address x = psymval->value(object, addend) - address;
5223     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5224       static_cast<Valtype>(x));
5225     return (reloc_property->checkup_x_value(x)
5226             ? This::STATUS_OKAY
5227             : This::STATUS_OVERFLOW);
5228   }
5229
5230   // Do a simple rela relocation at aligned addresses.
5231
5232   template<int valsize>
5233   static inline typename This::Status
5234   rela(
5235     unsigned char* view,
5236     const Sized_relobj_file<size, big_endian>* object,
5237     const Symbol_value<size>* psymval,
5238     AArch64_valtype addend,
5239     const AArch64_reloc_property* reloc_property)
5240   {
5241     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5242     Valtype* wv = reinterpret_cast<Valtype*>(view);
5243     Address x = psymval->value(object, addend);
5244     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5245     return (reloc_property->checkup_x_value(x)
5246             ? This::STATUS_OKAY
5247             : This::STATUS_OVERFLOW);
5248   }
5249
5250   // Do relocate. Update selected bits in text.
5251   // new_val = (val & ~dst_mask) | (immed << doffset)
5252
5253   template<int valsize>
5254   static inline typename This::Status
5255   rela_general(unsigned char* view,
5256                const Sized_relobj_file<size, big_endian>* object,
5257                const Symbol_value<size>* psymval,
5258                AArch64_valtype addend,
5259                const AArch64_reloc_property* reloc_property)
5260   {
5261     // Calculate relocation.
5262     Address x = psymval->value(object, addend);
5263     return This::template reloc_common<valsize>(view, x, reloc_property);
5264   }
5265
5266   // Do relocate. Update selected bits in text.
5267   // new val = (val & ~dst_mask) | (immed << doffset)
5268
5269   template<int valsize>
5270   static inline typename This::Status
5271   rela_general(
5272     unsigned char* view,
5273     AArch64_valtype s,
5274     AArch64_valtype addend,
5275     const AArch64_reloc_property* reloc_property)
5276   {
5277     // Calculate relocation.
5278     Address x = s + addend;
5279     return This::template reloc_common<valsize>(view, x, reloc_property);
5280   }
5281
5282   // Do address relative relocate. Update selected bits in text.
5283   // new val = (val & ~dst_mask) | (immed << doffset)
5284
5285   template<int valsize>
5286   static inline typename This::Status
5287   pcrela_general(
5288     unsigned char* view,
5289     const Sized_relobj_file<size, big_endian>* object,
5290     const Symbol_value<size>* psymval,
5291     AArch64_valtype addend,
5292     Address address,
5293     const AArch64_reloc_property* reloc_property)
5294   {
5295     // Calculate relocation.
5296     Address x = psymval->value(object, addend) - address;
5297     return This::template reloc_common<valsize>(view, x, reloc_property);
5298   }
5299
5300
5301   // Calculate (S + A) - address, update adr instruction.
5302
5303   static inline typename This::Status
5304   adr(unsigned char* view,
5305       const Sized_relobj_file<size, big_endian>* object,
5306       const Symbol_value<size>* psymval,
5307       Address addend,
5308       Address address,
5309       const AArch64_reloc_property* /* reloc_property */)
5310   {
5311     AArch64_valtype x = psymval->value(object, addend) - address;
5312     // Pick bits [20:0] of X.
5313     AArch64_valtype immed = x & 0x1fffff;
5314     update_adr(view, immed);
5315     // Check -2^20 <= X < 2^20
5316     return (size == 64 && Bits<21>::has_overflow((x))
5317             ? This::STATUS_OVERFLOW
5318             : This::STATUS_OKAY);
5319   }
5320
5321   // Calculate PG(S+A) - PG(address), update adrp instruction.
5322   // R_AARCH64_ADR_PREL_PG_HI21
5323
5324   static inline typename This::Status
5325   adrp(
5326     unsigned char* view,
5327     Address sa,
5328     Address address)
5329   {
5330     AArch64_valtype x = This::Page(sa) - This::Page(address);
5331     // Pick [32:12] of X.
5332     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5333     update_adr(view, immed);
5334     // Check -2^32 <= X < 2^32
5335     return (size == 64 && Bits<33>::has_overflow((x))
5336             ? This::STATUS_OVERFLOW
5337             : This::STATUS_OKAY);
5338   }
5339
5340   // Calculate PG(S+A) - PG(address), update adrp instruction.
5341   // R_AARCH64_ADR_PREL_PG_HI21
5342
5343   static inline typename This::Status
5344   adrp(unsigned char* view,
5345        const Sized_relobj_file<size, big_endian>* object,
5346        const Symbol_value<size>* psymval,
5347        Address addend,
5348        Address address,
5349        const AArch64_reloc_property* reloc_property)
5350   {
5351     Address sa = psymval->value(object, addend);
5352     AArch64_valtype x = This::Page(sa) - This::Page(address);
5353     // Pick [32:12] of X.
5354     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5355     update_adr(view, immed);
5356     return (reloc_property->checkup_x_value(x)
5357             ? This::STATUS_OKAY
5358             : This::STATUS_OVERFLOW);
5359   }
5360
5361   // Update mov[n/z] instruction. Check overflow if needed.
5362   // If X >=0, set the instruction to movz and its immediate value to the
5363   // selected bits S.
5364   // If X < 0, set the instruction to movn and its immediate value to
5365   // NOT (selected bits of).
5366
5367   static inline typename This::Status
5368   movnz(unsigned char* view,
5369         AArch64_valtype x,
5370         const AArch64_reloc_property* reloc_property)
5371   {
5372     // Select bits from X.
5373     Address immed;
5374     bool is_movz;
5375     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5376     if (static_cast<SignedW>(x) >= 0)
5377       {
5378         immed = reloc_property->select_x_value(x);
5379         is_movz = true;
5380       }
5381     else
5382       {
5383         immed = reloc_property->select_x_value(~x);;
5384         is_movz = false;
5385       }
5386
5387     // Update movnz instruction.
5388     update_movnz(view, immed, is_movz);
5389
5390     // Do check overflow or alignment if needed.
5391     return (reloc_property->checkup_x_value(x)
5392             ? This::STATUS_OKAY
5393             : This::STATUS_OVERFLOW);
5394   }
5395
5396   static inline bool
5397   maybe_apply_stub(unsigned int,
5398                    const The_relocate_info*,
5399                    const The_rela&,
5400                    unsigned char*,
5401                    Address,
5402                    const Sized_symbol<size>*,
5403                    const Symbol_value<size>*,
5404                    const Sized_relobj_file<size, big_endian>*,
5405                    section_size_type);
5406
5407 };  // End of AArch64_relocate_functions
5408
5409
5410 // For a certain relocation type (usually jump/branch), test to see if the
5411 // destination needs a stub to fulfil. If so, re-route the destination of the
5412 // original instruction to the stub, note, at this time, the stub has already
5413 // been generated.
5414
5415 template<int size, bool big_endian>
5416 bool
5417 AArch64_relocate_functions<size, big_endian>::
5418 maybe_apply_stub(unsigned int r_type,
5419                  const The_relocate_info* relinfo,
5420                  const The_rela& rela,
5421                  unsigned char* view,
5422                  Address address,
5423                  const Sized_symbol<size>* gsym,
5424                  const Symbol_value<size>* psymval,
5425                  const Sized_relobj_file<size, big_endian>* object,
5426                  section_size_type current_group_size)
5427 {
5428   if (parameters->options().relocatable())
5429     return false;
5430
5431   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5432   Address branch_target = psymval->value(object, 0) + addend;
5433   int stub_type =
5434     The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5435   if (stub_type == ST_NONE)
5436     return false;
5437
5438   const The_aarch64_relobj* aarch64_relobj =
5439       static_cast<const The_aarch64_relobj*>(object);
5440   // We don't create stubs for undefined symbols so don't look for one.
5441   if (gsym && gsym->is_undefined())
5442     {
5443       gold_debug(DEBUG_TARGET,
5444                  "stub: looking for a stub for undefined symbol %s in file %s",
5445                  gsym->name(), aarch64_relobj->name().c_str());
5446       return false;
5447     }
5448
5449   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5450   gold_assert(stub_table != NULL);
5451
5452   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5453   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5454   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5455   gold_assert(stub != NULL);
5456
5457   Address new_branch_target = stub_table->address() + stub->offset();
5458   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5459       new_branch_target - address;
5460   const AArch64_reloc_property* arp =
5461       aarch64_reloc_property_table->get_reloc_property(r_type);
5462   gold_assert(arp != NULL);
5463   typename This::Status status = This::template
5464       rela_general<32>(view, branch_offset, 0, arp);
5465   if (status != This::STATUS_OKAY)
5466     gold_error(_("Stub is too far away, try a smaller value "
5467                  "for '--stub-group-size'. The current value is 0x%lx."),
5468                static_cast<unsigned long>(current_group_size));
5469   return true;
5470 }
5471
5472
5473 // Group input sections for stub generation.
5474 //
5475 // We group input sections in an output section so that the total size,
5476 // including any padding space due to alignment is smaller than GROUP_SIZE
5477 // unless the only input section in group is bigger than GROUP_SIZE already.
5478 // Then an ARM stub table is created to follow the last input section
5479 // in group.  For each group an ARM stub table is created an is placed
5480 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
5481 // extend the group after the stub table.
5482
5483 template<int size, bool big_endian>
5484 void
5485 Target_aarch64<size, big_endian>::group_sections(
5486     Layout* layout,
5487     section_size_type group_size,
5488     bool stubs_always_after_branch,
5489     const Task* task)
5490 {
5491   // Group input sections and insert stub table
5492   Layout::Section_list section_list;
5493   layout->get_executable_sections(&section_list);
5494   for (Layout::Section_list::const_iterator p = section_list.begin();
5495        p != section_list.end();
5496        ++p)
5497     {
5498       AArch64_output_section<size, big_endian>* output_section =
5499           static_cast<AArch64_output_section<size, big_endian>*>(*p);
5500       output_section->group_sections(group_size, stubs_always_after_branch,
5501                                      this, task);
5502     }
5503 }
5504
5505
5506 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5507 // section of RELOBJ.
5508
5509 template<int size, bool big_endian>
5510 AArch64_input_section<size, big_endian>*
5511 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5512     Relobj* relobj, unsigned int shndx) const
5513 {
5514   Section_id sid(relobj, shndx);
5515   typename AArch64_input_section_map::const_iterator p =
5516     this->aarch64_input_section_map_.find(sid);
5517   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5518 }
5519
5520
5521 // Make a new AArch64_input_section object.
5522
5523 template<int size, bool big_endian>
5524 AArch64_input_section<size, big_endian>*
5525 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5526     Relobj* relobj, unsigned int shndx)
5527 {
5528   Section_id sid(relobj, shndx);
5529
5530   AArch64_input_section<size, big_endian>* input_section =
5531       new AArch64_input_section<size, big_endian>(relobj, shndx);
5532   input_section->init();
5533
5534   // Register new AArch64_input_section in map for look-up.
5535   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5536       this->aarch64_input_section_map_.insert(
5537           std::make_pair(sid, input_section));
5538
5539   // Make sure that it we have not created another AArch64_input_section
5540   // for this input section already.
5541   gold_assert(ins.second);
5542
5543   return input_section;
5544 }
5545
5546
5547 // Relaxation hook.  This is where we do stub generation.
5548
5549 template<int size, bool big_endian>
5550 bool
5551 Target_aarch64<size, big_endian>::do_relax(
5552     int pass,
5553     const Input_objects* input_objects,
5554     Symbol_table* symtab,
5555     Layout* layout ,
5556     const Task* task)
5557 {
5558   gold_assert(!parameters->options().relocatable());
5559   if (pass == 1)
5560     {
5561       // We don't handle negative stub_group_size right now.
5562       this->stub_group_size_ = abs(parameters->options().stub_group_size());
5563       if (this->stub_group_size_ == 1)
5564         {
5565           // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5566           // will fail to link.  The user will have to relink with an explicit
5567           // group size option.
5568           this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5569                                    4096 * 4;
5570         }
5571       group_sections(layout, this->stub_group_size_, true, task);
5572     }
5573   else
5574     {
5575       // If this is not the first pass, addresses and file offsets have
5576       // been reset at this point, set them here.
5577       for (Stub_table_iterator sp = this->stub_tables_.begin();
5578            sp != this->stub_tables_.end(); ++sp)
5579         {
5580           The_stub_table* stt = *sp;
5581           The_aarch64_input_section* owner = stt->owner();
5582           off_t off = align_address(owner->original_size(),
5583                                     stt->addralign());
5584           stt->set_address_and_file_offset(owner->address() + off,
5585                                            owner->offset() + off);
5586         }
5587     }
5588
5589   // Scan relocs for relocation stubs
5590   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5591        op != input_objects->relobj_end();
5592        ++op)
5593     {
5594       The_aarch64_relobj* aarch64_relobj =
5595           static_cast<The_aarch64_relobj*>(*op);
5596       // Lock the object so we can read from it.  This is only called
5597       // single-threaded from Layout::finalize, so it is OK to lock.
5598       Task_lock_obj<Object> tl(task, aarch64_relobj);
5599       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5600     }
5601
5602   bool any_stub_table_changed = false;
5603   for (Stub_table_iterator siter = this->stub_tables_.begin();
5604        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5605     {
5606       The_stub_table* stub_table = *siter;
5607       if (stub_table->update_data_size_changed_p())
5608         {
5609           The_aarch64_input_section* owner = stub_table->owner();
5610           uint64_t address = owner->address();
5611           off_t offset = owner->offset();
5612           owner->reset_address_and_file_offset();
5613           owner->set_address_and_file_offset(address, offset);
5614
5615           any_stub_table_changed = true;
5616         }
5617     }
5618
5619   // Do not continue relaxation.
5620   bool continue_relaxation = any_stub_table_changed;
5621   if (!continue_relaxation)
5622     for (Stub_table_iterator sp = this->stub_tables_.begin();
5623          (sp != this->stub_tables_.end());
5624          ++sp)
5625       (*sp)->finalize_stubs();
5626
5627   return continue_relaxation;
5628 }
5629
5630
5631 // Make a new Stub_table.
5632
5633 template<int size, bool big_endian>
5634 Stub_table<size, big_endian>*
5635 Target_aarch64<size, big_endian>::new_stub_table(
5636     AArch64_input_section<size, big_endian>* owner)
5637 {
5638   Stub_table<size, big_endian>* stub_table =
5639       new Stub_table<size, big_endian>(owner);
5640   stub_table->set_address(align_address(
5641       owner->address() + owner->data_size(), 8));
5642   stub_table->set_file_offset(owner->offset() + owner->data_size());
5643   stub_table->finalize_data_size();
5644
5645   this->stub_tables_.push_back(stub_table);
5646
5647   return stub_table;
5648 }
5649
5650
5651 template<int size, bool big_endian>
5652 uint64_t
5653 Target_aarch64<size, big_endian>::do_reloc_addend(
5654     void* arg, unsigned int r_type, uint64_t) const
5655 {
5656   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5657   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5658   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5659   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5660   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5661   gold_assert(psymval->is_tls_symbol());
5662   // The value of a TLS symbol is the offset in the TLS segment.
5663   return psymval->value(ti.object, 0);
5664 }
5665
5666 // Return the number of entries in the PLT.
5667
5668 template<int size, bool big_endian>
5669 unsigned int
5670 Target_aarch64<size, big_endian>::plt_entry_count() const
5671 {
5672   if (this->plt_ == NULL)
5673     return 0;
5674   return this->plt_->entry_count();
5675 }
5676
5677 // Return the offset of the first non-reserved PLT entry.
5678
5679 template<int size, bool big_endian>
5680 unsigned int
5681 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5682 {
5683   return this->plt_->first_plt_entry_offset();
5684 }
5685
5686 // Return the size of each PLT entry.
5687
5688 template<int size, bool big_endian>
5689 unsigned int
5690 Target_aarch64<size, big_endian>::plt_entry_size() const
5691 {
5692   return this->plt_->get_plt_entry_size();
5693 }
5694
5695 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5696
5697 template<int size, bool big_endian>
5698 void
5699 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5700     Symbol_table* symtab, Layout* layout)
5701 {
5702   if (this->tls_base_symbol_defined_)
5703     return;
5704
5705   Output_segment* tls_segment = layout->tls_segment();
5706   if (tls_segment != NULL)
5707     {
5708       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5709       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5710                                        Symbol_table::PREDEFINED,
5711                                        tls_segment, 0, 0,
5712                                        elfcpp::STT_TLS,
5713                                        elfcpp::STB_LOCAL,
5714                                        elfcpp::STV_HIDDEN, 0,
5715                                        Symbol::SEGMENT_START,
5716                                        true);
5717     }
5718   this->tls_base_symbol_defined_ = true;
5719 }
5720
5721 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5722
5723 template<int size, bool big_endian>
5724 void
5725 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5726     Symbol_table* symtab, Layout* layout)
5727 {
5728   if (this->plt_ == NULL)
5729     this->make_plt_section(symtab, layout);
5730
5731   if (!this->plt_->has_tlsdesc_entry())
5732     {
5733       // Allocate the TLSDESC_GOT entry.
5734       Output_data_got_aarch64<size, big_endian>* got =
5735           this->got_section(symtab, layout);
5736       unsigned int got_offset = got->add_constant(0);
5737
5738       // Allocate the TLSDESC_PLT entry.
5739       this->plt_->reserve_tlsdesc_entry(got_offset);
5740     }
5741 }
5742
5743 // Create a GOT entry for the TLS module index.
5744
5745 template<int size, bool big_endian>
5746 unsigned int
5747 Target_aarch64<size, big_endian>::got_mod_index_entry(
5748     Symbol_table* symtab, Layout* layout,
5749     Sized_relobj_file<size, big_endian>* object)
5750 {
5751   if (this->got_mod_index_offset_ == -1U)
5752     {
5753       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5754       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5755       Output_data_got_aarch64<size, big_endian>* got =
5756           this->got_section(symtab, layout);
5757       unsigned int got_offset = got->add_constant(0);
5758       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5759                           got_offset, 0);
5760       got->add_constant(0);
5761       this->got_mod_index_offset_ = got_offset;
5762     }
5763   return this->got_mod_index_offset_;
5764 }
5765
5766 // Optimize the TLS relocation type based on what we know about the
5767 // symbol.  IS_FINAL is true if the final address of this symbol is
5768 // known at link time.
5769
5770 template<int size, bool big_endian>
5771 tls::Tls_optimization
5772 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5773                                                      int r_type)
5774 {
5775   // If we are generating a shared library, then we can't do anything
5776   // in the linker
5777   if (parameters->options().shared())
5778     return tls::TLSOPT_NONE;
5779
5780   switch (r_type)
5781     {
5782     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5783     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5784     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5785     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5786     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5787     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5788     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5789     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5790     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5791     case elfcpp::R_AARCH64_TLSDESC_LDR:
5792     case elfcpp::R_AARCH64_TLSDESC_ADD:
5793     case elfcpp::R_AARCH64_TLSDESC_CALL:
5794       // These are General-Dynamic which permits fully general TLS
5795       // access.  Since we know that we are generating an executable,
5796       // we can convert this to Initial-Exec.  If we also know that
5797       // this is a local symbol, we can further switch to Local-Exec.
5798       if (is_final)
5799         return tls::TLSOPT_TO_LE;
5800       return tls::TLSOPT_TO_IE;
5801
5802     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5803     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5804     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5805     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5806     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5807     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5808       // These are Local-Dynamic, which refer to local symbols in the
5809       // dynamic TLS block. Since we know that we generating an
5810       // executable, we can switch to Local-Exec.
5811       return tls::TLSOPT_TO_LE;
5812
5813     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5814     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5815     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5816     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5817     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5818       // These are Initial-Exec relocs which get the thread offset
5819       // from the GOT. If we know that we are linking against the
5820       // local symbol, we can switch to Local-Exec, which links the
5821       // thread offset into the instruction.
5822       if (is_final)
5823         return tls::TLSOPT_TO_LE;
5824       return tls::TLSOPT_NONE;
5825
5826     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5827     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5828     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5829     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5830     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5831     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5832     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5833     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5834       // When we already have Local-Exec, there is nothing further we
5835       // can do.
5836       return tls::TLSOPT_NONE;
5837
5838     default:
5839       gold_unreachable();
5840     }
5841 }
5842
5843 // Returns true if this relocation type could be that of a function pointer.
5844
5845 template<int size, bool big_endian>
5846 inline bool
5847 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5848   unsigned int r_type)
5849 {
5850   switch (r_type)
5851     {
5852     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5853     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5854     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5855     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5856     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5857       {
5858         return true;
5859       }
5860     }
5861   return false;
5862 }
5863
5864 // For safe ICF, scan a relocation for a local symbol to check if it
5865 // corresponds to a function pointer being taken.  In that case mark
5866 // the function whose pointer was taken as not foldable.
5867
5868 template<int size, bool big_endian>
5869 inline bool
5870 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5871   Symbol_table* ,
5872   Layout* ,
5873   Target_aarch64<size, big_endian>* ,
5874   Sized_relobj_file<size, big_endian>* ,
5875   unsigned int ,
5876   Output_section* ,
5877   const elfcpp::Rela<size, big_endian>& ,
5878   unsigned int r_type,
5879   const elfcpp::Sym<size, big_endian>&)
5880 {
5881   // When building a shared library, do not fold any local symbols.
5882   return (parameters->options().shared()
5883           || possible_function_pointer_reloc(r_type));
5884 }
5885
5886 // For safe ICF, scan a relocation for a global symbol to check if it
5887 // corresponds to a function pointer being taken.  In that case mark
5888 // the function whose pointer was taken as not foldable.
5889
5890 template<int size, bool big_endian>
5891 inline bool
5892 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5893   Symbol_table* ,
5894   Layout* ,
5895   Target_aarch64<size, big_endian>* ,
5896   Sized_relobj_file<size, big_endian>* ,
5897   unsigned int ,
5898   Output_section* ,
5899   const elfcpp::Rela<size, big_endian>& ,
5900   unsigned int r_type,
5901   Symbol* gsym)
5902 {
5903   // When building a shared library, do not fold symbols whose visibility
5904   // is hidden, internal or protected.
5905   return ((parameters->options().shared()
5906            && (gsym->visibility() == elfcpp::STV_INTERNAL
5907                || gsym->visibility() == elfcpp::STV_PROTECTED
5908                || gsym->visibility() == elfcpp::STV_HIDDEN))
5909           || possible_function_pointer_reloc(r_type));
5910 }
5911
5912 // Report an unsupported relocation against a local symbol.
5913
5914 template<int size, bool big_endian>
5915 void
5916 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5917      Sized_relobj_file<size, big_endian>* object,
5918      unsigned int r_type)
5919 {
5920   gold_error(_("%s: unsupported reloc %u against local symbol"),
5921              object->name().c_str(), r_type);
5922 }
5923
5924 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5925 // dynamic linker does not support it, issue an error.
5926
5927 template<int size, bool big_endian>
5928 void
5929 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5930                                                       unsigned int r_type)
5931 {
5932   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5933
5934   switch (r_type)
5935     {
5936     // These are the relocation types supported by glibc for AARCH64.
5937     case elfcpp::R_AARCH64_NONE:
5938     case elfcpp::R_AARCH64_COPY:
5939     case elfcpp::R_AARCH64_GLOB_DAT:
5940     case elfcpp::R_AARCH64_JUMP_SLOT:
5941     case elfcpp::R_AARCH64_RELATIVE:
5942     case elfcpp::R_AARCH64_TLS_DTPREL64:
5943     case elfcpp::R_AARCH64_TLS_DTPMOD64:
5944     case elfcpp::R_AARCH64_TLS_TPREL64:
5945     case elfcpp::R_AARCH64_TLSDESC:
5946     case elfcpp::R_AARCH64_IRELATIVE:
5947     case elfcpp::R_AARCH64_ABS32:
5948     case elfcpp::R_AARCH64_ABS64:
5949       return;
5950
5951     default:
5952       break;
5953     }
5954
5955   // This prevents us from issuing more than one error per reloc
5956   // section. But we can still wind up issuing more than one
5957   // error per object file.
5958   if (this->issued_non_pic_error_)
5959     return;
5960   gold_assert(parameters->options().output_is_position_independent());
5961   object->error(_("requires unsupported dynamic reloc; "
5962                   "recompile with -fPIC"));
5963   this->issued_non_pic_error_ = true;
5964   return;
5965 }
5966
5967 // Return whether we need to make a PLT entry for a relocation of the
5968 // given type against a STT_GNU_IFUNC symbol.
5969
5970 template<int size, bool big_endian>
5971 bool
5972 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5973     Sized_relobj_file<size, big_endian>* object,
5974     unsigned int r_type)
5975 {
5976   const AArch64_reloc_property* arp =
5977       aarch64_reloc_property_table->get_reloc_property(r_type);
5978   gold_assert(arp != NULL);
5979
5980   int flags = arp->reference_flags();
5981   if (flags & Symbol::TLS_REF)
5982     {
5983       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5984                  object->name().c_str(), arp->name().c_str());
5985       return false;
5986     }
5987   return flags != 0;
5988 }
5989
5990 // Scan a relocation for a local symbol.
5991
5992 template<int size, bool big_endian>
5993 inline void
5994 Target_aarch64<size, big_endian>::Scan::local(
5995     Symbol_table* symtab,
5996     Layout* layout,
5997     Target_aarch64<size, big_endian>* target,
5998     Sized_relobj_file<size, big_endian>* object,
5999     unsigned int data_shndx,
6000     Output_section* output_section,
6001     const elfcpp::Rela<size, big_endian>& rela,
6002     unsigned int r_type,
6003     const elfcpp::Sym<size, big_endian>& lsym,
6004     bool is_discarded)
6005 {
6006   if (is_discarded)
6007     return;
6008
6009   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6010       Reloc_section;
6011   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6012
6013   // A local STT_GNU_IFUNC symbol may require a PLT entry.
6014   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6015   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
6016     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6017
6018   switch (r_type)
6019     {
6020     case elfcpp::R_AARCH64_NONE:
6021       break;
6022
6023     case elfcpp::R_AARCH64_ABS32:
6024     case elfcpp::R_AARCH64_ABS16:
6025       if (parameters->options().output_is_position_independent())
6026         {
6027           gold_error(_("%s: unsupported reloc %u in pos independent link."),
6028                      object->name().c_str(), r_type);
6029         }
6030       break;
6031
6032     case elfcpp::R_AARCH64_ABS64:
6033       // If building a shared library or pie, we need to mark this as a dynmic
6034       // reloction, so that the dynamic loader can relocate it.
6035       if (parameters->options().output_is_position_independent())
6036         {
6037           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6038           rela_dyn->add_local_relative(object, r_sym,
6039                                        elfcpp::R_AARCH64_RELATIVE,
6040                                        output_section,
6041                                        data_shndx,
6042                                        rela.get_r_offset(),
6043                                        rela.get_r_addend(),
6044                                        is_ifunc);
6045         }
6046       break;
6047
6048     case elfcpp::R_AARCH64_PREL64:
6049     case elfcpp::R_AARCH64_PREL32:
6050     case elfcpp::R_AARCH64_PREL16:
6051       break;
6052
6053     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6054     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6055     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6056       // The above relocations are used to access GOT entries.
6057       {
6058         Output_data_got_aarch64<size, big_endian>* got =
6059             target->got_section(symtab, layout);
6060         bool is_new = false;
6061         // This symbol requires a GOT entry.
6062         if (is_ifunc)
6063           is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6064         else
6065           is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6066         if (is_new && parameters->options().output_is_position_independent())
6067           target->rela_dyn_section(layout)->
6068             add_local_relative(object,
6069                                r_sym,
6070                                elfcpp::R_AARCH64_RELATIVE,
6071                                got,
6072                                object->local_got_offset(r_sym,
6073                                                         GOT_TYPE_STANDARD),
6074                                0,
6075                                false);
6076       }
6077       break;
6078
6079     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6080     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6081     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6082     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6083     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6084     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6085     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6086     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6087     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6088     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6089       if (parameters->options().output_is_position_independent())
6090         {
6091           gold_error(_("%s: unsupported reloc %u in pos independent link."),
6092                      object->name().c_str(), r_type);
6093         }
6094       break;
6095
6096     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6097     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6098     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6099     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6100     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6101     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6102     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6103     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6104     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6105     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6106        break;
6107
6108     // Control flow, pc-relative. We don't need to do anything for a relative
6109     // addressing relocation against a local symbol if it does not reference
6110     // the GOT.
6111     case elfcpp::R_AARCH64_TSTBR14:
6112     case elfcpp::R_AARCH64_CONDBR19:
6113     case elfcpp::R_AARCH64_JUMP26:
6114     case elfcpp::R_AARCH64_CALL26:
6115       break;
6116
6117     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6118     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6119       {
6120         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6121           optimize_tls_reloc(!parameters->options().shared(), r_type);
6122         if (tlsopt == tls::TLSOPT_TO_LE)
6123           break;
6124
6125         layout->set_has_static_tls();
6126         // Create a GOT entry for the tp-relative offset.
6127         if (!parameters->doing_static_link())
6128           {
6129             Output_data_got_aarch64<size, big_endian>* got =
6130                 target->got_section(symtab, layout);
6131             got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6132                                     target->rela_dyn_section(layout),
6133                                     elfcpp::R_AARCH64_TLS_TPREL64);
6134           }
6135         else if (!object->local_has_got_offset(r_sym,
6136                                                GOT_TYPE_TLS_OFFSET))
6137           {
6138             Output_data_got_aarch64<size, big_endian>* got =
6139                 target->got_section(symtab, layout);
6140             got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6141             unsigned int got_offset =
6142                 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6143             const elfcpp::Elf_Xword addend = rela.get_r_addend();
6144             gold_assert(addend == 0);
6145             got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6146                                   object, r_sym);
6147           }
6148       }
6149       break;
6150
6151     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6152     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6153       {
6154         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6155             optimize_tls_reloc(!parameters->options().shared(), r_type);
6156         if (tlsopt == tls::TLSOPT_TO_LE)
6157           {
6158             layout->set_has_static_tls();
6159             break;
6160           }
6161         gold_assert(tlsopt == tls::TLSOPT_NONE);
6162
6163         Output_data_got_aarch64<size, big_endian>* got =
6164             target->got_section(symtab, layout);
6165         got->add_local_pair_with_rel(object,r_sym, data_shndx,
6166                                      GOT_TYPE_TLS_PAIR,
6167                                      target->rela_dyn_section(layout),
6168                                      elfcpp::R_AARCH64_TLS_DTPMOD64);
6169       }
6170       break;
6171
6172     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6173     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6174     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6175     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6176     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6177     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6178     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6179     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6180       {
6181         layout->set_has_static_tls();
6182         bool output_is_shared = parameters->options().shared();
6183         if (output_is_shared)
6184           gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6185                      object->name().c_str(), r_type);
6186       }
6187       break;
6188
6189     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6190     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6191       {
6192         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6193             optimize_tls_reloc(!parameters->options().shared(), r_type);
6194         if (tlsopt == tls::TLSOPT_NONE)
6195           {
6196             // Create a GOT entry for the module index.
6197             target->got_mod_index_entry(symtab, layout, object);
6198           }
6199         else if (tlsopt != tls::TLSOPT_TO_LE)
6200           unsupported_reloc_local(object, r_type);
6201       }
6202       break;
6203
6204     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6205     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6206     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6207     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6208       break;
6209
6210     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6211     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6212     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6213       {
6214         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6215             optimize_tls_reloc(!parameters->options().shared(), r_type);
6216         target->define_tls_base_symbol(symtab, layout);
6217         if (tlsopt == tls::TLSOPT_NONE)
6218           {
6219             // Create reserved PLT and GOT entries for the resolver.
6220             target->reserve_tlsdesc_entries(symtab, layout);
6221
6222             // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6223             // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6224             // entry needs to be in an area in .got.plt, not .got. Call
6225             // got_section to make sure the section has been created.
6226             target->got_section(symtab, layout);
6227             Output_data_got<size, big_endian>* got =
6228                 target->got_tlsdesc_section();
6229             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6230             if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6231               {
6232                 unsigned int got_offset = got->add_constant(0);
6233                 got->add_constant(0);
6234                 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6235                                              got_offset);
6236                 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6237                 // We store the arguments we need in a vector, and use
6238                 // the index into the vector as the parameter to pass
6239                 // to the target specific routines.
6240                 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6241                 void* arg = reinterpret_cast<void*>(intarg);
6242                 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6243                                         got, got_offset, 0);
6244               }
6245           }
6246         else if (tlsopt != tls::TLSOPT_TO_LE)
6247           unsupported_reloc_local(object, r_type);
6248       }
6249       break;
6250
6251     case elfcpp::R_AARCH64_TLSDESC_CALL:
6252       break;
6253
6254     default:
6255       unsupported_reloc_local(object, r_type);
6256     }
6257 }
6258
6259
6260 // Report an unsupported relocation against a global symbol.
6261
6262 template<int size, bool big_endian>
6263 void
6264 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6265     Sized_relobj_file<size, big_endian>* object,
6266     unsigned int r_type,
6267     Symbol* gsym)
6268 {
6269   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6270              object->name().c_str(), r_type, gsym->demangled_name().c_str());
6271 }
6272
6273 template<int size, bool big_endian>
6274 inline void
6275 Target_aarch64<size, big_endian>::Scan::global(
6276     Symbol_table* symtab,
6277     Layout* layout,
6278     Target_aarch64<size, big_endian>* target,
6279     Sized_relobj_file<size, big_endian> * object,
6280     unsigned int data_shndx,
6281     Output_section* output_section,
6282     const elfcpp::Rela<size, big_endian>& rela,
6283     unsigned int r_type,
6284     Symbol* gsym)
6285 {
6286   // A STT_GNU_IFUNC symbol may require a PLT entry.
6287   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6288       && this->reloc_needs_plt_for_ifunc(object, r_type))
6289     target->make_plt_entry(symtab, layout, gsym);
6290
6291   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6292     Reloc_section;
6293   const AArch64_reloc_property* arp =
6294       aarch64_reloc_property_table->get_reloc_property(r_type);
6295   gold_assert(arp != NULL);
6296
6297   switch (r_type)
6298     {
6299     case elfcpp::R_AARCH64_NONE:
6300       break;
6301
6302     case elfcpp::R_AARCH64_ABS16:
6303     case elfcpp::R_AARCH64_ABS32:
6304     case elfcpp::R_AARCH64_ABS64:
6305       {
6306         // Make a PLT entry if necessary.
6307         if (gsym->needs_plt_entry())
6308           {
6309             target->make_plt_entry(symtab, layout, gsym);
6310             // Since this is not a PC-relative relocation, we may be
6311             // taking the address of a function. In that case we need to
6312             // set the entry in the dynamic symbol table to the address of
6313             // the PLT entry.
6314             if (gsym->is_from_dynobj() && !parameters->options().shared())
6315               gsym->set_needs_dynsym_value();
6316           }
6317         // Make a dynamic relocation if necessary.
6318         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6319           {
6320             if (!parameters->options().output_is_position_independent()
6321                 && gsym->may_need_copy_reloc())
6322               {
6323                 target->copy_reloc(symtab, layout, object,
6324                                    data_shndx, output_section, gsym, rela);
6325               }
6326             else if (r_type == elfcpp::R_AARCH64_ABS64
6327                      && gsym->type() == elfcpp::STT_GNU_IFUNC
6328                      && gsym->can_use_relative_reloc(false)
6329                      && !gsym->is_from_dynobj()
6330                      && !gsym->is_undefined()
6331                      && !gsym->is_preemptible())
6332               {
6333                 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6334                 // symbol. This makes a function address in a PIE executable
6335                 // match the address in a shared library that it links against.
6336                 Reloc_section* rela_dyn =
6337                     target->rela_irelative_section(layout);
6338                 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6339                 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6340                                                        output_section, object,
6341                                                        data_shndx,
6342                                                        rela.get_r_offset(),
6343                                                        rela.get_r_addend());
6344               }
6345             else if (r_type == elfcpp::R_AARCH64_ABS64
6346                      && gsym->can_use_relative_reloc(false))
6347               {
6348                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6349                 rela_dyn->add_global_relative(gsym,
6350                                               elfcpp::R_AARCH64_RELATIVE,
6351                                               output_section,
6352                                               object,
6353                                               data_shndx,
6354                                               rela.get_r_offset(),
6355                                               rela.get_r_addend(),
6356                                               false);
6357               }
6358             else
6359               {
6360                 check_non_pic(object, r_type);
6361                 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6362                     rela_dyn = target->rela_dyn_section(layout);
6363                 rela_dyn->add_global(
6364                   gsym, r_type, output_section, object,
6365                   data_shndx, rela.get_r_offset(),rela.get_r_addend());
6366               }
6367           }
6368       }
6369       break;
6370
6371     case elfcpp::R_AARCH64_PREL16:
6372     case elfcpp::R_AARCH64_PREL32:
6373     case elfcpp::R_AARCH64_PREL64:
6374       // This is used to fill the GOT absolute address.
6375       if (gsym->needs_plt_entry())
6376         {
6377           target->make_plt_entry(symtab, layout, gsym);
6378         }
6379       break;
6380
6381     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6382     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6383     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6384     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6385     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6386     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6387     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6388     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6389     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6390     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6391       if (parameters->options().output_is_position_independent())
6392         {
6393           gold_error(_("%s: unsupported reloc %u in pos independent link."),
6394                      object->name().c_str(), r_type);
6395         }
6396       break;
6397
6398     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6399     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6400     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6401     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6402     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6403     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6404     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6405     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6406     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6407     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6408       {
6409         if (gsym->needs_plt_entry())
6410           target->make_plt_entry(symtab, layout, gsym);
6411         // Make a dynamic relocation if necessary.
6412         if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6413           {
6414             if (parameters->options().output_is_executable()
6415                 && gsym->may_need_copy_reloc())
6416               {
6417                 target->copy_reloc(symtab, layout, object,
6418                                    data_shndx, output_section, gsym, rela);
6419               }
6420           }
6421         break;
6422       }
6423
6424     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6425     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6426     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6427       {
6428         // The above relocations are used to access GOT entries.
6429         // Note a GOT entry is an *address* to a symbol.
6430         // The symbol requires a GOT entry
6431         Output_data_got_aarch64<size, big_endian>* got =
6432           target->got_section(symtab, layout);
6433         if (gsym->final_value_is_known())
6434           {
6435             // For a STT_GNU_IFUNC symbol we want the PLT address.
6436             if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6437               got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6438             else
6439               got->add_global(gsym, GOT_TYPE_STANDARD);
6440           }
6441         else
6442           {
6443             // If this symbol is not fully resolved, we need to add a dynamic
6444             // relocation for it.
6445             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6446
6447             // Use a GLOB_DAT rather than a RELATIVE reloc if:
6448             //
6449             // 1) The symbol may be defined in some other module.
6450             // 2) We are building a shared library and this is a protected
6451             // symbol; using GLOB_DAT means that the dynamic linker can use
6452             // the address of the PLT in the main executable when appropriate
6453             // so that function address comparisons work.
6454             // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6455             // again so that function address comparisons work.
6456             if (gsym->is_from_dynobj()
6457                 || gsym->is_undefined()
6458                 || gsym->is_preemptible()
6459                 || (gsym->visibility() == elfcpp::STV_PROTECTED
6460                     && parameters->options().shared())
6461                 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6462                     && parameters->options().output_is_position_independent()))
6463               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6464                                        rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6465             else
6466               {
6467                 // For a STT_GNU_IFUNC symbol we want to write the PLT
6468                 // offset into the GOT, so that function pointer
6469                 // comparisons work correctly.
6470                 bool is_new;
6471                 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6472                   is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6473                 else
6474                   {
6475                     is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6476                     // Tell the dynamic linker to use the PLT address
6477                     // when resolving relocations.
6478                     if (gsym->is_from_dynobj()
6479                         && !parameters->options().shared())
6480                       gsym->set_needs_dynsym_value();
6481                   }
6482                 if (is_new)
6483                   {
6484                     rela_dyn->add_global_relative(
6485                         gsym, elfcpp::R_AARCH64_RELATIVE,
6486                         got,
6487                         gsym->got_offset(GOT_TYPE_STANDARD),
6488                         0,
6489                         false);
6490                   }
6491               }
6492           }
6493         break;
6494       }
6495
6496     case elfcpp::R_AARCH64_TSTBR14:
6497     case elfcpp::R_AARCH64_CONDBR19:
6498     case elfcpp::R_AARCH64_JUMP26:
6499     case elfcpp::R_AARCH64_CALL26:
6500       {
6501         if (gsym->final_value_is_known())
6502           break;
6503
6504         if (gsym->is_defined() &&
6505             !gsym->is_from_dynobj() &&
6506             !gsym->is_preemptible())
6507           break;
6508
6509         // Make plt entry for function call.
6510         target->make_plt_entry(symtab, layout, gsym);
6511         break;
6512       }
6513
6514     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6515     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
6516       {
6517         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6518             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6519         if (tlsopt == tls::TLSOPT_TO_LE)
6520           {
6521             layout->set_has_static_tls();
6522             break;
6523           }
6524         gold_assert(tlsopt == tls::TLSOPT_NONE);
6525
6526         // General dynamic.
6527         Output_data_got_aarch64<size, big_endian>* got =
6528             target->got_section(symtab, layout);
6529         // Create 2 consecutive entries for module index and offset.
6530         got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6531                                       target->rela_dyn_section(layout),
6532                                       elfcpp::R_AARCH64_TLS_DTPMOD64,
6533                                       elfcpp::R_AARCH64_TLS_DTPREL64);
6534       }
6535       break;
6536
6537     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6538     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
6539       {
6540         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6541             optimize_tls_reloc(!parameters->options().shared(), r_type);
6542         if (tlsopt == tls::TLSOPT_NONE)
6543           {
6544             // Create a GOT entry for the module index.
6545             target->got_mod_index_entry(symtab, layout, object);
6546           }
6547         else if (tlsopt != tls::TLSOPT_TO_LE)
6548           unsupported_reloc_local(object, r_type);
6549       }
6550       break;
6551
6552     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6553     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6554     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6555     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
6556       break;
6557
6558     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6559     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
6560       {
6561         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6562           optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6563         if (tlsopt == tls::TLSOPT_TO_LE)
6564           break;
6565
6566         layout->set_has_static_tls();
6567         // Create a GOT entry for the tp-relative offset.
6568         Output_data_got_aarch64<size, big_endian>* got
6569           = target->got_section(symtab, layout);
6570         if (!parameters->doing_static_link())
6571           {
6572             got->add_global_with_rel(
6573               gsym, GOT_TYPE_TLS_OFFSET,
6574               target->rela_dyn_section(layout),
6575               elfcpp::R_AARCH64_TLS_TPREL64);
6576           }
6577         if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6578           {
6579             got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6580             unsigned int got_offset =
6581               gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6582             const elfcpp::Elf_Xword addend = rela.get_r_addend();
6583             gold_assert(addend == 0);
6584             got->add_static_reloc(got_offset,
6585                                   elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6586           }
6587       }
6588       break;
6589
6590     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6591     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6592     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6593     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6594     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6595     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6596     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6597     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:  // Local executable
6598       layout->set_has_static_tls();
6599       if (parameters->options().shared())
6600         gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6601                    object->name().c_str(), r_type);
6602       break;
6603
6604     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6605     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6606     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
6607       {
6608         target->define_tls_base_symbol(symtab, layout);
6609         tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6610             optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6611         if (tlsopt == tls::TLSOPT_NONE)
6612           {
6613             // Create reserved PLT and GOT entries for the resolver.
6614             target->reserve_tlsdesc_entries(symtab, layout);
6615
6616             // Create a double GOT entry with an R_AARCH64_TLSDESC
6617             // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6618             // entry needs to be in an area in .got.plt, not .got. Call
6619             // got_section to make sure the section has been created.
6620             target->got_section(symtab, layout);
6621             Output_data_got<size, big_endian>* got =
6622                 target->got_tlsdesc_section();
6623             Reloc_section* rt = target->rela_tlsdesc_section(layout);
6624             got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6625                                           elfcpp::R_AARCH64_TLSDESC, 0);
6626           }
6627         else if (tlsopt == tls::TLSOPT_TO_IE)
6628           {
6629             // Create a GOT entry for the tp-relative offset.
6630             Output_data_got<size, big_endian>* got
6631                 = target->got_section(symtab, layout);
6632             got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6633                                      target->rela_dyn_section(layout),
6634                                      elfcpp::R_AARCH64_TLS_TPREL64);
6635           }
6636         else if (tlsopt != tls::TLSOPT_TO_LE)
6637           unsupported_reloc_global(object, r_type, gsym);
6638       }
6639       break;
6640
6641     case elfcpp::R_AARCH64_TLSDESC_CALL:
6642       break;
6643
6644     default:
6645       gold_error(_("%s: unsupported reloc type in global scan"),
6646                  aarch64_reloc_property_table->
6647                  reloc_name_in_error_message(r_type).c_str());
6648     }
6649   return;
6650 }  // End of Scan::global
6651
6652
6653 // Create the PLT section.
6654 template<int size, bool big_endian>
6655 void
6656 Target_aarch64<size, big_endian>::make_plt_section(
6657   Symbol_table* symtab, Layout* layout)
6658 {
6659   if (this->plt_ == NULL)
6660     {
6661       // Create the GOT section first.
6662       this->got_section(symtab, layout);
6663
6664       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6665                                        this->got_irelative_);
6666
6667       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6668                                       (elfcpp::SHF_ALLOC
6669                                        | elfcpp::SHF_EXECINSTR),
6670                                       this->plt_, ORDER_PLT, false);
6671
6672       // Make the sh_info field of .rela.plt point to .plt.
6673       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6674       rela_plt_os->set_info_section(this->plt_->output_section());
6675     }
6676 }
6677
6678 // Return the section for TLSDESC relocations.
6679
6680 template<int size, bool big_endian>
6681 typename Target_aarch64<size, big_endian>::Reloc_section*
6682 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6683 {
6684   return this->plt_section()->rela_tlsdesc(layout);
6685 }
6686
6687 // Create a PLT entry for a global symbol.
6688
6689 template<int size, bool big_endian>
6690 void
6691 Target_aarch64<size, big_endian>::make_plt_entry(
6692     Symbol_table* symtab,
6693     Layout* layout,
6694     Symbol* gsym)
6695 {
6696   if (gsym->has_plt_offset())
6697     return;
6698
6699   if (this->plt_ == NULL)
6700     this->make_plt_section(symtab, layout);
6701
6702   this->plt_->add_entry(symtab, layout, gsym);
6703 }
6704
6705 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6706
6707 template<int size, bool big_endian>
6708 void
6709 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6710     Symbol_table* symtab, Layout* layout,
6711     Sized_relobj_file<size, big_endian>* relobj,
6712     unsigned int local_sym_index)
6713 {
6714   if (relobj->local_has_plt_offset(local_sym_index))
6715     return;
6716   if (this->plt_ == NULL)
6717     this->make_plt_section(symtab, layout);
6718   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6719                                                               relobj,
6720                                                               local_sym_index);
6721   relobj->set_local_plt_offset(local_sym_index, plt_offset);
6722 }
6723
6724 template<int size, bool big_endian>
6725 void
6726 Target_aarch64<size, big_endian>::gc_process_relocs(
6727     Symbol_table* symtab,
6728     Layout* layout,
6729     Sized_relobj_file<size, big_endian>* object,
6730     unsigned int data_shndx,
6731     unsigned int sh_type,
6732     const unsigned char* prelocs,
6733     size_t reloc_count,
6734     Output_section* output_section,
6735     bool needs_special_offset_handling,
6736     size_t local_symbol_count,
6737     const unsigned char* plocal_symbols)
6738 {
6739   typedef Target_aarch64<size, big_endian> Aarch64;
6740   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6741       Classify_reloc;
6742
6743   if (sh_type == elfcpp::SHT_REL)
6744     {
6745       return;
6746     }
6747
6748   gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6749     symtab,
6750     layout,
6751     this,
6752     object,
6753     data_shndx,
6754     prelocs,
6755     reloc_count,
6756     output_section,
6757     needs_special_offset_handling,
6758     local_symbol_count,
6759     plocal_symbols);
6760 }
6761
6762 // Scan relocations for a section.
6763
6764 template<int size, bool big_endian>
6765 void
6766 Target_aarch64<size, big_endian>::scan_relocs(
6767     Symbol_table* symtab,
6768     Layout* layout,
6769     Sized_relobj_file<size, big_endian>* object,
6770     unsigned int data_shndx,
6771     unsigned int sh_type,
6772     const unsigned char* prelocs,
6773     size_t reloc_count,
6774     Output_section* output_section,
6775     bool needs_special_offset_handling,
6776     size_t local_symbol_count,
6777     const unsigned char* plocal_symbols)
6778 {
6779   typedef Target_aarch64<size, big_endian> Aarch64;
6780   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6781       Classify_reloc;
6782
6783   if (sh_type == elfcpp::SHT_REL)
6784     {
6785       gold_error(_("%s: unsupported REL reloc section"),
6786                  object->name().c_str());
6787       return;
6788     }
6789
6790   gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6791     symtab,
6792     layout,
6793     this,
6794     object,
6795     data_shndx,
6796     prelocs,
6797     reloc_count,
6798     output_section,
6799     needs_special_offset_handling,
6800     local_symbol_count,
6801     plocal_symbols);
6802 }
6803
6804 // Return the value to use for a dynamic which requires special
6805 // treatment.  This is how we support equality comparisons of function
6806 // pointers across shared library boundaries, as described in the
6807 // processor specific ABI supplement.
6808
6809 template<int size, bool big_endian>
6810 uint64_t
6811 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6812 {
6813   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6814   return this->plt_address_for_global(gsym);
6815 }
6816
6817
6818 // Finalize the sections.
6819
6820 template<int size, bool big_endian>
6821 void
6822 Target_aarch64<size, big_endian>::do_finalize_sections(
6823     Layout* layout,
6824     const Input_objects*,
6825     Symbol_table* symtab)
6826 {
6827   const Reloc_section* rel_plt = (this->plt_ == NULL
6828                                   ? NULL
6829                                   : this->plt_->rela_plt());
6830   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6831                                   this->rela_dyn_, true, false);
6832
6833   // Emit any relocs we saved in an attempt to avoid generating COPY
6834   // relocs.
6835   if (this->copy_relocs_.any_saved_relocs())
6836     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6837
6838   // Fill in some more dynamic tags.
6839   Output_data_dynamic* const odyn = layout->dynamic_data();
6840   if (odyn != NULL)
6841     {
6842       if (this->plt_ != NULL
6843           && this->plt_->output_section() != NULL
6844           && this->plt_ ->has_tlsdesc_entry())
6845         {
6846           unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6847           unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6848           this->got_->finalize_data_size();
6849           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6850                                         this->plt_, plt_offset);
6851           odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6852                                         this->got_, got_offset);
6853         }
6854     }
6855
6856   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6857   // the .got.plt section.
6858   Symbol* sym = this->global_offset_table_;
6859   if (sym != NULL)
6860     {
6861       uint64_t data_size = this->got_plt_->current_data_size();
6862       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6863
6864       // If the .got section is more than 0x8000 bytes, we add
6865       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6866       // bit relocations have a greater chance of working.
6867       if (data_size >= 0x8000)
6868         symtab->get_sized_symbol<size>(sym)->set_value(
6869           symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6870     }
6871
6872   if (parameters->doing_static_link()
6873       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6874     {
6875       // If linking statically, make sure that the __rela_iplt symbols
6876       // were defined if necessary, even if we didn't create a PLT.
6877       static const Define_symbol_in_segment syms[] =
6878         {
6879           {
6880             "__rela_iplt_start",        // name
6881             elfcpp::PT_LOAD,            // segment_type
6882             elfcpp::PF_W,               // segment_flags_set
6883             elfcpp::PF(0),              // segment_flags_clear
6884             0,                          // value
6885             0,                          // size
6886             elfcpp::STT_NOTYPE,         // type
6887             elfcpp::STB_GLOBAL,         // binding
6888             elfcpp::STV_HIDDEN,         // visibility
6889             0,                          // nonvis
6890             Symbol::SEGMENT_START,      // offset_from_base
6891             true                        // only_if_ref
6892           },
6893           {
6894             "__rela_iplt_end",          // name
6895             elfcpp::PT_LOAD,            // segment_type
6896             elfcpp::PF_W,               // segment_flags_set
6897             elfcpp::PF(0),              // segment_flags_clear
6898             0,                          // value
6899             0,                          // size
6900             elfcpp::STT_NOTYPE,         // type
6901             elfcpp::STB_GLOBAL,         // binding
6902             elfcpp::STV_HIDDEN,         // visibility
6903             0,                          // nonvis
6904             Symbol::SEGMENT_START,      // offset_from_base
6905             true                        // only_if_ref
6906           }
6907         };
6908
6909       symtab->define_symbols(layout, 2, syms,
6910                              layout->script_options()->saw_sections_clause());
6911     }
6912
6913   return;
6914 }
6915
6916 // Perform a relocation.
6917
6918 template<int size, bool big_endian>
6919 inline bool
6920 Target_aarch64<size, big_endian>::Relocate::relocate(
6921     const Relocate_info<size, big_endian>* relinfo,
6922     unsigned int,
6923     Target_aarch64<size, big_endian>* target,
6924     Output_section* ,
6925     size_t relnum,
6926     const unsigned char* preloc,
6927     const Sized_symbol<size>* gsym,
6928     const Symbol_value<size>* psymval,
6929     unsigned char* view,
6930     typename elfcpp::Elf_types<size>::Elf_Addr address,
6931     section_size_type /* view_size */)
6932 {
6933   if (view == NULL)
6934     return true;
6935
6936   typedef AArch64_relocate_functions<size, big_endian> Reloc;
6937
6938   const elfcpp::Rela<size, big_endian> rela(preloc);
6939   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
6940   const AArch64_reloc_property* reloc_property =
6941       aarch64_reloc_property_table->get_reloc_property(r_type);
6942
6943   if (reloc_property == NULL)
6944     {
6945       std::string reloc_name =
6946           aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6947       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6948                              _("cannot relocate %s in object file"),
6949                              reloc_name.c_str());
6950       return true;
6951     }
6952
6953   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6954
6955   // Pick the value to use for symbols defined in the PLT.
6956   Symbol_value<size> symval;
6957   if (gsym != NULL
6958       && gsym->use_plt_offset(reloc_property->reference_flags()))
6959     {
6960       symval.set_output_value(target->plt_address_for_global(gsym));
6961       psymval = &symval;
6962     }
6963   else if (gsym == NULL && psymval->is_ifunc_symbol())
6964     {
6965       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6966       if (object->local_has_plt_offset(r_sym))
6967         {
6968           symval.set_output_value(target->plt_address_for_local(object, r_sym));
6969           psymval = &symval;
6970         }
6971     }
6972
6973   const elfcpp::Elf_Xword addend = rela.get_r_addend();
6974
6975   // Get the GOT offset if needed.
6976   // For aarch64, the GOT pointer points to the start of the GOT section.
6977   bool have_got_offset = false;
6978   int got_offset = 0;
6979   int got_base = (target->got_ != NULL
6980                   ? (target->got_->current_data_size() >= 0x8000
6981                      ? 0x8000 : 0)
6982                   : 0);
6983   switch (r_type)
6984     {
6985     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6986     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6987     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6988     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6989     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6990     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6991     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6992     case elfcpp::R_AARCH64_GOTREL64:
6993     case elfcpp::R_AARCH64_GOTREL32:
6994     case elfcpp::R_AARCH64_GOT_LD_PREL19:
6995     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6996     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6997     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6998     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6999       if (gsym != NULL)
7000         {
7001           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7002           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
7003         }
7004       else
7005         {
7006           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7007           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7008           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
7009                         - got_base);
7010         }
7011       have_got_offset = true;
7012       break;
7013
7014     default:
7015       break;
7016     }
7017
7018   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
7019   typename elfcpp::Elf_types<size>::Elf_Addr value;
7020   switch (r_type)
7021     {
7022     case elfcpp::R_AARCH64_NONE:
7023       break;
7024
7025     case elfcpp::R_AARCH64_ABS64:
7026       if (!parameters->options().apply_dynamic_relocs()
7027           && parameters->options().output_is_position_independent()
7028           && gsym != NULL
7029           && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
7030           && !gsym->can_use_relative_reloc(false))
7031         // We have generated an absolute dynamic relocation, so do not
7032         // apply the relocation statically. (Works around bugs in older
7033         // Android dynamic linkers.)
7034         break;
7035       reloc_status = Reloc::template rela_ua<64>(
7036         view, object, psymval, addend, reloc_property);
7037       break;
7038
7039     case elfcpp::R_AARCH64_ABS32:
7040       if (!parameters->options().apply_dynamic_relocs()
7041           && parameters->options().output_is_position_independent()
7042           && gsym != NULL
7043           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7044         // We have generated an absolute dynamic relocation, so do not
7045         // apply the relocation statically. (Works around bugs in older
7046         // Android dynamic linkers.)
7047         break;
7048       reloc_status = Reloc::template rela_ua<32>(
7049         view, object, psymval, addend, reloc_property);
7050       break;
7051
7052     case elfcpp::R_AARCH64_ABS16:
7053       if (!parameters->options().apply_dynamic_relocs()
7054           && parameters->options().output_is_position_independent()
7055           && gsym != NULL
7056           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7057         // We have generated an absolute dynamic relocation, so do not
7058         // apply the relocation statically. (Works around bugs in older
7059         // Android dynamic linkers.)
7060         break;
7061       reloc_status = Reloc::template rela_ua<16>(
7062         view, object, psymval, addend, reloc_property);
7063       break;
7064
7065     case elfcpp::R_AARCH64_PREL64:
7066       reloc_status = Reloc::template pcrela_ua<64>(
7067         view, object, psymval, addend, address, reloc_property);
7068       break;
7069
7070     case elfcpp::R_AARCH64_PREL32:
7071       reloc_status = Reloc::template pcrela_ua<32>(
7072         view, object, psymval, addend, address, reloc_property);
7073       break;
7074
7075     case elfcpp::R_AARCH64_PREL16:
7076       reloc_status = Reloc::template pcrela_ua<16>(
7077         view, object, psymval, addend, address, reloc_property);
7078       break;
7079
7080     case elfcpp::R_AARCH64_MOVW_UABS_G0:
7081     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
7082     case elfcpp::R_AARCH64_MOVW_UABS_G1:
7083     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
7084     case elfcpp::R_AARCH64_MOVW_UABS_G2:
7085     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
7086     case elfcpp::R_AARCH64_MOVW_UABS_G3:
7087       reloc_status = Reloc::template rela_general<32>(
7088         view, object, psymval, addend, reloc_property);
7089       break;
7090     case elfcpp::R_AARCH64_MOVW_SABS_G0:
7091     case elfcpp::R_AARCH64_MOVW_SABS_G1:
7092     case elfcpp::R_AARCH64_MOVW_SABS_G2:
7093       reloc_status = Reloc::movnz(view, psymval->value(object, addend),
7094                                   reloc_property);
7095       break;
7096
7097     case elfcpp::R_AARCH64_LD_PREL_LO19:
7098       reloc_status = Reloc::template pcrela_general<32>(
7099           view, object, psymval, addend, address, reloc_property);
7100       break;
7101
7102     case elfcpp::R_AARCH64_ADR_PREL_LO21:
7103       reloc_status = Reloc::adr(view, object, psymval, addend,
7104                                 address, reloc_property);
7105       break;
7106
7107     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7108     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7109       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7110                                  reloc_property);
7111       break;
7112
7113     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7114     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7115     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7116     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7117     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7118     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7119       reloc_status = Reloc::template rela_general<32>(
7120         view, object, psymval, addend, reloc_property);
7121       break;
7122
7123     case elfcpp::R_AARCH64_CALL26:
7124       if (this->skip_call_tls_get_addr_)
7125         {
7126           // Double check that the TLSGD insn has been optimized away.
7127           typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7128           Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7129               reinterpret_cast<Insntype*>(view));
7130           gold_assert((insn & 0xff000000) == 0x91000000);
7131
7132           reloc_status = Reloc::STATUS_OKAY;
7133           this->skip_call_tls_get_addr_ = false;
7134           // Return false to stop further processing this reloc.
7135           return false;
7136         }
7137       // Fall through.
7138     case elfcpp::R_AARCH64_JUMP26:
7139       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7140                                   gsym, psymval, object,
7141                                   target->stub_group_size_))
7142         break;
7143       // Fall through.
7144     case elfcpp::R_AARCH64_TSTBR14:
7145     case elfcpp::R_AARCH64_CONDBR19:
7146       reloc_status = Reloc::template pcrela_general<32>(
7147         view, object, psymval, addend, address, reloc_property);
7148       break;
7149
7150     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7151       gold_assert(have_got_offset);
7152       value = target->got_->address() + got_base + got_offset;
7153       reloc_status = Reloc::adrp(view, value + addend, address);
7154       break;
7155
7156     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7157       gold_assert(have_got_offset);
7158       value = target->got_->address() + got_base + got_offset;
7159       reloc_status = Reloc::template rela_general<32>(
7160         view, value, addend, reloc_property);
7161       break;
7162
7163     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7164       {
7165         gold_assert(have_got_offset);
7166         value = target->got_->address() + got_base + got_offset + addend -
7167           Reloc::Page(target->got_->address() + got_base);
7168         if ((value & 7) != 0)
7169           reloc_status = Reloc::STATUS_OVERFLOW;
7170         else
7171           reloc_status = Reloc::template reloc_common<32>(
7172             view, value, reloc_property);
7173         break;
7174       }
7175
7176     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7177     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7178     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7179     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7180     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7181     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7182     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7183     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7184     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7185     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7186     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7187     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7188     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7189     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7190     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7191     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7192     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7193     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7194     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7195     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7196     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7197     case elfcpp::R_AARCH64_TLSDESC_CALL:
7198       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7199                                   gsym, psymval, view, address);
7200       break;
7201
7202     // These are dynamic relocations, which are unexpected when linking.
7203     case elfcpp::R_AARCH64_COPY:
7204     case elfcpp::R_AARCH64_GLOB_DAT:
7205     case elfcpp::R_AARCH64_JUMP_SLOT:
7206     case elfcpp::R_AARCH64_RELATIVE:
7207     case elfcpp::R_AARCH64_IRELATIVE:
7208     case elfcpp::R_AARCH64_TLS_DTPREL64:
7209     case elfcpp::R_AARCH64_TLS_DTPMOD64:
7210     case elfcpp::R_AARCH64_TLS_TPREL64:
7211     case elfcpp::R_AARCH64_TLSDESC:
7212       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7213                              _("unexpected reloc %u in object file"),
7214                              r_type);
7215       break;
7216
7217     default:
7218       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7219                              _("unsupported reloc %s"),
7220                              reloc_property->name().c_str());
7221       break;
7222     }
7223
7224   // Report any errors.
7225   switch (reloc_status)
7226     {
7227     case Reloc::STATUS_OKAY:
7228       break;
7229     case Reloc::STATUS_OVERFLOW:
7230       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7231                              _("relocation overflow in %s"),
7232                              reloc_property->name().c_str());
7233       break;
7234     case Reloc::STATUS_BAD_RELOC:
7235       gold_error_at_location(
7236           relinfo,
7237           relnum,
7238           rela.get_r_offset(),
7239           _("unexpected opcode while processing relocation %s"),
7240           reloc_property->name().c_str());
7241       break;
7242     default:
7243       gold_unreachable();
7244     }
7245
7246   return true;
7247 }
7248
7249
7250 template<int size, bool big_endian>
7251 inline
7252 typename AArch64_relocate_functions<size, big_endian>::Status
7253 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7254     const Relocate_info<size, big_endian>* relinfo,
7255     Target_aarch64<size, big_endian>* target,
7256     size_t relnum,
7257     const elfcpp::Rela<size, big_endian>& rela,
7258     unsigned int r_type, const Sized_symbol<size>* gsym,
7259     const Symbol_value<size>* psymval,
7260     unsigned char* view,
7261     typename elfcpp::Elf_types<size>::Elf_Addr address)
7262 {
7263   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7264   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7265
7266   Output_segment* tls_segment = relinfo->layout->tls_segment();
7267   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7268   const AArch64_reloc_property* reloc_property =
7269       aarch64_reloc_property_table->get_reloc_property(r_type);
7270   gold_assert(reloc_property != NULL);
7271
7272   const bool is_final = (gsym == NULL
7273                          ? !parameters->options().shared()
7274                          : gsym->final_value_is_known());
7275   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7276       optimize_tls_reloc(is_final, r_type);
7277
7278   Sized_relobj_file<size, big_endian>* object = relinfo->object;
7279   int tls_got_offset_type;
7280   switch (r_type)
7281     {
7282     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7283     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
7284       {
7285         if (tlsopt == tls::TLSOPT_TO_LE)
7286           {
7287             if (tls_segment == NULL)
7288               {
7289                 gold_assert(parameters->errors()->error_count() > 0
7290                             || issue_undefined_symbol_error(gsym));
7291                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7292               }
7293             return tls_gd_to_le(relinfo, target, rela, r_type, view,
7294                                 psymval);
7295           }
7296         else if (tlsopt == tls::TLSOPT_NONE)
7297           {
7298             tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7299             // Firstly get the address for the got entry.
7300             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7301             if (gsym != NULL)
7302               {
7303                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7304                 got_entry_address = target->got_->address() +
7305                                     gsym->got_offset(tls_got_offset_type);
7306               }
7307             else
7308               {
7309                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7310                 gold_assert(
7311                   object->local_has_got_offset(r_sym, tls_got_offset_type));
7312                 got_entry_address = target->got_->address() +
7313                   object->local_got_offset(r_sym, tls_got_offset_type);
7314               }
7315
7316             // Relocate the address into adrp/ld, adrp/add pair.
7317             switch (r_type)
7318               {
7319               case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7320                 return aarch64_reloc_funcs::adrp(
7321                   view, got_entry_address + addend, address);
7322
7323                 break;
7324
7325               case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7326                 return aarch64_reloc_funcs::template rela_general<32>(
7327                   view, got_entry_address, addend, reloc_property);
7328                 break;
7329
7330               default:
7331                 gold_unreachable();
7332               }
7333           }
7334         gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7335                                _("unsupported gd_to_ie relaxation on %u"),
7336                                r_type);
7337       }
7338       break;
7339
7340     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7341     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
7342       {
7343         if (tlsopt == tls::TLSOPT_TO_LE)
7344           {
7345             if (tls_segment == NULL)
7346               {
7347                 gold_assert(parameters->errors()->error_count() > 0
7348                             || issue_undefined_symbol_error(gsym));
7349                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7350               }
7351             return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7352                                       psymval);
7353           }
7354
7355         gold_assert(tlsopt == tls::TLSOPT_NONE);
7356         // Relocate the field with the offset of the GOT entry for
7357         // the module index.
7358         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7359         got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7360                              target->got_->address());
7361
7362         switch (r_type)
7363           {
7364           case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7365             return aarch64_reloc_funcs::adrp(
7366               view, got_entry_address + addend, address);
7367             break;
7368
7369           case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7370             return aarch64_reloc_funcs::template rela_general<32>(
7371               view, got_entry_address, addend, reloc_property);
7372             break;
7373
7374           default:
7375             gold_unreachable();
7376           }
7377       }
7378       break;
7379
7380     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7381     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7382     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7383     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
7384       {
7385         AArch64_address value = psymval->value(object, 0);
7386         if (tlsopt == tls::TLSOPT_TO_LE)
7387           {
7388             if (tls_segment == NULL)
7389               {
7390                 gold_assert(parameters->errors()->error_count() > 0
7391                             || issue_undefined_symbol_error(gsym));
7392                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7393               }
7394           }
7395         switch (r_type)
7396           {
7397           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7398             return aarch64_reloc_funcs::movnz(view, value + addend,
7399                                               reloc_property);
7400             break;
7401
7402           case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7403           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7404           case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7405             return aarch64_reloc_funcs::template rela_general<32>(
7406                 view, value, addend, reloc_property);
7407             break;
7408
7409           default:
7410             gold_unreachable();
7411           }
7412         // We should never reach here.
7413       }
7414       break;
7415
7416     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7417     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
7418       {
7419         if (tlsopt == tls::TLSOPT_TO_LE)
7420           {
7421             if (tls_segment == NULL)
7422               {
7423                 gold_assert(parameters->errors()->error_count() > 0
7424                             || issue_undefined_symbol_error(gsym));
7425                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7426               }
7427             return tls_ie_to_le(relinfo, target, rela, r_type, view,
7428                                 psymval);
7429           }
7430         tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7431
7432         // Firstly get the address for the got entry.
7433         typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7434         if (gsym != NULL)
7435           {
7436             gold_assert(gsym->has_got_offset(tls_got_offset_type));
7437             got_entry_address = target->got_->address() +
7438                                 gsym->got_offset(tls_got_offset_type);
7439           }
7440         else
7441           {
7442             unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7443             gold_assert(
7444                 object->local_has_got_offset(r_sym, tls_got_offset_type));
7445             got_entry_address = target->got_->address() +
7446                 object->local_got_offset(r_sym, tls_got_offset_type);
7447           }
7448         // Relocate the address into adrp/ld, adrp/add pair.
7449         switch (r_type)
7450           {
7451           case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7452             return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7453                                              address);
7454             break;
7455           case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7456             return aarch64_reloc_funcs::template rela_general<32>(
7457               view, got_entry_address, addend, reloc_property);
7458           default:
7459             gold_unreachable();
7460           }
7461       }
7462       // We shall never reach here.
7463       break;
7464
7465     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7466     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7467     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7468     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7469     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7470     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7471     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7472     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7473       {
7474         gold_assert(tls_segment != NULL);
7475         AArch64_address value = psymval->value(object, 0);
7476
7477         if (!parameters->options().shared())
7478           {
7479             AArch64_address aligned_tcb_size =
7480                 align_address(target->tcb_size(),
7481                               tls_segment->maximum_alignment());
7482             value += aligned_tcb_size;
7483             switch (r_type)
7484               {
7485               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7486               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7487               case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7488                 return aarch64_reloc_funcs::movnz(view, value + addend,
7489                                                   reloc_property);
7490               default:
7491                 return aarch64_reloc_funcs::template
7492                   rela_general<32>(view,
7493                                    value,
7494                                    addend,
7495                                    reloc_property);
7496               }
7497           }
7498         else
7499           gold_error(_("%s: unsupported reloc %u "
7500                        "in non-static TLSLE mode."),
7501                      object->name().c_str(), r_type);
7502       }
7503       break;
7504
7505     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7506     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7507     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7508     case elfcpp::R_AARCH64_TLSDESC_CALL:
7509       {
7510         if (tlsopt == tls::TLSOPT_TO_LE)
7511           {
7512             if (tls_segment == NULL)
7513               {
7514                 gold_assert(parameters->errors()->error_count() > 0
7515                             || issue_undefined_symbol_error(gsym));
7516                 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7517               }
7518             return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7519                                      view, psymval);
7520           }
7521         else
7522           {
7523             tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7524                                    ? GOT_TYPE_TLS_OFFSET
7525                                    : GOT_TYPE_TLS_DESC);
7526             unsigned int got_tlsdesc_offset = 0;
7527             if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7528                 && tlsopt == tls::TLSOPT_NONE)
7529               {
7530                 // We created GOT entries in the .got.tlsdesc portion of the
7531                 // .got.plt section, but the offset stored in the symbol is the
7532                 // offset within .got.tlsdesc.
7533                 got_tlsdesc_offset = (target->got_->data_size()
7534                                       + target->got_plt_section()->data_size());
7535               }
7536             typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7537             if (gsym != NULL)
7538               {
7539                 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7540                 got_entry_address = target->got_->address()
7541                                     + got_tlsdesc_offset
7542                                     + gsym->got_offset(tls_got_offset_type);
7543               }
7544             else
7545               {
7546                 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7547                 gold_assert(
7548                     object->local_has_got_offset(r_sym, tls_got_offset_type));
7549                 got_entry_address = target->got_->address() +
7550                   got_tlsdesc_offset +
7551                   object->local_got_offset(r_sym, tls_got_offset_type);
7552               }
7553             if (tlsopt == tls::TLSOPT_TO_IE)
7554               {
7555                 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7556                                          view, psymval, got_entry_address,
7557                                          address);
7558               }
7559
7560             // Now do tlsdesc relocation.
7561             switch (r_type)
7562               {
7563               case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7564                 return aarch64_reloc_funcs::adrp(view,
7565                                                  got_entry_address + addend,
7566                                                  address);
7567                 break;
7568               case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7569               case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7570                 return aarch64_reloc_funcs::template rela_general<32>(
7571                   view, got_entry_address, addend, reloc_property);
7572                 break;
7573               case elfcpp::R_AARCH64_TLSDESC_CALL:
7574                 return aarch64_reloc_funcs::STATUS_OKAY;
7575                 break;
7576               default:
7577                 gold_unreachable();
7578               }
7579           }
7580         }
7581       break;
7582
7583     default:
7584       gold_error(_("%s: unsupported TLS reloc %u."),
7585                  object->name().c_str(), r_type);
7586     }
7587   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7588 }  // End of relocate_tls.
7589
7590
7591 template<int size, bool big_endian>
7592 inline
7593 typename AArch64_relocate_functions<size, big_endian>::Status
7594 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7595              const Relocate_info<size, big_endian>* relinfo,
7596              Target_aarch64<size, big_endian>* target,
7597              const elfcpp::Rela<size, big_endian>& rela,
7598              unsigned int r_type,
7599              unsigned char* view,
7600              const Symbol_value<size>* psymval)
7601 {
7602   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7603   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7604   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7605
7606   Insntype* ip = reinterpret_cast<Insntype*>(view);
7607   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7608   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7609   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7610
7611   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7612     {
7613       // This is the 2nd relocs, optimization should already have been
7614       // done.
7615       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7616       return aarch64_reloc_funcs::STATUS_OKAY;
7617     }
7618
7619   // The original sequence is -
7620   //   90000000        adrp    x0, 0 <main>
7621   //   91000000        add     x0, x0, #0x0
7622   //   94000000        bl      0 <__tls_get_addr>
7623   // optimized to sequence -
7624   //   d53bd040        mrs     x0, tpidr_el0
7625   //   91400000        add     x0, x0, #0x0, lsl #12
7626   //   91000000        add     x0, x0, #0x0
7627
7628   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7629   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7630   // have to change "bl tls_get_addr", which does not have a corresponding tls
7631   // relocation type. So before proceeding, we need to make sure compiler
7632   // does not change the sequence.
7633   if(!(insn1 == 0x90000000      // adrp x0,0
7634        && insn2 == 0x91000000   // add x0, x0, #0x0
7635        && insn3 == 0x94000000)) // bl 0
7636     {
7637       // Ideally we should give up gd_to_le relaxation and do gd access.
7638       // However the gd_to_le relaxation decision has been made early
7639       // in the scan stage, where we did not allocate any GOT entry for
7640       // this symbol. Therefore we have to exit and report error now.
7641       gold_error(_("unexpected reloc insn sequence while relaxing "
7642                    "tls gd to le for reloc %u."), r_type);
7643       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7644     }
7645
7646   // Write new insns.
7647   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7648   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7649   insn3 = 0x91000000;  // add x0, x0, #0x0
7650   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7651   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7652   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7653
7654   // Calculate tprel value.
7655   Output_segment* tls_segment = relinfo->layout->tls_segment();
7656   gold_assert(tls_segment != NULL);
7657   AArch64_address value = psymval->value(relinfo->object, 0);
7658   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7659   AArch64_address aligned_tcb_size =
7660       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7661   AArch64_address x = value + aligned_tcb_size;
7662
7663   // After new insns are written, apply TLSLE relocs.
7664   const AArch64_reloc_property* rp1 =
7665       aarch64_reloc_property_table->get_reloc_property(
7666           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7667   const AArch64_reloc_property* rp2 =
7668       aarch64_reloc_property_table->get_reloc_property(
7669           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7670   gold_assert(rp1 != NULL && rp2 != NULL);
7671
7672   typename aarch64_reloc_funcs::Status s1 =
7673       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7674                                                      x,
7675                                                      addend,
7676                                                      rp1);
7677   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7678     return s1;
7679
7680   typename aarch64_reloc_funcs::Status s2 =
7681       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7682                                                      x,
7683                                                      addend,
7684                                                      rp2);
7685
7686   this->skip_call_tls_get_addr_ = true;
7687   return s2;
7688 }  // End of tls_gd_to_le
7689
7690
7691 template<int size, bool big_endian>
7692 inline
7693 typename AArch64_relocate_functions<size, big_endian>::Status
7694 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7695              const Relocate_info<size, big_endian>* relinfo,
7696              Target_aarch64<size, big_endian>* target,
7697              const elfcpp::Rela<size, big_endian>& rela,
7698              unsigned int r_type,
7699              unsigned char* view,
7700              const Symbol_value<size>* psymval)
7701 {
7702   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7703   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7704   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7705
7706   Insntype* ip = reinterpret_cast<Insntype*>(view);
7707   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7708   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7709   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7710
7711   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7712     {
7713       // This is the 2nd relocs, optimization should already have been
7714       // done.
7715       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7716       return aarch64_reloc_funcs::STATUS_OKAY;
7717     }
7718
7719   // The original sequence is -
7720   //   90000000        adrp    x0, 0 <main>
7721   //   91000000        add     x0, x0, #0x0
7722   //   94000000        bl      0 <__tls_get_addr>
7723   // optimized to sequence -
7724   //   d53bd040        mrs     x0, tpidr_el0
7725   //   91400000        add     x0, x0, #0x0, lsl #12
7726   //   91000000        add     x0, x0, #0x0
7727
7728   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7729   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7730   // have to change "bl tls_get_addr", which does not have a corresponding tls
7731   // relocation type. So before proceeding, we need to make sure compiler
7732   // does not change the sequence.
7733   if(!(insn1 == 0x90000000      // adrp x0,0
7734        && insn2 == 0x91000000   // add x0, x0, #0x0
7735        && insn3 == 0x94000000)) // bl 0
7736     {
7737       // Ideally we should give up gd_to_le relaxation and do gd access.
7738       // However the gd_to_le relaxation decision has been made early
7739       // in the scan stage, where we did not allocate any GOT entry for
7740       // this symbol. Therefore we have to exit and report error now.
7741       gold_error(_("unexpected reloc insn sequence while relaxing "
7742                    "tls gd to le for reloc %u."), r_type);
7743       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7744     }
7745
7746   // Write new insns.
7747   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7748   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7749   insn3 = 0x91000000;  // add x0, x0, #0x0
7750   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7751   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7752   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7753
7754   // Calculate tprel value.
7755   Output_segment* tls_segment = relinfo->layout->tls_segment();
7756   gold_assert(tls_segment != NULL);
7757   AArch64_address value = psymval->value(relinfo->object, 0);
7758   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7759   AArch64_address aligned_tcb_size =
7760       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7761   AArch64_address x = value + aligned_tcb_size;
7762
7763   // After new insns are written, apply TLSLE relocs.
7764   const AArch64_reloc_property* rp1 =
7765       aarch64_reloc_property_table->get_reloc_property(
7766           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7767   const AArch64_reloc_property* rp2 =
7768       aarch64_reloc_property_table->get_reloc_property(
7769           elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7770   gold_assert(rp1 != NULL && rp2 != NULL);
7771
7772   typename aarch64_reloc_funcs::Status s1 =
7773       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7774                                                      x,
7775                                                      addend,
7776                                                      rp1);
7777   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7778     return s1;
7779
7780   typename aarch64_reloc_funcs::Status s2 =
7781       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7782                                                      x,
7783                                                      addend,
7784                                                      rp2);
7785
7786   this->skip_call_tls_get_addr_ = true;
7787   return s2;
7788
7789 }  // End of tls_ld_to_le
7790
7791 template<int size, bool big_endian>
7792 inline
7793 typename AArch64_relocate_functions<size, big_endian>::Status
7794 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7795              const Relocate_info<size, big_endian>* relinfo,
7796              Target_aarch64<size, big_endian>* target,
7797              const elfcpp::Rela<size, big_endian>& rela,
7798              unsigned int r_type,
7799              unsigned char* view,
7800              const Symbol_value<size>* psymval)
7801 {
7802   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7803   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7804   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7805
7806   AArch64_address value = psymval->value(relinfo->object, 0);
7807   Output_segment* tls_segment = relinfo->layout->tls_segment();
7808   AArch64_address aligned_tcb_address =
7809       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7810   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7811   AArch64_address x = value + addend + aligned_tcb_address;
7812   // "x" is the offset to tp, we can only do this if x is within
7813   // range [0, 2^32-1]
7814   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7815     {
7816       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7817                  r_type);
7818       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7819     }
7820
7821   Insntype* ip = reinterpret_cast<Insntype*>(view);
7822   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7823   unsigned int regno;
7824   Insntype newinsn;
7825   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7826     {
7827       // Generate movz.
7828       regno = (insn & 0x1f);
7829       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7830     }
7831   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7832     {
7833       // Generate movk.
7834       regno = (insn & 0x1f);
7835       gold_assert(regno == ((insn >> 5) & 0x1f));
7836       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7837     }
7838   else
7839     gold_unreachable();
7840
7841   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7842   return aarch64_reloc_funcs::STATUS_OKAY;
7843 }  // End of tls_ie_to_le
7844
7845
7846 template<int size, bool big_endian>
7847 inline
7848 typename AArch64_relocate_functions<size, big_endian>::Status
7849 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7850              const Relocate_info<size, big_endian>* relinfo,
7851              Target_aarch64<size, big_endian>* target,
7852              const elfcpp::Rela<size, big_endian>& rela,
7853              unsigned int r_type,
7854              unsigned char* view,
7855              const Symbol_value<size>* psymval)
7856 {
7857   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7858   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7859   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7860
7861   // TLSDESC-GD sequence is like:
7862   //   adrp  x0, :tlsdesc:v1
7863   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7864   //   add   x0, x0, :tlsdesc_lo12:v1
7865   //   .tlsdesccall    v1
7866   //   blr   x1
7867   // After desc_gd_to_le optimization, the sequence will be like:
7868   //   movz  x0, #0x0, lsl #16
7869   //   movk  x0, #0x10
7870   //   nop
7871   //   nop
7872
7873   // Calculate tprel value.
7874   Output_segment* tls_segment = relinfo->layout->tls_segment();
7875   gold_assert(tls_segment != NULL);
7876   Insntype* ip = reinterpret_cast<Insntype*>(view);
7877   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7878   AArch64_address value = psymval->value(relinfo->object, addend);
7879   AArch64_address aligned_tcb_size =
7880       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7881   AArch64_address x = value + aligned_tcb_size;
7882   // x is the offset to tp, we can only do this if x is within range
7883   // [0, 2^32-1]. If x is out of range, fail and exit.
7884   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7885     {
7886       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7887                    "We Can't do gd_to_le relaxation.\n"), r_type);
7888       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7889     }
7890   Insntype newinsn;
7891   switch (r_type)
7892     {
7893     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7894     case elfcpp::R_AARCH64_TLSDESC_CALL:
7895       // Change to nop
7896       newinsn = 0xd503201f;
7897       break;
7898
7899     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7900       // Change to movz.
7901       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7902       break;
7903
7904     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7905       // Change to movk.
7906       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7907       break;
7908
7909     default:
7910       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7911                  r_type);
7912       gold_unreachable();
7913     }
7914   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7915   return aarch64_reloc_funcs::STATUS_OKAY;
7916 }  // End of tls_desc_gd_to_le
7917
7918
7919 template<int size, bool big_endian>
7920 inline
7921 typename AArch64_relocate_functions<size, big_endian>::Status
7922 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7923              const Relocate_info<size, big_endian>* /* relinfo */,
7924              Target_aarch64<size, big_endian>* /* target */,
7925              const elfcpp::Rela<size, big_endian>& rela,
7926              unsigned int r_type,
7927              unsigned char* view,
7928              const Symbol_value<size>* /* psymval */,
7929              typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7930              typename elfcpp::Elf_types<size>::Elf_Addr address)
7931 {
7932   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7933   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7934
7935   // TLSDESC-GD sequence is like:
7936   //   adrp  x0, :tlsdesc:v1
7937   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
7938   //   add   x0, x0, :tlsdesc_lo12:v1
7939   //   .tlsdesccall    v1
7940   //   blr   x1
7941   // After desc_gd_to_ie optimization, the sequence will be like:
7942   //   adrp  x0, :tlsie:v1
7943   //   ldr   x0, [x0, :tlsie_lo12:v1]
7944   //   nop
7945   //   nop
7946
7947   Insntype* ip = reinterpret_cast<Insntype*>(view);
7948   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7949   Insntype newinsn;
7950   switch (r_type)
7951     {
7952     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7953     case elfcpp::R_AARCH64_TLSDESC_CALL:
7954       // Change to nop
7955       newinsn = 0xd503201f;
7956       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7957       break;
7958
7959     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7960       {
7961         return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7962                                          address);
7963       }
7964       break;
7965
7966     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7967       {
7968        // Set ldr target register to be x0.
7969        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7970        insn &= 0xffffffe0;
7971        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7972        // Do relocation.
7973         const AArch64_reloc_property* reloc_property =
7974             aarch64_reloc_property_table->get_reloc_property(
7975               elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7976         return aarch64_reloc_funcs::template rela_general<32>(
7977                  view, got_entry_address, addend, reloc_property);
7978       }
7979       break;
7980
7981     default:
7982       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7983                  r_type);
7984       gold_unreachable();
7985     }
7986   return aarch64_reloc_funcs::STATUS_OKAY;
7987 }  // End of tls_desc_gd_to_ie
7988
7989 // Relocate section data.
7990
7991 template<int size, bool big_endian>
7992 void
7993 Target_aarch64<size, big_endian>::relocate_section(
7994     const Relocate_info<size, big_endian>* relinfo,
7995     unsigned int sh_type,
7996     const unsigned char* prelocs,
7997     size_t reloc_count,
7998     Output_section* output_section,
7999     bool needs_special_offset_handling,
8000     unsigned char* view,
8001     typename elfcpp::Elf_types<size>::Elf_Addr address,
8002     section_size_type view_size,
8003     const Reloc_symbol_changes* reloc_symbol_changes)
8004 {
8005   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
8006   typedef Target_aarch64<size, big_endian> Aarch64;
8007   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
8008   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8009       Classify_reloc;
8010
8011   gold_assert(sh_type == elfcpp::SHT_RELA);
8012
8013   // See if we are relocating a relaxed input section.  If so, the view
8014   // covers the whole output section and we need to adjust accordingly.
8015   if (needs_special_offset_handling)
8016     {
8017       const Output_relaxed_input_section* poris =
8018         output_section->find_relaxed_input_section(relinfo->object,
8019                                                    relinfo->data_shndx);
8020       if (poris != NULL)
8021         {
8022           Address section_address = poris->address();
8023           section_size_type section_size = poris->data_size();
8024
8025           gold_assert((section_address >= address)
8026                       && ((section_address + section_size)
8027                           <= (address + view_size)));
8028
8029           off_t offset = section_address - address;
8030           view += offset;
8031           address += offset;
8032           view_size = section_size;
8033         }
8034     }
8035
8036   gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
8037                          gold::Default_comdat_behavior, Classify_reloc>(
8038     relinfo,
8039     this,
8040     prelocs,
8041     reloc_count,
8042     output_section,
8043     needs_special_offset_handling,
8044     view,
8045     address,
8046     view_size,
8047     reloc_symbol_changes);
8048 }
8049
8050 // Scan the relocs during a relocatable link.
8051
8052 template<int size, bool big_endian>
8053 void
8054 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8055     Symbol_table* symtab,
8056     Layout* layout,
8057     Sized_relobj_file<size, big_endian>* object,
8058     unsigned int data_shndx,
8059     unsigned int sh_type,
8060     const unsigned char* prelocs,
8061     size_t reloc_count,
8062     Output_section* output_section,
8063     bool needs_special_offset_handling,
8064     size_t local_symbol_count,
8065     const unsigned char* plocal_symbols,
8066     Relocatable_relocs* rr)
8067 {
8068   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8069       Classify_reloc;
8070   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
8071       Scan_relocatable_relocs;
8072
8073   gold_assert(sh_type == elfcpp::SHT_RELA);
8074
8075   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8076     symtab,
8077     layout,
8078     object,
8079     data_shndx,
8080     prelocs,
8081     reloc_count,
8082     output_section,
8083     needs_special_offset_handling,
8084     local_symbol_count,
8085     plocal_symbols,
8086     rr);
8087 }
8088
8089 // Scan the relocs for --emit-relocs.
8090
8091 template<int size, bool big_endian>
8092 void
8093 Target_aarch64<size, big_endian>::emit_relocs_scan(
8094     Symbol_table* symtab,
8095     Layout* layout,
8096     Sized_relobj_file<size, big_endian>* object,
8097     unsigned int data_shndx,
8098     unsigned int sh_type,
8099     const unsigned char* prelocs,
8100     size_t reloc_count,
8101     Output_section* output_section,
8102     bool needs_special_offset_handling,
8103     size_t local_symbol_count,
8104     const unsigned char* plocal_syms,
8105     Relocatable_relocs* rr)
8106 {
8107   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8108       Classify_reloc;
8109   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8110       Emit_relocs_strategy;
8111
8112   gold_assert(sh_type == elfcpp::SHT_RELA);
8113
8114   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8115     symtab,
8116     layout,
8117     object,
8118     data_shndx,
8119     prelocs,
8120     reloc_count,
8121     output_section,
8122     needs_special_offset_handling,
8123     local_symbol_count,
8124     plocal_syms,
8125     rr);
8126 }
8127
8128 // Relocate a section during a relocatable link.
8129
8130 template<int size, bool big_endian>
8131 void
8132 Target_aarch64<size, big_endian>::relocate_relocs(
8133     const Relocate_info<size, big_endian>* relinfo,
8134     unsigned int sh_type,
8135     const unsigned char* prelocs,
8136     size_t reloc_count,
8137     Output_section* output_section,
8138     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8139     unsigned char* view,
8140     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8141     section_size_type view_size,
8142     unsigned char* reloc_view,
8143     section_size_type reloc_view_size)
8144 {
8145   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8146       Classify_reloc;
8147
8148   gold_assert(sh_type == elfcpp::SHT_RELA);
8149
8150   gold::relocate_relocs<size, big_endian, Classify_reloc>(
8151     relinfo,
8152     prelocs,
8153     reloc_count,
8154     output_section,
8155     offset_in_output_section,
8156     view,
8157     view_address,
8158     view_size,
8159     reloc_view,
8160     reloc_view_size);
8161 }
8162
8163
8164 // Return whether this is a 3-insn erratum sequence.
8165
8166 template<int size, bool big_endian>
8167 bool
8168 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8169     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8170     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8171     typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8172 {
8173   unsigned rt1, rt2;
8174   bool load, pair;
8175
8176   // The 2nd insn is a single register load or store; or register pair
8177   // store.
8178   if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8179       && (!pair || (pair && !load)))
8180     {
8181       // The 3rd insn is a load or store instruction from the "Load/store
8182       // register (unsigned immediate)" encoding class, using Rn as the
8183       // base address register.
8184       if (Insn_utilities::aarch64_ldst_uimm(insn3)
8185           && (Insn_utilities::aarch64_rn(insn3)
8186               == Insn_utilities::aarch64_rd(insn1)))
8187         return true;
8188     }
8189   return false;
8190 }
8191
8192
8193 // Return whether this is a 835769 sequence.
8194 // (Similarly implemented as in elfnn-aarch64.c.)
8195
8196 template<int size, bool big_endian>
8197 bool
8198 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8199     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8200     typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8201 {
8202   uint32_t rt;
8203   uint32_t rt2 = 0;
8204   uint32_t rn;
8205   uint32_t rm;
8206   uint32_t ra;
8207   bool pair;
8208   bool load;
8209
8210   if (Insn_utilities::aarch64_mlxl(insn2)
8211       && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8212     {
8213       /* Any SIMD memory op is independent of the subsequent MLA
8214          by definition of the erratum.  */
8215       if (Insn_utilities::aarch64_bit(insn1, 26))
8216         return true;
8217
8218       /* If not SIMD, check for integer memory ops and MLA relationship.  */
8219       rn = Insn_utilities::aarch64_rn(insn2);
8220       ra = Insn_utilities::aarch64_ra(insn2);
8221       rm = Insn_utilities::aarch64_rm(insn2);
8222
8223       /* If this is a load and there's a true(RAW) dependency, we are safe
8224          and this is not an erratum sequence.  */
8225       if (load &&
8226           (rt == rn || rt == rm || rt == ra
8227            || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8228         return false;
8229
8230       /* We conservatively put out stubs for all other cases (including
8231          writebacks).  */
8232       return true;
8233     }
8234
8235   return false;
8236 }
8237
8238
8239 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8240
8241 template<int size, bool big_endian>
8242 void
8243 Target_aarch64<size, big_endian>::create_erratum_stub(
8244     AArch64_relobj<size, big_endian>* relobj,
8245     unsigned int shndx,
8246     section_size_type erratum_insn_offset,
8247     Address erratum_address,
8248     typename Insn_utilities::Insntype erratum_insn,
8249     int erratum_type,
8250     unsigned int e843419_adrp_offset)
8251 {
8252   gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8253   The_stub_table* stub_table = relobj->stub_table(shndx);
8254   gold_assert(stub_table != NULL);
8255   if (stub_table->find_erratum_stub(relobj,
8256                                     shndx,
8257                                     erratum_insn_offset) == NULL)
8258     {
8259       const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8260       The_erratum_stub* stub;
8261       if (erratum_type == ST_E_835769)
8262         stub = new The_erratum_stub(relobj, erratum_type, shndx,
8263                                     erratum_insn_offset);
8264       else if (erratum_type == ST_E_843419)
8265         stub = new E843419_stub<size, big_endian>(
8266             relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8267       else
8268         gold_unreachable();
8269       stub->set_erratum_insn(erratum_insn);
8270       stub->set_erratum_address(erratum_address);
8271       // For erratum ST_E_843419 and ST_E_835769, the destination address is
8272       // always the next insn after erratum insn.
8273       stub->set_destination_address(erratum_address + BPI);
8274       stub_table->add_erratum_stub(stub);
8275     }
8276 }
8277
8278
8279 // Scan erratum for section SHNDX range [output_address + span_start,
8280 // output_address + span_end). Note here we do not share the code with
8281 // scan_erratum_843419_span function, because for 843419 we optimize by only
8282 // scanning the last few insns of a page, whereas for 835769, we need to scan
8283 // every insn.
8284
8285 template<int size, bool big_endian>
8286 void
8287 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8288     AArch64_relobj<size, big_endian>*  relobj,
8289     unsigned int shndx,
8290     const section_size_type span_start,
8291     const section_size_type span_end,
8292     unsigned char* input_view,
8293     Address output_address)
8294 {
8295   typedef typename Insn_utilities::Insntype Insntype;
8296
8297   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8298
8299   // Adjust output_address and view to the start of span.
8300   output_address += span_start;
8301   input_view += span_start;
8302
8303   section_size_type span_length = span_end - span_start;
8304   section_size_type offset = 0;
8305   for (offset = 0; offset + BPI < span_length; offset += BPI)
8306     {
8307       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8308       Insntype insn1 = ip[0];
8309       Insntype insn2 = ip[1];
8310       if (is_erratum_835769_sequence(insn1, insn2))
8311         {
8312           Insntype erratum_insn = insn2;
8313           // "span_start + offset" is the offset for insn1. So for insn2, it is
8314           // "span_start + offset + BPI".
8315           section_size_type erratum_insn_offset = span_start + offset + BPI;
8316           Address erratum_address = output_address + offset + BPI;
8317           gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8318                          "section %d, offset 0x%08x."),
8319                        relobj->name().c_str(), shndx,
8320                        (unsigned int)(span_start + offset));
8321
8322           this->create_erratum_stub(relobj, shndx,
8323                                     erratum_insn_offset, erratum_address,
8324                                     erratum_insn, ST_E_835769);
8325           offset += BPI;  // Skip mac insn.
8326         }
8327     }
8328 }  // End of "Target_aarch64::scan_erratum_835769_span".
8329
8330
8331 // Scan erratum for section SHNDX range
8332 // [output_address + span_start, output_address + span_end).
8333
8334 template<int size, bool big_endian>
8335 void
8336 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8337     AArch64_relobj<size, big_endian>*  relobj,
8338     unsigned int shndx,
8339     const section_size_type span_start,
8340     const section_size_type span_end,
8341     unsigned char* input_view,
8342     Address output_address)
8343 {
8344   typedef typename Insn_utilities::Insntype Insntype;
8345
8346   // Adjust output_address and view to the start of span.
8347   output_address += span_start;
8348   input_view += span_start;
8349
8350   if ((output_address & 0x03) != 0)
8351     return;
8352
8353   section_size_type offset = 0;
8354   section_size_type span_length = span_end - span_start;
8355   // The first instruction must be ending at 0xFF8 or 0xFFC.
8356   unsigned int page_offset = output_address & 0xFFF;
8357   // Make sure starting position, that is "output_address+offset",
8358   // starts at page position 0xff8 or 0xffc.
8359   if (page_offset < 0xff8)
8360     offset = 0xff8 - page_offset;
8361   while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8362     {
8363       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8364       Insntype insn1 = ip[0];
8365       if (Insn_utilities::is_adrp(insn1))
8366         {
8367           Insntype insn2 = ip[1];
8368           Insntype insn3 = ip[2];
8369           Insntype erratum_insn;
8370           unsigned insn_offset;
8371           bool do_report = false;
8372           if (is_erratum_843419_sequence(insn1, insn2, insn3))
8373             {
8374               do_report = true;
8375               erratum_insn = insn3;
8376               insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8377             }
8378           else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8379             {
8380               // Optionally we can have an insn between ins2 and ins3
8381               Insntype insn_opt = ip[2];
8382               // And insn_opt must not be a branch.
8383               if (!Insn_utilities::aarch64_b(insn_opt)
8384                   && !Insn_utilities::aarch64_bl(insn_opt)
8385                   && !Insn_utilities::aarch64_blr(insn_opt)
8386                   && !Insn_utilities::aarch64_br(insn_opt))
8387                 {
8388                   // And insn_opt must not write to dest reg in insn1. However
8389                   // we do a conservative scan, which means we may fix/report
8390                   // more than necessary, but it doesn't hurt.
8391
8392                   Insntype insn4 = ip[3];
8393                   if (is_erratum_843419_sequence(insn1, insn2, insn4))
8394                     {
8395                       do_report = true;
8396                       erratum_insn = insn4;
8397                       insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8398                     }
8399                 }
8400             }
8401           if (do_report)
8402             {
8403               unsigned int erratum_insn_offset =
8404                 span_start + offset + insn_offset;
8405               Address erratum_address =
8406                 output_address + offset + insn_offset;
8407               create_erratum_stub(relobj, shndx,
8408                                   erratum_insn_offset, erratum_address,
8409                                   erratum_insn, ST_E_843419,
8410                                   span_start + offset);
8411             }
8412         }
8413
8414       // Advance to next candidate instruction. We only consider instruction
8415       // sequences starting at a page offset of 0xff8 or 0xffc.
8416       page_offset = (output_address + offset) & 0xfff;
8417       if (page_offset == 0xff8)
8418         offset += 4;
8419       else  // (page_offset == 0xffc), we move to next page's 0xff8.
8420         offset += 0xffc;
8421     }
8422 }  // End of "Target_aarch64::scan_erratum_843419_span".
8423
8424
8425 // The selector for aarch64 object files.
8426
8427 template<int size, bool big_endian>
8428 class Target_selector_aarch64 : public Target_selector
8429 {
8430  public:
8431   Target_selector_aarch64();
8432
8433   virtual Target*
8434   do_instantiate_target()
8435   { return new Target_aarch64<size, big_endian>(); }
8436 };
8437
8438 template<>
8439 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8440   : Target_selector(elfcpp::EM_AARCH64, 32, true,
8441                     "elf32-bigaarch64", "aarch64_elf32_be_vec")
8442 { }
8443
8444 template<>
8445 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8446   : Target_selector(elfcpp::EM_AARCH64, 32, false,
8447                     "elf32-littleaarch64", "aarch64_elf32_le_vec")
8448 { }
8449
8450 template<>
8451 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8452   : Target_selector(elfcpp::EM_AARCH64, 64, true,
8453                     "elf64-bigaarch64", "aarch64_elf64_be_vec")
8454 { }
8455
8456 template<>
8457 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8458   : Target_selector(elfcpp::EM_AARCH64, 64, false,
8459                     "elf64-littleaarch64", "aarch64_elf64_le_vec")
8460 { }
8461
8462 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8463 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8464 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8465 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8466
8467 } // End anonymous namespace.