1 /* GObject - GLib Type, Object, Parameter and Signal Library
2 * Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General
15 * Public License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place, Suite 330,
17 * Boston, MA 02111-1307, USA.
21 * MT safe with regards to reference counting.
30 #include "gtype-private.h"
31 #include "gvaluecollector.h"
33 #include "gparamspecs.h"
34 #include "gvaluetypes.h"
35 #include "gobject_trace.h"
40 * @short_description: The base object type
41 * @see_also: #GParamSpecObject, g_param_spec_object()
43 * GObject is the fundamental type providing the common attributes and
44 * methods for all object types in GTK+, Pango and other libraries
45 * based on GObject. The GObject class provides methods for object
46 * construction and destruction, property access methods, and signal
47 * support. Signals are described in detail in <xref
48 * linkend="gobject-Signals"/>.
50 * <para id="floating-ref">
51 * GInitiallyUnowned is derived from GObject. The only difference between
52 * the two is that the initial reference of a GInitiallyUnowned is flagged
53 * as a <firstterm>floating</firstterm> reference.
54 * This means that it is not specifically claimed to be "owned" by
55 * any code portion. The main motivation for providing floating references is
56 * C convenience. In particular, it allows code to be written as:
58 * container = create_container ();
59 * container_add_child (container, create_child());
61 * If <function>container_add_child()</function> will g_object_ref_sink() the
62 * passed in child, no reference of the newly created child is leaked.
63 * Without floating references, <function>container_add_child()</function>
64 * can only g_object_ref() the new child, so to implement this code without
65 * reference leaks, it would have to be written as:
68 * container = create_container ();
69 * child = create_child ();
70 * container_add_child (container, child);
71 * g_object_unref (child);
73 * The floating reference can be converted into
74 * an ordinary reference by calling g_object_ref_sink().
75 * For already sunken objects (objects that don't have a floating reference
76 * anymore), g_object_ref_sink() is equivalent to g_object_ref() and returns
78 * Since floating references are useful almost exclusively for C convenience,
79 * language bindings that provide automated reference and memory ownership
80 * maintenance (such as smart pointers or garbage collection) should not
81 * expose floating references in their API.
84 * Some object implementations may need to save an objects floating state
85 * across certain code portions (an example is #GtkMenu), to achieve this,
86 * the following sequence can be used:
89 * /* save floating state */
90 * gboolean was_floating = g_object_is_floating (object);
91 * g_object_ref_sink (object);
92 * /* protected code portion */
94 * /* restore floating state */
96 * g_object_force_floating (object);
97 * g_object_unref (object); /* release previously acquired reference */
103 #define PARAM_SPEC_PARAM_ID(pspec) ((pspec)->param_id)
104 #define PARAM_SPEC_SET_PARAM_ID(pspec, id) ((pspec)->param_id = (id))
106 #define OBJECT_HAS_TOGGLE_REF_FLAG 0x1
107 #define OBJECT_HAS_TOGGLE_REF(object) \
108 ((g_datalist_get_flags (&(object)->qdata) & OBJECT_HAS_TOGGLE_REF_FLAG) != 0)
109 #define OBJECT_FLOATING_FLAG 0x2
111 #define CLASS_HAS_PROPS_FLAG 0x1
112 #define CLASS_HAS_PROPS(class) \
113 ((class)->flags & CLASS_HAS_PROPS_FLAG)
114 #define CLASS_HAS_CUSTOM_CONSTRUCTOR(class) \
115 ((class)->constructor != g_object_constructor)
116 #define CLASS_HAS_CUSTOM_CONSTRUCTED(class) \
117 ((class)->constructed != g_object_constructed)
119 #define CLASS_HAS_DERIVED_CLASS_FLAG 0x2
120 #define CLASS_HAS_DERIVED_CLASS(class) \
121 ((class)->flags & CLASS_HAS_DERIVED_CLASS_FLAG)
123 /* --- signals --- */
130 /* --- properties --- */
136 /* --- prototypes --- */
137 static void g_object_base_class_init (GObjectClass *class);
138 static void g_object_base_class_finalize (GObjectClass *class);
139 static void g_object_do_class_init (GObjectClass *class);
140 static void g_object_init (GObject *object,
141 GObjectClass *class);
142 static GObject* g_object_constructor (GType type,
143 guint n_construct_properties,
144 GObjectConstructParam *construct_params);
145 static void g_object_constructed (GObject *object);
146 static void g_object_real_dispose (GObject *object);
147 static void g_object_finalize (GObject *object);
148 static void g_object_do_set_property (GObject *object,
152 static void g_object_do_get_property (GObject *object,
156 static void g_value_object_init (GValue *value);
157 static void g_value_object_free_value (GValue *value);
158 static void g_value_object_copy_value (const GValue *src_value,
160 static void g_value_object_transform_value (const GValue *src_value,
162 static gpointer g_value_object_peek_pointer (const GValue *value);
163 static gchar* g_value_object_collect_value (GValue *value,
164 guint n_collect_values,
165 GTypeCValue *collect_values,
166 guint collect_flags);
167 static gchar* g_value_object_lcopy_value (const GValue *value,
168 guint n_collect_values,
169 GTypeCValue *collect_values,
170 guint collect_flags);
171 static void g_object_dispatch_properties_changed (GObject *object,
173 GParamSpec **pspecs);
174 static guint object_floating_flag_handler (GObject *object,
177 static void object_interface_check_properties (gpointer func_data,
180 /* --- typedefs --- */
181 typedef struct _GObjectNotifyQueue GObjectNotifyQueue;
183 struct _GObjectNotifyQueue
187 guint16 freeze_count;
190 /* --- variables --- */
191 G_LOCK_DEFINE_STATIC (closure_array_mutex);
192 G_LOCK_DEFINE_STATIC (weak_refs_mutex);
193 G_LOCK_DEFINE_STATIC (toggle_refs_mutex);
194 static GQuark quark_closure_array = 0;
195 static GQuark quark_weak_refs = 0;
196 static GQuark quark_toggle_refs = 0;
197 static GQuark quark_notify_queue;
198 static GParamSpecPool *pspec_pool = NULL;
199 static gulong gobject_signals[LAST_SIGNAL] = { 0, };
200 static guint (*floating_flag_handler) (GObject*, gint) = object_floating_flag_handler;
201 G_LOCK_DEFINE_STATIC (construction_mutex);
202 static GSList *construction_objects = NULL;
203 /* qdata pointing to GSList<GWeakRef *>, protected by weak_locations_lock */
204 static GQuark quark_weak_locations = 0;
205 static GRWLock weak_locations_lock;
207 G_LOCK_DEFINE_STATIC(notify_lock);
209 /* --- functions --- */
211 g_object_notify_queue_free (gpointer data)
213 GObjectNotifyQueue *nqueue = data;
215 g_slist_free (nqueue->pspecs);
216 g_slice_free (GObjectNotifyQueue, nqueue);
219 static GObjectNotifyQueue*
220 g_object_notify_queue_freeze (GObject *object,
221 gboolean conditional)
223 GObjectNotifyQueue *nqueue;
226 nqueue = g_datalist_id_get_data (&object->qdata, quark_notify_queue);
231 G_UNLOCK(notify_lock);
235 nqueue = g_slice_new0 (GObjectNotifyQueue);
236 g_datalist_id_set_data_full (&object->qdata, quark_notify_queue,
237 nqueue, g_object_notify_queue_free);
240 if (nqueue->freeze_count >= 65535)
241 g_critical("Free queue for %s (%p) is larger than 65535,"
242 " called g_object_freeze_notify() too often."
243 " Forgot to call g_object_thaw_notify() or infinite loop",
244 G_OBJECT_TYPE_NAME (object), object);
246 nqueue->freeze_count++;
247 G_UNLOCK(notify_lock);
253 g_object_notify_queue_thaw (GObject *object,
254 GObjectNotifyQueue *nqueue)
256 GParamSpec *pspecs_mem[16], **pspecs, **free_me = NULL;
260 g_return_if_fail (nqueue->freeze_count > 0);
261 g_return_if_fail (g_atomic_int_get(&object->ref_count) > 0);
265 /* Just make sure we never get into some nasty race condition */
266 if (G_UNLIKELY(nqueue->freeze_count == 0)) {
267 G_UNLOCK(notify_lock);
268 g_warning ("%s: property-changed notification for %s(%p) is not frozen",
269 G_STRFUNC, G_OBJECT_TYPE_NAME (object), object);
273 nqueue->freeze_count--;
274 if (nqueue->freeze_count) {
275 G_UNLOCK(notify_lock);
279 pspecs = nqueue->n_pspecs > 16 ? free_me = g_new (GParamSpec*, nqueue->n_pspecs) : pspecs_mem;
281 for (slist = nqueue->pspecs; slist; slist = slist->next)
283 pspecs[n_pspecs++] = slist->data;
285 g_datalist_id_set_data (&object->qdata, quark_notify_queue, NULL);
287 G_UNLOCK(notify_lock);
290 G_OBJECT_GET_CLASS (object)->dispatch_properties_changed (object, n_pspecs, pspecs);
295 g_object_notify_queue_add (GObject *object,
296 GObjectNotifyQueue *nqueue,
301 g_return_if_fail (nqueue->n_pspecs < 65535);
303 if (g_slist_find (nqueue->pspecs, pspec) == NULL)
305 nqueue->pspecs = g_slist_prepend (nqueue->pspecs, pspec);
309 G_UNLOCK(notify_lock);
312 #ifdef G_ENABLE_DEBUG
313 #define IF_DEBUG(debug_type) if (_g_type_debug_flags & G_TYPE_DEBUG_ ## debug_type)
314 G_LOCK_DEFINE_STATIC (debug_objects);
315 static volatile GObject *g_trap_object_ref = NULL;
316 static guint debug_objects_count = 0;
317 static GHashTable *debug_objects_ht = NULL;
320 debug_objects_foreach (gpointer key,
324 GObject *object = value;
326 g_message ("[%p] stale %s\tref_count=%u",
328 G_OBJECT_TYPE_NAME (object),
333 debug_objects_atexit (void)
337 G_LOCK (debug_objects);
338 g_message ("stale GObjects: %u", debug_objects_count);
339 g_hash_table_foreach (debug_objects_ht, debug_objects_foreach, NULL);
340 G_UNLOCK (debug_objects);
343 #endif /* G_ENABLE_DEBUG */
346 _g_object_type_init (void)
348 static gboolean initialized = FALSE;
349 static const GTypeFundamentalInfo finfo = {
350 G_TYPE_FLAG_CLASSED | G_TYPE_FLAG_INSTANTIATABLE | G_TYPE_FLAG_DERIVABLE | G_TYPE_FLAG_DEEP_DERIVABLE,
353 sizeof (GObjectClass),
354 (GBaseInitFunc) g_object_base_class_init,
355 (GBaseFinalizeFunc) g_object_base_class_finalize,
356 (GClassInitFunc) g_object_do_class_init,
357 NULL /* class_destroy */,
358 NULL /* class_data */,
361 (GInstanceInitFunc) g_object_init,
362 NULL, /* value_table */
364 static const GTypeValueTable value_table = {
365 g_value_object_init, /* value_init */
366 g_value_object_free_value, /* value_free */
367 g_value_object_copy_value, /* value_copy */
368 g_value_object_peek_pointer, /* value_peek_pointer */
369 "p", /* collect_format */
370 g_value_object_collect_value, /* collect_value */
371 "p", /* lcopy_format */
372 g_value_object_lcopy_value, /* lcopy_value */
376 g_return_if_fail (initialized == FALSE);
381 info.value_table = &value_table;
382 type = g_type_register_fundamental (G_TYPE_OBJECT, g_intern_static_string ("GObject"), &info, &finfo, 0);
383 g_assert (type == G_TYPE_OBJECT);
384 g_value_register_transform_func (G_TYPE_OBJECT, G_TYPE_OBJECT, g_value_object_transform_value);
386 #ifdef G_ENABLE_DEBUG
389 debug_objects_ht = g_hash_table_new (g_direct_hash, NULL);
390 g_atexit (debug_objects_atexit);
392 #endif /* G_ENABLE_DEBUG */
396 g_object_base_class_init (GObjectClass *class)
398 GObjectClass *pclass = g_type_class_peek_parent (class);
400 /* Don't inherit HAS_DERIVED_CLASS flag from parent class */
401 class->flags &= ~CLASS_HAS_DERIVED_CLASS_FLAG;
404 pclass->flags |= CLASS_HAS_DERIVED_CLASS_FLAG;
406 /* reset instance specific fields and methods that don't get inherited */
407 class->construct_properties = pclass ? g_slist_copy (pclass->construct_properties) : NULL;
408 class->get_property = NULL;
409 class->set_property = NULL;
413 g_object_base_class_finalize (GObjectClass *class)
417 _g_signals_destroy (G_OBJECT_CLASS_TYPE (class));
419 g_slist_free (class->construct_properties);
420 class->construct_properties = NULL;
421 list = g_param_spec_pool_list_owned (pspec_pool, G_OBJECT_CLASS_TYPE (class));
422 for (node = list; node; node = node->next)
424 GParamSpec *pspec = node->data;
426 g_param_spec_pool_remove (pspec_pool, pspec);
427 PARAM_SPEC_SET_PARAM_ID (pspec, 0);
428 g_param_spec_unref (pspec);
434 g_object_do_class_init (GObjectClass *class)
436 /* read the comment about typedef struct CArray; on why not to change this quark */
437 quark_closure_array = g_quark_from_static_string ("GObject-closure-array");
439 quark_weak_refs = g_quark_from_static_string ("GObject-weak-references");
440 quark_weak_locations = g_quark_from_static_string ("GObject-weak-locations");
441 quark_toggle_refs = g_quark_from_static_string ("GObject-toggle-references");
442 quark_notify_queue = g_quark_from_static_string ("GObject-notify-queue");
443 pspec_pool = g_param_spec_pool_new (TRUE);
445 class->constructor = g_object_constructor;
446 class->constructed = g_object_constructed;
447 class->set_property = g_object_do_set_property;
448 class->get_property = g_object_do_get_property;
449 class->dispose = g_object_real_dispose;
450 class->finalize = g_object_finalize;
451 class->dispatch_properties_changed = g_object_dispatch_properties_changed;
452 class->notify = NULL;
456 * @gobject: the object which received the signal.
457 * @pspec: the #GParamSpec of the property which changed.
459 * The notify signal is emitted on an object when one of its
460 * properties has been changed. Note that getting this signal
461 * doesn't guarantee that the value of the property has actually
462 * changed, it may also be emitted when the setter for the property
463 * is called to reinstate the previous value.
465 * This signal is typically used to obtain change notification for a
466 * single property, by specifying the property name as a detail in the
467 * g_signal_connect() call, like this:
469 * g_signal_connect (text_view->buffer, "notify::paste-target-list",
470 * G_CALLBACK (gtk_text_view_target_list_notify),
473 * It is important to note that you must use
474 * <link linkend="canonical-parameter-name">canonical</link> parameter names as
475 * detail strings for the notify signal.
477 gobject_signals[NOTIFY] =
478 g_signal_new (g_intern_static_string ("notify"),
479 G_TYPE_FROM_CLASS (class),
480 G_SIGNAL_RUN_FIRST | G_SIGNAL_NO_RECURSE | G_SIGNAL_DETAILED | G_SIGNAL_NO_HOOKS | G_SIGNAL_ACTION,
481 G_STRUCT_OFFSET (GObjectClass, notify),
483 g_cclosure_marshal_VOID__PARAM,
487 /* Install a check function that we'll use to verify that classes that
488 * implement an interface implement all properties for that interface
490 g_type_add_interface_check (NULL, object_interface_check_properties);
494 install_property_internal (GType g_type,
498 if (g_param_spec_pool_lookup (pspec_pool, pspec->name, g_type, FALSE))
500 g_warning ("When installing property: type `%s' already has a property named `%s'",
501 g_type_name (g_type),
506 g_param_spec_ref_sink (pspec);
507 PARAM_SPEC_SET_PARAM_ID (pspec, property_id);
508 g_param_spec_pool_insert (pspec_pool, pspec, g_type);
512 * g_object_class_install_property:
513 * @oclass: a #GObjectClass
514 * @property_id: the id for the new property
515 * @pspec: the #GParamSpec for the new property
517 * Installs a new property. This is usually done in the class initializer.
519 * Note that it is possible to redefine a property in a derived class,
520 * by installing a property with the same name. This can be useful at times,
521 * e.g. to change the range of allowed values or the default value.
524 g_object_class_install_property (GObjectClass *class,
528 g_return_if_fail (G_IS_OBJECT_CLASS (class));
529 g_return_if_fail (G_IS_PARAM_SPEC (pspec));
531 if (CLASS_HAS_DERIVED_CLASS (class))
532 g_error ("Attempt to add property %s::%s to class after it was derived",
533 G_OBJECT_CLASS_NAME (class), pspec->name);
535 class->flags |= CLASS_HAS_PROPS_FLAG;
537 g_return_if_fail (pspec->flags & (G_PARAM_READABLE | G_PARAM_WRITABLE));
538 if (pspec->flags & G_PARAM_WRITABLE)
539 g_return_if_fail (class->set_property != NULL);
540 if (pspec->flags & G_PARAM_READABLE)
541 g_return_if_fail (class->get_property != NULL);
542 g_return_if_fail (property_id > 0);
543 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec) == 0); /* paranoid */
544 if (pspec->flags & G_PARAM_CONSTRUCT)
545 g_return_if_fail ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) == 0);
546 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
547 g_return_if_fail (pspec->flags & G_PARAM_WRITABLE);
549 install_property_internal (G_OBJECT_CLASS_TYPE (class), property_id, pspec);
551 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
552 class->construct_properties = g_slist_prepend (class->construct_properties, pspec);
554 /* for property overrides of construct properties, we have to get rid
555 * of the overidden inherited construct property
557 pspec = g_param_spec_pool_lookup (pspec_pool, pspec->name, g_type_parent (G_OBJECT_CLASS_TYPE (class)), TRUE);
558 if (pspec && pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
559 class->construct_properties = g_slist_remove (class->construct_properties, pspec);
563 * g_object_class_install_properties:
564 * @oclass: a #GObjectClass
565 * @n_pspecs: the length of the #GParamSpec<!-- -->s array
566 * @pspecs: (array length=n_pspecs): the #GParamSpec<!-- -->s array
567 * defining the new properties
569 * Installs new properties from an array of #GParamSpec<!-- -->s. This is
570 * usually done in the class initializer.
572 * The property id of each property is the index of each #GParamSpec in
575 * The property id of 0 is treated specially by #GObject and it should not
576 * be used to store a #GParamSpec.
578 * This function should be used if you plan to use a static array of
579 * #GParamSpec<!-- -->s and g_object_notify_by_pspec(). For instance, this
580 * class initialization:
584 * PROP_0, PROP_FOO, PROP_BAR, N_PROPERTIES
587 * static GParamSpec *obj_properties[N_PROPERTIES] = { NULL, };
590 * my_object_class_init (MyObjectClass *klass)
592 * GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
594 * obj_properties[PROP_FOO] =
595 * g_param_spec_int ("foo", "Foo", "Foo",
598 * G_PARAM_READWRITE);
600 * obj_properties[PROP_BAR] =
601 * g_param_spec_string ("bar", "Bar", "Bar",
603 * G_PARAM_READWRITE);
605 * gobject_class->set_property = my_object_set_property;
606 * gobject_class->get_property = my_object_get_property;
607 * g_object_class_install_properties (gobject_class,
613 * allows calling g_object_notify_by_pspec() to notify of property changes:
617 * my_object_set_foo (MyObject *self, gint foo)
619 * if (self->foo != foo)
622 * g_object_notify_by_pspec (G_OBJECT (self), obj_properties[PROP_FOO]);
630 g_object_class_install_properties (GObjectClass *oclass,
634 GType oclass_type, parent_type;
637 g_return_if_fail (G_IS_OBJECT_CLASS (oclass));
638 g_return_if_fail (n_pspecs > 1);
639 g_return_if_fail (pspecs[0] == NULL);
641 if (CLASS_HAS_DERIVED_CLASS (oclass))
642 g_error ("Attempt to add properties to %s after it was derived",
643 G_OBJECT_CLASS_NAME (oclass));
645 oclass_type = G_OBJECT_CLASS_TYPE (oclass);
646 parent_type = g_type_parent (oclass_type);
648 /* we skip the first element of the array as it would have a 0 prop_id */
649 for (i = 1; i < n_pspecs; i++)
651 GParamSpec *pspec = pspecs[i];
653 g_return_if_fail (pspec != NULL);
655 if (pspec->flags & G_PARAM_WRITABLE)
656 g_return_if_fail (oclass->set_property != NULL);
657 if (pspec->flags & G_PARAM_READABLE)
658 g_return_if_fail (oclass->get_property != NULL);
659 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec) == 0); /* paranoid */
660 if (pspec->flags & G_PARAM_CONSTRUCT)
661 g_return_if_fail ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) == 0);
662 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
663 g_return_if_fail (pspec->flags & G_PARAM_WRITABLE);
665 oclass->flags |= CLASS_HAS_PROPS_FLAG;
666 install_property_internal (oclass_type, i, pspec);
668 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
669 oclass->construct_properties = g_slist_prepend (oclass->construct_properties, pspec);
671 /* for property overrides of construct properties, we have to get rid
672 * of the overidden inherited construct property
674 pspec = g_param_spec_pool_lookup (pspec_pool, pspec->name, parent_type, TRUE);
675 if (pspec && pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
676 oclass->construct_properties = g_slist_remove (oclass->construct_properties, pspec);
681 * g_object_interface_install_property:
682 * @g_iface: any interface vtable for the interface, or the default
683 * vtable for the interface.
684 * @pspec: the #GParamSpec for the new property
686 * Add a property to an interface; this is only useful for interfaces
687 * that are added to GObject-derived types. Adding a property to an
688 * interface forces all objects classes with that interface to have a
689 * compatible property. The compatible property could be a newly
690 * created #GParamSpec, but normally
691 * g_object_class_override_property() will be used so that the object
692 * class only needs to provide an implementation and inherits the
693 * property description, default value, bounds, and so forth from the
694 * interface property.
696 * This function is meant to be called from the interface's default
697 * vtable initialization function (the @class_init member of
698 * #GTypeInfo.) It must not be called after after @class_init has
699 * been called for any object types implementing this interface.
704 g_object_interface_install_property (gpointer g_iface,
707 GTypeInterface *iface_class = g_iface;
709 g_return_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type));
710 g_return_if_fail (G_IS_PARAM_SPEC (pspec));
711 g_return_if_fail (!G_IS_PARAM_SPEC_OVERRIDE (pspec)); /* paranoid */
712 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec) == 0); /* paranoid */
714 g_return_if_fail (pspec->flags & (G_PARAM_READABLE | G_PARAM_WRITABLE));
715 if (pspec->flags & G_PARAM_CONSTRUCT)
716 g_return_if_fail ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) == 0);
717 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
718 g_return_if_fail (pspec->flags & G_PARAM_WRITABLE);
720 install_property_internal (iface_class->g_type, 0, pspec);
724 * g_object_class_find_property:
725 * @oclass: a #GObjectClass
726 * @property_name: the name of the property to look up
728 * Looks up the #GParamSpec for a property of a class.
730 * Returns: (transfer none): the #GParamSpec for the property, or
731 * %NULL if the class doesn't have a property of that name
734 g_object_class_find_property (GObjectClass *class,
735 const gchar *property_name)
738 GParamSpec *redirect;
740 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL);
741 g_return_val_if_fail (property_name != NULL, NULL);
743 pspec = g_param_spec_pool_lookup (pspec_pool,
745 G_OBJECT_CLASS_TYPE (class),
749 redirect = g_param_spec_get_redirect_target (pspec);
760 * g_object_interface_find_property:
761 * @g_iface: any interface vtable for the interface, or the default
762 * vtable for the interface
763 * @property_name: name of a property to lookup.
765 * Find the #GParamSpec with the given name for an
766 * interface. Generally, the interface vtable passed in as @g_iface
767 * will be the default vtable from g_type_default_interface_ref(), or,
768 * if you know the interface has already been loaded,
769 * g_type_default_interface_peek().
773 * Returns: (transfer none): the #GParamSpec for the property of the
774 * interface with the name @property_name, or %NULL if no
775 * such property exists.
778 g_object_interface_find_property (gpointer g_iface,
779 const gchar *property_name)
781 GTypeInterface *iface_class = g_iface;
783 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type), NULL);
784 g_return_val_if_fail (property_name != NULL, NULL);
786 return g_param_spec_pool_lookup (pspec_pool,
793 * g_object_class_override_property:
794 * @oclass: a #GObjectClass
795 * @property_id: the new property ID
796 * @name: the name of a property registered in a parent class or
797 * in an interface of this class.
799 * Registers @property_id as referring to a property with the
800 * name @name in a parent class or in an interface implemented
801 * by @oclass. This allows this class to <firstterm>override</firstterm>
802 * a property implementation in a parent class or to provide
803 * the implementation of a property from an interface.
806 * Internally, overriding is implemented by creating a property of type
807 * #GParamSpecOverride; generally operations that query the properties of
808 * the object class, such as g_object_class_find_property() or
809 * g_object_class_list_properties() will return the overridden
810 * property. However, in one case, the @construct_properties argument of
811 * the @constructor virtual function, the #GParamSpecOverride is passed
812 * instead, so that the @param_id field of the #GParamSpec will be
813 * correct. For virtually all uses, this makes no difference. If you
814 * need to get the overridden property, you can call
815 * g_param_spec_get_redirect_target().
821 g_object_class_override_property (GObjectClass *oclass,
825 GParamSpec *overridden = NULL;
829 g_return_if_fail (G_IS_OBJECT_CLASS (oclass));
830 g_return_if_fail (property_id > 0);
831 g_return_if_fail (name != NULL);
833 /* Find the overridden property; first check parent types
835 parent_type = g_type_parent (G_OBJECT_CLASS_TYPE (oclass));
836 if (parent_type != G_TYPE_NONE)
837 overridden = g_param_spec_pool_lookup (pspec_pool,
846 /* Now check interfaces
848 ifaces = g_type_interfaces (G_OBJECT_CLASS_TYPE (oclass), &n_ifaces);
849 while (n_ifaces-- && !overridden)
851 overridden = g_param_spec_pool_lookup (pspec_pool,
862 g_warning ("%s: Can't find property to override for '%s::%s'",
863 G_STRFUNC, G_OBJECT_CLASS_NAME (oclass), name);
867 new = g_param_spec_override (name, overridden);
868 g_object_class_install_property (oclass, property_id, new);
872 * g_object_class_list_properties:
873 * @oclass: a #GObjectClass
874 * @n_properties: (out): return location for the length of the returned array
876 * Get an array of #GParamSpec* for all properties of a class.
878 * Returns: (array length=n_properties) (transfer container): an array of
879 * #GParamSpec* which should be freed after use
881 GParamSpec** /* free result */
882 g_object_class_list_properties (GObjectClass *class,
883 guint *n_properties_p)
888 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL);
890 pspecs = g_param_spec_pool_list (pspec_pool,
891 G_OBJECT_CLASS_TYPE (class),
900 * g_object_interface_list_properties:
901 * @g_iface: any interface vtable for the interface, or the default
902 * vtable for the interface
903 * @n_properties_p: (out): location to store number of properties returned.
905 * Lists the properties of an interface.Generally, the interface
906 * vtable passed in as @g_iface will be the default vtable from
907 * g_type_default_interface_ref(), or, if you know the interface has
908 * already been loaded, g_type_default_interface_peek().
912 * Returns: (array length=n_properties_p) (transfer container): a
913 * pointer to an array of pointers to #GParamSpec
914 * structures. The paramspecs are owned by GLib, but the
915 * array should be freed with g_free() when you are done with
919 g_object_interface_list_properties (gpointer g_iface,
920 guint *n_properties_p)
922 GTypeInterface *iface_class = g_iface;
926 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type), NULL);
928 pspecs = g_param_spec_pool_list (pspec_pool,
938 g_object_init (GObject *object,
941 object->ref_count = 1;
942 object->qdata = NULL;
944 if (CLASS_HAS_PROPS (class))
946 /* freeze object's notification queue, g_object_newv() preserves pairedness */
947 g_object_notify_queue_freeze (object, FALSE);
950 if (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
952 /* enter construction list for notify_queue_thaw() and to allow construct-only properties */
953 G_LOCK (construction_mutex);
954 construction_objects = g_slist_prepend (construction_objects, object);
955 G_UNLOCK (construction_mutex);
958 #ifdef G_ENABLE_DEBUG
961 G_LOCK (debug_objects);
962 debug_objects_count++;
963 g_hash_table_insert (debug_objects_ht, object, object);
964 G_UNLOCK (debug_objects);
966 #endif /* G_ENABLE_DEBUG */
970 g_object_do_set_property (GObject *object,
978 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
984 g_object_do_get_property (GObject *object,
992 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
998 g_object_real_dispose (GObject *object)
1000 g_signal_handlers_destroy (object);
1001 g_datalist_id_set_data (&object->qdata, quark_closure_array, NULL);
1002 g_datalist_id_set_data (&object->qdata, quark_weak_refs, NULL);
1006 g_object_finalize (GObject *object)
1008 g_datalist_clear (&object->qdata);
1010 #ifdef G_ENABLE_DEBUG
1013 G_LOCK (debug_objects);
1014 g_assert (g_hash_table_lookup (debug_objects_ht, object) == object);
1015 g_hash_table_remove (debug_objects_ht, object);
1016 debug_objects_count--;
1017 G_UNLOCK (debug_objects);
1019 #endif /* G_ENABLE_DEBUG */
1024 g_object_dispatch_properties_changed (GObject *object,
1026 GParamSpec **pspecs)
1030 for (i = 0; i < n_pspecs; i++)
1031 g_signal_emit (object, gobject_signals[NOTIFY], g_quark_from_string (pspecs[i]->name), pspecs[i]);
1035 * g_object_run_dispose:
1036 * @object: a #GObject
1038 * Releases all references to other objects. This can be used to break
1041 * This functions should only be called from object system implementations.
1044 g_object_run_dispose (GObject *object)
1046 g_return_if_fail (G_IS_OBJECT (object));
1047 g_return_if_fail (object->ref_count > 0);
1049 g_object_ref (object);
1050 TRACE (GOBJECT_OBJECT_DISPOSE(object,G_TYPE_FROM_INSTANCE(object), 0));
1051 G_OBJECT_GET_CLASS (object)->dispose (object);
1052 TRACE (GOBJECT_OBJECT_DISPOSE_END(object,G_TYPE_FROM_INSTANCE(object), 0));
1053 g_object_unref (object);
1057 * g_object_freeze_notify:
1058 * @object: a #GObject
1060 * Increases the freeze count on @object. If the freeze count is
1061 * non-zero, the emission of "notify" signals on @object is
1062 * stopped. The signals are queued until the freeze count is decreased
1065 * This is necessary for accessors that modify multiple properties to prevent
1066 * premature notification while the object is still being modified.
1069 g_object_freeze_notify (GObject *object)
1071 g_return_if_fail (G_IS_OBJECT (object));
1073 if (g_atomic_int_get (&object->ref_count) == 0)
1076 g_object_ref (object);
1077 g_object_notify_queue_freeze (object, FALSE);
1078 g_object_unref (object);
1082 get_notify_pspec (GParamSpec *pspec)
1084 GParamSpec *redirected;
1086 /* we don't notify on non-READABLE parameters */
1087 if (~pspec->flags & G_PARAM_READABLE)
1090 /* if the paramspec is redirected, notify on the target */
1091 redirected = g_param_spec_get_redirect_target (pspec);
1092 if (redirected != NULL)
1095 /* else, notify normally */
1100 g_object_notify_by_spec_internal (GObject *object,
1103 GParamSpec *notify_pspec;
1105 notify_pspec = get_notify_pspec (pspec);
1107 if (notify_pspec != NULL)
1109 GObjectNotifyQueue *nqueue;
1111 /* conditional freeze: only increase freeze count if already frozen */
1112 nqueue = g_object_notify_queue_freeze (object, TRUE);
1116 /* we're frozen, so add to the queue and release our freeze */
1117 g_object_notify_queue_add (object, nqueue, notify_pspec);
1118 g_object_notify_queue_thaw (object, nqueue);
1121 /* not frozen, so just dispatch the notification directly */
1122 G_OBJECT_GET_CLASS (object)
1123 ->dispatch_properties_changed (object, 1, ¬ify_pspec);
1129 * @object: a #GObject
1130 * @property_name: the name of a property installed on the class of @object.
1132 * Emits a "notify" signal for the property @property_name on @object.
1134 * When possible, eg. when signaling a property change from within the class
1135 * that registered the property, you should use g_object_notify_by_pspec()
1139 g_object_notify (GObject *object,
1140 const gchar *property_name)
1144 g_return_if_fail (G_IS_OBJECT (object));
1145 g_return_if_fail (property_name != NULL);
1146 if (g_atomic_int_get (&object->ref_count) == 0)
1149 g_object_ref (object);
1150 /* We don't need to get the redirect target
1151 * (by, e.g. calling g_object_class_find_property())
1152 * because g_object_notify_queue_add() does that
1154 pspec = g_param_spec_pool_lookup (pspec_pool,
1156 G_OBJECT_TYPE (object),
1160 g_warning ("%s: object class `%s' has no property named `%s'",
1162 G_OBJECT_TYPE_NAME (object),
1165 g_object_notify_by_spec_internal (object, pspec);
1166 g_object_unref (object);
1170 * g_object_notify_by_pspec:
1171 * @object: a #GObject
1172 * @pspec: the #GParamSpec of a property installed on the class of @object.
1174 * Emits a "notify" signal for the property specified by @pspec on @object.
1176 * This function omits the property name lookup, hence it is faster than
1177 * g_object_notify().
1179 * One way to avoid using g_object_notify() from within the
1180 * class that registered the properties, and using g_object_notify_by_pspec()
1181 * instead, is to store the GParamSpec used with
1182 * g_object_class_install_property() inside a static array, e.g.:
1192 * static GParamSpec *properties[PROP_LAST];
1195 * my_object_class_init (MyObjectClass *klass)
1197 * properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
1200 * G_PARAM_READWRITE);
1201 * g_object_class_install_property (gobject_class,
1203 * properties[PROP_FOO]);
1207 * and then notify a change on the "foo" property with:
1210 * g_object_notify_by_pspec (self, properties[PROP_FOO]);
1216 g_object_notify_by_pspec (GObject *object,
1220 g_return_if_fail (G_IS_OBJECT (object));
1221 g_return_if_fail (G_IS_PARAM_SPEC (pspec));
1223 g_object_ref (object);
1224 g_object_notify_by_spec_internal (object, pspec);
1225 g_object_unref (object);
1229 * g_object_thaw_notify:
1230 * @object: a #GObject
1232 * Reverts the effect of a previous call to
1233 * g_object_freeze_notify(). The freeze count is decreased on @object
1234 * and when it reaches zero, all queued "notify" signals are emitted.
1236 * It is an error to call this function when the freeze count is zero.
1239 g_object_thaw_notify (GObject *object)
1241 GObjectNotifyQueue *nqueue;
1243 g_return_if_fail (G_IS_OBJECT (object));
1244 if (g_atomic_int_get (&object->ref_count) == 0)
1247 g_object_ref (object);
1249 /* FIXME: Freezing is the only way to get at the notify queue.
1250 * So we freeze once and then thaw twice.
1252 nqueue = g_object_notify_queue_freeze (object, FALSE);
1253 g_object_notify_queue_thaw (object, nqueue);
1254 g_object_notify_queue_thaw (object, nqueue);
1256 g_object_unref (object);
1260 object_get_property (GObject *object,
1264 GObjectClass *class = g_type_class_peek (pspec->owner_type);
1265 guint param_id = PARAM_SPEC_PARAM_ID (pspec);
1266 GParamSpec *redirect;
1270 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1271 g_type_name (pspec->owner_type), pspec->name, g_type_name (pspec->owner_type));
1275 redirect = g_param_spec_get_redirect_target (pspec);
1279 class->get_property (object, param_id, value, pspec);
1283 object_set_property (GObject *object,
1285 const GValue *value,
1286 GObjectNotifyQueue *nqueue)
1288 GValue tmp_value = G_VALUE_INIT;
1289 GObjectClass *class = g_type_class_peek (pspec->owner_type);
1290 guint param_id = PARAM_SPEC_PARAM_ID (pspec);
1291 GParamSpec *redirect;
1292 static const gchar * enable_diagnostic = NULL;
1296 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1297 g_type_name (pspec->owner_type), pspec->name, g_type_name (pspec->owner_type));
1301 redirect = g_param_spec_get_redirect_target (pspec);
1305 if (G_UNLIKELY (!enable_diagnostic))
1307 enable_diagnostic = g_getenv ("G_ENABLE_DIAGNOSTIC");
1308 if (!enable_diagnostic)
1309 enable_diagnostic = "0";
1312 if (enable_diagnostic[0] == '1')
1314 if (pspec->flags & G_PARAM_DEPRECATED)
1315 g_warning ("The property %s:%s is deprecated and shouldn't be used "
1316 "anymore. It will be removed in a future version.",
1317 G_OBJECT_TYPE_NAME (object), pspec->name);
1320 /* provide a copy to work from, convert (if necessary) and validate */
1321 g_value_init (&tmp_value, pspec->value_type);
1322 if (!g_value_transform (value, &tmp_value))
1323 g_warning ("unable to set property `%s' of type `%s' from value of type `%s'",
1325 g_type_name (pspec->value_type),
1326 G_VALUE_TYPE_NAME (value));
1327 else if (g_param_value_validate (pspec, &tmp_value) && !(pspec->flags & G_PARAM_LAX_VALIDATION))
1329 gchar *contents = g_strdup_value_contents (value);
1331 g_warning ("value \"%s\" of type `%s' is invalid or out of range for property `%s' of type `%s'",
1333 G_VALUE_TYPE_NAME (value),
1335 g_type_name (pspec->value_type));
1340 GParamSpec *notify_pspec;
1342 class->set_property (object, param_id, &tmp_value, pspec);
1344 notify_pspec = get_notify_pspec (pspec);
1346 if (notify_pspec != NULL)
1347 g_object_notify_queue_add (object, nqueue, notify_pspec);
1349 g_value_unset (&tmp_value);
1353 object_interface_check_properties (gpointer func_data,
1356 GTypeInterface *iface_class = g_iface;
1357 GObjectClass *class;
1358 GType iface_type = iface_class->g_type;
1359 GParamSpec **pspecs;
1362 class = g_type_class_ref (iface_class->g_instance_type);
1364 if (!G_IS_OBJECT_CLASS (class))
1367 pspecs = g_param_spec_pool_list (pspec_pool, iface_type, &n);
1371 GParamSpec *class_pspec = g_param_spec_pool_lookup (pspec_pool,
1373 G_OBJECT_CLASS_TYPE (class),
1378 g_critical ("Object class %s doesn't implement property "
1379 "'%s' from interface '%s'",
1380 g_type_name (G_OBJECT_CLASS_TYPE (class)),
1382 g_type_name (iface_type));
1387 /* We do a number of checks on the properties of an interface to
1388 * make sure that all classes implementing the interface are
1389 * overriding the properties in a sane way.
1391 * We do the checks in order of importance so that we can give
1392 * more useful error messages first.
1394 * First, we check that the implementation doesn't remove the
1395 * basic functionality (readability, writability) advertised by
1396 * the interface. Next, we check that it doesn't introduce
1397 * additional restrictions (such as construct-only). Finally, we
1398 * make sure the types are compatible.
1401 #define SUBSET(a,b,mask) (((a) & ~(b) & (mask)) == 0)
1402 /* If the property on the interface is readable then the
1403 * implementation must be readable. If the interface is writable
1404 * then the implementation must be writable.
1406 if (!SUBSET (pspecs[n]->flags, class_pspec->flags, G_PARAM_READABLE | G_PARAM_WRITABLE))
1408 g_critical ("Flags for property '%s' on class '%s' remove functionality compared with the "
1409 "property on interface '%s'\n", pspecs[n]->name,
1410 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type));
1414 /* If the property on the interface is writable then we need to
1415 * make sure the implementation doesn't introduce new restrictions
1416 * on that writability (ie: construct-only).
1418 * If the interface was not writable to begin with then we don't
1419 * really have any problems here because "writable at construct
1420 * type only" is still more permissive than "read only".
1422 if (pspecs[n]->flags & G_PARAM_WRITABLE)
1424 if (!SUBSET (class_pspec->flags, pspecs[n]->flags, G_PARAM_CONSTRUCT_ONLY))
1426 g_critical ("Flags for property '%s' on class '%s' introduce additional restrictions on "
1427 "writability compared with the property on interface '%s'\n", pspecs[n]->name,
1428 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type));
1434 /* If the property on the interface is readable then we are
1435 * effectively advertising that reading the property will return a
1436 * value of a specific type. All implementations of the interface
1437 * need to return items of this type -- but may be more
1438 * restrictive. For example, it is legal to have:
1440 * GtkWidget *get_item();
1442 * that is implemented by a function that always returns a
1443 * GtkEntry. In short: readability implies that the
1444 * implementation value type must be equal or more restrictive.
1446 * Similarly, if the property on the interface is writable then
1447 * must be able to accept the property being set to any value of
1448 * that type, including subclasses. In this case, we may also be
1449 * less restrictive. For example, it is legal to have:
1451 * set_item (GtkEntry *);
1453 * that is implemented by a function that will actually work with
1454 * any GtkWidget. In short: writability implies that the
1455 * implementation value type must be equal or less restrictive.
1457 * In the case that the property is both readable and writable
1458 * then the only way that both of the above can be satisfied is
1459 * with a type that is exactly equal.
1461 switch (pspecs[n]->flags & (G_PARAM_READABLE | G_PARAM_WRITABLE))
1463 case G_PARAM_READABLE | G_PARAM_WRITABLE:
1464 /* class pspec value type must have exact equality with interface */
1465 if (pspecs[n]->value_type != class_pspec->value_type)
1466 g_critical ("Read/writable property '%s' on class '%s' has type '%s' which is not exactly equal to the "
1467 "type '%s' of the property on the interface '%s'\n", pspecs[n]->name,
1468 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1469 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1472 case G_PARAM_READABLE:
1473 /* class pspec value type equal or more restrictive than interface */
1474 if (!g_type_is_a (class_pspec->value_type, pspecs[n]->value_type))
1475 g_critical ("Read-only property '%s' on class '%s' has type '%s' which is not equal to or more "
1476 "restrictive than the type '%s' of the property on the interface '%s'\n", pspecs[n]->name,
1477 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1478 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1481 case G_PARAM_WRITABLE:
1482 /* class pspec value type equal or less restrictive than interface */
1483 if (!g_type_is_a (pspecs[n]->value_type, class_pspec->value_type))
1484 g_critical ("Write-only property '%s' on class '%s' has type '%s' which is not equal to or less "
1485 "restrictive than the type '%s' of the property on the interface '%s' \n", pspecs[n]->name,
1486 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1487 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1491 g_assert_not_reached ();
1497 g_type_class_unref (class);
1501 g_object_get_type (void)
1503 return G_TYPE_OBJECT;
1507 * g_object_new: (skip)
1508 * @object_type: the type id of the #GObject subtype to instantiate
1509 * @first_property_name: the name of the first property
1510 * @...: the value of the first property, followed optionally by more
1511 * name/value pairs, followed by %NULL
1513 * Creates a new instance of a #GObject subtype and sets its properties.
1515 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1516 * which are not explicitly specified are set to their default values.
1518 * Returns: (transfer full): a new instance of @object_type
1521 g_object_new (GType object_type,
1522 const gchar *first_property_name,
1528 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
1530 /* short circuit for calls supplying no properties */
1531 if (!first_property_name)
1532 return g_object_newv (object_type, 0, NULL);
1534 va_start (var_args, first_property_name);
1535 object = g_object_new_valist (object_type, first_property_name, var_args);
1542 slist_maybe_remove (GSList **slist,
1545 GSList *last = NULL, *node = *slist;
1548 if (node->data == data)
1551 last->next = node->next;
1553 *slist = node->next;
1554 g_slist_free_1 (node);
1563 static inline gboolean
1564 object_in_construction_list (GObject *object)
1566 gboolean in_construction;
1567 G_LOCK (construction_mutex);
1568 in_construction = g_slist_find (construction_objects, object) != NULL;
1569 G_UNLOCK (construction_mutex);
1570 return in_construction;
1575 * @object_type: the type id of the #GObject subtype to instantiate
1576 * @n_parameters: the length of the @parameters array
1577 * @parameters: (array length=n_parameters): an array of #GParameter
1579 * Creates a new instance of a #GObject subtype and sets its properties.
1581 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1582 * which are not explicitly specified are set to their default values.
1584 * Rename to: g_object_new
1585 * Returns: (type GObject.Object) (transfer full): a new instance of
1589 g_object_newv (GType object_type,
1591 GParameter *parameters)
1593 GObjectConstructParam *cparams = NULL, *oparams;
1594 GObjectNotifyQueue *nqueue = NULL; /* shouldn't be initialized, just to silence compiler */
1596 GObjectClass *class, *unref_class = NULL;
1598 guint n_total_cparams = 0, n_cparams = 0, n_oparams = 0, n_cvalues;
1600 GList *clist = NULL;
1601 gboolean newly_constructed;
1604 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
1606 class = g_type_class_peek_static (object_type);
1608 class = unref_class = g_type_class_ref (object_type);
1609 for (slist = class->construct_properties; slist; slist = slist->next)
1611 clist = g_list_prepend (clist, slist->data);
1612 n_total_cparams += 1;
1615 if (n_parameters == 0 && n_total_cparams == 0)
1617 /* This is a simple object with no construct properties, and
1618 * no properties are being set, so short circuit the parameter
1619 * handling. This speeds up simple object construction.
1622 object = class->constructor (object_type, 0, NULL);
1623 goto did_construction;
1626 /* collect parameters, sort into construction and normal ones */
1627 oparams = g_new (GObjectConstructParam, n_parameters);
1628 cparams = g_new (GObjectConstructParam, n_total_cparams);
1629 for (i = 0; i < n_parameters; i++)
1631 GValue *value = ¶meters[i].value;
1632 GParamSpec *pspec = g_param_spec_pool_lookup (pspec_pool,
1638 g_warning ("%s: object class `%s' has no property named `%s'",
1640 g_type_name (object_type),
1641 parameters[i].name);
1644 if (!(pspec->flags & G_PARAM_WRITABLE))
1646 g_warning ("%s: property `%s' of object class `%s' is not writable",
1649 g_type_name (object_type));
1652 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
1654 GList *list = g_list_find (clist, pspec);
1658 g_warning ("%s: construct property \"%s\" for object `%s' can't be set twice",
1659 G_STRFUNC, pspec->name, g_type_name (object_type));
1662 cparams[n_cparams].pspec = pspec;
1663 cparams[n_cparams].value = value;
1668 list->prev->next = list->next;
1670 list->next->prev = list->prev;
1671 g_list_free_1 (list);
1675 oparams[n_oparams].pspec = pspec;
1676 oparams[n_oparams].value = value;
1681 /* set remaining construction properties to default values */
1682 n_cvalues = n_total_cparams - n_cparams;
1683 cvalues = g_new (GValue, n_cvalues);
1686 GList *tmp = clist->next;
1687 GParamSpec *pspec = clist->data;
1688 GValue *value = cvalues + n_total_cparams - n_cparams - 1;
1691 g_value_init (value, pspec->value_type);
1692 g_param_value_set_default (pspec, value);
1694 cparams[n_cparams].pspec = pspec;
1695 cparams[n_cparams].value = value;
1698 g_list_free_1 (clist);
1702 /* construct object from construction parameters */
1703 object = class->constructor (object_type, n_total_cparams, cparams);
1704 /* free construction values */
1707 g_value_unset (cvalues + n_cvalues);
1711 if (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1713 /* adjust freeze_count according to g_object_init() and remaining properties */
1714 G_LOCK (construction_mutex);
1715 newly_constructed = slist_maybe_remove (&construction_objects, object);
1716 G_UNLOCK (construction_mutex);
1719 newly_constructed = TRUE;
1721 if (CLASS_HAS_PROPS (class))
1723 if (newly_constructed || n_oparams)
1724 nqueue = g_object_notify_queue_freeze (object, FALSE);
1725 if (newly_constructed)
1726 g_object_notify_queue_thaw (object, nqueue);
1729 /* run 'constructed' handler if there is a custom one */
1730 if (newly_constructed && CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1731 class->constructed (object);
1733 /* set remaining properties */
1734 for (i = 0; i < n_oparams; i++)
1735 object_set_property (object, oparams[i].pspec, oparams[i].value, nqueue);
1738 if (CLASS_HAS_PROPS (class))
1740 /* release our own freeze count and handle notifications */
1741 if (newly_constructed || n_oparams)
1742 g_object_notify_queue_thaw (object, nqueue);
1746 g_type_class_unref (unref_class);
1752 * g_object_new_valist: (skip)
1753 * @object_type: the type id of the #GObject subtype to instantiate
1754 * @first_property_name: the name of the first property
1755 * @var_args: the value of the first property, followed optionally by more
1756 * name/value pairs, followed by %NULL
1758 * Creates a new instance of a #GObject subtype and sets its properties.
1760 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1761 * which are not explicitly specified are set to their default values.
1763 * Returns: a new instance of @object_type
1766 g_object_new_valist (GType object_type,
1767 const gchar *first_property_name,
1770 GObjectClass *class;
1774 guint n_params = 0, n_alloced_params = 16;
1776 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
1778 if (!first_property_name)
1779 return g_object_newv (object_type, 0, NULL);
1781 class = g_type_class_ref (object_type);
1783 params = g_new0 (GParameter, n_alloced_params);
1784 name = first_property_name;
1787 gchar *error = NULL;
1788 GParamSpec *pspec = g_param_spec_pool_lookup (pspec_pool,
1794 g_warning ("%s: object class `%s' has no property named `%s'",
1796 g_type_name (object_type),
1800 if (n_params >= n_alloced_params)
1802 n_alloced_params += 16;
1803 params = g_renew (GParameter, params, n_alloced_params);
1804 memset (params + n_params, 0, 16 * (sizeof *params));
1806 params[n_params].name = name;
1807 G_VALUE_COLLECT_INIT (¶ms[n_params].value, pspec->value_type,
1808 var_args, 0, &error);
1811 g_warning ("%s: %s", G_STRFUNC, error);
1813 g_value_unset (¶ms[n_params].value);
1817 name = va_arg (var_args, gchar*);
1820 object = g_object_newv (object_type, n_params, params);
1823 g_value_unset (¶ms[n_params].value);
1826 g_type_class_unref (class);
1832 g_object_constructor (GType type,
1833 guint n_construct_properties,
1834 GObjectConstructParam *construct_params)
1839 object = (GObject*) g_type_create_instance (type);
1841 /* set construction parameters */
1842 if (n_construct_properties)
1844 GObjectNotifyQueue *nqueue = g_object_notify_queue_freeze (object, FALSE);
1846 /* set construct properties */
1847 while (n_construct_properties--)
1849 GValue *value = construct_params->value;
1850 GParamSpec *pspec = construct_params->pspec;
1853 object_set_property (object, pspec, value, nqueue);
1855 g_object_notify_queue_thaw (object, nqueue);
1856 /* the notification queue is still frozen from g_object_init(), so
1857 * we don't need to handle it here, g_object_newv() takes
1866 g_object_constructed (GObject *object)
1868 /* empty default impl to allow unconditional upchaining */
1872 * g_object_set_valist: (skip)
1873 * @object: a #GObject
1874 * @first_property_name: name of the first property to set
1875 * @var_args: value for the first property, followed optionally by more
1876 * name/value pairs, followed by %NULL
1878 * Sets properties on an object.
1881 g_object_set_valist (GObject *object,
1882 const gchar *first_property_name,
1885 GObjectNotifyQueue *nqueue;
1888 g_return_if_fail (G_IS_OBJECT (object));
1890 g_object_ref (object);
1891 nqueue = g_object_notify_queue_freeze (object, FALSE);
1893 name = first_property_name;
1896 GValue value = G_VALUE_INIT;
1898 gchar *error = NULL;
1900 pspec = g_param_spec_pool_lookup (pspec_pool,
1902 G_OBJECT_TYPE (object),
1906 g_warning ("%s: object class `%s' has no property named `%s'",
1908 G_OBJECT_TYPE_NAME (object),
1912 if (!(pspec->flags & G_PARAM_WRITABLE))
1914 g_warning ("%s: property `%s' of object class `%s' is not writable",
1917 G_OBJECT_TYPE_NAME (object));
1920 if ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) && !object_in_construction_list (object))
1922 g_warning ("%s: construct property \"%s\" for object `%s' can't be set after construction",
1923 G_STRFUNC, pspec->name, G_OBJECT_TYPE_NAME (object));
1927 G_VALUE_COLLECT_INIT (&value, pspec->value_type, var_args,
1931 g_warning ("%s: %s", G_STRFUNC, error);
1933 g_value_unset (&value);
1937 object_set_property (object, pspec, &value, nqueue);
1938 g_value_unset (&value);
1940 name = va_arg (var_args, gchar*);
1943 g_object_notify_queue_thaw (object, nqueue);
1944 g_object_unref (object);
1948 * g_object_get_valist: (skip)
1949 * @object: a #GObject
1950 * @first_property_name: name of the first property to get
1951 * @var_args: return location for the first property, followed optionally by more
1952 * name/return location pairs, followed by %NULL
1954 * Gets properties of an object.
1956 * In general, a copy is made of the property contents and the caller
1957 * is responsible for freeing the memory in the appropriate manner for
1958 * the type, for instance by calling g_free() or g_object_unref().
1960 * See g_object_get().
1963 g_object_get_valist (GObject *object,
1964 const gchar *first_property_name,
1969 g_return_if_fail (G_IS_OBJECT (object));
1971 g_object_ref (object);
1973 name = first_property_name;
1977 GValue value = G_VALUE_INIT;
1981 pspec = g_param_spec_pool_lookup (pspec_pool,
1983 G_OBJECT_TYPE (object),
1987 g_warning ("%s: object class `%s' has no property named `%s'",
1989 G_OBJECT_TYPE_NAME (object),
1993 if (!(pspec->flags & G_PARAM_READABLE))
1995 g_warning ("%s: property `%s' of object class `%s' is not readable",
1998 G_OBJECT_TYPE_NAME (object));
2002 g_value_init (&value, pspec->value_type);
2004 object_get_property (object, pspec, &value);
2006 G_VALUE_LCOPY (&value, var_args, 0, &error);
2009 g_warning ("%s: %s", G_STRFUNC, error);
2011 g_value_unset (&value);
2015 g_value_unset (&value);
2017 name = va_arg (var_args, gchar*);
2020 g_object_unref (object);
2024 * g_object_set: (skip)
2025 * @object: a #GObject
2026 * @first_property_name: name of the first property to set
2027 * @...: value for the first property, followed optionally by more
2028 * name/value pairs, followed by %NULL
2030 * Sets properties on an object.
2033 g_object_set (gpointer _object,
2034 const gchar *first_property_name,
2037 GObject *object = _object;
2040 g_return_if_fail (G_IS_OBJECT (object));
2042 va_start (var_args, first_property_name);
2043 g_object_set_valist (object, first_property_name, var_args);
2048 * g_object_get: (skip)
2049 * @object: a #GObject
2050 * @first_property_name: name of the first property to get
2051 * @...: return location for the first property, followed optionally by more
2052 * name/return location pairs, followed by %NULL
2054 * Gets properties of an object.
2056 * In general, a copy is made of the property contents and the caller
2057 * is responsible for freeing the memory in the appropriate manner for
2058 * the type, for instance by calling g_free() or g_object_unref().
2061 * <title>Using g_object_get(<!-- -->)</title>
2062 * An example of using g_object_get() to get the contents
2063 * of three properties - one of type #G_TYPE_INT,
2064 * one of type #G_TYPE_STRING, and one of type #G_TYPE_OBJECT:
2070 * g_object_get (my_object,
2071 * "int-property", &intval,
2072 * "str-property", &strval,
2073 * "obj-property", &objval,
2076 * // Do something with intval, strval, objval
2079 * g_object_unref (objval);
2084 g_object_get (gpointer _object,
2085 const gchar *first_property_name,
2088 GObject *object = _object;
2091 g_return_if_fail (G_IS_OBJECT (object));
2093 va_start (var_args, first_property_name);
2094 g_object_get_valist (object, first_property_name, var_args);
2099 * g_object_set_property:
2100 * @object: a #GObject
2101 * @property_name: the name of the property to set
2104 * Sets a property on an object.
2107 g_object_set_property (GObject *object,
2108 const gchar *property_name,
2109 const GValue *value)
2111 GObjectNotifyQueue *nqueue;
2114 g_return_if_fail (G_IS_OBJECT (object));
2115 g_return_if_fail (property_name != NULL);
2116 g_return_if_fail (G_IS_VALUE (value));
2118 g_object_ref (object);
2119 nqueue = g_object_notify_queue_freeze (object, FALSE);
2121 pspec = g_param_spec_pool_lookup (pspec_pool,
2123 G_OBJECT_TYPE (object),
2126 g_warning ("%s: object class `%s' has no property named `%s'",
2128 G_OBJECT_TYPE_NAME (object),
2130 else if (!(pspec->flags & G_PARAM_WRITABLE))
2131 g_warning ("%s: property `%s' of object class `%s' is not writable",
2134 G_OBJECT_TYPE_NAME (object));
2135 else if ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) && !object_in_construction_list (object))
2136 g_warning ("%s: construct property \"%s\" for object `%s' can't be set after construction",
2137 G_STRFUNC, pspec->name, G_OBJECT_TYPE_NAME (object));
2139 object_set_property (object, pspec, value, nqueue);
2141 g_object_notify_queue_thaw (object, nqueue);
2142 g_object_unref (object);
2146 * g_object_get_property:
2147 * @object: a #GObject
2148 * @property_name: the name of the property to get
2149 * @value: return location for the property value
2151 * Gets a property of an object. @value must have been initialized to the
2152 * expected type of the property (or a type to which the expected type can be
2153 * transformed) using g_value_init().
2155 * In general, a copy is made of the property contents and the caller is
2156 * responsible for freeing the memory by calling g_value_unset().
2158 * Note that g_object_get_property() is really intended for language
2159 * bindings, g_object_get() is much more convenient for C programming.
2162 g_object_get_property (GObject *object,
2163 const gchar *property_name,
2168 g_return_if_fail (G_IS_OBJECT (object));
2169 g_return_if_fail (property_name != NULL);
2170 g_return_if_fail (G_IS_VALUE (value));
2172 g_object_ref (object);
2174 pspec = g_param_spec_pool_lookup (pspec_pool,
2176 G_OBJECT_TYPE (object),
2179 g_warning ("%s: object class `%s' has no property named `%s'",
2181 G_OBJECT_TYPE_NAME (object),
2183 else if (!(pspec->flags & G_PARAM_READABLE))
2184 g_warning ("%s: property `%s' of object class `%s' is not readable",
2187 G_OBJECT_TYPE_NAME (object));
2190 GValue *prop_value, tmp_value = G_VALUE_INIT;
2192 /* auto-conversion of the callers value type
2194 if (G_VALUE_TYPE (value) == pspec->value_type)
2196 g_value_reset (value);
2199 else if (!g_value_type_transformable (pspec->value_type, G_VALUE_TYPE (value)))
2201 g_warning ("%s: can't retrieve property `%s' of type `%s' as value of type `%s'",
2202 G_STRFUNC, pspec->name,
2203 g_type_name (pspec->value_type),
2204 G_VALUE_TYPE_NAME (value));
2205 g_object_unref (object);
2210 g_value_init (&tmp_value, pspec->value_type);
2211 prop_value = &tmp_value;
2213 object_get_property (object, pspec, prop_value);
2214 if (prop_value != value)
2216 g_value_transform (prop_value, value);
2217 g_value_unset (&tmp_value);
2221 g_object_unref (object);
2225 * g_object_connect: (skip)
2226 * @object: a #GObject
2227 * @signal_spec: the spec for the first signal
2228 * @...: #GCallback for the first signal, followed by data for the
2229 * first signal, followed optionally by more signal
2230 * spec/callback/data triples, followed by %NULL
2232 * A convenience function to connect multiple signals at once.
2234 * The signal specs expected by this function have the form
2235 * "modifier::signal_name", where modifier can be one of the following:
2238 * <term>signal</term>
2240 * equivalent to <literal>g_signal_connect_data (..., NULL, 0)</literal>
2241 * </para></listitem>
2244 * <term>object_signal</term>
2245 * <term>object-signal</term>
2247 * equivalent to <literal>g_signal_connect_object (..., 0)</literal>
2248 * </para></listitem>
2251 * <term>swapped_signal</term>
2252 * <term>swapped-signal</term>
2254 * equivalent to <literal>g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED)</literal>
2255 * </para></listitem>
2258 * <term>swapped_object_signal</term>
2259 * <term>swapped-object-signal</term>
2261 * equivalent to <literal>g_signal_connect_object (..., G_CONNECT_SWAPPED)</literal>
2262 * </para></listitem>
2265 * <term>signal_after</term>
2266 * <term>signal-after</term>
2268 * equivalent to <literal>g_signal_connect_data (..., NULL, G_CONNECT_AFTER)</literal>
2269 * </para></listitem>
2272 * <term>object_signal_after</term>
2273 * <term>object-signal-after</term>
2275 * equivalent to <literal>g_signal_connect_object (..., G_CONNECT_AFTER)</literal>
2276 * </para></listitem>
2279 * <term>swapped_signal_after</term>
2280 * <term>swapped-signal-after</term>
2282 * equivalent to <literal>g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED | G_CONNECT_AFTER)</literal>
2283 * </para></listitem>
2286 * <term>swapped_object_signal_after</term>
2287 * <term>swapped-object-signal-after</term>
2289 * equivalent to <literal>g_signal_connect_object (..., G_CONNECT_SWAPPED | G_CONNECT_AFTER)</literal>
2290 * </para></listitem>
2295 * menu->toplevel = g_object_connect (g_object_new (GTK_TYPE_WINDOW,
2296 * "type", GTK_WINDOW_POPUP,
2299 * "signal::event", gtk_menu_window_event, menu,
2300 * "signal::size_request", gtk_menu_window_size_request, menu,
2301 * "signal::destroy", gtk_widget_destroyed, &menu->toplevel,
2305 * Returns: (transfer none): @object
2308 g_object_connect (gpointer _object,
2309 const gchar *signal_spec,
2312 GObject *object = _object;
2315 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
2316 g_return_val_if_fail (object->ref_count > 0, object);
2318 va_start (var_args, signal_spec);
2321 GCallback callback = va_arg (var_args, GCallback);
2322 gpointer data = va_arg (var_args, gpointer);
2324 if (strncmp (signal_spec, "signal::", 8) == 0)
2325 g_signal_connect_data (object, signal_spec + 8,
2326 callback, data, NULL,
2328 else if (strncmp (signal_spec, "object_signal::", 15) == 0 ||
2329 strncmp (signal_spec, "object-signal::", 15) == 0)
2330 g_signal_connect_object (object, signal_spec + 15,
2333 else if (strncmp (signal_spec, "swapped_signal::", 16) == 0 ||
2334 strncmp (signal_spec, "swapped-signal::", 16) == 0)
2335 g_signal_connect_data (object, signal_spec + 16,
2336 callback, data, NULL,
2338 else if (strncmp (signal_spec, "swapped_object_signal::", 23) == 0 ||
2339 strncmp (signal_spec, "swapped-object-signal::", 23) == 0)
2340 g_signal_connect_object (object, signal_spec + 23,
2343 else if (strncmp (signal_spec, "signal_after::", 14) == 0 ||
2344 strncmp (signal_spec, "signal-after::", 14) == 0)
2345 g_signal_connect_data (object, signal_spec + 14,
2346 callback, data, NULL,
2348 else if (strncmp (signal_spec, "object_signal_after::", 21) == 0 ||
2349 strncmp (signal_spec, "object-signal-after::", 21) == 0)
2350 g_signal_connect_object (object, signal_spec + 21,
2353 else if (strncmp (signal_spec, "swapped_signal_after::", 22) == 0 ||
2354 strncmp (signal_spec, "swapped-signal-after::", 22) == 0)
2355 g_signal_connect_data (object, signal_spec + 22,
2356 callback, data, NULL,
2357 G_CONNECT_SWAPPED | G_CONNECT_AFTER);
2358 else if (strncmp (signal_spec, "swapped_object_signal_after::", 29) == 0 ||
2359 strncmp (signal_spec, "swapped-object-signal-after::", 29) == 0)
2360 g_signal_connect_object (object, signal_spec + 29,
2362 G_CONNECT_SWAPPED | G_CONNECT_AFTER);
2365 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC, signal_spec);
2368 signal_spec = va_arg (var_args, gchar*);
2376 * g_object_disconnect: (skip)
2377 * @object: a #GObject
2378 * @signal_spec: the spec for the first signal
2379 * @...: #GCallback for the first signal, followed by data for the first signal,
2380 * followed optionally by more signal spec/callback/data triples,
2383 * A convenience function to disconnect multiple signals at once.
2385 * The signal specs expected by this function have the form
2386 * "any_signal", which means to disconnect any signal with matching
2387 * callback and data, or "any_signal::signal_name", which only
2388 * disconnects the signal named "signal_name".
2391 g_object_disconnect (gpointer _object,
2392 const gchar *signal_spec,
2395 GObject *object = _object;
2398 g_return_if_fail (G_IS_OBJECT (object));
2399 g_return_if_fail (object->ref_count > 0);
2401 va_start (var_args, signal_spec);
2404 GCallback callback = va_arg (var_args, GCallback);
2405 gpointer data = va_arg (var_args, gpointer);
2406 guint sid = 0, detail = 0, mask = 0;
2408 if (strncmp (signal_spec, "any_signal::", 12) == 0 ||
2409 strncmp (signal_spec, "any-signal::", 12) == 0)
2412 mask = G_SIGNAL_MATCH_ID | G_SIGNAL_MATCH_FUNC | G_SIGNAL_MATCH_DATA;
2414 else if (strcmp (signal_spec, "any_signal") == 0 ||
2415 strcmp (signal_spec, "any-signal") == 0)
2418 mask = G_SIGNAL_MATCH_FUNC | G_SIGNAL_MATCH_DATA;
2422 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC, signal_spec);
2426 if ((mask & G_SIGNAL_MATCH_ID) &&
2427 !g_signal_parse_name (signal_spec, G_OBJECT_TYPE (object), &sid, &detail, FALSE))
2428 g_warning ("%s: invalid signal name \"%s\"", G_STRFUNC, signal_spec);
2429 else if (!g_signal_handlers_disconnect_matched (object, mask | (detail ? G_SIGNAL_MATCH_DETAIL : 0),
2431 NULL, (gpointer)callback, data))
2432 g_warning ("%s: signal handler %p(%p) is not connected", G_STRFUNC, callback, data);
2433 signal_spec = va_arg (var_args, gchar*);
2444 } weak_refs[1]; /* flexible array */
2448 weak_refs_notify (gpointer data)
2450 WeakRefStack *wstack = data;
2453 for (i = 0; i < wstack->n_weak_refs; i++)
2454 wstack->weak_refs[i].notify (wstack->weak_refs[i].data, wstack->object);
2459 * g_object_weak_ref: (skip)
2460 * @object: #GObject to reference weakly
2461 * @notify: callback to invoke before the object is freed
2462 * @data: extra data to pass to notify
2464 * Adds a weak reference callback to an object. Weak references are
2465 * used for notification when an object is finalized. They are called
2466 * "weak references" because they allow you to safely hold a pointer
2467 * to an object without calling g_object_ref() (g_object_ref() adds a
2468 * strong reference, that is, forces the object to stay alive).
2470 * Note that the weak references created by this method are not
2471 * thread-safe: they cannot safely be used in one thread if the
2472 * object's last g_object_unref() might happen in another thread.
2473 * Use #GWeakRef if thread-safety is required.
2476 g_object_weak_ref (GObject *object,
2480 WeakRefStack *wstack;
2483 g_return_if_fail (G_IS_OBJECT (object));
2484 g_return_if_fail (notify != NULL);
2485 g_return_if_fail (object->ref_count >= 1);
2487 G_LOCK (weak_refs_mutex);
2488 wstack = g_datalist_id_remove_no_notify (&object->qdata, quark_weak_refs);
2491 i = wstack->n_weak_refs++;
2492 wstack = g_realloc (wstack, sizeof (*wstack) + sizeof (wstack->weak_refs[0]) * i);
2496 wstack = g_renew (WeakRefStack, NULL, 1);
2497 wstack->object = object;
2498 wstack->n_weak_refs = 1;
2501 wstack->weak_refs[i].notify = notify;
2502 wstack->weak_refs[i].data = data;
2503 g_datalist_id_set_data_full (&object->qdata, quark_weak_refs, wstack, weak_refs_notify);
2504 G_UNLOCK (weak_refs_mutex);
2508 * g_object_weak_unref: (skip)
2509 * @object: #GObject to remove a weak reference from
2510 * @notify: callback to search for
2511 * @data: data to search for
2513 * Removes a weak reference callback to an object.
2516 g_object_weak_unref (GObject *object,
2520 WeakRefStack *wstack;
2521 gboolean found_one = FALSE;
2523 g_return_if_fail (G_IS_OBJECT (object));
2524 g_return_if_fail (notify != NULL);
2526 G_LOCK (weak_refs_mutex);
2527 wstack = g_datalist_id_get_data (&object->qdata, quark_weak_refs);
2532 for (i = 0; i < wstack->n_weak_refs; i++)
2533 if (wstack->weak_refs[i].notify == notify &&
2534 wstack->weak_refs[i].data == data)
2537 wstack->n_weak_refs -= 1;
2538 if (i != wstack->n_weak_refs)
2539 wstack->weak_refs[i] = wstack->weak_refs[wstack->n_weak_refs];
2544 G_UNLOCK (weak_refs_mutex);
2546 g_warning ("%s: couldn't find weak ref %p(%p)", G_STRFUNC, notify, data);
2550 * g_object_add_weak_pointer: (skip)
2551 * @object: The object that should be weak referenced.
2552 * @weak_pointer_location: (inout): The memory address of a pointer.
2554 * Adds a weak reference from weak_pointer to @object to indicate that
2555 * the pointer located at @weak_pointer_location is only valid during
2556 * the lifetime of @object. When the @object is finalized,
2557 * @weak_pointer will be set to %NULL.
2559 * Note that as with g_object_weak_ref(), the weak references created by
2560 * this method are not thread-safe: they cannot safely be used in one
2561 * thread if the object's last g_object_unref() might happen in another
2562 * thread. Use #GWeakRef if thread-safety is required.
2565 g_object_add_weak_pointer (GObject *object,
2566 gpointer *weak_pointer_location)
2568 g_return_if_fail (G_IS_OBJECT (object));
2569 g_return_if_fail (weak_pointer_location != NULL);
2571 g_object_weak_ref (object,
2572 (GWeakNotify) g_nullify_pointer,
2573 weak_pointer_location);
2577 * g_object_remove_weak_pointer: (skip)
2578 * @object: The object that is weak referenced.
2579 * @weak_pointer_location: (inout): The memory address of a pointer.
2581 * Removes a weak reference from @object that was previously added
2582 * using g_object_add_weak_pointer(). The @weak_pointer_location has
2583 * to match the one used with g_object_add_weak_pointer().
2586 g_object_remove_weak_pointer (GObject *object,
2587 gpointer *weak_pointer_location)
2589 g_return_if_fail (G_IS_OBJECT (object));
2590 g_return_if_fail (weak_pointer_location != NULL);
2592 g_object_weak_unref (object,
2593 (GWeakNotify) g_nullify_pointer,
2594 weak_pointer_location);
2598 object_floating_flag_handler (GObject *object,
2604 case +1: /* force floating if possible */
2606 oldvalue = g_atomic_pointer_get (&object->qdata);
2607 while (!g_atomic_pointer_compare_and_exchange ((void**) &object->qdata, oldvalue,
2608 (gpointer) ((gsize) oldvalue | OBJECT_FLOATING_FLAG)));
2609 return (gsize) oldvalue & OBJECT_FLOATING_FLAG;
2610 case -1: /* sink if possible */
2612 oldvalue = g_atomic_pointer_get (&object->qdata);
2613 while (!g_atomic_pointer_compare_and_exchange ((void**) &object->qdata, oldvalue,
2614 (gpointer) ((gsize) oldvalue & ~(gsize) OBJECT_FLOATING_FLAG)));
2615 return (gsize) oldvalue & OBJECT_FLOATING_FLAG;
2616 default: /* check floating */
2617 return 0 != ((gsize) g_atomic_pointer_get (&object->qdata) & OBJECT_FLOATING_FLAG);
2622 * g_object_is_floating:
2623 * @object: (type GObject.Object): a #GObject
2625 * Checks whether @object has a <link linkend="floating-ref">floating</link>
2630 * Returns: %TRUE if @object has a floating reference
2633 g_object_is_floating (gpointer _object)
2635 GObject *object = _object;
2636 g_return_val_if_fail (G_IS_OBJECT (object), FALSE);
2637 return floating_flag_handler (object, 0);
2641 * g_object_ref_sink:
2642 * @object: (type GObject.Object): a #GObject
2644 * Increase the reference count of @object, and possibly remove the
2645 * <link linkend="floating-ref">floating</link> reference, if @object
2646 * has a floating reference.
2648 * In other words, if the object is floating, then this call "assumes
2649 * ownership" of the floating reference, converting it to a normal
2650 * reference by clearing the floating flag while leaving the reference
2651 * count unchanged. If the object is not floating, then this call
2652 * adds a new normal reference increasing the reference count by one.
2656 * Returns: (type GObject.Object) (transfer none): @object
2659 g_object_ref_sink (gpointer _object)
2661 GObject *object = _object;
2662 gboolean was_floating;
2663 g_return_val_if_fail (G_IS_OBJECT (object), object);
2664 g_return_val_if_fail (object->ref_count >= 1, object);
2665 g_object_ref (object);
2666 was_floating = floating_flag_handler (object, -1);
2668 g_object_unref (object);
2673 * g_object_force_floating:
2674 * @object: a #GObject
2676 * This function is intended for #GObject implementations to re-enforce a
2677 * <link linkend="floating-ref">floating</link> object reference.
2678 * Doing this is seldom required: all
2679 * #GInitiallyUnowned<!-- -->s are created with a floating reference which
2680 * usually just needs to be sunken by calling g_object_ref_sink().
2685 g_object_force_floating (GObject *object)
2687 g_return_if_fail (G_IS_OBJECT (object));
2688 g_return_if_fail (object->ref_count >= 1);
2690 floating_flag_handler (object, +1);
2695 guint n_toggle_refs;
2697 GToggleNotify notify;
2699 } toggle_refs[1]; /* flexible array */
2703 toggle_refs_notify (GObject *object,
2704 gboolean is_last_ref)
2706 ToggleRefStack tstack, *tstackptr;
2708 G_LOCK (toggle_refs_mutex);
2709 tstackptr = g_datalist_id_get_data (&object->qdata, quark_toggle_refs);
2710 tstack = *tstackptr;
2711 G_UNLOCK (toggle_refs_mutex);
2713 /* Reentrancy here is not as tricky as it seems, because a toggle reference
2714 * will only be notified when there is exactly one of them.
2716 g_assert (tstack.n_toggle_refs == 1);
2717 tstack.toggle_refs[0].notify (tstack.toggle_refs[0].data, tstack.object, is_last_ref);
2721 * g_object_add_toggle_ref: (skip)
2722 * @object: a #GObject
2723 * @notify: a function to call when this reference is the
2724 * last reference to the object, or is no longer
2725 * the last reference.
2726 * @data: data to pass to @notify
2728 * Increases the reference count of the object by one and sets a
2729 * callback to be called when all other references to the object are
2730 * dropped, or when this is already the last reference to the object
2731 * and another reference is established.
2733 * This functionality is intended for binding @object to a proxy
2734 * object managed by another memory manager. This is done with two
2735 * paired references: the strong reference added by
2736 * g_object_add_toggle_ref() and a reverse reference to the proxy
2737 * object which is either a strong reference or weak reference.
2739 * The setup is that when there are no other references to @object,
2740 * only a weak reference is held in the reverse direction from @object
2741 * to the proxy object, but when there are other references held to
2742 * @object, a strong reference is held. The @notify callback is called
2743 * when the reference from @object to the proxy object should be
2744 * <firstterm>toggled</firstterm> from strong to weak (@is_last_ref
2745 * true) or weak to strong (@is_last_ref false).
2747 * Since a (normal) reference must be held to the object before
2748 * calling g_object_add_toggle_ref(), the initial state of the reverse
2749 * link is always strong.
2751 * Multiple toggle references may be added to the same gobject,
2752 * however if there are multiple toggle references to an object, none
2753 * of them will ever be notified until all but one are removed. For
2754 * this reason, you should only ever use a toggle reference if there
2755 * is important state in the proxy object.
2760 g_object_add_toggle_ref (GObject *object,
2761 GToggleNotify notify,
2764 ToggleRefStack *tstack;
2767 g_return_if_fail (G_IS_OBJECT (object));
2768 g_return_if_fail (notify != NULL);
2769 g_return_if_fail (object->ref_count >= 1);
2771 g_object_ref (object);
2773 G_LOCK (toggle_refs_mutex);
2774 tstack = g_datalist_id_remove_no_notify (&object->qdata, quark_toggle_refs);
2777 i = tstack->n_toggle_refs++;
2778 /* allocate i = tstate->n_toggle_refs - 1 positions beyond the 1 declared
2779 * in tstate->toggle_refs */
2780 tstack = g_realloc (tstack, sizeof (*tstack) + sizeof (tstack->toggle_refs[0]) * i);
2784 tstack = g_renew (ToggleRefStack, NULL, 1);
2785 tstack->object = object;
2786 tstack->n_toggle_refs = 1;
2790 /* Set a flag for fast lookup after adding the first toggle reference */
2791 if (tstack->n_toggle_refs == 1)
2792 g_datalist_set_flags (&object->qdata, OBJECT_HAS_TOGGLE_REF_FLAG);
2794 tstack->toggle_refs[i].notify = notify;
2795 tstack->toggle_refs[i].data = data;
2796 g_datalist_id_set_data_full (&object->qdata, quark_toggle_refs, tstack,
2797 (GDestroyNotify)g_free);
2798 G_UNLOCK (toggle_refs_mutex);
2802 * g_object_remove_toggle_ref: (skip)
2803 * @object: a #GObject
2804 * @notify: a function to call when this reference is the
2805 * last reference to the object, or is no longer
2806 * the last reference.
2807 * @data: data to pass to @notify
2809 * Removes a reference added with g_object_add_toggle_ref(). The
2810 * reference count of the object is decreased by one.
2815 g_object_remove_toggle_ref (GObject *object,
2816 GToggleNotify notify,
2819 ToggleRefStack *tstack;
2820 gboolean found_one = FALSE;
2822 g_return_if_fail (G_IS_OBJECT (object));
2823 g_return_if_fail (notify != NULL);
2825 G_LOCK (toggle_refs_mutex);
2826 tstack = g_datalist_id_get_data (&object->qdata, quark_toggle_refs);
2831 for (i = 0; i < tstack->n_toggle_refs; i++)
2832 if (tstack->toggle_refs[i].notify == notify &&
2833 tstack->toggle_refs[i].data == data)
2836 tstack->n_toggle_refs -= 1;
2837 if (i != tstack->n_toggle_refs)
2838 tstack->toggle_refs[i] = tstack->toggle_refs[tstack->n_toggle_refs];
2840 if (tstack->n_toggle_refs == 0)
2841 g_datalist_unset_flags (&object->qdata, OBJECT_HAS_TOGGLE_REF_FLAG);
2846 G_UNLOCK (toggle_refs_mutex);
2849 g_object_unref (object);
2851 g_warning ("%s: couldn't find toggle ref %p(%p)", G_STRFUNC, notify, data);
2856 * @object: (type GObject.Object): a #GObject
2858 * Increases the reference count of @object.
2860 * Returns: (type GObject.Object) (transfer none): the same @object
2863 g_object_ref (gpointer _object)
2865 GObject *object = _object;
2868 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
2869 g_return_val_if_fail (object->ref_count > 0, NULL);
2871 #ifdef G_ENABLE_DEBUG
2872 if (g_trap_object_ref == object)
2874 #endif /* G_ENABLE_DEBUG */
2877 old_val = g_atomic_int_add (&object->ref_count, 1);
2879 if (old_val == 1 && OBJECT_HAS_TOGGLE_REF (object))
2880 toggle_refs_notify (object, FALSE);
2882 TRACE (GOBJECT_OBJECT_REF(object,G_TYPE_FROM_INSTANCE(object),old_val));
2889 * @object: (type GObject.Object): a #GObject
2891 * Decreases the reference count of @object. When its reference count
2892 * drops to 0, the object is finalized (i.e. its memory is freed).
2895 g_object_unref (gpointer _object)
2897 GObject *object = _object;
2900 g_return_if_fail (G_IS_OBJECT (object));
2901 g_return_if_fail (object->ref_count > 0);
2903 #ifdef G_ENABLE_DEBUG
2904 if (g_trap_object_ref == object)
2906 #endif /* G_ENABLE_DEBUG */
2908 /* here we want to atomically do: if (ref_count>1) { ref_count--; return; } */
2909 retry_atomic_decrement1:
2910 old_ref = g_atomic_int_get (&object->ref_count);
2913 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
2914 gboolean has_toggle_ref = OBJECT_HAS_TOGGLE_REF (object);
2916 if (!g_atomic_int_compare_and_exchange ((int *)&object->ref_count, old_ref, old_ref - 1))
2917 goto retry_atomic_decrement1;
2919 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
2921 /* if we went from 2->1 we need to notify toggle refs if any */
2922 if (old_ref == 2 && has_toggle_ref) /* The last ref being held in this case is owned by the toggle_ref */
2923 toggle_refs_notify (object, TRUE);
2927 GSList **weak_locations;
2929 /* The only way that this object can live at this point is if
2930 * there are outstanding weak references already established
2931 * before we got here.
2933 * If there were not already weak references then no more can be
2934 * established at this time, because the other thread would have
2935 * to hold a strong ref in order to call
2936 * g_object_add_weak_pointer() and then we wouldn't be here.
2938 weak_locations = g_datalist_id_get_data (&object->qdata, quark_weak_locations);
2940 if (weak_locations != NULL)
2942 g_rw_lock_writer_lock (&weak_locations_lock);
2944 /* It is possible that one of the weak references beat us to
2945 * the lock. Make sure the refcount is still what we expected
2948 old_ref = g_atomic_int_get (&object->ref_count);
2951 g_rw_lock_writer_unlock (&weak_locations_lock);
2952 goto retry_atomic_decrement1;
2955 /* We got the lock first, so the object will definitely die
2956 * now. Clear out all the weak references.
2958 while (*weak_locations)
2960 GWeakRef *weak_ref_location = (*weak_locations)->data;
2962 weak_ref_location->priv.p = NULL;
2963 *weak_locations = g_slist_delete_link (*weak_locations, *weak_locations);
2966 g_rw_lock_writer_unlock (&weak_locations_lock);
2969 /* we are about to remove the last reference */
2970 TRACE (GOBJECT_OBJECT_DISPOSE(object,G_TYPE_FROM_INSTANCE(object), 1));
2971 G_OBJECT_GET_CLASS (object)->dispose (object);
2972 TRACE (GOBJECT_OBJECT_DISPOSE_END(object,G_TYPE_FROM_INSTANCE(object), 1));
2974 /* may have been re-referenced meanwhile */
2975 retry_atomic_decrement2:
2976 old_ref = g_atomic_int_get ((int *)&object->ref_count);
2979 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
2980 gboolean has_toggle_ref = OBJECT_HAS_TOGGLE_REF (object);
2982 if (!g_atomic_int_compare_and_exchange ((int *)&object->ref_count, old_ref, old_ref - 1))
2983 goto retry_atomic_decrement2;
2985 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
2987 /* if we went from 2->1 we need to notify toggle refs if any */
2988 if (old_ref == 2 && has_toggle_ref) /* The last ref being held in this case is owned by the toggle_ref */
2989 toggle_refs_notify (object, TRUE);
2994 /* we are still in the process of taking away the last ref */
2995 g_datalist_id_set_data (&object->qdata, quark_closure_array, NULL);
2996 g_signal_handlers_destroy (object);
2997 g_datalist_id_set_data (&object->qdata, quark_weak_refs, NULL);
2999 /* decrement the last reference */
3000 old_ref = g_atomic_int_add (&object->ref_count, -1);
3002 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
3004 /* may have been re-referenced meanwhile */
3005 if (G_LIKELY (old_ref == 1))
3007 TRACE (GOBJECT_OBJECT_FINALIZE(object,G_TYPE_FROM_INSTANCE(object)));
3008 G_OBJECT_GET_CLASS (object)->finalize (object);
3010 TRACE (GOBJECT_OBJECT_FINALIZE_END(object,G_TYPE_FROM_INSTANCE(object)));
3012 #ifdef G_ENABLE_DEBUG
3015 /* catch objects not chaining finalize handlers */
3016 G_LOCK (debug_objects);
3017 g_assert (g_hash_table_lookup (debug_objects_ht, object) == NULL);
3018 G_UNLOCK (debug_objects);
3020 #endif /* G_ENABLE_DEBUG */
3021 g_type_free_instance ((GTypeInstance*) object);
3027 * g_clear_object: (skip)
3028 * @object_ptr: a pointer to a #GObject reference
3030 * Clears a reference to a #GObject.
3032 * @object_ptr must not be %NULL.
3034 * If the reference is %NULL then this function does nothing.
3035 * Otherwise, the reference count of the object is decreased and the
3036 * pointer is set to %NULL.
3038 * This function is threadsafe and modifies the pointer atomically,
3039 * using memory barriers where needed.
3041 * A macro is also included that allows this function to be used without
3046 #undef g_clear_object
3048 g_clear_object (volatile GObject **object_ptr)
3050 gpointer *ptr = (gpointer) object_ptr;
3053 /* This is a little frustrating.
3054 * Would be nice to have an atomic exchange (with no compare).
3057 old = g_atomic_pointer_get (ptr);
3058 while G_UNLIKELY (!g_atomic_pointer_compare_and_exchange (ptr, old, NULL));
3061 g_object_unref (old);
3065 * g_object_get_qdata:
3066 * @object: The GObject to get a stored user data pointer from
3067 * @quark: A #GQuark, naming the user data pointer
3069 * This function gets back user data pointers stored via
3070 * g_object_set_qdata().
3072 * Returns: (transfer none): The user data pointer set, or %NULL
3075 g_object_get_qdata (GObject *object,
3078 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3080 return quark ? g_datalist_id_get_data (&object->qdata, quark) : NULL;
3084 * g_object_set_qdata: (skip)
3085 * @object: The GObject to set store a user data pointer
3086 * @quark: A #GQuark, naming the user data pointer
3087 * @data: An opaque user data pointer
3089 * This sets an opaque, named pointer on an object.
3090 * The name is specified through a #GQuark (retrived e.g. via
3091 * g_quark_from_static_string()), and the pointer
3092 * can be gotten back from the @object with g_object_get_qdata()
3093 * until the @object is finalized.
3094 * Setting a previously set user data pointer, overrides (frees)
3095 * the old pointer set, using #NULL as pointer essentially
3096 * removes the data stored.
3099 g_object_set_qdata (GObject *object,
3103 g_return_if_fail (G_IS_OBJECT (object));
3104 g_return_if_fail (quark > 0);
3106 g_datalist_id_set_data (&object->qdata, quark, data);
3110 * g_object_set_qdata_full: (skip)
3111 * @object: The GObject to set store a user data pointer
3112 * @quark: A #GQuark, naming the user data pointer
3113 * @data: An opaque user data pointer
3114 * @destroy: Function to invoke with @data as argument, when @data
3117 * This function works like g_object_set_qdata(), but in addition,
3118 * a void (*destroy) (gpointer) function may be specified which is
3119 * called with @data as argument when the @object is finalized, or
3120 * the data is being overwritten by a call to g_object_set_qdata()
3121 * with the same @quark.
3124 g_object_set_qdata_full (GObject *object,
3127 GDestroyNotify destroy)
3129 g_return_if_fail (G_IS_OBJECT (object));
3130 g_return_if_fail (quark > 0);
3132 g_datalist_id_set_data_full (&object->qdata, quark, data,
3133 data ? destroy : (GDestroyNotify) NULL);
3137 * g_object_steal_qdata:
3138 * @object: The GObject to get a stored user data pointer from
3139 * @quark: A #GQuark, naming the user data pointer
3141 * This function gets back user data pointers stored via
3142 * g_object_set_qdata() and removes the @data from object
3143 * without invoking its destroy() function (if any was
3145 * Usually, calling this function is only required to update
3146 * user data pointers with a destroy notifier, for example:
3149 * object_add_to_user_list (GObject *object,
3150 * const gchar *new_string)
3152 * // the quark, naming the object data
3153 * GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
3154 * // retrive the old string list
3155 * GList *list = g_object_steal_qdata (object, quark_string_list);
3157 * // prepend new string
3158 * list = g_list_prepend (list, g_strdup (new_string));
3159 * // this changed 'list', so we need to set it again
3160 * g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
3163 * free_string_list (gpointer data)
3165 * GList *node, *list = data;
3167 * for (node = list; node; node = node->next)
3168 * g_free (node->data);
3169 * g_list_free (list);
3172 * Using g_object_get_qdata() in the above example, instead of
3173 * g_object_steal_qdata() would have left the destroy function set,
3174 * and thus the partial string list would have been freed upon
3175 * g_object_set_qdata_full().
3177 * Returns: (transfer full): The user data pointer set, or %NULL
3180 g_object_steal_qdata (GObject *object,
3183 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3184 g_return_val_if_fail (quark > 0, NULL);
3186 return g_datalist_id_remove_no_notify (&object->qdata, quark);
3190 * g_object_get_data:
3191 * @object: #GObject containing the associations
3192 * @key: name of the key for that association
3194 * Gets a named field from the objects table of associations (see g_object_set_data()).
3196 * Returns: (transfer none): the data if found, or %NULL if no such data exists.
3199 g_object_get_data (GObject *object,
3202 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3203 g_return_val_if_fail (key != NULL, NULL);
3205 return g_datalist_get_data (&object->qdata, key);
3209 * g_object_set_data:
3210 * @object: #GObject containing the associations.
3211 * @key: name of the key
3212 * @data: data to associate with that key
3214 * Each object carries around a table of associations from
3215 * strings to pointers. This function lets you set an association.
3217 * If the object already had an association with that name,
3218 * the old association will be destroyed.
3221 g_object_set_data (GObject *object,
3225 g_return_if_fail (G_IS_OBJECT (object));
3226 g_return_if_fail (key != NULL);
3228 g_datalist_id_set_data (&object->qdata, g_quark_from_string (key), data);
3232 * g_object_set_data_full: (skip)
3233 * @object: #GObject containing the associations
3234 * @key: name of the key
3235 * @data: data to associate with that key
3236 * @destroy: function to call when the association is destroyed
3238 * Like g_object_set_data() except it adds notification
3239 * for when the association is destroyed, either by setting it
3240 * to a different value or when the object is destroyed.
3242 * Note that the @destroy callback is not called if @data is %NULL.
3245 g_object_set_data_full (GObject *object,
3248 GDestroyNotify destroy)
3250 g_return_if_fail (G_IS_OBJECT (object));
3251 g_return_if_fail (key != NULL);
3253 g_datalist_id_set_data_full (&object->qdata, g_quark_from_string (key), data,
3254 data ? destroy : (GDestroyNotify) NULL);
3258 * g_object_steal_data:
3259 * @object: #GObject containing the associations
3260 * @key: name of the key
3262 * Remove a specified datum from the object's data associations,
3263 * without invoking the association's destroy handler.
3265 * Returns: (transfer full): the data if found, or %NULL if no such data exists.
3268 g_object_steal_data (GObject *object,
3273 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3274 g_return_val_if_fail (key != NULL, NULL);
3276 quark = g_quark_try_string (key);
3278 return quark ? g_datalist_id_remove_no_notify (&object->qdata, quark) : NULL;
3282 g_value_object_init (GValue *value)
3284 value->data[0].v_pointer = NULL;
3288 g_value_object_free_value (GValue *value)
3290 if (value->data[0].v_pointer)
3291 g_object_unref (value->data[0].v_pointer);
3295 g_value_object_copy_value (const GValue *src_value,
3298 if (src_value->data[0].v_pointer)
3299 dest_value->data[0].v_pointer = g_object_ref (src_value->data[0].v_pointer);
3301 dest_value->data[0].v_pointer = NULL;
3305 g_value_object_transform_value (const GValue *src_value,
3308 if (src_value->data[0].v_pointer && g_type_is_a (G_OBJECT_TYPE (src_value->data[0].v_pointer), G_VALUE_TYPE (dest_value)))
3309 dest_value->data[0].v_pointer = g_object_ref (src_value->data[0].v_pointer);
3311 dest_value->data[0].v_pointer = NULL;
3315 g_value_object_peek_pointer (const GValue *value)
3317 return value->data[0].v_pointer;
3321 g_value_object_collect_value (GValue *value,
3322 guint n_collect_values,
3323 GTypeCValue *collect_values,
3324 guint collect_flags)
3326 if (collect_values[0].v_pointer)
3328 GObject *object = collect_values[0].v_pointer;
3330 if (object->g_type_instance.g_class == NULL)
3331 return g_strconcat ("invalid unclassed object pointer for value type `",
3332 G_VALUE_TYPE_NAME (value),
3335 else if (!g_value_type_compatible (G_OBJECT_TYPE (object), G_VALUE_TYPE (value)))
3336 return g_strconcat ("invalid object type `",
3337 G_OBJECT_TYPE_NAME (object),
3338 "' for value type `",
3339 G_VALUE_TYPE_NAME (value),
3342 /* never honour G_VALUE_NOCOPY_CONTENTS for ref-counted types */
3343 value->data[0].v_pointer = g_object_ref (object);
3346 value->data[0].v_pointer = NULL;
3352 g_value_object_lcopy_value (const GValue *value,
3353 guint n_collect_values,
3354 GTypeCValue *collect_values,
3355 guint collect_flags)
3357 GObject **object_p = collect_values[0].v_pointer;
3360 return g_strdup_printf ("value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value));
3362 if (!value->data[0].v_pointer)
3364 else if (collect_flags & G_VALUE_NOCOPY_CONTENTS)
3365 *object_p = value->data[0].v_pointer;
3367 *object_p = g_object_ref (value->data[0].v_pointer);
3373 * g_value_set_object:
3374 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3375 * @v_object: (type GObject.Object) (allow-none): object value to be set
3377 * Set the contents of a %G_TYPE_OBJECT derived #GValue to @v_object.
3379 * g_value_set_object() increases the reference count of @v_object
3380 * (the #GValue holds a reference to @v_object). If you do not wish
3381 * to increase the reference count of the object (i.e. you wish to
3382 * pass your current reference to the #GValue because you no longer
3383 * need it), use g_value_take_object() instead.
3385 * It is important that your #GValue holds a reference to @v_object (either its
3386 * own, or one it has taken) to ensure that the object won't be destroyed while
3387 * the #GValue still exists).
3390 g_value_set_object (GValue *value,
3395 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value));
3397 old = value->data[0].v_pointer;
3401 g_return_if_fail (G_IS_OBJECT (v_object));
3402 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object), G_VALUE_TYPE (value)));
3404 value->data[0].v_pointer = v_object;
3405 g_object_ref (value->data[0].v_pointer);
3408 value->data[0].v_pointer = NULL;
3411 g_object_unref (old);
3415 * g_value_set_object_take_ownership: (skip)
3416 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3417 * @v_object: (allow-none): object value to be set
3419 * This is an internal function introduced mainly for C marshallers.
3421 * Deprecated: 2.4: Use g_value_take_object() instead.
3424 g_value_set_object_take_ownership (GValue *value,
3427 g_value_take_object (value, v_object);
3431 * g_value_take_object: (skip)
3432 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3433 * @v_object: (allow-none): object value to be set
3435 * Sets the contents of a %G_TYPE_OBJECT derived #GValue to @v_object
3436 * and takes over the ownership of the callers reference to @v_object;
3437 * the caller doesn't have to unref it any more (i.e. the reference
3438 * count of the object is not increased).
3440 * If you want the #GValue to hold its own reference to @v_object, use
3441 * g_value_set_object() instead.
3446 g_value_take_object (GValue *value,
3449 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value));
3451 if (value->data[0].v_pointer)
3453 g_object_unref (value->data[0].v_pointer);
3454 value->data[0].v_pointer = NULL;
3459 g_return_if_fail (G_IS_OBJECT (v_object));
3460 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object), G_VALUE_TYPE (value)));
3462 value->data[0].v_pointer = v_object; /* we take over the reference count */
3467 * g_value_get_object:
3468 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3470 * Get the contents of a %G_TYPE_OBJECT derived #GValue.
3472 * Returns: (type GObject.Object) (transfer none): object contents of @value
3475 g_value_get_object (const GValue *value)
3477 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value), NULL);
3479 return value->data[0].v_pointer;
3483 * g_value_dup_object:
3484 * @value: a valid #GValue whose type is derived from %G_TYPE_OBJECT
3486 * Get the contents of a %G_TYPE_OBJECT derived #GValue, increasing
3487 * its reference count. If the contents of the #GValue are %NULL, then
3488 * %NULL will be returned.
3490 * Returns: (type GObject.Object) (transfer full): object content of @value,
3491 * should be unreferenced when no longer needed.
3494 g_value_dup_object (const GValue *value)
3496 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value), NULL);
3498 return value->data[0].v_pointer ? g_object_ref (value->data[0].v_pointer) : NULL;
3502 * g_signal_connect_object: (skip)
3503 * @instance: the instance to connect to.
3504 * @detailed_signal: a string of the form "signal-name::detail".
3505 * @c_handler: the #GCallback to connect.
3506 * @gobject: the object to pass as data to @c_handler.
3507 * @connect_flags: a combination of #GConnectFlags.
3509 * This is similar to g_signal_connect_data(), but uses a closure which
3510 * ensures that the @gobject stays alive during the call to @c_handler
3511 * by temporarily adding a reference count to @gobject.
3513 * Note that there is a bug in GObject that makes this function
3514 * much less useful than it might seem otherwise. Once @gobject is
3515 * disposed, the callback will no longer be called, but, the signal
3516 * handler is <emphasis>not</emphasis> currently disconnected. If the
3517 * @instance is itself being freed at the same time than this doesn't
3518 * matter, since the signal will automatically be removed, but
3519 * if @instance persists, then the signal handler will leak. You
3520 * should not remove the signal yourself because in a future versions of
3521 * GObject, the handler <emphasis>will</emphasis> automatically
3524 * It's possible to work around this problem in a way that will
3525 * continue to work with future versions of GObject by checking
3526 * that the signal handler is still connected before disconnected it:
3527 * <informalexample><programlisting>
3528 * if (g_signal_handler_is_connected (instance, id))
3529 * g_signal_handler_disconnect (instance, id);
3530 * </programlisting></informalexample>
3532 * Returns: the handler id.
3535 g_signal_connect_object (gpointer instance,
3536 const gchar *detailed_signal,
3537 GCallback c_handler,
3539 GConnectFlags connect_flags)
3541 g_return_val_if_fail (G_TYPE_CHECK_INSTANCE (instance), 0);
3542 g_return_val_if_fail (detailed_signal != NULL, 0);
3543 g_return_val_if_fail (c_handler != NULL, 0);
3549 g_return_val_if_fail (G_IS_OBJECT (gobject), 0);
3551 closure = ((connect_flags & G_CONNECT_SWAPPED) ? g_cclosure_new_object_swap : g_cclosure_new_object) (c_handler, gobject);
3553 return g_signal_connect_closure (instance, detailed_signal, closure, connect_flags & G_CONNECT_AFTER);
3556 return g_signal_connect_data (instance, detailed_signal, c_handler, NULL, NULL, connect_flags);
3562 GClosure *closures[1]; /* flexible array */
3564 /* don't change this structure without supplying an accessor for
3565 * watched closures, e.g.:
3566 * GSList* g_object_list_watched_closures (GObject *object)
3569 * g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3570 * carray = g_object_get_data (object, "GObject-closure-array");
3573 * GSList *slist = NULL;
3575 * for (i = 0; i < carray->n_closures; i++)
3576 * slist = g_slist_prepend (slist, carray->closures[i]);
3584 object_remove_closure (gpointer data,
3587 GObject *object = data;
3591 G_LOCK (closure_array_mutex);
3592 carray = g_object_get_qdata (object, quark_closure_array);
3593 for (i = 0; i < carray->n_closures; i++)
3594 if (carray->closures[i] == closure)
3596 carray->n_closures--;
3597 if (i < carray->n_closures)
3598 carray->closures[i] = carray->closures[carray->n_closures];
3599 G_UNLOCK (closure_array_mutex);
3602 G_UNLOCK (closure_array_mutex);
3603 g_assert_not_reached ();
3607 destroy_closure_array (gpointer data)
3609 CArray *carray = data;
3610 GObject *object = carray->object;
3611 guint i, n = carray->n_closures;
3613 for (i = 0; i < n; i++)
3615 GClosure *closure = carray->closures[i];
3617 /* removing object_remove_closure() upfront is probably faster than
3618 * letting it fiddle with quark_closure_array which is empty anyways
3620 g_closure_remove_invalidate_notifier (closure, object, object_remove_closure);
3621 g_closure_invalidate (closure);
3627 * g_object_watch_closure:
3628 * @object: GObject restricting lifetime of @closure
3629 * @closure: GClosure to watch
3631 * This function essentially limits the life time of the @closure to
3632 * the life time of the object. That is, when the object is finalized,
3633 * the @closure is invalidated by calling g_closure_invalidate() on
3634 * it, in order to prevent invocations of the closure with a finalized
3635 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
3636 * added as marshal guards to the @closure, to ensure that an extra
3637 * reference count is held on @object during invocation of the
3638 * @closure. Usually, this function will be called on closures that
3639 * use this @object as closure data.
3642 g_object_watch_closure (GObject *object,
3648 g_return_if_fail (G_IS_OBJECT (object));
3649 g_return_if_fail (closure != NULL);
3650 g_return_if_fail (closure->is_invalid == FALSE);
3651 g_return_if_fail (closure->in_marshal == FALSE);
3652 g_return_if_fail (object->ref_count > 0); /* this doesn't work on finalizing objects */
3654 g_closure_add_invalidate_notifier (closure, object, object_remove_closure);
3655 g_closure_add_marshal_guards (closure,
3656 object, (GClosureNotify) g_object_ref,
3657 object, (GClosureNotify) g_object_unref);
3658 G_LOCK (closure_array_mutex);
3659 carray = g_datalist_id_remove_no_notify (&object->qdata, quark_closure_array);
3662 carray = g_renew (CArray, NULL, 1);
3663 carray->object = object;
3664 carray->n_closures = 1;
3669 i = carray->n_closures++;
3670 carray = g_realloc (carray, sizeof (*carray) + sizeof (carray->closures[0]) * i);
3672 carray->closures[i] = closure;
3673 g_datalist_id_set_data_full (&object->qdata, quark_closure_array, carray, destroy_closure_array);
3674 G_UNLOCK (closure_array_mutex);
3678 * g_closure_new_object:
3679 * @sizeof_closure: the size of the structure to allocate, must be at least
3680 * <literal>sizeof (GClosure)</literal>
3681 * @object: a #GObject pointer to store in the @data field of the newly
3682 * allocated #GClosure
3684 * A variant of g_closure_new_simple() which stores @object in the
3685 * @data field of the closure and calls g_object_watch_closure() on
3686 * @object and the created closure. This function is mainly useful
3687 * when implementing new types of closures.
3689 * Returns: (transfer full): a newly allocated #GClosure
3692 g_closure_new_object (guint sizeof_closure,
3697 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3698 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
3700 closure = g_closure_new_simple (sizeof_closure, object);
3701 g_object_watch_closure (object, closure);
3707 * g_cclosure_new_object: (skip)
3708 * @callback_func: the function to invoke
3709 * @object: a #GObject pointer to pass to @callback_func
3711 * A variant of g_cclosure_new() which uses @object as @user_data and
3712 * calls g_object_watch_closure() on @object and the created
3713 * closure. This function is useful when you have a callback closely
3714 * associated with a #GObject, and want the callback to no longer run
3715 * after the object is is freed.
3717 * Returns: a new #GCClosure
3720 g_cclosure_new_object (GCallback callback_func,
3725 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3726 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
3727 g_return_val_if_fail (callback_func != NULL, NULL);
3729 closure = g_cclosure_new (callback_func, object, NULL);
3730 g_object_watch_closure (object, closure);
3736 * g_cclosure_new_object_swap: (skip)
3737 * @callback_func: the function to invoke
3738 * @object: a #GObject pointer to pass to @callback_func
3740 * A variant of g_cclosure_new_swap() which uses @object as @user_data
3741 * and calls g_object_watch_closure() on @object and the created
3742 * closure. This function is useful when you have a callback closely
3743 * associated with a #GObject, and want the callback to no longer run
3744 * after the object is is freed.
3746 * Returns: a new #GCClosure
3749 g_cclosure_new_object_swap (GCallback callback_func,
3754 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3755 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
3756 g_return_val_if_fail (callback_func != NULL, NULL);
3758 closure = g_cclosure_new_swap (callback_func, object, NULL);
3759 g_object_watch_closure (object, closure);
3765 g_object_compat_control (gsize what,
3771 case 1: /* floating base type */
3772 return G_TYPE_INITIALLY_UNOWNED;
3773 case 2: /* FIXME: remove this once GLib/Gtk+ break ABI again */
3774 floating_flag_handler = (guint(*)(GObject*,gint)) data;
3776 case 3: /* FIXME: remove this once GLib/Gtk+ break ABI again */
3778 *pp = floating_flag_handler;
3785 G_DEFINE_TYPE (GInitiallyUnowned, g_initially_unowned, G_TYPE_OBJECT);
3788 g_initially_unowned_init (GInitiallyUnowned *object)
3790 g_object_force_floating (object);
3794 g_initially_unowned_class_init (GInitiallyUnownedClass *klass)
3801 * A structure containing a weak reference to a #GObject. It can either
3802 * be empty (i.e. point to %NULL), or point to an object for as long as
3803 * at least one "strong" reference to that object exists. Before the
3804 * object's #GObjectClass.dispose method is called, every #GWeakRef
3805 * associated with becomes empty (i.e. points to %NULL).
3807 * Like #GValue, #GWeakRef can be statically allocated, stack- or
3808 * heap-allocated, or embedded in larger structures.
3810 * Unlike g_object_weak_ref() and g_object_add_weak_pointer(), this weak
3811 * reference is thread-safe: converting a weak pointer to a reference is
3812 * atomic with respect to invalidation of weak pointers to destroyed
3815 * If the object's #GObjectClass.dispose method results in additional
3816 * references to the object being held, any #GWeakRef<!-- -->s taken
3817 * before it was disposed will continue to point to %NULL. If
3818 * #GWeakRef<!-- -->s are taken after the object is disposed and
3819 * re-referenced, they will continue to point to it until its refcount
3820 * goes back to zero, at which point they too will be invalidated.
3824 * g_weak_ref_init: (skip)
3825 * @weak_ref_location: (inout): uninitialized or empty location for a weak
3827 * @object: (allow-none): a #GObject or %NULL
3829 * Initialise a non-statically-allocated #GWeakRef.
3831 * This function also calls g_weak_ref_set() with @object on the
3832 * freshly-initialised weak reference.
3834 * This function should always be matched with a call to
3835 * g_weak_ref_clear(). It is not necessary to use this function for a
3836 * #GWeakRef in static storage because it will already be
3837 * properly initialised. Just use g_weak_ref_set() directly.
3842 g_weak_ref_init (GWeakRef *weak_ref_location,
3845 weak_ref_location->priv.p = NULL;
3847 g_weak_ref_set (weak_ref_location, object);
3851 * g_weak_ref_clear: (skip)
3852 * @weak_ref_location: (inout): location of a weak reference, which
3855 * Frees resources associated with a non-statically-allocated #GWeakRef.
3856 * After this call, the #GWeakRef is left in an undefined state.
3858 * You should only call this on a #GWeakRef that previously had
3859 * g_weak_ref_init() called on it.
3864 g_weak_ref_clear (GWeakRef *weak_ref_location)
3866 g_weak_ref_set (weak_ref_location, NULL);
3869 weak_ref_location->priv.p = (void *) 0xccccccccu;
3873 * g_weak_ref_get: (skip)
3874 * @weak_ref_location: (inout): location of a weak reference to a #GObject
3876 * If @weak_ref_location is not empty, atomically acquire a strong
3877 * reference to the object it points to, and return that reference.
3879 * This function is needed because of the potential race between taking
3880 * the pointer value and g_object_ref() on it, if the object was losing
3881 * its last reference at the same time in a different thread.
3883 * The caller should release the resulting reference in the usual way,
3884 * by using g_object_unref().
3886 * Returns: (transfer full) (type GObject.Object): the object pointed to
3887 * by @weak_ref_location, or %NULL if it was empty
3892 g_weak_ref_get (GWeakRef *weak_ref_location)
3894 gpointer object_or_null;
3896 g_return_val_if_fail (weak_ref_location != NULL, NULL);
3898 g_rw_lock_reader_lock (&weak_locations_lock);
3900 object_or_null = weak_ref_location->priv.p;
3902 if (object_or_null != NULL)
3903 g_object_ref (object_or_null);
3905 g_rw_lock_reader_unlock (&weak_locations_lock);
3907 return object_or_null;
3911 * g_weak_ref_set: (skip)
3912 * @weak_ref_location: location for a weak reference
3913 * @object: (allow-none): a #GObject or %NULL
3915 * Change the object to which @weak_ref_location points, or set it to
3918 * You must own a strong reference on @object while calling this
3924 g_weak_ref_set (GWeakRef *weak_ref_location,
3927 GSList **weak_locations;
3928 GObject *new_object;
3929 GObject *old_object;
3931 g_return_if_fail (weak_ref_location != NULL);
3932 g_return_if_fail (object == NULL || G_IS_OBJECT (object));
3934 new_object = object;
3936 g_rw_lock_writer_lock (&weak_locations_lock);
3938 /* We use the extra level of indirection here so that if we have ever
3939 * had a weak pointer installed at any point in time on this object,
3940 * we can see that there is a non-NULL value associated with the
3941 * weak-pointer quark and know that this value will not change at any
3942 * point in the object's lifetime.
3944 * Both properties are important for reducing the amount of times we
3945 * need to acquire locks and for decreasing the duration of time the
3946 * lock is held while avoiding some rather tricky races.
3948 * Specifically: we can avoid having to do an extra unconditional lock
3949 * in g_object_unref() without worrying about some extremely tricky
3953 old_object = weak_ref_location->priv.p;
3954 if (new_object != old_object)
3956 weak_ref_location->priv.p = new_object;
3958 /* Remove the weak ref from the old object */
3959 if (old_object != NULL)
3961 weak_locations = g_datalist_id_get_data (&old_object->qdata, quark_weak_locations);
3962 /* for it to point to an object, the object must have had it added once */
3963 g_assert (weak_locations != NULL);
3965 *weak_locations = g_slist_remove (*weak_locations, weak_ref_location);
3968 /* Add the weak ref to the new object */
3969 if (new_object != NULL)
3971 weak_locations = g_datalist_id_get_data (&new_object->qdata, quark_weak_locations);
3973 if (weak_locations == NULL)
3975 weak_locations = g_new0 (GSList *, 1);
3976 g_datalist_id_set_data_full (&new_object->qdata, quark_weak_locations, weak_locations, g_free);
3979 *weak_locations = g_slist_prepend (*weak_locations, weak_ref_location);
3983 g_rw_lock_writer_unlock (&weak_locations_lock);