1 /* GObject - GLib Type, Object, Parameter and Signal Library
2 * Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General
15 * Public License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place, Suite 330,
17 * Boston, MA 02111-1307, USA.
21 * MT safe with regards to reference counting.
30 #include "gtype-private.h"
31 #include "gvaluecollector.h"
33 #include "gparamspecs.h"
34 #include "gvaluetypes.h"
35 #include "gobject_trace.h"
36 #include "gconstructor.h"
41 * @short_description: The base object type
42 * @see_also: #GParamSpecObject, g_param_spec_object()
44 * GObject is the fundamental type providing the common attributes and
45 * methods for all object types in GTK+, Pango and other libraries
46 * based on GObject. The GObject class provides methods for object
47 * construction and destruction, property access methods, and signal
48 * support. Signals are described in detail in <xref
49 * linkend="gobject-Signals"/>.
51 * <para id="floating-ref">
52 * GInitiallyUnowned is derived from GObject. The only difference between
53 * the two is that the initial reference of a GInitiallyUnowned is flagged
54 * as a <firstterm>floating</firstterm> reference.
55 * This means that it is not specifically claimed to be "owned" by
56 * any code portion. The main motivation for providing floating references is
57 * C convenience. In particular, it allows code to be written as:
59 * container = create_container ();
60 * container_add_child (container, create_child());
62 * If <function>container_add_child()</function> will g_object_ref_sink() the
63 * passed in child, no reference of the newly created child is leaked.
64 * Without floating references, <function>container_add_child()</function>
65 * can only g_object_ref() the new child, so to implement this code without
66 * reference leaks, it would have to be written as:
69 * container = create_container ();
70 * child = create_child ();
71 * container_add_child (container, child);
72 * g_object_unref (child);
74 * The floating reference can be converted into
75 * an ordinary reference by calling g_object_ref_sink().
76 * For already sunken objects (objects that don't have a floating reference
77 * anymore), g_object_ref_sink() is equivalent to g_object_ref() and returns
79 * Since floating references are useful almost exclusively for C convenience,
80 * language bindings that provide automated reference and memory ownership
81 * maintenance (such as smart pointers or garbage collection) should not
82 * expose floating references in their API.
85 * Some object implementations may need to save an objects floating state
86 * across certain code portions (an example is #GtkMenu), to achieve this,
87 * the following sequence can be used:
90 * /* save floating state */
91 * gboolean was_floating = g_object_is_floating (object);
92 * g_object_ref_sink (object);
93 * /* protected code portion */
95 * /* restore floating state */
97 * g_object_force_floating (object);
99 * g_object_unref (object); /* release previously acquired reference */
105 #define PARAM_SPEC_PARAM_ID(pspec) ((pspec)->param_id)
106 #define PARAM_SPEC_SET_PARAM_ID(pspec, id) ((pspec)->param_id = (id))
108 #define OBJECT_HAS_TOGGLE_REF_FLAG 0x1
109 #define OBJECT_HAS_TOGGLE_REF(object) \
110 ((g_datalist_get_flags (&(object)->qdata) & OBJECT_HAS_TOGGLE_REF_FLAG) != 0)
111 #define OBJECT_FLOATING_FLAG 0x2
113 #define CLASS_HAS_PROPS_FLAG 0x1
114 #define CLASS_HAS_PROPS(class) \
115 ((class)->flags & CLASS_HAS_PROPS_FLAG)
116 #define CLASS_HAS_CUSTOM_CONSTRUCTOR(class) \
117 ((class)->constructor != g_object_constructor)
118 #define CLASS_HAS_CUSTOM_CONSTRUCTED(class) \
119 ((class)->constructed != g_object_constructed)
121 #define CLASS_HAS_DERIVED_CLASS_FLAG 0x2
122 #define CLASS_HAS_DERIVED_CLASS(class) \
123 ((class)->flags & CLASS_HAS_DERIVED_CLASS_FLAG)
125 /* --- signals --- */
132 /* --- properties --- */
138 /* --- prototypes --- */
139 static void g_object_base_class_init (GObjectClass *class);
140 static void g_object_base_class_finalize (GObjectClass *class);
141 static void g_object_do_class_init (GObjectClass *class);
142 static void g_object_init (GObject *object,
143 GObjectClass *class);
144 static GObject* g_object_constructor (GType type,
145 guint n_construct_properties,
146 GObjectConstructParam *construct_params);
147 static void g_object_constructed (GObject *object);
148 static void g_object_real_dispose (GObject *object);
149 static void g_object_finalize (GObject *object);
150 static void g_object_do_set_property (GObject *object,
154 static void g_object_do_get_property (GObject *object,
158 static void g_value_object_init (GValue *value);
159 static void g_value_object_free_value (GValue *value);
160 static void g_value_object_copy_value (const GValue *src_value,
162 static void g_value_object_transform_value (const GValue *src_value,
164 static gpointer g_value_object_peek_pointer (const GValue *value);
165 static gchar* g_value_object_collect_value (GValue *value,
166 guint n_collect_values,
167 GTypeCValue *collect_values,
168 guint collect_flags);
169 static gchar* g_value_object_lcopy_value (const GValue *value,
170 guint n_collect_values,
171 GTypeCValue *collect_values,
172 guint collect_flags);
173 static void g_object_dispatch_properties_changed (GObject *object,
175 GParamSpec **pspecs);
176 static guint object_floating_flag_handler (GObject *object,
179 static void object_interface_check_properties (gpointer func_data,
182 /* --- typedefs --- */
183 typedef struct _GObjectNotifyQueue GObjectNotifyQueue;
185 struct _GObjectNotifyQueue
189 guint16 freeze_count;
192 /* --- variables --- */
193 G_LOCK_DEFINE_STATIC (closure_array_mutex);
194 G_LOCK_DEFINE_STATIC (weak_refs_mutex);
195 G_LOCK_DEFINE_STATIC (toggle_refs_mutex);
196 static GQuark quark_closure_array = 0;
197 static GQuark quark_weak_refs = 0;
198 static GQuark quark_toggle_refs = 0;
199 static GQuark quark_notify_queue;
200 static GParamSpecPool *pspec_pool = NULL;
201 static gulong gobject_signals[LAST_SIGNAL] = { 0, };
202 static guint (*floating_flag_handler) (GObject*, gint) = object_floating_flag_handler;
203 G_LOCK_DEFINE_STATIC (construction_mutex);
204 static GSList *construction_objects = NULL;
205 /* qdata pointing to GSList<GWeakRef *>, protected by weak_locations_lock */
206 static GQuark quark_weak_locations = 0;
207 static GRWLock weak_locations_lock;
209 G_LOCK_DEFINE_STATIC(notify_lock);
211 /* --- functions --- */
213 g_object_notify_queue_free (gpointer data)
215 GObjectNotifyQueue *nqueue = data;
217 g_slist_free (nqueue->pspecs);
218 g_slice_free (GObjectNotifyQueue, nqueue);
221 static GObjectNotifyQueue*
222 g_object_notify_queue_freeze (GObject *object,
223 gboolean conditional)
225 GObjectNotifyQueue *nqueue;
228 nqueue = g_datalist_id_get_data (&object->qdata, quark_notify_queue);
233 G_UNLOCK(notify_lock);
237 nqueue = g_slice_new0 (GObjectNotifyQueue);
238 g_datalist_id_set_data_full (&object->qdata, quark_notify_queue,
239 nqueue, g_object_notify_queue_free);
242 if (nqueue->freeze_count >= 65535)
243 g_critical("Free queue for %s (%p) is larger than 65535,"
244 " called g_object_freeze_notify() too often."
245 " Forgot to call g_object_thaw_notify() or infinite loop",
246 G_OBJECT_TYPE_NAME (object), object);
248 nqueue->freeze_count++;
249 G_UNLOCK(notify_lock);
255 g_object_notify_queue_thaw (GObject *object,
256 GObjectNotifyQueue *nqueue)
258 GParamSpec *pspecs_mem[16], **pspecs, **free_me = NULL;
262 g_return_if_fail (nqueue->freeze_count > 0);
263 g_return_if_fail (g_atomic_int_get(&object->ref_count) > 0);
267 /* Just make sure we never get into some nasty race condition */
268 if (G_UNLIKELY(nqueue->freeze_count == 0)) {
269 G_UNLOCK(notify_lock);
270 g_warning ("%s: property-changed notification for %s(%p) is not frozen",
271 G_STRFUNC, G_OBJECT_TYPE_NAME (object), object);
275 nqueue->freeze_count--;
276 if (nqueue->freeze_count) {
277 G_UNLOCK(notify_lock);
281 pspecs = nqueue->n_pspecs > 16 ? free_me = g_new (GParamSpec*, nqueue->n_pspecs) : pspecs_mem;
283 for (slist = nqueue->pspecs; slist; slist = slist->next)
285 pspecs[n_pspecs++] = slist->data;
287 g_datalist_id_set_data (&object->qdata, quark_notify_queue, NULL);
289 G_UNLOCK(notify_lock);
292 G_OBJECT_GET_CLASS (object)->dispatch_properties_changed (object, n_pspecs, pspecs);
297 g_object_notify_queue_add (GObject *object,
298 GObjectNotifyQueue *nqueue,
303 g_return_if_fail (nqueue->n_pspecs < 65535);
305 if (g_slist_find (nqueue->pspecs, pspec) == NULL)
307 nqueue->pspecs = g_slist_prepend (nqueue->pspecs, pspec);
311 G_UNLOCK(notify_lock);
314 #ifdef G_ENABLE_DEBUG
315 #define IF_DEBUG(debug_type) if (_g_type_debug_flags & G_TYPE_DEBUG_ ## debug_type)
316 G_LOCK_DEFINE_STATIC (debug_objects);
317 static volatile GObject *g_trap_object_ref = NULL;
318 static guint debug_objects_count = 0;
319 static GHashTable *debug_objects_ht = NULL;
322 debug_objects_foreach (gpointer key,
326 GObject *object = value;
328 g_message ("[%p] stale %s\tref_count=%u",
330 G_OBJECT_TYPE_NAME (object),
334 #ifdef G_HAS_CONSTRUCTORS
335 #ifdef G_DEFINE_DESTRUCTOR_NEEDS_PRAGMA
336 #pragma G_DEFINE_DESTRUCTOR_PRAGMA_ARGS(debug_objects_atexit)
338 G_DEFINE_DESTRUCTOR(debug_objects_atexit)
339 #endif /* G_HAS_CONSTRUCTORS */
342 debug_objects_atexit (void)
346 G_LOCK (debug_objects);
347 g_message ("stale GObjects: %u", debug_objects_count);
348 g_hash_table_foreach (debug_objects_ht, debug_objects_foreach, NULL);
349 G_UNLOCK (debug_objects);
352 #endif /* G_ENABLE_DEBUG */
355 _g_object_type_init (void)
357 static gboolean initialized = FALSE;
358 static const GTypeFundamentalInfo finfo = {
359 G_TYPE_FLAG_CLASSED | G_TYPE_FLAG_INSTANTIATABLE | G_TYPE_FLAG_DERIVABLE | G_TYPE_FLAG_DEEP_DERIVABLE,
362 sizeof (GObjectClass),
363 (GBaseInitFunc) g_object_base_class_init,
364 (GBaseFinalizeFunc) g_object_base_class_finalize,
365 (GClassInitFunc) g_object_do_class_init,
366 NULL /* class_destroy */,
367 NULL /* class_data */,
370 (GInstanceInitFunc) g_object_init,
371 NULL, /* value_table */
373 static const GTypeValueTable value_table = {
374 g_value_object_init, /* value_init */
375 g_value_object_free_value, /* value_free */
376 g_value_object_copy_value, /* value_copy */
377 g_value_object_peek_pointer, /* value_peek_pointer */
378 "p", /* collect_format */
379 g_value_object_collect_value, /* collect_value */
380 "p", /* lcopy_format */
381 g_value_object_lcopy_value, /* lcopy_value */
385 g_return_if_fail (initialized == FALSE);
390 info.value_table = &value_table;
391 type = g_type_register_fundamental (G_TYPE_OBJECT, g_intern_static_string ("GObject"), &info, &finfo, 0);
392 g_assert (type == G_TYPE_OBJECT);
393 g_value_register_transform_func (G_TYPE_OBJECT, G_TYPE_OBJECT, g_value_object_transform_value);
395 #ifdef G_ENABLE_DEBUG
398 debug_objects_ht = g_hash_table_new (g_direct_hash, NULL);
399 #ifndef G_HAS_CONSTRUCTORS
400 g_atexit (debug_objects_atexit);
401 #endif /* G_HAS_CONSTRUCTORS */
403 #endif /* G_ENABLE_DEBUG */
407 g_object_base_class_init (GObjectClass *class)
409 GObjectClass *pclass = g_type_class_peek_parent (class);
411 /* Don't inherit HAS_DERIVED_CLASS flag from parent class */
412 class->flags &= ~CLASS_HAS_DERIVED_CLASS_FLAG;
415 pclass->flags |= CLASS_HAS_DERIVED_CLASS_FLAG;
417 /* reset instance specific fields and methods that don't get inherited */
418 class->construct_properties = pclass ? g_slist_copy (pclass->construct_properties) : NULL;
419 class->get_property = NULL;
420 class->set_property = NULL;
424 g_object_base_class_finalize (GObjectClass *class)
428 _g_signals_destroy (G_OBJECT_CLASS_TYPE (class));
430 g_slist_free (class->construct_properties);
431 class->construct_properties = NULL;
432 list = g_param_spec_pool_list_owned (pspec_pool, G_OBJECT_CLASS_TYPE (class));
433 for (node = list; node; node = node->next)
435 GParamSpec *pspec = node->data;
437 g_param_spec_pool_remove (pspec_pool, pspec);
438 PARAM_SPEC_SET_PARAM_ID (pspec, 0);
439 g_param_spec_unref (pspec);
445 g_object_do_class_init (GObjectClass *class)
447 /* read the comment about typedef struct CArray; on why not to change this quark */
448 quark_closure_array = g_quark_from_static_string ("GObject-closure-array");
450 quark_weak_refs = g_quark_from_static_string ("GObject-weak-references");
451 quark_weak_locations = g_quark_from_static_string ("GObject-weak-locations");
452 quark_toggle_refs = g_quark_from_static_string ("GObject-toggle-references");
453 quark_notify_queue = g_quark_from_static_string ("GObject-notify-queue");
454 pspec_pool = g_param_spec_pool_new (TRUE);
456 class->constructor = g_object_constructor;
457 class->constructed = g_object_constructed;
458 class->set_property = g_object_do_set_property;
459 class->get_property = g_object_do_get_property;
460 class->dispose = g_object_real_dispose;
461 class->finalize = g_object_finalize;
462 class->dispatch_properties_changed = g_object_dispatch_properties_changed;
463 class->notify = NULL;
467 * @gobject: the object which received the signal.
468 * @pspec: the #GParamSpec of the property which changed.
470 * The notify signal is emitted on an object when one of its
471 * properties has been changed. Note that getting this signal
472 * doesn't guarantee that the value of the property has actually
473 * changed, it may also be emitted when the setter for the property
474 * is called to reinstate the previous value.
476 * This signal is typically used to obtain change notification for a
477 * single property, by specifying the property name as a detail in the
478 * g_signal_connect() call, like this:
480 * g_signal_connect (text_view->buffer, "notify::paste-target-list",
481 * G_CALLBACK (gtk_text_view_target_list_notify),
484 * It is important to note that you must use
485 * <link linkend="canonical-parameter-name">canonical</link> parameter names as
486 * detail strings for the notify signal.
488 gobject_signals[NOTIFY] =
489 g_signal_new (g_intern_static_string ("notify"),
490 G_TYPE_FROM_CLASS (class),
491 G_SIGNAL_RUN_FIRST | G_SIGNAL_NO_RECURSE | G_SIGNAL_DETAILED | G_SIGNAL_NO_HOOKS | G_SIGNAL_ACTION,
492 G_STRUCT_OFFSET (GObjectClass, notify),
494 g_cclosure_marshal_VOID__PARAM,
498 /* Install a check function that we'll use to verify that classes that
499 * implement an interface implement all properties for that interface
501 g_type_add_interface_check (NULL, object_interface_check_properties);
505 install_property_internal (GType g_type,
509 if (g_param_spec_pool_lookup (pspec_pool, pspec->name, g_type, FALSE))
511 g_warning ("When installing property: type `%s' already has a property named `%s'",
512 g_type_name (g_type),
517 g_param_spec_ref_sink (pspec);
518 PARAM_SPEC_SET_PARAM_ID (pspec, property_id);
519 g_param_spec_pool_insert (pspec_pool, pspec, g_type);
523 * g_object_class_install_property:
524 * @oclass: a #GObjectClass
525 * @property_id: the id for the new property
526 * @pspec: the #GParamSpec for the new property
528 * Installs a new property. This is usually done in the class initializer.
530 * Note that it is possible to redefine a property in a derived class,
531 * by installing a property with the same name. This can be useful at times,
532 * e.g. to change the range of allowed values or the default value.
535 g_object_class_install_property (GObjectClass *class,
539 g_return_if_fail (G_IS_OBJECT_CLASS (class));
540 g_return_if_fail (G_IS_PARAM_SPEC (pspec));
542 if (CLASS_HAS_DERIVED_CLASS (class))
543 g_error ("Attempt to add property %s::%s to class after it was derived",
544 G_OBJECT_CLASS_NAME (class), pspec->name);
546 class->flags |= CLASS_HAS_PROPS_FLAG;
548 g_return_if_fail (pspec->flags & (G_PARAM_READABLE | G_PARAM_WRITABLE));
549 if (pspec->flags & G_PARAM_WRITABLE)
550 g_return_if_fail (class->set_property != NULL);
551 if (pspec->flags & G_PARAM_READABLE)
552 g_return_if_fail (class->get_property != NULL);
553 g_return_if_fail (property_id > 0);
554 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec) == 0); /* paranoid */
555 if (pspec->flags & G_PARAM_CONSTRUCT)
556 g_return_if_fail ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) == 0);
557 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
558 g_return_if_fail (pspec->flags & G_PARAM_WRITABLE);
560 install_property_internal (G_OBJECT_CLASS_TYPE (class), property_id, pspec);
562 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
563 class->construct_properties = g_slist_prepend (class->construct_properties, pspec);
565 /* for property overrides of construct properties, we have to get rid
566 * of the overidden inherited construct property
568 pspec = g_param_spec_pool_lookup (pspec_pool, pspec->name, g_type_parent (G_OBJECT_CLASS_TYPE (class)), TRUE);
569 if (pspec && pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
570 class->construct_properties = g_slist_remove (class->construct_properties, pspec);
574 * g_object_class_install_properties:
575 * @oclass: a #GObjectClass
576 * @n_pspecs: the length of the #GParamSpec<!-- -->s array
577 * @pspecs: (array length=n_pspecs): the #GParamSpec<!-- -->s array
578 * defining the new properties
580 * Installs new properties from an array of #GParamSpec<!-- -->s. This is
581 * usually done in the class initializer.
583 * The property id of each property is the index of each #GParamSpec in
586 * The property id of 0 is treated specially by #GObject and it should not
587 * be used to store a #GParamSpec.
589 * This function should be used if you plan to use a static array of
590 * #GParamSpec<!-- -->s and g_object_notify_by_pspec(). For instance, this
591 * class initialization:
595 * PROP_0, PROP_FOO, PROP_BAR, N_PROPERTIES
598 * static GParamSpec *obj_properties[N_PROPERTIES] = { NULL, };
601 * my_object_class_init (MyObjectClass *klass)
603 * GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
605 * obj_properties[PROP_FOO] =
606 * g_param_spec_int ("foo", "Foo", "Foo",
609 * G_PARAM_READWRITE);
611 * obj_properties[PROP_BAR] =
612 * g_param_spec_string ("bar", "Bar", "Bar",
614 * G_PARAM_READWRITE);
616 * gobject_class->set_property = my_object_set_property;
617 * gobject_class->get_property = my_object_get_property;
618 * g_object_class_install_properties (gobject_class,
624 * allows calling g_object_notify_by_pspec() to notify of property changes:
628 * my_object_set_foo (MyObject *self, gint foo)
630 * if (self->foo != foo)
633 * g_object_notify_by_pspec (G_OBJECT (self), obj_properties[PROP_FOO]);
641 g_object_class_install_properties (GObjectClass *oclass,
645 GType oclass_type, parent_type;
648 g_return_if_fail (G_IS_OBJECT_CLASS (oclass));
649 g_return_if_fail (n_pspecs > 1);
650 g_return_if_fail (pspecs[0] == NULL);
652 if (CLASS_HAS_DERIVED_CLASS (oclass))
653 g_error ("Attempt to add properties to %s after it was derived",
654 G_OBJECT_CLASS_NAME (oclass));
656 oclass_type = G_OBJECT_CLASS_TYPE (oclass);
657 parent_type = g_type_parent (oclass_type);
659 /* we skip the first element of the array as it would have a 0 prop_id */
660 for (i = 1; i < n_pspecs; i++)
662 GParamSpec *pspec = pspecs[i];
664 g_return_if_fail (pspec != NULL);
666 if (pspec->flags & G_PARAM_WRITABLE)
667 g_return_if_fail (oclass->set_property != NULL);
668 if (pspec->flags & G_PARAM_READABLE)
669 g_return_if_fail (oclass->get_property != NULL);
670 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec) == 0); /* paranoid */
671 if (pspec->flags & G_PARAM_CONSTRUCT)
672 g_return_if_fail ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) == 0);
673 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
674 g_return_if_fail (pspec->flags & G_PARAM_WRITABLE);
676 oclass->flags |= CLASS_HAS_PROPS_FLAG;
677 install_property_internal (oclass_type, i, pspec);
679 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
680 oclass->construct_properties = g_slist_prepend (oclass->construct_properties, pspec);
682 /* for property overrides of construct properties, we have to get rid
683 * of the overidden inherited construct property
685 pspec = g_param_spec_pool_lookup (pspec_pool, pspec->name, parent_type, TRUE);
686 if (pspec && pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
687 oclass->construct_properties = g_slist_remove (oclass->construct_properties, pspec);
692 * g_object_interface_install_property:
693 * @g_iface: any interface vtable for the interface, or the default
694 * vtable for the interface.
695 * @pspec: the #GParamSpec for the new property
697 * Add a property to an interface; this is only useful for interfaces
698 * that are added to GObject-derived types. Adding a property to an
699 * interface forces all objects classes with that interface to have a
700 * compatible property. The compatible property could be a newly
701 * created #GParamSpec, but normally
702 * g_object_class_override_property() will be used so that the object
703 * class only needs to provide an implementation and inherits the
704 * property description, default value, bounds, and so forth from the
705 * interface property.
707 * This function is meant to be called from the interface's default
708 * vtable initialization function (the @class_init member of
709 * #GTypeInfo.) It must not be called after after @class_init has
710 * been called for any object types implementing this interface.
715 g_object_interface_install_property (gpointer g_iface,
718 GTypeInterface *iface_class = g_iface;
720 g_return_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type));
721 g_return_if_fail (G_IS_PARAM_SPEC (pspec));
722 g_return_if_fail (!G_IS_PARAM_SPEC_OVERRIDE (pspec)); /* paranoid */
723 g_return_if_fail (PARAM_SPEC_PARAM_ID (pspec) == 0); /* paranoid */
725 g_return_if_fail (pspec->flags & (G_PARAM_READABLE | G_PARAM_WRITABLE));
726 if (pspec->flags & G_PARAM_CONSTRUCT)
727 g_return_if_fail ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) == 0);
728 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
729 g_return_if_fail (pspec->flags & G_PARAM_WRITABLE);
731 install_property_internal (iface_class->g_type, 0, pspec);
735 * g_object_class_find_property:
736 * @oclass: a #GObjectClass
737 * @property_name: the name of the property to look up
739 * Looks up the #GParamSpec for a property of a class.
741 * Returns: (transfer none): the #GParamSpec for the property, or
742 * %NULL if the class doesn't have a property of that name
745 g_object_class_find_property (GObjectClass *class,
746 const gchar *property_name)
749 GParamSpec *redirect;
751 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL);
752 g_return_val_if_fail (property_name != NULL, NULL);
754 pspec = g_param_spec_pool_lookup (pspec_pool,
756 G_OBJECT_CLASS_TYPE (class),
760 redirect = g_param_spec_get_redirect_target (pspec);
771 * g_object_interface_find_property:
772 * @g_iface: any interface vtable for the interface, or the default
773 * vtable for the interface
774 * @property_name: name of a property to lookup.
776 * Find the #GParamSpec with the given name for an
777 * interface. Generally, the interface vtable passed in as @g_iface
778 * will be the default vtable from g_type_default_interface_ref(), or,
779 * if you know the interface has already been loaded,
780 * g_type_default_interface_peek().
784 * Returns: (transfer none): the #GParamSpec for the property of the
785 * interface with the name @property_name, or %NULL if no
786 * such property exists.
789 g_object_interface_find_property (gpointer g_iface,
790 const gchar *property_name)
792 GTypeInterface *iface_class = g_iface;
794 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type), NULL);
795 g_return_val_if_fail (property_name != NULL, NULL);
797 return g_param_spec_pool_lookup (pspec_pool,
804 * g_object_class_override_property:
805 * @oclass: a #GObjectClass
806 * @property_id: the new property ID
807 * @name: the name of a property registered in a parent class or
808 * in an interface of this class.
810 * Registers @property_id as referring to a property with the
811 * name @name in a parent class or in an interface implemented
812 * by @oclass. This allows this class to <firstterm>override</firstterm>
813 * a property implementation in a parent class or to provide
814 * the implementation of a property from an interface.
817 * Internally, overriding is implemented by creating a property of type
818 * #GParamSpecOverride; generally operations that query the properties of
819 * the object class, such as g_object_class_find_property() or
820 * g_object_class_list_properties() will return the overridden
821 * property. However, in one case, the @construct_properties argument of
822 * the @constructor virtual function, the #GParamSpecOverride is passed
823 * instead, so that the @param_id field of the #GParamSpec will be
824 * correct. For virtually all uses, this makes no difference. If you
825 * need to get the overridden property, you can call
826 * g_param_spec_get_redirect_target().
832 g_object_class_override_property (GObjectClass *oclass,
836 GParamSpec *overridden = NULL;
840 g_return_if_fail (G_IS_OBJECT_CLASS (oclass));
841 g_return_if_fail (property_id > 0);
842 g_return_if_fail (name != NULL);
844 /* Find the overridden property; first check parent types
846 parent_type = g_type_parent (G_OBJECT_CLASS_TYPE (oclass));
847 if (parent_type != G_TYPE_NONE)
848 overridden = g_param_spec_pool_lookup (pspec_pool,
857 /* Now check interfaces
859 ifaces = g_type_interfaces (G_OBJECT_CLASS_TYPE (oclass), &n_ifaces);
860 while (n_ifaces-- && !overridden)
862 overridden = g_param_spec_pool_lookup (pspec_pool,
873 g_warning ("%s: Can't find property to override for '%s::%s'",
874 G_STRFUNC, G_OBJECT_CLASS_NAME (oclass), name);
878 new = g_param_spec_override (name, overridden);
879 g_object_class_install_property (oclass, property_id, new);
883 * g_object_class_list_properties:
884 * @oclass: a #GObjectClass
885 * @n_properties: (out): return location for the length of the returned array
887 * Get an array of #GParamSpec* for all properties of a class.
889 * Returns: (array length=n_properties) (transfer container): an array of
890 * #GParamSpec* which should be freed after use
892 GParamSpec** /* free result */
893 g_object_class_list_properties (GObjectClass *class,
894 guint *n_properties_p)
899 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL);
901 pspecs = g_param_spec_pool_list (pspec_pool,
902 G_OBJECT_CLASS_TYPE (class),
911 * g_object_interface_list_properties:
912 * @g_iface: any interface vtable for the interface, or the default
913 * vtable for the interface
914 * @n_properties_p: (out): location to store number of properties returned.
916 * Lists the properties of an interface.Generally, the interface
917 * vtable passed in as @g_iface will be the default vtable from
918 * g_type_default_interface_ref(), or, if you know the interface has
919 * already been loaded, g_type_default_interface_peek().
923 * Returns: (array length=n_properties_p) (transfer container): a
924 * pointer to an array of pointers to #GParamSpec
925 * structures. The paramspecs are owned by GLib, but the
926 * array should be freed with g_free() when you are done with
930 g_object_interface_list_properties (gpointer g_iface,
931 guint *n_properties_p)
933 GTypeInterface *iface_class = g_iface;
937 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type), NULL);
939 pspecs = g_param_spec_pool_list (pspec_pool,
949 g_object_init (GObject *object,
952 object->ref_count = 1;
953 object->qdata = NULL;
955 if (CLASS_HAS_PROPS (class))
957 /* freeze object's notification queue, g_object_newv() preserves pairedness */
958 g_object_notify_queue_freeze (object, FALSE);
961 if (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
963 /* enter construction list for notify_queue_thaw() and to allow construct-only properties */
964 G_LOCK (construction_mutex);
965 construction_objects = g_slist_prepend (construction_objects, object);
966 G_UNLOCK (construction_mutex);
969 #ifdef G_ENABLE_DEBUG
972 G_LOCK (debug_objects);
973 debug_objects_count++;
974 g_hash_table_insert (debug_objects_ht, object, object);
975 G_UNLOCK (debug_objects);
977 #endif /* G_ENABLE_DEBUG */
981 g_object_do_set_property (GObject *object,
989 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
995 g_object_do_get_property (GObject *object,
1000 switch (property_id)
1003 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
1009 g_object_real_dispose (GObject *object)
1011 g_signal_handlers_destroy (object);
1012 g_datalist_id_set_data (&object->qdata, quark_closure_array, NULL);
1013 g_datalist_id_set_data (&object->qdata, quark_weak_refs, NULL);
1017 g_object_finalize (GObject *object)
1019 g_datalist_clear (&object->qdata);
1021 #ifdef G_ENABLE_DEBUG
1024 G_LOCK (debug_objects);
1025 g_assert (g_hash_table_lookup (debug_objects_ht, object) == object);
1026 g_hash_table_remove (debug_objects_ht, object);
1027 debug_objects_count--;
1028 G_UNLOCK (debug_objects);
1030 #endif /* G_ENABLE_DEBUG */
1035 g_object_dispatch_properties_changed (GObject *object,
1037 GParamSpec **pspecs)
1041 for (i = 0; i < n_pspecs; i++)
1042 g_signal_emit (object, gobject_signals[NOTIFY], g_quark_from_string (pspecs[i]->name), pspecs[i]);
1046 * g_object_run_dispose:
1047 * @object: a #GObject
1049 * Releases all references to other objects. This can be used to break
1052 * This functions should only be called from object system implementations.
1055 g_object_run_dispose (GObject *object)
1057 g_return_if_fail (G_IS_OBJECT (object));
1058 g_return_if_fail (object->ref_count > 0);
1060 g_object_ref (object);
1061 TRACE (GOBJECT_OBJECT_DISPOSE(object,G_TYPE_FROM_INSTANCE(object), 0));
1062 G_OBJECT_GET_CLASS (object)->dispose (object);
1063 TRACE (GOBJECT_OBJECT_DISPOSE_END(object,G_TYPE_FROM_INSTANCE(object), 0));
1064 g_object_unref (object);
1068 * g_object_freeze_notify:
1069 * @object: a #GObject
1071 * Increases the freeze count on @object. If the freeze count is
1072 * non-zero, the emission of "notify" signals on @object is
1073 * stopped. The signals are queued until the freeze count is decreased
1074 * to zero. Duplicate notifications are squashed so that at most one
1075 * #GObject::notify signal is emitted for each property modified while the
1078 * This is necessary for accessors that modify multiple properties to prevent
1079 * premature notification while the object is still being modified.
1082 g_object_freeze_notify (GObject *object)
1084 g_return_if_fail (G_IS_OBJECT (object));
1086 if (g_atomic_int_get (&object->ref_count) == 0)
1089 g_object_ref (object);
1090 g_object_notify_queue_freeze (object, FALSE);
1091 g_object_unref (object);
1095 get_notify_pspec (GParamSpec *pspec)
1097 GParamSpec *redirected;
1099 /* we don't notify on non-READABLE parameters */
1100 if (~pspec->flags & G_PARAM_READABLE)
1103 /* if the paramspec is redirected, notify on the target */
1104 redirected = g_param_spec_get_redirect_target (pspec);
1105 if (redirected != NULL)
1108 /* else, notify normally */
1113 g_object_notify_by_spec_internal (GObject *object,
1116 GParamSpec *notify_pspec;
1118 notify_pspec = get_notify_pspec (pspec);
1120 if (notify_pspec != NULL)
1122 GObjectNotifyQueue *nqueue;
1124 /* conditional freeze: only increase freeze count if already frozen */
1125 nqueue = g_object_notify_queue_freeze (object, TRUE);
1129 /* we're frozen, so add to the queue and release our freeze */
1130 g_object_notify_queue_add (object, nqueue, notify_pspec);
1131 g_object_notify_queue_thaw (object, nqueue);
1134 /* not frozen, so just dispatch the notification directly */
1135 G_OBJECT_GET_CLASS (object)
1136 ->dispatch_properties_changed (object, 1, ¬ify_pspec);
1142 * @object: a #GObject
1143 * @property_name: the name of a property installed on the class of @object.
1145 * Emits a "notify" signal for the property @property_name on @object.
1147 * When possible, eg. when signaling a property change from within the class
1148 * that registered the property, you should use g_object_notify_by_pspec()
1152 g_object_notify (GObject *object,
1153 const gchar *property_name)
1157 g_return_if_fail (G_IS_OBJECT (object));
1158 g_return_if_fail (property_name != NULL);
1159 if (g_atomic_int_get (&object->ref_count) == 0)
1162 g_object_ref (object);
1163 /* We don't need to get the redirect target
1164 * (by, e.g. calling g_object_class_find_property())
1165 * because g_object_notify_queue_add() does that
1167 pspec = g_param_spec_pool_lookup (pspec_pool,
1169 G_OBJECT_TYPE (object),
1173 g_warning ("%s: object class `%s' has no property named `%s'",
1175 G_OBJECT_TYPE_NAME (object),
1178 g_object_notify_by_spec_internal (object, pspec);
1179 g_object_unref (object);
1183 * g_object_notify_by_pspec:
1184 * @object: a #GObject
1185 * @pspec: the #GParamSpec of a property installed on the class of @object.
1187 * Emits a "notify" signal for the property specified by @pspec on @object.
1189 * This function omits the property name lookup, hence it is faster than
1190 * g_object_notify().
1192 * One way to avoid using g_object_notify() from within the
1193 * class that registered the properties, and using g_object_notify_by_pspec()
1194 * instead, is to store the GParamSpec used with
1195 * g_object_class_install_property() inside a static array, e.g.:
1205 * static GParamSpec *properties[PROP_LAST];
1208 * my_object_class_init (MyObjectClass *klass)
1210 * properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
1213 * G_PARAM_READWRITE);
1214 * g_object_class_install_property (gobject_class,
1216 * properties[PROP_FOO]);
1220 * and then notify a change on the "foo" property with:
1223 * g_object_notify_by_pspec (self, properties[PROP_FOO]);
1229 g_object_notify_by_pspec (GObject *object,
1233 g_return_if_fail (G_IS_OBJECT (object));
1234 g_return_if_fail (G_IS_PARAM_SPEC (pspec));
1236 g_object_ref (object);
1237 g_object_notify_by_spec_internal (object, pspec);
1238 g_object_unref (object);
1242 * g_object_thaw_notify:
1243 * @object: a #GObject
1245 * Reverts the effect of a previous call to
1246 * g_object_freeze_notify(). The freeze count is decreased on @object
1247 * and when it reaches zero, queued "notify" signals are emitted.
1249 * Duplicate notifications for each property are squashed so that at most one
1250 * #GObject::notify signal is emitted for each property.
1252 * It is an error to call this function when the freeze count is zero.
1255 g_object_thaw_notify (GObject *object)
1257 GObjectNotifyQueue *nqueue;
1259 g_return_if_fail (G_IS_OBJECT (object));
1260 if (g_atomic_int_get (&object->ref_count) == 0)
1263 g_object_ref (object);
1265 /* FIXME: Freezing is the only way to get at the notify queue.
1266 * So we freeze once and then thaw twice.
1268 nqueue = g_object_notify_queue_freeze (object, FALSE);
1269 g_object_notify_queue_thaw (object, nqueue);
1270 g_object_notify_queue_thaw (object, nqueue);
1272 g_object_unref (object);
1276 object_get_property (GObject *object,
1280 GObjectClass *class = g_type_class_peek (pspec->owner_type);
1281 guint param_id = PARAM_SPEC_PARAM_ID (pspec);
1282 GParamSpec *redirect;
1286 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1287 g_type_name (pspec->owner_type), pspec->name, g_type_name (pspec->owner_type));
1291 redirect = g_param_spec_get_redirect_target (pspec);
1295 class->get_property (object, param_id, value, pspec);
1299 object_set_property (GObject *object,
1301 const GValue *value,
1302 GObjectNotifyQueue *nqueue)
1304 GValue tmp_value = G_VALUE_INIT;
1305 GObjectClass *class = g_type_class_peek (pspec->owner_type);
1306 guint param_id = PARAM_SPEC_PARAM_ID (pspec);
1307 GParamSpec *redirect;
1308 static const gchar * enable_diagnostic = NULL;
1312 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1313 g_type_name (pspec->owner_type), pspec->name, g_type_name (pspec->owner_type));
1317 redirect = g_param_spec_get_redirect_target (pspec);
1321 if (G_UNLIKELY (!enable_diagnostic))
1323 enable_diagnostic = g_getenv ("G_ENABLE_DIAGNOSTIC");
1324 if (!enable_diagnostic)
1325 enable_diagnostic = "0";
1328 if (enable_diagnostic[0] == '1')
1330 if (pspec->flags & G_PARAM_DEPRECATED)
1331 g_warning ("The property %s:%s is deprecated and shouldn't be used "
1332 "anymore. It will be removed in a future version.",
1333 G_OBJECT_TYPE_NAME (object), pspec->name);
1336 /* provide a copy to work from, convert (if necessary) and validate */
1337 g_value_init (&tmp_value, pspec->value_type);
1338 if (!g_value_transform (value, &tmp_value))
1339 g_warning ("unable to set property `%s' of type `%s' from value of type `%s'",
1341 g_type_name (pspec->value_type),
1342 G_VALUE_TYPE_NAME (value));
1343 else if (g_param_value_validate (pspec, &tmp_value) && !(pspec->flags & G_PARAM_LAX_VALIDATION))
1345 gchar *contents = g_strdup_value_contents (value);
1347 g_warning ("value \"%s\" of type `%s' is invalid or out of range for property `%s' of type `%s'",
1349 G_VALUE_TYPE_NAME (value),
1351 g_type_name (pspec->value_type));
1356 GParamSpec *notify_pspec;
1358 class->set_property (object, param_id, &tmp_value, pspec);
1360 notify_pspec = get_notify_pspec (pspec);
1362 if (notify_pspec != NULL)
1363 g_object_notify_queue_add (object, nqueue, notify_pspec);
1365 g_value_unset (&tmp_value);
1369 object_interface_check_properties (gpointer func_data,
1372 GTypeInterface *iface_class = g_iface;
1373 GObjectClass *class;
1374 GType iface_type = iface_class->g_type;
1375 GParamSpec **pspecs;
1378 class = g_type_class_ref (iface_class->g_instance_type);
1380 if (!G_IS_OBJECT_CLASS (class))
1383 pspecs = g_param_spec_pool_list (pspec_pool, iface_type, &n);
1387 GParamSpec *class_pspec = g_param_spec_pool_lookup (pspec_pool,
1389 G_OBJECT_CLASS_TYPE (class),
1394 g_critical ("Object class %s doesn't implement property "
1395 "'%s' from interface '%s'",
1396 g_type_name (G_OBJECT_CLASS_TYPE (class)),
1398 g_type_name (iface_type));
1403 /* We do a number of checks on the properties of an interface to
1404 * make sure that all classes implementing the interface are
1405 * overriding the properties in a sane way.
1407 * We do the checks in order of importance so that we can give
1408 * more useful error messages first.
1410 * First, we check that the implementation doesn't remove the
1411 * basic functionality (readability, writability) advertised by
1412 * the interface. Next, we check that it doesn't introduce
1413 * additional restrictions (such as construct-only). Finally, we
1414 * make sure the types are compatible.
1417 #define SUBSET(a,b,mask) (((a) & ~(b) & (mask)) == 0)
1418 /* If the property on the interface is readable then the
1419 * implementation must be readable. If the interface is writable
1420 * then the implementation must be writable.
1422 if (!SUBSET (pspecs[n]->flags, class_pspec->flags, G_PARAM_READABLE | G_PARAM_WRITABLE))
1424 g_critical ("Flags for property '%s' on class '%s' remove functionality compared with the "
1425 "property on interface '%s'\n", pspecs[n]->name,
1426 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type));
1430 /* If the property on the interface is writable then we need to
1431 * make sure the implementation doesn't introduce new restrictions
1432 * on that writability (ie: construct-only).
1434 * If the interface was not writable to begin with then we don't
1435 * really have any problems here because "writable at construct
1436 * type only" is still more permissive than "read only".
1438 if (pspecs[n]->flags & G_PARAM_WRITABLE)
1440 if (!SUBSET (class_pspec->flags, pspecs[n]->flags, G_PARAM_CONSTRUCT_ONLY))
1442 g_critical ("Flags for property '%s' on class '%s' introduce additional restrictions on "
1443 "writability compared with the property on interface '%s'\n", pspecs[n]->name,
1444 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type));
1450 /* If the property on the interface is readable then we are
1451 * effectively advertising that reading the property will return a
1452 * value of a specific type. All implementations of the interface
1453 * need to return items of this type -- but may be more
1454 * restrictive. For example, it is legal to have:
1456 * GtkWidget *get_item();
1458 * that is implemented by a function that always returns a
1459 * GtkEntry. In short: readability implies that the
1460 * implementation value type must be equal or more restrictive.
1462 * Similarly, if the property on the interface is writable then
1463 * must be able to accept the property being set to any value of
1464 * that type, including subclasses. In this case, we may also be
1465 * less restrictive. For example, it is legal to have:
1467 * set_item (GtkEntry *);
1469 * that is implemented by a function that will actually work with
1470 * any GtkWidget. In short: writability implies that the
1471 * implementation value type must be equal or less restrictive.
1473 * In the case that the property is both readable and writable
1474 * then the only way that both of the above can be satisfied is
1475 * with a type that is exactly equal.
1477 switch (pspecs[n]->flags & (G_PARAM_READABLE | G_PARAM_WRITABLE))
1479 case G_PARAM_READABLE | G_PARAM_WRITABLE:
1480 /* class pspec value type must have exact equality with interface */
1481 if (pspecs[n]->value_type != class_pspec->value_type)
1482 g_critical ("Read/writable property '%s' on class '%s' has type '%s' which is not exactly equal to the "
1483 "type '%s' of the property on the interface '%s'\n", pspecs[n]->name,
1484 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1485 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1488 case G_PARAM_READABLE:
1489 /* class pspec value type equal or more restrictive than interface */
1490 if (!g_type_is_a (class_pspec->value_type, pspecs[n]->value_type))
1491 g_critical ("Read-only property '%s' on class '%s' has type '%s' which is not equal to or more "
1492 "restrictive than the type '%s' of the property on the interface '%s'\n", pspecs[n]->name,
1493 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1494 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1497 case G_PARAM_WRITABLE:
1498 /* class pspec value type equal or less restrictive than interface */
1499 if (!g_type_is_a (pspecs[n]->value_type, class_pspec->value_type))
1500 g_critical ("Write-only property '%s' on class '%s' has type '%s' which is not equal to or less "
1501 "restrictive than the type '%s' of the property on the interface '%s' \n", pspecs[n]->name,
1502 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1503 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1507 g_assert_not_reached ();
1513 g_type_class_unref (class);
1517 g_object_get_type (void)
1519 return G_TYPE_OBJECT;
1523 * g_object_new: (skip)
1524 * @object_type: the type id of the #GObject subtype to instantiate
1525 * @first_property_name: the name of the first property
1526 * @...: the value of the first property, followed optionally by more
1527 * name/value pairs, followed by %NULL
1529 * Creates a new instance of a #GObject subtype and sets its properties.
1531 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1532 * which are not explicitly specified are set to their default values.
1534 * Returns: (transfer full): a new instance of @object_type
1537 g_object_new (GType object_type,
1538 const gchar *first_property_name,
1544 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
1546 /* short circuit for calls supplying no properties */
1547 if (!first_property_name)
1548 return g_object_newv (object_type, 0, NULL);
1550 va_start (var_args, first_property_name);
1551 object = g_object_new_valist (object_type, first_property_name, var_args);
1558 slist_maybe_remove (GSList **slist,
1561 GSList *last = NULL, *node = *slist;
1564 if (node->data == data)
1567 last->next = node->next;
1569 *slist = node->next;
1570 g_slist_free_1 (node);
1579 static inline gboolean
1580 object_in_construction_list (GObject *object)
1582 gboolean in_construction;
1583 G_LOCK (construction_mutex);
1584 in_construction = g_slist_find (construction_objects, object) != NULL;
1585 G_UNLOCK (construction_mutex);
1586 return in_construction;
1591 * @object_type: the type id of the #GObject subtype to instantiate
1592 * @n_parameters: the length of the @parameters array
1593 * @parameters: (array length=n_parameters): an array of #GParameter
1595 * Creates a new instance of a #GObject subtype and sets its properties.
1597 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1598 * which are not explicitly specified are set to their default values.
1600 * Rename to: g_object_new
1601 * Returns: (type GObject.Object) (transfer full): a new instance of
1605 g_object_newv (GType object_type,
1607 GParameter *parameters)
1609 GObjectConstructParam *cparams = NULL, *oparams;
1610 GObjectNotifyQueue *nqueue = NULL; /* shouldn't be initialized, just to silence compiler */
1612 GObjectClass *class, *unref_class = NULL;
1614 guint n_total_cparams = 0, n_cparams = 0, n_oparams = 0, n_cvalues;
1616 GList *clist = NULL;
1617 gboolean newly_constructed;
1620 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
1622 class = g_type_class_peek_static (object_type);
1624 class = unref_class = g_type_class_ref (object_type);
1625 for (slist = class->construct_properties; slist; slist = slist->next)
1627 clist = g_list_prepend (clist, slist->data);
1628 n_total_cparams += 1;
1631 if (n_parameters == 0 && n_total_cparams == 0)
1633 /* This is a simple object with no construct properties, and
1634 * no properties are being set, so short circuit the parameter
1635 * handling. This speeds up simple object construction.
1638 object = class->constructor (object_type, 0, NULL);
1639 goto did_construction;
1642 /* collect parameters, sort into construction and normal ones */
1643 oparams = g_new (GObjectConstructParam, n_parameters);
1644 cparams = g_new (GObjectConstructParam, n_total_cparams);
1645 for (i = 0; i < n_parameters; i++)
1647 GValue *value = ¶meters[i].value;
1648 GParamSpec *pspec = g_param_spec_pool_lookup (pspec_pool,
1654 g_warning ("%s: object class `%s' has no property named `%s'",
1656 g_type_name (object_type),
1657 parameters[i].name);
1660 if (!(pspec->flags & G_PARAM_WRITABLE))
1662 g_warning ("%s: property `%s' of object class `%s' is not writable",
1665 g_type_name (object_type));
1668 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
1670 GList *list = g_list_find (clist, pspec);
1674 g_warning ("%s: construct property \"%s\" for object `%s' can't be set twice",
1675 G_STRFUNC, pspec->name, g_type_name (object_type));
1678 cparams[n_cparams].pspec = pspec;
1679 cparams[n_cparams].value = value;
1684 list->prev->next = list->next;
1686 list->next->prev = list->prev;
1687 g_list_free_1 (list);
1691 oparams[n_oparams].pspec = pspec;
1692 oparams[n_oparams].value = value;
1697 /* set remaining construction properties to default values */
1698 n_cvalues = n_total_cparams - n_cparams;
1699 cvalues = g_new (GValue, n_cvalues);
1702 GList *tmp = clist->next;
1703 GParamSpec *pspec = clist->data;
1704 GValue *value = cvalues + n_total_cparams - n_cparams - 1;
1707 g_value_init (value, pspec->value_type);
1708 g_param_value_set_default (pspec, value);
1710 cparams[n_cparams].pspec = pspec;
1711 cparams[n_cparams].value = value;
1714 g_list_free_1 (clist);
1718 /* construct object from construction parameters */
1719 object = class->constructor (object_type, n_total_cparams, cparams);
1720 /* free construction values */
1723 g_value_unset (cvalues + n_cvalues);
1727 if (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1729 /* adjust freeze_count according to g_object_init() and remaining properties */
1730 G_LOCK (construction_mutex);
1731 newly_constructed = slist_maybe_remove (&construction_objects, object);
1732 G_UNLOCK (construction_mutex);
1735 newly_constructed = TRUE;
1737 if (CLASS_HAS_PROPS (class))
1739 if (newly_constructed || n_oparams)
1740 nqueue = g_object_notify_queue_freeze (object, FALSE);
1741 if (newly_constructed)
1742 g_object_notify_queue_thaw (object, nqueue);
1745 /* run 'constructed' handler if there is a custom one */
1746 if (newly_constructed && CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1747 class->constructed (object);
1749 /* set remaining properties */
1750 for (i = 0; i < n_oparams; i++)
1751 object_set_property (object, oparams[i].pspec, oparams[i].value, nqueue);
1754 if (CLASS_HAS_PROPS (class))
1756 /* release our own freeze count and handle notifications */
1757 if (newly_constructed || n_oparams)
1758 g_object_notify_queue_thaw (object, nqueue);
1762 g_type_class_unref (unref_class);
1768 * g_object_new_valist: (skip)
1769 * @object_type: the type id of the #GObject subtype to instantiate
1770 * @first_property_name: the name of the first property
1771 * @var_args: the value of the first property, followed optionally by more
1772 * name/value pairs, followed by %NULL
1774 * Creates a new instance of a #GObject subtype and sets its properties.
1776 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1777 * which are not explicitly specified are set to their default values.
1779 * Returns: a new instance of @object_type
1782 g_object_new_valist (GType object_type,
1783 const gchar *first_property_name,
1786 GObjectClass *class;
1790 guint n_params = 0, n_alloced_params = 16;
1792 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
1794 if (!first_property_name)
1795 return g_object_newv (object_type, 0, NULL);
1797 class = g_type_class_ref (object_type);
1799 params = g_new0 (GParameter, n_alloced_params);
1800 name = first_property_name;
1803 gchar *error = NULL;
1804 GParamSpec *pspec = g_param_spec_pool_lookup (pspec_pool,
1810 g_warning ("%s: object class `%s' has no property named `%s'",
1812 g_type_name (object_type),
1816 if (n_params >= n_alloced_params)
1818 n_alloced_params += 16;
1819 params = g_renew (GParameter, params, n_alloced_params);
1820 memset (params + n_params, 0, 16 * (sizeof *params));
1822 params[n_params].name = name;
1823 G_VALUE_COLLECT_INIT (¶ms[n_params].value, pspec->value_type,
1824 var_args, 0, &error);
1827 g_warning ("%s: %s", G_STRFUNC, error);
1829 g_value_unset (¶ms[n_params].value);
1833 name = va_arg (var_args, gchar*);
1836 object = g_object_newv (object_type, n_params, params);
1839 g_value_unset (¶ms[n_params].value);
1842 g_type_class_unref (class);
1848 g_object_constructor (GType type,
1849 guint n_construct_properties,
1850 GObjectConstructParam *construct_params)
1855 object = (GObject*) g_type_create_instance (type);
1857 /* set construction parameters */
1858 if (n_construct_properties)
1860 GObjectNotifyQueue *nqueue = g_object_notify_queue_freeze (object, FALSE);
1862 /* set construct properties */
1863 while (n_construct_properties--)
1865 GValue *value = construct_params->value;
1866 GParamSpec *pspec = construct_params->pspec;
1869 object_set_property (object, pspec, value, nqueue);
1871 g_object_notify_queue_thaw (object, nqueue);
1872 /* the notification queue is still frozen from g_object_init(), so
1873 * we don't need to handle it here, g_object_newv() takes
1882 g_object_constructed (GObject *object)
1884 /* empty default impl to allow unconditional upchaining */
1888 * g_object_set_valist: (skip)
1889 * @object: a #GObject
1890 * @first_property_name: name of the first property to set
1891 * @var_args: value for the first property, followed optionally by more
1892 * name/value pairs, followed by %NULL
1894 * Sets properties on an object.
1897 g_object_set_valist (GObject *object,
1898 const gchar *first_property_name,
1901 GObjectNotifyQueue *nqueue;
1904 g_return_if_fail (G_IS_OBJECT (object));
1906 g_object_ref (object);
1907 nqueue = g_object_notify_queue_freeze (object, FALSE);
1909 name = first_property_name;
1912 GValue value = G_VALUE_INIT;
1914 gchar *error = NULL;
1916 pspec = g_param_spec_pool_lookup (pspec_pool,
1918 G_OBJECT_TYPE (object),
1922 g_warning ("%s: object class `%s' has no property named `%s'",
1924 G_OBJECT_TYPE_NAME (object),
1928 if (!(pspec->flags & G_PARAM_WRITABLE))
1930 g_warning ("%s: property `%s' of object class `%s' is not writable",
1933 G_OBJECT_TYPE_NAME (object));
1936 if ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) && !object_in_construction_list (object))
1938 g_warning ("%s: construct property \"%s\" for object `%s' can't be set after construction",
1939 G_STRFUNC, pspec->name, G_OBJECT_TYPE_NAME (object));
1943 G_VALUE_COLLECT_INIT (&value, pspec->value_type, var_args,
1947 g_warning ("%s: %s", G_STRFUNC, error);
1949 g_value_unset (&value);
1953 object_set_property (object, pspec, &value, nqueue);
1954 g_value_unset (&value);
1956 name = va_arg (var_args, gchar*);
1959 g_object_notify_queue_thaw (object, nqueue);
1960 g_object_unref (object);
1964 * g_object_get_valist: (skip)
1965 * @object: a #GObject
1966 * @first_property_name: name of the first property to get
1967 * @var_args: return location for the first property, followed optionally by more
1968 * name/return location pairs, followed by %NULL
1970 * Gets properties of an object.
1972 * In general, a copy is made of the property contents and the caller
1973 * is responsible for freeing the memory in the appropriate manner for
1974 * the type, for instance by calling g_free() or g_object_unref().
1976 * See g_object_get().
1979 g_object_get_valist (GObject *object,
1980 const gchar *first_property_name,
1985 g_return_if_fail (G_IS_OBJECT (object));
1987 g_object_ref (object);
1989 name = first_property_name;
1993 GValue value = G_VALUE_INIT;
1997 pspec = g_param_spec_pool_lookup (pspec_pool,
1999 G_OBJECT_TYPE (object),
2003 g_warning ("%s: object class `%s' has no property named `%s'",
2005 G_OBJECT_TYPE_NAME (object),
2009 if (!(pspec->flags & G_PARAM_READABLE))
2011 g_warning ("%s: property `%s' of object class `%s' is not readable",
2014 G_OBJECT_TYPE_NAME (object));
2018 g_value_init (&value, pspec->value_type);
2020 object_get_property (object, pspec, &value);
2022 G_VALUE_LCOPY (&value, var_args, 0, &error);
2025 g_warning ("%s: %s", G_STRFUNC, error);
2027 g_value_unset (&value);
2031 g_value_unset (&value);
2033 name = va_arg (var_args, gchar*);
2036 g_object_unref (object);
2040 * g_object_set: (skip)
2041 * @object: a #GObject
2042 * @first_property_name: name of the first property to set
2043 * @...: value for the first property, followed optionally by more
2044 * name/value pairs, followed by %NULL
2046 * Sets properties on an object.
2049 g_object_set (gpointer _object,
2050 const gchar *first_property_name,
2053 GObject *object = _object;
2056 g_return_if_fail (G_IS_OBJECT (object));
2058 va_start (var_args, first_property_name);
2059 g_object_set_valist (object, first_property_name, var_args);
2064 * g_object_get: (skip)
2065 * @object: a #GObject
2066 * @first_property_name: name of the first property to get
2067 * @...: return location for the first property, followed optionally by more
2068 * name/return location pairs, followed by %NULL
2070 * Gets properties of an object.
2072 * In general, a copy is made of the property contents and the caller
2073 * is responsible for freeing the memory in the appropriate manner for
2074 * the type, for instance by calling g_free() or g_object_unref().
2077 * <title>Using g_object_get(<!-- -->)</title>
2078 * An example of using g_object_get() to get the contents
2079 * of three properties - one of type #G_TYPE_INT,
2080 * one of type #G_TYPE_STRING, and one of type #G_TYPE_OBJECT:
2086 * g_object_get (my_object,
2087 * "int-property", &intval,
2088 * "str-property", &strval,
2089 * "obj-property", &objval,
2092 * // Do something with intval, strval, objval
2095 * g_object_unref (objval);
2100 g_object_get (gpointer _object,
2101 const gchar *first_property_name,
2104 GObject *object = _object;
2107 g_return_if_fail (G_IS_OBJECT (object));
2109 va_start (var_args, first_property_name);
2110 g_object_get_valist (object, first_property_name, var_args);
2115 * g_object_set_property:
2116 * @object: a #GObject
2117 * @property_name: the name of the property to set
2120 * Sets a property on an object.
2123 g_object_set_property (GObject *object,
2124 const gchar *property_name,
2125 const GValue *value)
2127 GObjectNotifyQueue *nqueue;
2130 g_return_if_fail (G_IS_OBJECT (object));
2131 g_return_if_fail (property_name != NULL);
2132 g_return_if_fail (G_IS_VALUE (value));
2134 g_object_ref (object);
2135 nqueue = g_object_notify_queue_freeze (object, FALSE);
2137 pspec = g_param_spec_pool_lookup (pspec_pool,
2139 G_OBJECT_TYPE (object),
2142 g_warning ("%s: object class `%s' has no property named `%s'",
2144 G_OBJECT_TYPE_NAME (object),
2146 else if (!(pspec->flags & G_PARAM_WRITABLE))
2147 g_warning ("%s: property `%s' of object class `%s' is not writable",
2150 G_OBJECT_TYPE_NAME (object));
2151 else if ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) && !object_in_construction_list (object))
2152 g_warning ("%s: construct property \"%s\" for object `%s' can't be set after construction",
2153 G_STRFUNC, pspec->name, G_OBJECT_TYPE_NAME (object));
2155 object_set_property (object, pspec, value, nqueue);
2157 g_object_notify_queue_thaw (object, nqueue);
2158 g_object_unref (object);
2162 * g_object_get_property:
2163 * @object: a #GObject
2164 * @property_name: the name of the property to get
2165 * @value: return location for the property value
2167 * Gets a property of an object. @value must have been initialized to the
2168 * expected type of the property (or a type to which the expected type can be
2169 * transformed) using g_value_init().
2171 * In general, a copy is made of the property contents and the caller is
2172 * responsible for freeing the memory by calling g_value_unset().
2174 * Note that g_object_get_property() is really intended for language
2175 * bindings, g_object_get() is much more convenient for C programming.
2178 g_object_get_property (GObject *object,
2179 const gchar *property_name,
2184 g_return_if_fail (G_IS_OBJECT (object));
2185 g_return_if_fail (property_name != NULL);
2186 g_return_if_fail (G_IS_VALUE (value));
2188 g_object_ref (object);
2190 pspec = g_param_spec_pool_lookup (pspec_pool,
2192 G_OBJECT_TYPE (object),
2195 g_warning ("%s: object class `%s' has no property named `%s'",
2197 G_OBJECT_TYPE_NAME (object),
2199 else if (!(pspec->flags & G_PARAM_READABLE))
2200 g_warning ("%s: property `%s' of object class `%s' is not readable",
2203 G_OBJECT_TYPE_NAME (object));
2206 GValue *prop_value, tmp_value = G_VALUE_INIT;
2208 /* auto-conversion of the callers value type
2210 if (G_VALUE_TYPE (value) == pspec->value_type)
2212 g_value_reset (value);
2215 else if (!g_value_type_transformable (pspec->value_type, G_VALUE_TYPE (value)))
2217 g_warning ("%s: can't retrieve property `%s' of type `%s' as value of type `%s'",
2218 G_STRFUNC, pspec->name,
2219 g_type_name (pspec->value_type),
2220 G_VALUE_TYPE_NAME (value));
2221 g_object_unref (object);
2226 g_value_init (&tmp_value, pspec->value_type);
2227 prop_value = &tmp_value;
2229 object_get_property (object, pspec, prop_value);
2230 if (prop_value != value)
2232 g_value_transform (prop_value, value);
2233 g_value_unset (&tmp_value);
2237 g_object_unref (object);
2241 * g_object_connect: (skip)
2242 * @object: a #GObject
2243 * @signal_spec: the spec for the first signal
2244 * @...: #GCallback for the first signal, followed by data for the
2245 * first signal, followed optionally by more signal
2246 * spec/callback/data triples, followed by %NULL
2248 * A convenience function to connect multiple signals at once.
2250 * The signal specs expected by this function have the form
2251 * "modifier::signal_name", where modifier can be one of the following:
2254 * <term>signal</term>
2256 * equivalent to <literal>g_signal_connect_data (..., NULL, 0)</literal>
2257 * </para></listitem>
2260 * <term>object_signal</term>
2261 * <term>object-signal</term>
2263 * equivalent to <literal>g_signal_connect_object (..., 0)</literal>
2264 * </para></listitem>
2267 * <term>swapped_signal</term>
2268 * <term>swapped-signal</term>
2270 * equivalent to <literal>g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED)</literal>
2271 * </para></listitem>
2274 * <term>swapped_object_signal</term>
2275 * <term>swapped-object-signal</term>
2277 * equivalent to <literal>g_signal_connect_object (..., G_CONNECT_SWAPPED)</literal>
2278 * </para></listitem>
2281 * <term>signal_after</term>
2282 * <term>signal-after</term>
2284 * equivalent to <literal>g_signal_connect_data (..., NULL, G_CONNECT_AFTER)</literal>
2285 * </para></listitem>
2288 * <term>object_signal_after</term>
2289 * <term>object-signal-after</term>
2291 * equivalent to <literal>g_signal_connect_object (..., G_CONNECT_AFTER)</literal>
2292 * </para></listitem>
2295 * <term>swapped_signal_after</term>
2296 * <term>swapped-signal-after</term>
2298 * equivalent to <literal>g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED | G_CONNECT_AFTER)</literal>
2299 * </para></listitem>
2302 * <term>swapped_object_signal_after</term>
2303 * <term>swapped-object-signal-after</term>
2305 * equivalent to <literal>g_signal_connect_object (..., G_CONNECT_SWAPPED | G_CONNECT_AFTER)</literal>
2306 * </para></listitem>
2311 * menu->toplevel = g_object_connect (g_object_new (GTK_TYPE_WINDOW,
2312 * "type", GTK_WINDOW_POPUP,
2315 * "signal::event", gtk_menu_window_event, menu,
2316 * "signal::size_request", gtk_menu_window_size_request, menu,
2317 * "signal::destroy", gtk_widget_destroyed, &menu->toplevel,
2321 * Returns: (transfer none): @object
2324 g_object_connect (gpointer _object,
2325 const gchar *signal_spec,
2328 GObject *object = _object;
2331 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
2332 g_return_val_if_fail (object->ref_count > 0, object);
2334 va_start (var_args, signal_spec);
2337 GCallback callback = va_arg (var_args, GCallback);
2338 gpointer data = va_arg (var_args, gpointer);
2340 if (strncmp (signal_spec, "signal::", 8) == 0)
2341 g_signal_connect_data (object, signal_spec + 8,
2342 callback, data, NULL,
2344 else if (strncmp (signal_spec, "object_signal::", 15) == 0 ||
2345 strncmp (signal_spec, "object-signal::", 15) == 0)
2346 g_signal_connect_object (object, signal_spec + 15,
2349 else if (strncmp (signal_spec, "swapped_signal::", 16) == 0 ||
2350 strncmp (signal_spec, "swapped-signal::", 16) == 0)
2351 g_signal_connect_data (object, signal_spec + 16,
2352 callback, data, NULL,
2354 else if (strncmp (signal_spec, "swapped_object_signal::", 23) == 0 ||
2355 strncmp (signal_spec, "swapped-object-signal::", 23) == 0)
2356 g_signal_connect_object (object, signal_spec + 23,
2359 else if (strncmp (signal_spec, "signal_after::", 14) == 0 ||
2360 strncmp (signal_spec, "signal-after::", 14) == 0)
2361 g_signal_connect_data (object, signal_spec + 14,
2362 callback, data, NULL,
2364 else if (strncmp (signal_spec, "object_signal_after::", 21) == 0 ||
2365 strncmp (signal_spec, "object-signal-after::", 21) == 0)
2366 g_signal_connect_object (object, signal_spec + 21,
2369 else if (strncmp (signal_spec, "swapped_signal_after::", 22) == 0 ||
2370 strncmp (signal_spec, "swapped-signal-after::", 22) == 0)
2371 g_signal_connect_data (object, signal_spec + 22,
2372 callback, data, NULL,
2373 G_CONNECT_SWAPPED | G_CONNECT_AFTER);
2374 else if (strncmp (signal_spec, "swapped_object_signal_after::", 29) == 0 ||
2375 strncmp (signal_spec, "swapped-object-signal-after::", 29) == 0)
2376 g_signal_connect_object (object, signal_spec + 29,
2378 G_CONNECT_SWAPPED | G_CONNECT_AFTER);
2381 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC, signal_spec);
2384 signal_spec = va_arg (var_args, gchar*);
2392 * g_object_disconnect: (skip)
2393 * @object: a #GObject
2394 * @signal_spec: the spec for the first signal
2395 * @...: #GCallback for the first signal, followed by data for the first signal,
2396 * followed optionally by more signal spec/callback/data triples,
2399 * A convenience function to disconnect multiple signals at once.
2401 * The signal specs expected by this function have the form
2402 * "any_signal", which means to disconnect any signal with matching
2403 * callback and data, or "any_signal::signal_name", which only
2404 * disconnects the signal named "signal_name".
2407 g_object_disconnect (gpointer _object,
2408 const gchar *signal_spec,
2411 GObject *object = _object;
2414 g_return_if_fail (G_IS_OBJECT (object));
2415 g_return_if_fail (object->ref_count > 0);
2417 va_start (var_args, signal_spec);
2420 GCallback callback = va_arg (var_args, GCallback);
2421 gpointer data = va_arg (var_args, gpointer);
2422 guint sid = 0, detail = 0, mask = 0;
2424 if (strncmp (signal_spec, "any_signal::", 12) == 0 ||
2425 strncmp (signal_spec, "any-signal::", 12) == 0)
2428 mask = G_SIGNAL_MATCH_ID | G_SIGNAL_MATCH_FUNC | G_SIGNAL_MATCH_DATA;
2430 else if (strcmp (signal_spec, "any_signal") == 0 ||
2431 strcmp (signal_spec, "any-signal") == 0)
2434 mask = G_SIGNAL_MATCH_FUNC | G_SIGNAL_MATCH_DATA;
2438 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC, signal_spec);
2442 if ((mask & G_SIGNAL_MATCH_ID) &&
2443 !g_signal_parse_name (signal_spec, G_OBJECT_TYPE (object), &sid, &detail, FALSE))
2444 g_warning ("%s: invalid signal name \"%s\"", G_STRFUNC, signal_spec);
2445 else if (!g_signal_handlers_disconnect_matched (object, mask | (detail ? G_SIGNAL_MATCH_DETAIL : 0),
2447 NULL, (gpointer)callback, data))
2448 g_warning ("%s: signal handler %p(%p) is not connected", G_STRFUNC, callback, data);
2449 signal_spec = va_arg (var_args, gchar*);
2460 } weak_refs[1]; /* flexible array */
2464 weak_refs_notify (gpointer data)
2466 WeakRefStack *wstack = data;
2469 for (i = 0; i < wstack->n_weak_refs; i++)
2470 wstack->weak_refs[i].notify (wstack->weak_refs[i].data, wstack->object);
2475 * g_object_weak_ref: (skip)
2476 * @object: #GObject to reference weakly
2477 * @notify: callback to invoke before the object is freed
2478 * @data: extra data to pass to notify
2480 * Adds a weak reference callback to an object. Weak references are
2481 * used for notification when an object is finalized. They are called
2482 * "weak references" because they allow you to safely hold a pointer
2483 * to an object without calling g_object_ref() (g_object_ref() adds a
2484 * strong reference, that is, forces the object to stay alive).
2486 * Note that the weak references created by this method are not
2487 * thread-safe: they cannot safely be used in one thread if the
2488 * object's last g_object_unref() might happen in another thread.
2489 * Use #GWeakRef if thread-safety is required.
2492 g_object_weak_ref (GObject *object,
2496 WeakRefStack *wstack;
2499 g_return_if_fail (G_IS_OBJECT (object));
2500 g_return_if_fail (notify != NULL);
2501 g_return_if_fail (object->ref_count >= 1);
2503 G_LOCK (weak_refs_mutex);
2504 wstack = g_datalist_id_remove_no_notify (&object->qdata, quark_weak_refs);
2507 i = wstack->n_weak_refs++;
2508 wstack = g_realloc (wstack, sizeof (*wstack) + sizeof (wstack->weak_refs[0]) * i);
2512 wstack = g_renew (WeakRefStack, NULL, 1);
2513 wstack->object = object;
2514 wstack->n_weak_refs = 1;
2517 wstack->weak_refs[i].notify = notify;
2518 wstack->weak_refs[i].data = data;
2519 g_datalist_id_set_data_full (&object->qdata, quark_weak_refs, wstack, weak_refs_notify);
2520 G_UNLOCK (weak_refs_mutex);
2524 * g_object_weak_unref: (skip)
2525 * @object: #GObject to remove a weak reference from
2526 * @notify: callback to search for
2527 * @data: data to search for
2529 * Removes a weak reference callback to an object.
2532 g_object_weak_unref (GObject *object,
2536 WeakRefStack *wstack;
2537 gboolean found_one = FALSE;
2539 g_return_if_fail (G_IS_OBJECT (object));
2540 g_return_if_fail (notify != NULL);
2542 G_LOCK (weak_refs_mutex);
2543 wstack = g_datalist_id_get_data (&object->qdata, quark_weak_refs);
2548 for (i = 0; i < wstack->n_weak_refs; i++)
2549 if (wstack->weak_refs[i].notify == notify &&
2550 wstack->weak_refs[i].data == data)
2553 wstack->n_weak_refs -= 1;
2554 if (i != wstack->n_weak_refs)
2555 wstack->weak_refs[i] = wstack->weak_refs[wstack->n_weak_refs];
2560 G_UNLOCK (weak_refs_mutex);
2562 g_warning ("%s: couldn't find weak ref %p(%p)", G_STRFUNC, notify, data);
2566 * g_object_add_weak_pointer: (skip)
2567 * @object: The object that should be weak referenced.
2568 * @weak_pointer_location: (inout): The memory address of a pointer.
2570 * Adds a weak reference from weak_pointer to @object to indicate that
2571 * the pointer located at @weak_pointer_location is only valid during
2572 * the lifetime of @object. When the @object is finalized,
2573 * @weak_pointer will be set to %NULL.
2575 * Note that as with g_object_weak_ref(), the weak references created by
2576 * this method are not thread-safe: they cannot safely be used in one
2577 * thread if the object's last g_object_unref() might happen in another
2578 * thread. Use #GWeakRef if thread-safety is required.
2581 g_object_add_weak_pointer (GObject *object,
2582 gpointer *weak_pointer_location)
2584 g_return_if_fail (G_IS_OBJECT (object));
2585 g_return_if_fail (weak_pointer_location != NULL);
2587 g_object_weak_ref (object,
2588 (GWeakNotify) g_nullify_pointer,
2589 weak_pointer_location);
2593 * g_object_remove_weak_pointer: (skip)
2594 * @object: The object that is weak referenced.
2595 * @weak_pointer_location: (inout): The memory address of a pointer.
2597 * Removes a weak reference from @object that was previously added
2598 * using g_object_add_weak_pointer(). The @weak_pointer_location has
2599 * to match the one used with g_object_add_weak_pointer().
2602 g_object_remove_weak_pointer (GObject *object,
2603 gpointer *weak_pointer_location)
2605 g_return_if_fail (G_IS_OBJECT (object));
2606 g_return_if_fail (weak_pointer_location != NULL);
2608 g_object_weak_unref (object,
2609 (GWeakNotify) g_nullify_pointer,
2610 weak_pointer_location);
2614 object_floating_flag_handler (GObject *object,
2620 case +1: /* force floating if possible */
2622 oldvalue = g_atomic_pointer_get (&object->qdata);
2623 while (!g_atomic_pointer_compare_and_exchange ((void**) &object->qdata, oldvalue,
2624 (gpointer) ((gsize) oldvalue | OBJECT_FLOATING_FLAG)));
2625 return (gsize) oldvalue & OBJECT_FLOATING_FLAG;
2626 case -1: /* sink if possible */
2628 oldvalue = g_atomic_pointer_get (&object->qdata);
2629 while (!g_atomic_pointer_compare_and_exchange ((void**) &object->qdata, oldvalue,
2630 (gpointer) ((gsize) oldvalue & ~(gsize) OBJECT_FLOATING_FLAG)));
2631 return (gsize) oldvalue & OBJECT_FLOATING_FLAG;
2632 default: /* check floating */
2633 return 0 != ((gsize) g_atomic_pointer_get (&object->qdata) & OBJECT_FLOATING_FLAG);
2638 * g_object_is_floating:
2639 * @object: (type GObject.Object): a #GObject
2641 * Checks whether @object has a <link linkend="floating-ref">floating</link>
2646 * Returns: %TRUE if @object has a floating reference
2649 g_object_is_floating (gpointer _object)
2651 GObject *object = _object;
2652 g_return_val_if_fail (G_IS_OBJECT (object), FALSE);
2653 return floating_flag_handler (object, 0);
2657 * g_object_ref_sink:
2658 * @object: (type GObject.Object): a #GObject
2660 * Increase the reference count of @object, and possibly remove the
2661 * <link linkend="floating-ref">floating</link> reference, if @object
2662 * has a floating reference.
2664 * In other words, if the object is floating, then this call "assumes
2665 * ownership" of the floating reference, converting it to a normal
2666 * reference by clearing the floating flag while leaving the reference
2667 * count unchanged. If the object is not floating, then this call
2668 * adds a new normal reference increasing the reference count by one.
2672 * Returns: (type GObject.Object) (transfer none): @object
2675 g_object_ref_sink (gpointer _object)
2677 GObject *object = _object;
2678 gboolean was_floating;
2679 g_return_val_if_fail (G_IS_OBJECT (object), object);
2680 g_return_val_if_fail (object->ref_count >= 1, object);
2681 g_object_ref (object);
2682 was_floating = floating_flag_handler (object, -1);
2684 g_object_unref (object);
2689 * g_object_force_floating:
2690 * @object: a #GObject
2692 * This function is intended for #GObject implementations to re-enforce a
2693 * <link linkend="floating-ref">floating</link> object reference.
2694 * Doing this is seldom required: all
2695 * #GInitiallyUnowned<!-- -->s are created with a floating reference which
2696 * usually just needs to be sunken by calling g_object_ref_sink().
2701 g_object_force_floating (GObject *object)
2703 g_return_if_fail (G_IS_OBJECT (object));
2704 g_return_if_fail (object->ref_count >= 1);
2706 floating_flag_handler (object, +1);
2711 guint n_toggle_refs;
2713 GToggleNotify notify;
2715 } toggle_refs[1]; /* flexible array */
2719 toggle_refs_notify (GObject *object,
2720 gboolean is_last_ref)
2722 ToggleRefStack tstack, *tstackptr;
2724 G_LOCK (toggle_refs_mutex);
2725 tstackptr = g_datalist_id_get_data (&object->qdata, quark_toggle_refs);
2726 tstack = *tstackptr;
2727 G_UNLOCK (toggle_refs_mutex);
2729 /* Reentrancy here is not as tricky as it seems, because a toggle reference
2730 * will only be notified when there is exactly one of them.
2732 g_assert (tstack.n_toggle_refs == 1);
2733 tstack.toggle_refs[0].notify (tstack.toggle_refs[0].data, tstack.object, is_last_ref);
2737 * g_object_add_toggle_ref: (skip)
2738 * @object: a #GObject
2739 * @notify: a function to call when this reference is the
2740 * last reference to the object, or is no longer
2741 * the last reference.
2742 * @data: data to pass to @notify
2744 * Increases the reference count of the object by one and sets a
2745 * callback to be called when all other references to the object are
2746 * dropped, or when this is already the last reference to the object
2747 * and another reference is established.
2749 * This functionality is intended for binding @object to a proxy
2750 * object managed by another memory manager. This is done with two
2751 * paired references: the strong reference added by
2752 * g_object_add_toggle_ref() and a reverse reference to the proxy
2753 * object which is either a strong reference or weak reference.
2755 * The setup is that when there are no other references to @object,
2756 * only a weak reference is held in the reverse direction from @object
2757 * to the proxy object, but when there are other references held to
2758 * @object, a strong reference is held. The @notify callback is called
2759 * when the reference from @object to the proxy object should be
2760 * <firstterm>toggled</firstterm> from strong to weak (@is_last_ref
2761 * true) or weak to strong (@is_last_ref false).
2763 * Since a (normal) reference must be held to the object before
2764 * calling g_object_add_toggle_ref(), the initial state of the reverse
2765 * link is always strong.
2767 * Multiple toggle references may be added to the same gobject,
2768 * however if there are multiple toggle references to an object, none
2769 * of them will ever be notified until all but one are removed. For
2770 * this reason, you should only ever use a toggle reference if there
2771 * is important state in the proxy object.
2776 g_object_add_toggle_ref (GObject *object,
2777 GToggleNotify notify,
2780 ToggleRefStack *tstack;
2783 g_return_if_fail (G_IS_OBJECT (object));
2784 g_return_if_fail (notify != NULL);
2785 g_return_if_fail (object->ref_count >= 1);
2787 g_object_ref (object);
2789 G_LOCK (toggle_refs_mutex);
2790 tstack = g_datalist_id_remove_no_notify (&object->qdata, quark_toggle_refs);
2793 i = tstack->n_toggle_refs++;
2794 /* allocate i = tstate->n_toggle_refs - 1 positions beyond the 1 declared
2795 * in tstate->toggle_refs */
2796 tstack = g_realloc (tstack, sizeof (*tstack) + sizeof (tstack->toggle_refs[0]) * i);
2800 tstack = g_renew (ToggleRefStack, NULL, 1);
2801 tstack->object = object;
2802 tstack->n_toggle_refs = 1;
2806 /* Set a flag for fast lookup after adding the first toggle reference */
2807 if (tstack->n_toggle_refs == 1)
2808 g_datalist_set_flags (&object->qdata, OBJECT_HAS_TOGGLE_REF_FLAG);
2810 tstack->toggle_refs[i].notify = notify;
2811 tstack->toggle_refs[i].data = data;
2812 g_datalist_id_set_data_full (&object->qdata, quark_toggle_refs, tstack,
2813 (GDestroyNotify)g_free);
2814 G_UNLOCK (toggle_refs_mutex);
2818 * g_object_remove_toggle_ref: (skip)
2819 * @object: a #GObject
2820 * @notify: a function to call when this reference is the
2821 * last reference to the object, or is no longer
2822 * the last reference.
2823 * @data: data to pass to @notify
2825 * Removes a reference added with g_object_add_toggle_ref(). The
2826 * reference count of the object is decreased by one.
2831 g_object_remove_toggle_ref (GObject *object,
2832 GToggleNotify notify,
2835 ToggleRefStack *tstack;
2836 gboolean found_one = FALSE;
2838 g_return_if_fail (G_IS_OBJECT (object));
2839 g_return_if_fail (notify != NULL);
2841 G_LOCK (toggle_refs_mutex);
2842 tstack = g_datalist_id_get_data (&object->qdata, quark_toggle_refs);
2847 for (i = 0; i < tstack->n_toggle_refs; i++)
2848 if (tstack->toggle_refs[i].notify == notify &&
2849 tstack->toggle_refs[i].data == data)
2852 tstack->n_toggle_refs -= 1;
2853 if (i != tstack->n_toggle_refs)
2854 tstack->toggle_refs[i] = tstack->toggle_refs[tstack->n_toggle_refs];
2856 if (tstack->n_toggle_refs == 0)
2857 g_datalist_unset_flags (&object->qdata, OBJECT_HAS_TOGGLE_REF_FLAG);
2862 G_UNLOCK (toggle_refs_mutex);
2865 g_object_unref (object);
2867 g_warning ("%s: couldn't find toggle ref %p(%p)", G_STRFUNC, notify, data);
2872 * @object: (type GObject.Object): a #GObject
2874 * Increases the reference count of @object.
2876 * Returns: (type GObject.Object) (transfer none): the same @object
2879 g_object_ref (gpointer _object)
2881 GObject *object = _object;
2884 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
2885 g_return_val_if_fail (object->ref_count > 0, NULL);
2887 #ifdef G_ENABLE_DEBUG
2888 if (g_trap_object_ref == object)
2890 #endif /* G_ENABLE_DEBUG */
2893 old_val = g_atomic_int_add (&object->ref_count, 1);
2895 if (old_val == 1 && OBJECT_HAS_TOGGLE_REF (object))
2896 toggle_refs_notify (object, FALSE);
2898 TRACE (GOBJECT_OBJECT_REF(object,G_TYPE_FROM_INSTANCE(object),old_val));
2905 * @object: (type GObject.Object): a #GObject
2907 * Decreases the reference count of @object. When its reference count
2908 * drops to 0, the object is finalized (i.e. its memory is freed).
2911 g_object_unref (gpointer _object)
2913 GObject *object = _object;
2916 g_return_if_fail (G_IS_OBJECT (object));
2917 g_return_if_fail (object->ref_count > 0);
2919 #ifdef G_ENABLE_DEBUG
2920 if (g_trap_object_ref == object)
2922 #endif /* G_ENABLE_DEBUG */
2924 /* here we want to atomically do: if (ref_count>1) { ref_count--; return; } */
2925 retry_atomic_decrement1:
2926 old_ref = g_atomic_int_get (&object->ref_count);
2929 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
2930 gboolean has_toggle_ref = OBJECT_HAS_TOGGLE_REF (object);
2932 if (!g_atomic_int_compare_and_exchange ((int *)&object->ref_count, old_ref, old_ref - 1))
2933 goto retry_atomic_decrement1;
2935 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
2937 /* if we went from 2->1 we need to notify toggle refs if any */
2938 if (old_ref == 2 && has_toggle_ref) /* The last ref being held in this case is owned by the toggle_ref */
2939 toggle_refs_notify (object, TRUE);
2943 GSList **weak_locations;
2945 /* The only way that this object can live at this point is if
2946 * there are outstanding weak references already established
2947 * before we got here.
2949 * If there were not already weak references then no more can be
2950 * established at this time, because the other thread would have
2951 * to hold a strong ref in order to call
2952 * g_object_add_weak_pointer() and then we wouldn't be here.
2954 weak_locations = g_datalist_id_get_data (&object->qdata, quark_weak_locations);
2956 if (weak_locations != NULL)
2958 g_rw_lock_writer_lock (&weak_locations_lock);
2960 /* It is possible that one of the weak references beat us to
2961 * the lock. Make sure the refcount is still what we expected
2964 old_ref = g_atomic_int_get (&object->ref_count);
2967 g_rw_lock_writer_unlock (&weak_locations_lock);
2968 goto retry_atomic_decrement1;
2971 /* We got the lock first, so the object will definitely die
2972 * now. Clear out all the weak references.
2974 while (*weak_locations)
2976 GWeakRef *weak_ref_location = (*weak_locations)->data;
2978 weak_ref_location->priv.p = NULL;
2979 *weak_locations = g_slist_delete_link (*weak_locations, *weak_locations);
2982 g_rw_lock_writer_unlock (&weak_locations_lock);
2985 /* we are about to remove the last reference */
2986 TRACE (GOBJECT_OBJECT_DISPOSE(object,G_TYPE_FROM_INSTANCE(object), 1));
2987 G_OBJECT_GET_CLASS (object)->dispose (object);
2988 TRACE (GOBJECT_OBJECT_DISPOSE_END(object,G_TYPE_FROM_INSTANCE(object), 1));
2990 /* may have been re-referenced meanwhile */
2991 retry_atomic_decrement2:
2992 old_ref = g_atomic_int_get ((int *)&object->ref_count);
2995 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
2996 gboolean has_toggle_ref = OBJECT_HAS_TOGGLE_REF (object);
2998 if (!g_atomic_int_compare_and_exchange ((int *)&object->ref_count, old_ref, old_ref - 1))
2999 goto retry_atomic_decrement2;
3001 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
3003 /* if we went from 2->1 we need to notify toggle refs if any */
3004 if (old_ref == 2 && has_toggle_ref) /* The last ref being held in this case is owned by the toggle_ref */
3005 toggle_refs_notify (object, TRUE);
3010 /* we are still in the process of taking away the last ref */
3011 g_datalist_id_set_data (&object->qdata, quark_closure_array, NULL);
3012 g_signal_handlers_destroy (object);
3013 g_datalist_id_set_data (&object->qdata, quark_weak_refs, NULL);
3015 /* decrement the last reference */
3016 old_ref = g_atomic_int_add (&object->ref_count, -1);
3018 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
3020 /* may have been re-referenced meanwhile */
3021 if (G_LIKELY (old_ref == 1))
3023 TRACE (GOBJECT_OBJECT_FINALIZE(object,G_TYPE_FROM_INSTANCE(object)));
3024 G_OBJECT_GET_CLASS (object)->finalize (object);
3026 TRACE (GOBJECT_OBJECT_FINALIZE_END(object,G_TYPE_FROM_INSTANCE(object)));
3028 #ifdef G_ENABLE_DEBUG
3031 /* catch objects not chaining finalize handlers */
3032 G_LOCK (debug_objects);
3033 g_assert (g_hash_table_lookup (debug_objects_ht, object) == NULL);
3034 G_UNLOCK (debug_objects);
3036 #endif /* G_ENABLE_DEBUG */
3037 g_type_free_instance ((GTypeInstance*) object);
3043 * g_clear_object: (skip)
3044 * @object_ptr: a pointer to a #GObject reference
3046 * Clears a reference to a #GObject.
3048 * @object_ptr must not be %NULL.
3050 * If the reference is %NULL then this function does nothing.
3051 * Otherwise, the reference count of the object is decreased and the
3052 * pointer is set to %NULL.
3054 * This function is threadsafe and modifies the pointer atomically,
3055 * using memory barriers where needed.
3057 * A macro is also included that allows this function to be used without
3062 #undef g_clear_object
3064 g_clear_object (volatile GObject **object_ptr)
3066 g_clear_pointer (object_ptr, g_object_unref);
3070 * g_object_get_qdata:
3071 * @object: The GObject to get a stored user data pointer from
3072 * @quark: A #GQuark, naming the user data pointer
3074 * This function gets back user data pointers stored via
3075 * g_object_set_qdata().
3077 * Returns: (transfer none): The user data pointer set, or %NULL
3080 g_object_get_qdata (GObject *object,
3083 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3085 return quark ? g_datalist_id_get_data (&object->qdata, quark) : NULL;
3089 * g_object_set_qdata: (skip)
3090 * @object: The GObject to set store a user data pointer
3091 * @quark: A #GQuark, naming the user data pointer
3092 * @data: An opaque user data pointer
3094 * This sets an opaque, named pointer on an object.
3095 * The name is specified through a #GQuark (retrived e.g. via
3096 * g_quark_from_static_string()), and the pointer
3097 * can be gotten back from the @object with g_object_get_qdata()
3098 * until the @object is finalized.
3099 * Setting a previously set user data pointer, overrides (frees)
3100 * the old pointer set, using #NULL as pointer essentially
3101 * removes the data stored.
3104 g_object_set_qdata (GObject *object,
3108 g_return_if_fail (G_IS_OBJECT (object));
3109 g_return_if_fail (quark > 0);
3111 g_datalist_id_set_data (&object->qdata, quark, data);
3115 * g_object_dup_qdata:
3116 * @object: the #GObject to store user data on
3117 * @quark: a #GQuark, naming the user data pointer
3118 * @dup_func: (allow-none): function to dup the value
3119 * @user_data: (allow-none): passed as user_data to @dup_func
3121 * This is a variant of g_object_get_qdata() which returns
3122 * a 'duplicate' of the value. @dup_func defines the
3123 * meaning of 'duplicate' in this context, it could e.g.
3124 * take a reference on a ref-counted object.
3126 * If the @quark is not set on the object then @dup_func
3127 * will be called with a %NULL argument.
3129 * Note that @dup_func is called while user data of @object
3132 * This function can be useful to avoid races when multiple
3133 * threads are using object data on the same key on the same
3136 * Returns: the result of calling @dup_func on the value
3137 * associated with @quark on @object, or %NULL if not set.
3138 * If @dup_func is %NULL, the value is returned
3144 g_object_dup_qdata (GObject *object,
3146 GDuplicateFunc dup_func,
3149 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3150 g_return_val_if_fail (quark > 0, NULL);
3152 return g_datalist_id_dup_data (&object->qdata, quark, dup_func, user_data);
3156 * g_object_replace_qdata:
3157 * @object: the #GObject to store user data on
3158 * @quark: a #GQuark, naming the user data pointer
3159 * @oldval: (allow-none): the old value to compare against
3160 * @newval: (allow-none): the new value
3161 * @destroy: (allow-none): a destroy notify for the new value
3162 * @old_destroy: (allow-none): destroy notify for the existing value
3164 * Compares the user data for the key @quark on @object with
3165 * @oldval, and if they are the same, replaces @oldval with
3168 * This is like a typical atomic compare-and-exchange
3169 * operation, for user data on an object.
3171 * If the previous value was replaced then ownership of the
3172 * old value (@oldval) is passed to the caller, including
3173 * the registred destroy notify for it (passed out in @old_destroy).
3174 * Its up to the caller to free this as he wishes, which may
3175 * or may not include using @old_destroy as sometimes replacement
3176 * should not destroy the object in the normal way.
3178 * Return: %TRUE if the existing value for @quark was replaced
3179 * by @newval, %FALSE otherwise.
3184 g_object_replace_qdata (GObject *object,
3188 GDestroyNotify destroy,
3189 GDestroyNotify *old_destroy)
3191 g_return_val_if_fail (G_IS_OBJECT (object), FALSE);
3192 g_return_val_if_fail (quark > 0, FALSE);
3194 return g_datalist_id_replace_data (&object->qdata, quark,
3195 oldval, newval, destroy,
3200 * g_object_set_qdata_full: (skip)
3201 * @object: The GObject to set store a user data pointer
3202 * @quark: A #GQuark, naming the user data pointer
3203 * @data: An opaque user data pointer
3204 * @destroy: Function to invoke with @data as argument, when @data
3207 * This function works like g_object_set_qdata(), but in addition,
3208 * a void (*destroy) (gpointer) function may be specified which is
3209 * called with @data as argument when the @object is finalized, or
3210 * the data is being overwritten by a call to g_object_set_qdata()
3211 * with the same @quark.
3214 g_object_set_qdata_full (GObject *object,
3217 GDestroyNotify destroy)
3219 g_return_if_fail (G_IS_OBJECT (object));
3220 g_return_if_fail (quark > 0);
3222 g_datalist_id_set_data_full (&object->qdata, quark, data,
3223 data ? destroy : (GDestroyNotify) NULL);
3227 * g_object_steal_qdata:
3228 * @object: The GObject to get a stored user data pointer from
3229 * @quark: A #GQuark, naming the user data pointer
3231 * This function gets back user data pointers stored via
3232 * g_object_set_qdata() and removes the @data from object
3233 * without invoking its destroy() function (if any was
3235 * Usually, calling this function is only required to update
3236 * user data pointers with a destroy notifier, for example:
3239 * object_add_to_user_list (GObject *object,
3240 * const gchar *new_string)
3242 * // the quark, naming the object data
3243 * GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
3244 * // retrive the old string list
3245 * GList *list = g_object_steal_qdata (object, quark_string_list);
3247 * // prepend new string
3248 * list = g_list_prepend (list, g_strdup (new_string));
3249 * // this changed 'list', so we need to set it again
3250 * g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
3253 * free_string_list (gpointer data)
3255 * GList *node, *list = data;
3257 * for (node = list; node; node = node->next)
3258 * g_free (node->data);
3259 * g_list_free (list);
3262 * Using g_object_get_qdata() in the above example, instead of
3263 * g_object_steal_qdata() would have left the destroy function set,
3264 * and thus the partial string list would have been freed upon
3265 * g_object_set_qdata_full().
3267 * Returns: (transfer full): The user data pointer set, or %NULL
3270 g_object_steal_qdata (GObject *object,
3273 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3274 g_return_val_if_fail (quark > 0, NULL);
3276 return g_datalist_id_remove_no_notify (&object->qdata, quark);
3280 * g_object_get_data:
3281 * @object: #GObject containing the associations
3282 * @key: name of the key for that association
3284 * Gets a named field from the objects table of associations (see g_object_set_data()).
3286 * Returns: (transfer none): the data if found, or %NULL if no such data exists.
3289 g_object_get_data (GObject *object,
3292 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3293 g_return_val_if_fail (key != NULL, NULL);
3295 return g_datalist_get_data (&object->qdata, key);
3299 * g_object_set_data:
3300 * @object: #GObject containing the associations.
3301 * @key: name of the key
3302 * @data: data to associate with that key
3304 * Each object carries around a table of associations from
3305 * strings to pointers. This function lets you set an association.
3307 * If the object already had an association with that name,
3308 * the old association will be destroyed.
3311 g_object_set_data (GObject *object,
3315 g_return_if_fail (G_IS_OBJECT (object));
3316 g_return_if_fail (key != NULL);
3318 g_datalist_id_set_data (&object->qdata, g_quark_from_string (key), data);
3322 * g_object_dup_data:
3323 * @object: the #GObject to store user data on
3324 * @key: a string, naming the user data pointer
3325 * @dup_func: (allow-none): function to dup the value
3326 * @user_data: (allow-none): passed as user_data to @dup_func
3328 * This is a variant of g_object_get_data() which returns
3329 * a 'duplicate' of the value. @dup_func defines the
3330 * meaning of 'duplicate' in this context, it could e.g.
3331 * take a reference on a ref-counted object.
3333 * If the @key is not set on the object then @dup_func
3334 * will be called with a %NULL argument.
3336 * Note that @dup_func is called while user data of @object
3339 * This function can be useful to avoid races when multiple
3340 * threads are using object data on the same key on the same
3343 * Returns: the result of calling @dup_func on the value
3344 * associated with @key on @object, or %NULL if not set.
3345 * If @dup_func is %NULL, the value is returned
3351 g_object_dup_data (GObject *object,
3353 GDuplicateFunc dup_func,
3356 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3357 g_return_val_if_fail (key != NULL, NULL);
3359 return g_datalist_id_dup_data (&object->qdata,
3360 g_quark_from_string (key),
3361 dup_func, user_data);
3365 * g_object_replace_data:
3366 * @object: the #GObject to store user data on
3367 * @key: a string, naming the user data pointer
3368 * @oldval: (allow-none): the old value to compare against
3369 * @newval: (allow-none): the new value
3370 * @destroy: (allow-none): a destroy notify for the new value
3371 * @old_destroy: (allow-none): destroy notify for the existing value
3373 * Compares the user data for the key @key on @object with
3374 * @oldval, and if they are the same, replaces @oldval with
3377 * This is like a typical atomic compare-and-exchange
3378 * operation, for user data on an object.
3380 * If the previous value was replaced then ownership of the
3381 * old value (@oldval) is passed to the caller, including
3382 * the registred destroy notify for it (passed out in @old_destroy).
3383 * Its up to the caller to free this as he wishes, which may
3384 * or may not include using @old_destroy as sometimes replacement
3385 * should not destroy the object in the normal way.
3387 * Return: %TRUE if the existing value for @key was replaced
3388 * by @newval, %FALSE otherwise.
3393 g_object_replace_data (GObject *object,
3397 GDestroyNotify destroy,
3398 GDestroyNotify *old_destroy)
3400 g_return_val_if_fail (G_IS_OBJECT (object), FALSE);
3401 g_return_val_if_fail (key != NULL, FALSE);
3403 return g_datalist_id_replace_data (&object->qdata,
3404 g_quark_from_string (key),
3405 oldval, newval, destroy,
3410 * g_object_set_data_full: (skip)
3411 * @object: #GObject containing the associations
3412 * @key: name of the key
3413 * @data: data to associate with that key
3414 * @destroy: function to call when the association is destroyed
3416 * Like g_object_set_data() except it adds notification
3417 * for when the association is destroyed, either by setting it
3418 * to a different value or when the object is destroyed.
3420 * Note that the @destroy callback is not called if @data is %NULL.
3423 g_object_set_data_full (GObject *object,
3426 GDestroyNotify destroy)
3428 g_return_if_fail (G_IS_OBJECT (object));
3429 g_return_if_fail (key != NULL);
3431 g_datalist_id_set_data_full (&object->qdata, g_quark_from_string (key), data,
3432 data ? destroy : (GDestroyNotify) NULL);
3436 * g_object_steal_data:
3437 * @object: #GObject containing the associations
3438 * @key: name of the key
3440 * Remove a specified datum from the object's data associations,
3441 * without invoking the association's destroy handler.
3443 * Returns: (transfer full): the data if found, or %NULL if no such data exists.
3446 g_object_steal_data (GObject *object,
3451 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3452 g_return_val_if_fail (key != NULL, NULL);
3454 quark = g_quark_try_string (key);
3456 return quark ? g_datalist_id_remove_no_notify (&object->qdata, quark) : NULL;
3460 g_value_object_init (GValue *value)
3462 value->data[0].v_pointer = NULL;
3466 g_value_object_free_value (GValue *value)
3468 if (value->data[0].v_pointer)
3469 g_object_unref (value->data[0].v_pointer);
3473 g_value_object_copy_value (const GValue *src_value,
3476 if (src_value->data[0].v_pointer)
3477 dest_value->data[0].v_pointer = g_object_ref (src_value->data[0].v_pointer);
3479 dest_value->data[0].v_pointer = NULL;
3483 g_value_object_transform_value (const GValue *src_value,
3486 if (src_value->data[0].v_pointer && g_type_is_a (G_OBJECT_TYPE (src_value->data[0].v_pointer), G_VALUE_TYPE (dest_value)))
3487 dest_value->data[0].v_pointer = g_object_ref (src_value->data[0].v_pointer);
3489 dest_value->data[0].v_pointer = NULL;
3493 g_value_object_peek_pointer (const GValue *value)
3495 return value->data[0].v_pointer;
3499 g_value_object_collect_value (GValue *value,
3500 guint n_collect_values,
3501 GTypeCValue *collect_values,
3502 guint collect_flags)
3504 if (collect_values[0].v_pointer)
3506 GObject *object = collect_values[0].v_pointer;
3508 if (object->g_type_instance.g_class == NULL)
3509 return g_strconcat ("invalid unclassed object pointer for value type `",
3510 G_VALUE_TYPE_NAME (value),
3513 else if (!g_value_type_compatible (G_OBJECT_TYPE (object), G_VALUE_TYPE (value)))
3514 return g_strconcat ("invalid object type `",
3515 G_OBJECT_TYPE_NAME (object),
3516 "' for value type `",
3517 G_VALUE_TYPE_NAME (value),
3520 /* never honour G_VALUE_NOCOPY_CONTENTS for ref-counted types */
3521 value->data[0].v_pointer = g_object_ref (object);
3524 value->data[0].v_pointer = NULL;
3530 g_value_object_lcopy_value (const GValue *value,
3531 guint n_collect_values,
3532 GTypeCValue *collect_values,
3533 guint collect_flags)
3535 GObject **object_p = collect_values[0].v_pointer;
3538 return g_strdup_printf ("value location for `%s' passed as NULL", G_VALUE_TYPE_NAME (value));
3540 if (!value->data[0].v_pointer)
3542 else if (collect_flags & G_VALUE_NOCOPY_CONTENTS)
3543 *object_p = value->data[0].v_pointer;
3545 *object_p = g_object_ref (value->data[0].v_pointer);
3551 * g_value_set_object:
3552 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3553 * @v_object: (type GObject.Object) (allow-none): object value to be set
3555 * Set the contents of a %G_TYPE_OBJECT derived #GValue to @v_object.
3557 * g_value_set_object() increases the reference count of @v_object
3558 * (the #GValue holds a reference to @v_object). If you do not wish
3559 * to increase the reference count of the object (i.e. you wish to
3560 * pass your current reference to the #GValue because you no longer
3561 * need it), use g_value_take_object() instead.
3563 * It is important that your #GValue holds a reference to @v_object (either its
3564 * own, or one it has taken) to ensure that the object won't be destroyed while
3565 * the #GValue still exists).
3568 g_value_set_object (GValue *value,
3573 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value));
3575 old = value->data[0].v_pointer;
3579 g_return_if_fail (G_IS_OBJECT (v_object));
3580 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object), G_VALUE_TYPE (value)));
3582 value->data[0].v_pointer = v_object;
3583 g_object_ref (value->data[0].v_pointer);
3586 value->data[0].v_pointer = NULL;
3589 g_object_unref (old);
3593 * g_value_set_object_take_ownership: (skip)
3594 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3595 * @v_object: (allow-none): object value to be set
3597 * This is an internal function introduced mainly for C marshallers.
3599 * Deprecated: 2.4: Use g_value_take_object() instead.
3602 g_value_set_object_take_ownership (GValue *value,
3605 g_value_take_object (value, v_object);
3609 * g_value_take_object: (skip)
3610 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3611 * @v_object: (allow-none): object value to be set
3613 * Sets the contents of a %G_TYPE_OBJECT derived #GValue to @v_object
3614 * and takes over the ownership of the callers reference to @v_object;
3615 * the caller doesn't have to unref it any more (i.e. the reference
3616 * count of the object is not increased).
3618 * If you want the #GValue to hold its own reference to @v_object, use
3619 * g_value_set_object() instead.
3624 g_value_take_object (GValue *value,
3627 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value));
3629 if (value->data[0].v_pointer)
3631 g_object_unref (value->data[0].v_pointer);
3632 value->data[0].v_pointer = NULL;
3637 g_return_if_fail (G_IS_OBJECT (v_object));
3638 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object), G_VALUE_TYPE (value)));
3640 value->data[0].v_pointer = v_object; /* we take over the reference count */
3645 * g_value_get_object:
3646 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3648 * Get the contents of a %G_TYPE_OBJECT derived #GValue.
3650 * Returns: (type GObject.Object) (transfer none): object contents of @value
3653 g_value_get_object (const GValue *value)
3655 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value), NULL);
3657 return value->data[0].v_pointer;
3661 * g_value_dup_object:
3662 * @value: a valid #GValue whose type is derived from %G_TYPE_OBJECT
3664 * Get the contents of a %G_TYPE_OBJECT derived #GValue, increasing
3665 * its reference count. If the contents of the #GValue are %NULL, then
3666 * %NULL will be returned.
3668 * Returns: (type GObject.Object) (transfer full): object content of @value,
3669 * should be unreferenced when no longer needed.
3672 g_value_dup_object (const GValue *value)
3674 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value), NULL);
3676 return value->data[0].v_pointer ? g_object_ref (value->data[0].v_pointer) : NULL;
3680 * g_signal_connect_object: (skip)
3681 * @instance: the instance to connect to.
3682 * @detailed_signal: a string of the form "signal-name::detail".
3683 * @c_handler: the #GCallback to connect.
3684 * @gobject: the object to pass as data to @c_handler.
3685 * @connect_flags: a combination of #GConnectFlags.
3687 * This is similar to g_signal_connect_data(), but uses a closure which
3688 * ensures that the @gobject stays alive during the call to @c_handler
3689 * by temporarily adding a reference count to @gobject.
3691 * When the object is destroyed the signal handler will be automatically
3692 * disconnected. Note that this is not currently threadsafe (ie:
3693 * emitting a signal while @gobject is being destroyed in another thread
3696 * Returns: the handler id.
3699 g_signal_connect_object (gpointer instance,
3700 const gchar *detailed_signal,
3701 GCallback c_handler,
3703 GConnectFlags connect_flags)
3705 g_return_val_if_fail (G_TYPE_CHECK_INSTANCE (instance), 0);
3706 g_return_val_if_fail (detailed_signal != NULL, 0);
3707 g_return_val_if_fail (c_handler != NULL, 0);
3713 g_return_val_if_fail (G_IS_OBJECT (gobject), 0);
3715 closure = ((connect_flags & G_CONNECT_SWAPPED) ? g_cclosure_new_object_swap : g_cclosure_new_object) (c_handler, gobject);
3717 return g_signal_connect_closure (instance, detailed_signal, closure, connect_flags & G_CONNECT_AFTER);
3720 return g_signal_connect_data (instance, detailed_signal, c_handler, NULL, NULL, connect_flags);
3726 GClosure *closures[1]; /* flexible array */
3728 /* don't change this structure without supplying an accessor for
3729 * watched closures, e.g.:
3730 * GSList* g_object_list_watched_closures (GObject *object)
3733 * g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3734 * carray = g_object_get_data (object, "GObject-closure-array");
3737 * GSList *slist = NULL;
3739 * for (i = 0; i < carray->n_closures; i++)
3740 * slist = g_slist_prepend (slist, carray->closures[i]);
3748 object_remove_closure (gpointer data,
3751 GObject *object = data;
3755 G_LOCK (closure_array_mutex);
3756 carray = g_object_get_qdata (object, quark_closure_array);
3757 for (i = 0; i < carray->n_closures; i++)
3758 if (carray->closures[i] == closure)
3760 carray->n_closures--;
3761 if (i < carray->n_closures)
3762 carray->closures[i] = carray->closures[carray->n_closures];
3763 G_UNLOCK (closure_array_mutex);
3766 G_UNLOCK (closure_array_mutex);
3767 g_assert_not_reached ();
3771 destroy_closure_array (gpointer data)
3773 CArray *carray = data;
3774 GObject *object = carray->object;
3775 guint i, n = carray->n_closures;
3777 for (i = 0; i < n; i++)
3779 GClosure *closure = carray->closures[i];
3781 /* removing object_remove_closure() upfront is probably faster than
3782 * letting it fiddle with quark_closure_array which is empty anyways
3784 g_closure_remove_invalidate_notifier (closure, object, object_remove_closure);
3785 g_closure_invalidate (closure);
3791 * g_object_watch_closure:
3792 * @object: GObject restricting lifetime of @closure
3793 * @closure: GClosure to watch
3795 * This function essentially limits the life time of the @closure to
3796 * the life time of the object. That is, when the object is finalized,
3797 * the @closure is invalidated by calling g_closure_invalidate() on
3798 * it, in order to prevent invocations of the closure with a finalized
3799 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
3800 * added as marshal guards to the @closure, to ensure that an extra
3801 * reference count is held on @object during invocation of the
3802 * @closure. Usually, this function will be called on closures that
3803 * use this @object as closure data.
3806 g_object_watch_closure (GObject *object,
3812 g_return_if_fail (G_IS_OBJECT (object));
3813 g_return_if_fail (closure != NULL);
3814 g_return_if_fail (closure->is_invalid == FALSE);
3815 g_return_if_fail (closure->in_marshal == FALSE);
3816 g_return_if_fail (object->ref_count > 0); /* this doesn't work on finalizing objects */
3818 g_closure_add_invalidate_notifier (closure, object, object_remove_closure);
3819 g_closure_add_marshal_guards (closure,
3820 object, (GClosureNotify) g_object_ref,
3821 object, (GClosureNotify) g_object_unref);
3822 G_LOCK (closure_array_mutex);
3823 carray = g_datalist_id_remove_no_notify (&object->qdata, quark_closure_array);
3826 carray = g_renew (CArray, NULL, 1);
3827 carray->object = object;
3828 carray->n_closures = 1;
3833 i = carray->n_closures++;
3834 carray = g_realloc (carray, sizeof (*carray) + sizeof (carray->closures[0]) * i);
3836 carray->closures[i] = closure;
3837 g_datalist_id_set_data_full (&object->qdata, quark_closure_array, carray, destroy_closure_array);
3838 G_UNLOCK (closure_array_mutex);
3842 * g_closure_new_object:
3843 * @sizeof_closure: the size of the structure to allocate, must be at least
3844 * <literal>sizeof (GClosure)</literal>
3845 * @object: a #GObject pointer to store in the @data field of the newly
3846 * allocated #GClosure
3848 * A variant of g_closure_new_simple() which stores @object in the
3849 * @data field of the closure and calls g_object_watch_closure() on
3850 * @object and the created closure. This function is mainly useful
3851 * when implementing new types of closures.
3853 * Returns: (transfer full): a newly allocated #GClosure
3856 g_closure_new_object (guint sizeof_closure,
3861 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3862 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
3864 closure = g_closure_new_simple (sizeof_closure, object);
3865 g_object_watch_closure (object, closure);
3871 * g_cclosure_new_object: (skip)
3872 * @callback_func: the function to invoke
3873 * @object: a #GObject pointer to pass to @callback_func
3875 * A variant of g_cclosure_new() which uses @object as @user_data and
3876 * calls g_object_watch_closure() on @object and the created
3877 * closure. This function is useful when you have a callback closely
3878 * associated with a #GObject, and want the callback to no longer run
3879 * after the object is is freed.
3881 * Returns: a new #GCClosure
3884 g_cclosure_new_object (GCallback callback_func,
3889 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3890 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
3891 g_return_val_if_fail (callback_func != NULL, NULL);
3893 closure = g_cclosure_new (callback_func, object, NULL);
3894 g_object_watch_closure (object, closure);
3900 * g_cclosure_new_object_swap: (skip)
3901 * @callback_func: the function to invoke
3902 * @object: a #GObject pointer to pass to @callback_func
3904 * A variant of g_cclosure_new_swap() which uses @object as @user_data
3905 * and calls g_object_watch_closure() on @object and the created
3906 * closure. This function is useful when you have a callback closely
3907 * associated with a #GObject, and want the callback to no longer run
3908 * after the object is is freed.
3910 * Returns: a new #GCClosure
3913 g_cclosure_new_object_swap (GCallback callback_func,
3918 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3919 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
3920 g_return_val_if_fail (callback_func != NULL, NULL);
3922 closure = g_cclosure_new_swap (callback_func, object, NULL);
3923 g_object_watch_closure (object, closure);
3929 g_object_compat_control (gsize what,
3935 case 1: /* floating base type */
3936 return G_TYPE_INITIALLY_UNOWNED;
3937 case 2: /* FIXME: remove this once GLib/Gtk+ break ABI again */
3938 floating_flag_handler = (guint(*)(GObject*,gint)) data;
3940 case 3: /* FIXME: remove this once GLib/Gtk+ break ABI again */
3942 *pp = floating_flag_handler;
3949 G_DEFINE_TYPE (GInitiallyUnowned, g_initially_unowned, G_TYPE_OBJECT);
3952 g_initially_unowned_init (GInitiallyUnowned *object)
3954 g_object_force_floating (object);
3958 g_initially_unowned_class_init (GInitiallyUnownedClass *klass)
3965 * A structure containing a weak reference to a #GObject. It can either
3966 * be empty (i.e. point to %NULL), or point to an object for as long as
3967 * at least one "strong" reference to that object exists. Before the
3968 * object's #GObjectClass.dispose method is called, every #GWeakRef
3969 * associated with becomes empty (i.e. points to %NULL).
3971 * Like #GValue, #GWeakRef can be statically allocated, stack- or
3972 * heap-allocated, or embedded in larger structures.
3974 * Unlike g_object_weak_ref() and g_object_add_weak_pointer(), this weak
3975 * reference is thread-safe: converting a weak pointer to a reference is
3976 * atomic with respect to invalidation of weak pointers to destroyed
3979 * If the object's #GObjectClass.dispose method results in additional
3980 * references to the object being held, any #GWeakRef<!-- -->s taken
3981 * before it was disposed will continue to point to %NULL. If
3982 * #GWeakRef<!-- -->s are taken after the object is disposed and
3983 * re-referenced, they will continue to point to it until its refcount
3984 * goes back to zero, at which point they too will be invalidated.
3988 * g_weak_ref_init: (skip)
3989 * @weak_ref: (inout): uninitialized or empty location for a weak
3991 * @object: (allow-none): a #GObject or %NULL
3993 * Initialise a non-statically-allocated #GWeakRef.
3995 * This function also calls g_weak_ref_set() with @object on the
3996 * freshly-initialised weak reference.
3998 * This function should always be matched with a call to
3999 * g_weak_ref_clear(). It is not necessary to use this function for a
4000 * #GWeakRef in static storage because it will already be
4001 * properly initialised. Just use g_weak_ref_set() directly.
4006 g_weak_ref_init (GWeakRef *weak_ref,
4009 weak_ref->priv.p = NULL;
4011 g_weak_ref_set (weak_ref, object);
4015 * g_weak_ref_clear: (skip)
4016 * @weak_ref: (inout): location of a weak reference, which
4019 * Frees resources associated with a non-statically-allocated #GWeakRef.
4020 * After this call, the #GWeakRef is left in an undefined state.
4022 * You should only call this on a #GWeakRef that previously had
4023 * g_weak_ref_init() called on it.
4028 g_weak_ref_clear (GWeakRef *weak_ref)
4030 g_weak_ref_set (weak_ref, NULL);
4033 weak_ref->priv.p = (void *) 0xccccccccu;
4037 * g_weak_ref_get: (skip)
4038 * @weak_ref: (inout): location of a weak reference to a #GObject
4040 * If @weak_ref is not empty, atomically acquire a strong
4041 * reference to the object it points to, and return that reference.
4043 * This function is needed because of the potential race between taking
4044 * the pointer value and g_object_ref() on it, if the object was losing
4045 * its last reference at the same time in a different thread.
4047 * The caller should release the resulting reference in the usual way,
4048 * by using g_object_unref().
4050 * Returns: (transfer full) (type GObject.Object): the object pointed to
4051 * by @weak_ref, or %NULL if it was empty
4056 g_weak_ref_get (GWeakRef *weak_ref)
4058 gpointer object_or_null;
4060 g_return_val_if_fail (weak_ref!= NULL, NULL);
4062 g_rw_lock_reader_lock (&weak_locations_lock);
4064 object_or_null = weak_ref->priv.p;
4066 if (object_or_null != NULL)
4067 g_object_ref (object_or_null);
4069 g_rw_lock_reader_unlock (&weak_locations_lock);
4071 return object_or_null;
4075 * g_weak_ref_set: (skip)
4076 * @weak_ref: location for a weak reference
4077 * @object: (allow-none): a #GObject or %NULL
4079 * Change the object to which @weak_ref points, or set it to
4082 * You must own a strong reference on @object while calling this
4088 g_weak_ref_set (GWeakRef *weak_ref,
4091 GSList **weak_locations;
4092 GObject *new_object;
4093 GObject *old_object;
4095 g_return_if_fail (weak_ref != NULL);
4096 g_return_if_fail (object == NULL || G_IS_OBJECT (object));
4098 new_object = object;
4100 g_rw_lock_writer_lock (&weak_locations_lock);
4102 /* We use the extra level of indirection here so that if we have ever
4103 * had a weak pointer installed at any point in time on this object,
4104 * we can see that there is a non-NULL value associated with the
4105 * weak-pointer quark and know that this value will not change at any
4106 * point in the object's lifetime.
4108 * Both properties are important for reducing the amount of times we
4109 * need to acquire locks and for decreasing the duration of time the
4110 * lock is held while avoiding some rather tricky races.
4112 * Specifically: we can avoid having to do an extra unconditional lock
4113 * in g_object_unref() without worrying about some extremely tricky
4117 old_object = weak_ref->priv.p;
4118 if (new_object != old_object)
4120 weak_ref->priv.p = new_object;
4122 /* Remove the weak ref from the old object */
4123 if (old_object != NULL)
4125 weak_locations = g_datalist_id_get_data (&old_object->qdata, quark_weak_locations);
4126 /* for it to point to an object, the object must have had it added once */
4127 g_assert (weak_locations != NULL);
4129 *weak_locations = g_slist_remove (*weak_locations, weak_ref);
4132 /* Add the weak ref to the new object */
4133 if (new_object != NULL)
4135 weak_locations = g_datalist_id_get_data (&new_object->qdata, quark_weak_locations);
4137 if (weak_locations == NULL)
4139 weak_locations = g_new0 (GSList *, 1);
4140 g_datalist_id_set_data_full (&new_object->qdata, quark_weak_locations, weak_locations, g_free);
4143 *weak_locations = g_slist_prepend (*weak_locations, weak_ref);
4147 g_rw_lock_writer_unlock (&weak_locations_lock);