2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the licence, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
20 * Author: Ryan Lortie <desrt@desrt.ca>
27 #include <glib/gvariant-serialiser.h>
28 #include "gvariant-internal.h"
29 #include <glib/gvariant-core.h>
30 #include <glib/gtestutils.h>
31 #include <glib/gstrfuncs.h>
32 #include <glib/ghash.h>
33 #include <glib/gmem.h>
42 * @short_description: strongly typed value datatype
43 * @see_also: GVariantType
45 * #GVariant is a variant datatype; it stores a value along with
46 * information about the type of that value. The range of possible
47 * values is determined by the type. The type system used by #GVariant
50 * #GVariant instances always have a type and a value (which are given
51 * at construction time). The type and value of a #GVariant instance
52 * can never change other than by the #GVariant itself being
53 * destroyed. A #GVariant can not contain a pointer.
55 * #GVariant is reference counted using g_variant_ref() and
56 * g_variant_unref(). #GVariant also has floating reference counts --
57 * see g_variant_ref_sink().
59 * #GVariant is completely threadsafe. A #GVariant instance can be
60 * concurrently accessed in any way from any number of threads without
63 * #GVariant is heavily optimised for dealing with data in serialised
64 * form. It works particularly well with data located in memory-mapped
65 * files. It can perform nearly all deserialisation operations in a
66 * small constant time, usually touching only a single memory page.
67 * Serialised #GVariant data can also be sent over the network.
69 * #GVariant is largely compatible with DBus. Almost all types of
70 * #GVariant instances can be sent over DBus. See #GVariantType for
73 * For convenience to C programmers, #GVariant features powerful
74 * varargs-based value construction and destruction. This feature is
75 * designed to be embedded in other libraries.
77 * There is a Python-inspired text language for describing #GVariant
78 * values. #GVariant includes a printer for this language and a parser
79 * with type inferencing.
82 * <title>Memory Use</title>
84 * #GVariant tries to be quite efficient with respect to memory use.
85 * This section gives a rough idea of how much memory is used by the
86 * current implementation. The information here is subject to change
90 * The memory allocated by #GVariant can be grouped into 4 broad
91 * purposes: memory for serialised data, memory for the type
92 * information cache, buffer management memory and memory for the
93 * #GVariant structure itself.
96 * <title>Serialised Data Memory</title>
98 * This is the memory that is used for storing GVariant data in
99 * serialised form. This is what would be sent over the network or
100 * what would end up on disk.
103 * The amount of memory required to store a boolean is 1 byte. 16,
104 * 32 and 64 bit integers and double precision floating point numbers
105 * use their "natural" size. Strings (including object path and
106 * signature strings) are stored with a nul terminator, and as such
107 * use the length of the string plus 1 byte.
110 * Maybe types use no space at all to represent the null value and
111 * use the same amount of space (sometimes plus one byte) as the
112 * equivalent non-maybe-typed value to represent the non-null case.
115 * Arrays use the amount of space required to store each of their
116 * members, concatenated. Additionally, if the items stored in an
117 * array are not of a fixed-size (ie: strings, other arrays, etc)
118 * then an additional framing offset is stored for each item. The
119 * size of this offset is either 1, 2 or 4 bytes depending on the
120 * overall size of the container. Additionally, extra padding bytes
121 * are added as required for alignment of child values.
124 * Tuples (including dictionary entries) use the amount of space
125 * required to store each of their members, concatenated, plus one
126 * framing offset (as per arrays) for each non-fixed-sized item in
127 * the tuple, except for the last one. Additionally, extra padding
128 * bytes are added as required for alignment of child values.
131 * Variants use the same amount of space as the item inside of the
132 * variant, plus 1 byte, plus the length of the type string for the
133 * item inside the variant.
136 * As an example, consider a dictionary mapping strings to variants.
137 * In the case that the dictionary is empty, 0 bytes are required for
141 * If we add an item "width" that maps to the int32 value of 500 then
142 * we will use 4 byte to store the int32 (so 6 for the variant
143 * containing it) and 6 bytes for the string. The variant must be
144 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
145 * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
146 * for the dictionary entry. An additional 1 byte is added to the
147 * array as a framing offset making a total of 15 bytes.
150 * If we add another entry, "title" that maps to a nullable string
151 * that happens to have a value of null, then we use 0 bytes for the
152 * null value (and 3 bytes for the variant to contain it along with
153 * its type string) plus 6 bytes for the string. Again, we need 2
154 * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
157 * We now require extra padding between the two items in the array.
158 * After the 14 bytes of the first item, that's 2 bytes required. We
159 * now require 2 framing offsets for an extra two bytes. 14 + 2 + 11
160 * + 2 = 29 bytes to encode the entire two-item dictionary.
164 * <title>Type Information Cache</title>
166 * For each GVariant type that currently exists in the program a type
167 * information structure is kept in the type information cache. The
168 * type information structure is required for rapid deserialisation.
171 * Continuing with the above example, if a #GVariant exists with the
172 * type "a{sv}" then a type information struct will exist for
173 * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
174 * will share the same type information. Additionally, all
175 * single-digit types are stored in read-only static memory and do
176 * not contribute to the writable memory footprint of a program using
180 * Aside from the type information structures stored in read-only
181 * memory, there are two forms of type information. One is used for
182 * container types where there is a single element type: arrays and
183 * maybe types. The other is used for container types where there
184 * are multiple element types: tuples and dictionary entries.
187 * Array type info structures are 6 * sizeof (void *), plus the
188 * memory required to store the type string itself. This means that
189 * on 32bit systems, the cache entry for "a{sv}" would require 30
190 * bytes of memory (plus malloc overhead).
193 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
194 * sizeof (void *) for each item in the tuple, plus the memory
195 * required to store the type string itself. A 2-item tuple, for
196 * example, would have a type information structure that consumed
197 * writable memory in the size of 14 * sizeof (void *) (plus type
198 * string) This means that on 32bit systems, the cache entry for
199 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
202 * This means that in total, for our "a{sv}" example, 91 bytes of
203 * type information would be allocated.
206 * The type information cache, additionally, uses a #GHashTable to
207 * store and lookup the cached items and stores a pointer to this
208 * hash table in static storage. The hash table is freed when there
209 * are zero items in the type cache.
212 * Although these sizes may seem large it is important to remember
213 * that a program will probably only have a very small number of
214 * different types of values in it and that only one type information
215 * structure is required for many different values of the same type.
219 * <title>Buffer Management Memory</title>
221 * #GVariant uses an internal buffer management structure to deal
222 * with the various different possible sources of serialised data
223 * that it uses. The buffer is responsible for ensuring that the
224 * correct call is made when the data is no longer in use by
225 * #GVariant. This may involve a g_free() or a g_slice_free() or
226 * even g_mapped_file_unref().
229 * One buffer management structure is used for each chunk of
230 * serialised data. The size of the buffer management structure is 4
231 * * (void *). On 32bit systems, that's 16 bytes.
235 * <title>GVariant structure</title>
237 * The size of a #GVariant structure is 6 * (void *). On 32 bit
238 * systems, that's 24 bytes.
241 * #GVariant structures only exist if they are explicitly created
242 * with API calls. For example, if a #GVariant is constructed out of
243 * serialised data for the example given above (with the dictionary)
244 * then although there are 9 individual values that comprise the
245 * entire dictionary (two keys, two values, two variants containing
246 * the values, two dictionary entries, plus the dictionary itself),
247 * only 1 #GVariant instance exists -- the one refering to the
251 * If calls are made to start accessing the other values then
252 * #GVariant instances will exist for those values only for as long
253 * as they are in use (ie: until you call g_variant_unref()). The
254 * type information is shared. The serialised data and the buffer
255 * management structure for that serialised data is shared by the
260 * <title>Summary</title>
262 * To put the entire example together, for our dictionary mapping
263 * strings to variants (with two entries, as given above), we are
264 * using 91 bytes of memory for type information, 29 byes of memory
265 * for the serialised data, 16 bytes for buffer management and 24
266 * bytes for the #GVariant instance, or a total of 160 bytes, plus
267 * malloc overhead. If we were to use g_variant_get_child_value() to
268 * access the two dictionary entries, we would use an additional 48
269 * bytes. If we were to have other dictionaries of the same type, we
270 * would use more memory for the serialised data and buffer
271 * management for those dictionaries, but the type information would
278 /* definition of GVariant structure is in gvariant-core.c */
280 /* this is a g_return_val_if_fail() for making
281 * sure a (GVariant *) has the required type.
283 #define TYPE_CHECK(value, TYPE, val) \
284 if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
285 g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
286 "g_variant_is_of_type (" #value \
291 /* Numeric Type Constructor/Getters {{{1 */
293 * g_variant_new_from_trusted:
294 * @type: the #GVariantType
295 * @data: the data to use
296 * @size: the size of @data
297 * @returns: a new floating #GVariant
299 * Constructs a new trusted #GVariant instance from the provided data.
300 * This is used to implement g_variant_new_* for all the basic types.
303 g_variant_new_from_trusted (const GVariantType *type,
310 buffer = g_buffer_new_from_data (data, size);
311 value = g_variant_new_from_buffer (type, buffer, TRUE);
312 g_buffer_unref (buffer);
318 * g_variant_new_boolean:
319 * @boolean: a #gboolean value
320 * @returns: a new boolean #GVariant instance
322 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
327 g_variant_new_boolean (gboolean value)
331 return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
335 * g_variant_get_boolean:
336 * @value: a boolean #GVariant instance
337 * @returns: %TRUE or %FALSE
339 * Returns the boolean value of @value.
341 * It is an error to call this function with a @value of any type
342 * other than %G_VARIANT_TYPE_BOOLEAN.
347 g_variant_get_boolean (GVariant *value)
351 TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
353 data = g_variant_get_data (value);
355 return data != NULL ? *data != 0 : FALSE;
358 /* the constructors and accessors for byte, int{16,32,64}, handles and
359 * doubles all look pretty much exactly the same, so we reduce
362 #define NUMERIC_TYPE(TYPE, type, ctype) \
363 GVariant *g_variant_new_##type (ctype value) { \
364 return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
365 &value, sizeof value); \
367 ctype g_variant_get_##type (GVariant *value) { \
369 TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
370 data = g_variant_get_data (value); \
371 return data != NULL ? *data : 0; \
376 * g_variant_new_byte:
377 * @byte: a #guint8 value
378 * @returns: a new byte #GVariant instance
380 * Creates a new byte #GVariant instance.
385 * g_variant_get_byte:
386 * @value: a byte #GVariant instance
387 * @returns: a #guchar
389 * Returns the byte value of @value.
391 * It is an error to call this function with a @value of any type
392 * other than %G_VARIANT_TYPE_BYTE.
396 NUMERIC_TYPE (BYTE, byte, guchar)
399 * g_variant_new_int16:
400 * @int16: a #gint16 value
401 * @returns: a new int16 #GVariant instance
403 * Creates a new int16 #GVariant instance.
408 * g_variant_get_int16:
409 * @value: a int16 #GVariant instance
410 * @returns: a #gint16
412 * Returns the 16-bit signed integer value of @value.
414 * It is an error to call this function with a @value of any type
415 * other than %G_VARIANT_TYPE_INT16.
419 NUMERIC_TYPE (INT16, int16, gint16)
422 * g_variant_new_uint16:
423 * @uint16: a #guint16 value
424 * @returns: a new uint16 #GVariant instance
426 * Creates a new uint16 #GVariant instance.
431 * g_variant_get_uint16:
432 * @value: a uint16 #GVariant instance
433 * @returns: a #guint16
435 * Returns the 16-bit unsigned integer value of @value.
437 * It is an error to call this function with a @value of any type
438 * other than %G_VARIANT_TYPE_UINT16.
442 NUMERIC_TYPE (UINT16, uint16, guint16)
445 * g_variant_new_int32:
446 * @int32: a #gint32 value
447 * @returns: a new int32 #GVariant instance
449 * Creates a new int32 #GVariant instance.
454 * g_variant_get_int32:
455 * @value: a int32 #GVariant instance
456 * @returns: a #gint32
458 * Returns the 32-bit signed integer value of @value.
460 * It is an error to call this function with a @value of any type
461 * other than %G_VARIANT_TYPE_INT32.
465 NUMERIC_TYPE (INT32, int32, gint32)
468 * g_variant_new_uint32:
469 * @uint32: a #guint32 value
470 * @returns: a new uint32 #GVariant instance
472 * Creates a new uint32 #GVariant instance.
477 * g_variant_get_uint32:
478 * @value: a uint32 #GVariant instance
479 * @returns: a #guint32
481 * Returns the 32-bit unsigned integer value of @value.
483 * It is an error to call this function with a @value of any type
484 * other than %G_VARIANT_TYPE_UINT32.
488 NUMERIC_TYPE (UINT32, uint32, guint32)
491 * g_variant_new_int64:
492 * @int64: a #gint64 value
493 * @returns: a new int64 #GVariant instance
495 * Creates a new int64 #GVariant instance.
500 * g_variant_get_int64:
501 * @value: a int64 #GVariant instance
502 * @returns: a #gint64
504 * Returns the 64-bit signed integer value of @value.
506 * It is an error to call this function with a @value of any type
507 * other than %G_VARIANT_TYPE_INT64.
511 NUMERIC_TYPE (INT64, int64, gint64)
514 * g_variant_new_uint64:
515 * @uint64: a #guint64 value
516 * @returns: a new uint64 #GVariant instance
518 * Creates a new uint64 #GVariant instance.
523 * g_variant_get_uint64:
524 * @value: a uint64 #GVariant instance
525 * @returns: a #guint64
527 * Returns the 64-bit unsigned integer value of @value.
529 * It is an error to call this function with a @value of any type
530 * other than %G_VARIANT_TYPE_UINT64.
534 NUMERIC_TYPE (UINT64, uint64, guint64)
537 * g_variant_new_handle:
538 * @handle: a #gint32 value
539 * @returns: a new handle #GVariant instance
541 * Creates a new handle #GVariant instance.
543 * By convention, handles are indexes into an array of file descriptors
544 * that are sent alongside a DBus message. If you're not interacting
545 * with DBus, you probably don't need them.
550 * g_variant_get_handle:
551 * @value: a handle #GVariant instance
552 * @returns: a #gint32
554 * Returns the 32-bit signed integer value of @value.
556 * It is an error to call this function with a @value of any type other
557 * than %G_VARIANT_TYPE_HANDLE.
559 * By convention, handles are indexes into an array of file descriptors
560 * that are sent alongside a DBus message. If you're not interacting
561 * with DBus, you probably don't need them.
565 NUMERIC_TYPE (HANDLE, handle, gint32)
568 * g_variant_new_double:
569 * @floating: a #gdouble floating point value
570 * @returns: a new double #GVariant instance
572 * Creates a new double #GVariant instance.
577 * g_variant_get_double:
578 * @value: a double #GVariant instance
579 * @returns: a #gdouble
581 * Returns the double precision floating point value of @value.
583 * It is an error to call this function with a @value of any type
584 * other than %G_VARIANT_TYPE_DOUBLE.
588 NUMERIC_TYPE (DOUBLE, double, gdouble)
590 /* Container type Constructor / Deconstructors {{{1 */
592 * g_variant_new_maybe:
593 * @child_type: the #GVariantType of the child
594 * @child: the child value, or %NULL
595 * @returns: a new #GVariant maybe instance
597 * Depending on if @value is %NULL, either wraps @value inside of a
598 * maybe container or creates a Nothing instance for the given @type.
600 * At least one of @type and @value must be non-%NULL. If @type is
601 * non-%NULL then it must be a definite type. If they are both
602 * non-%NULL then @type must be the type of @value.
607 g_variant_new_maybe (const GVariantType *child_type,
610 GVariantType *maybe_type;
613 g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
615 g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
616 g_return_val_if_fail (child_type == NULL || child == NULL ||
617 g_variant_is_of_type (child, child_type),
620 if (child_type == NULL)
621 child_type = g_variant_get_type (child);
623 maybe_type = g_variant_type_new_maybe (child_type);
630 children = g_new (GVariant *, 1);
631 children[0] = g_variant_ref_sink (child);
632 trusted = g_variant_is_trusted (children[0]);
634 value = g_variant_new_from_children (maybe_type, children, 1, trusted);
637 value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
639 g_variant_type_free (maybe_type);
645 * g_variant_get_maybe:
646 * @value: a maybe-typed value
647 * @returns: the contents of @value, or %NULL
649 * Given a maybe-typed #GVariant instance, extract its value. If the
650 * value is Nothing, then this function returns %NULL.
655 g_variant_get_maybe (GVariant *value)
657 TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
659 if (g_variant_n_children (value))
660 return g_variant_get_child_value (value, 0);
666 * g_variant_new_variant:
667 * @value: a #GVariance instance
668 * @returns: a new variant #GVariant instance
670 * Boxes @value. The result is a #GVariant instance representing a
671 * variant containing the original value.
676 g_variant_new_variant (GVariant *value)
678 g_return_val_if_fail (value != NULL, NULL);
680 g_variant_ref_sink (value);
682 return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
683 g_memdup (&value, sizeof value),
684 1, g_variant_is_trusted (value));
688 * g_variant_get_variant:
689 * @value: a variant #GVariance instance
690 * @returns: the item contained in the variant
692 * Unboxes @value. The result is the #GVariant instance that was
693 * contained in @value.
698 g_variant_get_variant (GVariant *value)
700 TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
702 return g_variant_get_child_value (value, 0);
706 * g_variant_new_array:
707 * @child_type: the element type of the new array
708 * @children: an array of #GVariant pointers, the children
709 * @n_children: the length of @children
710 * @returns: a new #GVariant array
712 * Creates a new #GVariant array from @children.
714 * @child_type must be non-%NULL if @n_children is zero. Otherwise, the
715 * child type is determined by inspecting the first element of the
716 * @children array. If @child_type is non-%NULL then it must be a
719 * The items of the array are taken from the @children array. No entry
720 * in the @children array may be %NULL.
722 * All items in the array must have the same type, which must be the
723 * same as @child_type, if given.
728 g_variant_new_array (const GVariantType *child_type,
729 GVariant * const *children,
732 GVariantType *array_type;
733 GVariant **my_children;
738 g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
739 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
740 g_return_val_if_fail (child_type == NULL ||
741 g_variant_type_is_definite (child_type), NULL);
743 my_children = g_new (GVariant *, n_children);
746 if (child_type == NULL)
747 child_type = g_variant_get_type (children[0]);
748 array_type = g_variant_type_new_array (child_type);
750 for (i = 0; i < n_children; i++)
752 TYPE_CHECK (children[i], child_type, NULL);
753 my_children[i] = g_variant_ref_sink (children[i]);
754 trusted &= g_variant_is_trusted (children[i]);
757 value = g_variant_new_from_children (array_type, my_children,
758 n_children, trusted);
759 g_variant_type_free (array_type);
765 * g_variant_make_tuple_type:
766 * @children: an array of GVariant *
767 * @n_children: the length of @children
769 * Return the type of a tuple containing @children as its items.
771 static GVariantType *
772 g_variant_make_tuple_type (GVariant * const *children,
775 const GVariantType **types;
779 types = g_new (const GVariantType *, n_children);
781 for (i = 0; i < n_children; i++)
782 types[i] = g_variant_get_type (children[i]);
784 type = g_variant_type_new_tuple (types, n_children);
791 * g_variant_new_tuple:
792 * @children: the items to make the tuple out of
793 * @n_children: the length of @children
794 * @returns: a new #GVariant tuple
796 * Creates a new tuple #GVariant out of the items in @children. The
797 * type is determined from the types of @children. No entry in the
798 * @children array may be %NULL.
800 * If @n_children is 0 then the unit tuple is constructed.
805 g_variant_new_tuple (GVariant * const *children,
808 GVariantType *tuple_type;
809 GVariant **my_children;
814 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
816 my_children = g_new (GVariant *, n_children);
819 for (i = 0; i < n_children; i++)
821 my_children[i] = g_variant_ref_sink (children[i]);
822 trusted &= g_variant_is_trusted (children[i]);
825 tuple_type = g_variant_make_tuple_type (children, n_children);
826 value = g_variant_new_from_children (tuple_type, my_children,
827 n_children, trusted);
828 g_variant_type_free (tuple_type);
834 * g_variant_make_dict_entry_type:
835 * @key: a #GVariant, the key
836 * @val: a #GVariant, the value
838 * Return the type of a dictionary entry containing @key and @val as its
841 static GVariantType *
842 g_variant_make_dict_entry_type (GVariant *key,
845 return g_variant_type_new_dict_entry (g_variant_get_type (key),
846 g_variant_get_type (val));
850 * g_variant_new_dict_entry:
851 * @key: a basic #GVariant, the key
852 * @value: a #GVariant, the value
853 * @returns: a new dictionary entry #GVariant
855 * Creates a new dictionary entry #GVariant. @key and @value must be
858 * @key must be a value of a basic type (ie: not a container).
863 g_variant_new_dict_entry (GVariant *key,
866 GVariantType *dict_type;
870 g_return_val_if_fail (key != NULL && value != NULL, NULL);
871 g_return_val_if_fail (!g_variant_is_container (key), NULL);
873 children = g_new (GVariant *, 2);
874 children[0] = g_variant_ref_sink (key);
875 children[1] = g_variant_ref_sink (value);
876 trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
878 dict_type = g_variant_make_dict_entry_type (key, value);
879 value = g_variant_new_from_children (dict_type, children, 2, trusted);
880 g_variant_type_free (dict_type);
886 * g_variant_get_fixed_array:
887 * @value: a #GVariant array with fixed-sized elements
888 * @n_elements: a pointer to the location to store the number of items
889 * @element_size: the size of each element
890 * @returns: a pointer to the fixed array
892 * Provides access to the serialised data for an array of fixed-sized
895 * @value must be an array with fixed-sized elements. Numeric types are
896 * fixed-size as are tuples containing only other fixed-sized types.
898 * @element_size must be the size of a single element in the array. For
899 * example, if calling this function for an array of 32 bit integers,
900 * you might say <code>sizeof (gint32)</code>. This value isn't used
901 * except for the purpose of a double-check that the form of the
902 * seralised data matches the caller's expectation.
904 * @n_elements, which must be non-%NULL is set equal to the number of
905 * items in the array.
910 g_variant_get_fixed_array (GVariant *value,
914 GVariantTypeInfo *array_info;
915 gsize array_element_size;
919 TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
921 g_return_val_if_fail (n_elements != NULL, NULL);
922 g_return_val_if_fail (element_size > 0, NULL);
924 array_info = g_variant_get_type_info (value);
925 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
927 g_return_val_if_fail (array_element_size, NULL);
929 if G_UNLIKELY (array_element_size != element_size)
931 if (array_element_size)
932 g_critical ("g_variant_get_fixed_array: assertion "
933 "`g_variant_array_has_fixed_size (value, element_size)' "
934 "failed: array size %"G_GSIZE_FORMAT" does not match "
935 "given element_size %"G_GSIZE_FORMAT".",
936 array_element_size, element_size);
938 g_critical ("g_variant_get_fixed_array: assertion "
939 "`g_variant_array_has_fixed_size (value, element_size)' "
940 "failed: array does not have fixed size.");
943 data = g_variant_get_data (value);
944 size = g_variant_get_size (value);
946 if (size % element_size)
949 *n_elements = size / element_size;
957 /* String type constructor/getters/validation {{{1 */
959 * g_variant_new_string:
960 * @string: a normal utf8 nul-terminated string
961 * @returns: a new string #GVariant instance
963 * Creates a string #GVariant with the contents of @string.
965 * @string must be valid utf8.
970 g_variant_new_string (const gchar *string)
972 g_return_val_if_fail (string != NULL, NULL);
974 return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
975 string, strlen (string) + 1);
979 * g_variant_new_object_path:
980 * @object_path: a normal C nul-terminated string
981 * @returns: a new object path #GVariant instance
983 * Creates a DBus object path #GVariant with the contents of @string.
984 * @string must be a valid DBus object path. Use
985 * g_variant_is_object_path() if you're not sure.
990 g_variant_new_object_path (const gchar *object_path)
992 g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
994 return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
995 object_path, strlen (object_path) + 1);
999 * g_variant_is_object_path:
1000 * @string: a normal C nul-terminated string
1001 * @returns: %TRUE if @string is a DBus object path
1003 * Determines if a given string is a valid DBus object path. You
1004 * should ensure that a string is a valid DBus object path before
1005 * passing it to g_variant_new_object_path().
1007 * A valid object path starts with '/' followed by zero or more
1008 * sequences of characters separated by '/' characters. Each sequence
1009 * must contain only the characters "[A-Z][a-z][0-9]_". No sequence
1010 * (including the one following the final '/' character) may be empty.
1015 g_variant_is_object_path (const gchar *string)
1017 g_return_val_if_fail (string != NULL, FALSE);
1019 return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1023 * g_variant_new_signature:
1024 * @signature: a normal C nul-terminated string
1025 * @returns: a new signature #GVariant instance
1027 * Creates a DBus type signature #GVariant with the contents of
1028 * @string. @string must be a valid DBus type signature. Use
1029 * g_variant_is_signature() if you're not sure.
1034 g_variant_new_signature (const gchar *signature)
1036 g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1038 return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1039 signature, strlen (signature) + 1);
1043 * g_variant_is_signature:
1044 * @string: a normal C nul-terminated string
1045 * @returns: %TRUE if @string is a DBus type signature
1047 * Determines if a given string is a valid DBus type signature. You
1048 * should ensure that a string is a valid DBus object path before
1049 * passing it to g_variant_new_signature().
1051 * DBus type signatures consist of zero or more definite #GVariantType
1052 * strings in sequence.
1057 g_variant_is_signature (const gchar *string)
1059 g_return_val_if_fail (string != NULL, FALSE);
1061 return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1065 * g_variant_get_string:
1066 * @value: a string #GVariant instance
1067 * @length: a pointer to a #gsize, to store the length
1068 * @returns: the constant string, utf8 encoded
1070 * Returns the string value of a #GVariant instance with a string
1071 * type. This includes the types %G_VARIANT_TYPE_STRING,
1072 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1074 * The string will always be utf8 encoded.
1076 * If @length is non-%NULL then the length of the string (in bytes) is
1077 * returned there. For trusted values, this information is already
1078 * known. For untrusted values, a strlen() will be performed.
1080 * It is an error to call this function with a @value of any type
1081 * other than those three.
1083 * The return value remains valid as long as @value exists.
1088 g_variant_get_string (GVariant *value,
1094 g_return_val_if_fail (value != NULL, NULL);
1095 g_return_val_if_fail (
1096 g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1097 g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1098 g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1100 data = g_variant_get_data (value);
1101 size = g_variant_get_size (value);
1103 if (!g_variant_is_trusted (value))
1105 switch (g_variant_classify (value))
1107 case G_VARIANT_CLASS_STRING:
1108 if (g_variant_serialiser_is_string (data, size))
1115 case G_VARIANT_CLASS_OBJECT_PATH:
1116 if (g_variant_serialiser_is_object_path (data, size))
1123 case G_VARIANT_CLASS_SIGNATURE:
1124 if (g_variant_serialiser_is_signature (data, size))
1132 g_assert_not_reached ();
1143 * g_variant_dup_string:
1144 * @value: a string #GVariant instance
1145 * @length: a pointer to a #gsize, to store the length
1146 * @returns: a newly allocated string, utf8 encoded
1148 * Similar to g_variant_get_string() except that instead of returning
1149 * a constant string, the string is duplicated.
1151 * The string will always be utf8 encoded.
1153 * The return value must be freed using g_free().
1158 g_variant_dup_string (GVariant *value,
1161 return g_strdup (g_variant_get_string (value, length));
1165 * g_variant_new_byte_array:
1166 * @array: a pointer to an array of bytes
1167 * @length: the length of @array, or -1
1168 * @returns: a new floating #GVariant instance
1170 * Constructs an array of bytes #GVariant from the given array of bytes.
1172 * If @length is -1 then @array is taken to be a normal C string (in the
1173 * sense that it is terminated by a nul character). The nul character
1174 * is included in the array. If length is not -1 then it gives the
1175 * length of @array which may then contain nul chracters with no special
1181 g_variant_new_byte_array (gconstpointer array,
1186 const gchar *bytes = array;
1189 while (bytes[length++]);
1192 return g_variant_new_from_trusted (G_VARIANT_TYPE ("ay"),
1197 * g_variant_get_byte_array:
1198 * @value: an array of bytes #GVariant
1199 * @length: the length of the result, or %NULL
1200 * @returns: a pointer to the byte data, or %NULL
1202 * Gets the contents of an array of bytes #GVariant.
1204 * If @length is non-%NULL then it points to a location at which to
1205 * store the length of the array and nul bytes contained within the
1206 * array have no special meaning.
1208 * If @length is %NULL then the caller has no way to determine what the
1209 * length of the returned data might be. In this case, the function
1210 * ensures that the last byte of the array is a nul byte and, if it is
1211 * not, returns %NULL instead. In this way, the caller is assured that
1212 * any non-%NULL pointer that is returned will be nul-terminated.
1214 * The return value remains valid as long as @value exists.
1219 g_variant_get_byte_array (GVariant *value,
1225 TYPE_CHECK (value, G_VARIANT_TYPE ("ay"), NULL);
1227 data = g_variant_get_data (value);
1228 size = g_variant_get_size (value);
1232 const gchar *bytes = data;
1234 if (bytes[size - 1] != '\0')
1244 * g_variant_new_strv:
1245 * @strv: an array of strings
1246 * @length: the length of @strv, or -1
1247 * @returns: (array length=length): a new floating #GVariant instance
1249 * Constructs an array of strings #GVariant from the given array of
1252 * If @length is not -1 then it gives the maximum length of @strv. In
1253 * any case, a %NULL pointer in @strv is taken as a terminator.
1258 g_variant_new_strv (const gchar * const *strv,
1264 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1267 length = g_strv_length ((gchar **) strv);
1269 strings = g_new (GVariant *, length);
1270 for (i = 0; i < length; i++)
1271 strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1273 return g_variant_new_from_children (G_VARIANT_TYPE ("as"),
1274 strings, length, TRUE);
1278 * g_variant_get_strv:
1279 * @value: an array of strings #GVariant
1280 * @length: (allow-none): the length of the result, or %NULL
1281 * @returns: (array length=length): an array of constant strings
1283 * Gets the contents of an array of strings #GVariant. This call
1284 * makes a shallow copy; the return result should be released with
1285 * g_free(), but the individual strings must not be modified.
1287 * If @length is non-%NULL then the number of elements in the result
1288 * is stored there. In any case, the resulting array will be
1291 * For an empty array, @length will be set to 0 and a pointer to a
1292 * %NULL pointer will be returned.
1297 g_variant_get_strv (GVariant *value,
1304 g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("as")) ||
1305 g_variant_is_of_type (value, G_VARIANT_TYPE ("ao")) ||
1306 g_variant_is_of_type (value, G_VARIANT_TYPE ("ag")),
1309 g_variant_get_data (value);
1310 n = g_variant_n_children (value);
1311 strv = g_new (const gchar *, n + 1);
1313 for (i = 0; i < n; i++)
1317 string = g_variant_get_child_value (value, i);
1318 strv[i] = g_variant_get_string (string, NULL);
1319 g_variant_unref (string);
1330 * g_variant_dup_strv:
1331 * @value: an array of strings #GVariant
1332 * @length: (allow-none): the length of the result, or %NULL
1333 * @returns: (array length=length): an array of constant strings
1335 * Gets the contents of an array of strings #GVariant. This call
1336 * makes a deep copy; the return result should be released with
1339 * If @length is non-%NULL then the number of elements in the result
1340 * is stored there. In any case, the resulting array will be
1343 * For an empty array, @length will be set to 0 and a pointer to a
1344 * %NULL pointer will be returned.
1349 g_variant_dup_strv (GVariant *value,
1356 g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("as")) ||
1357 g_variant_is_of_type (value, G_VARIANT_TYPE ("ao")) ||
1358 g_variant_is_of_type (value, G_VARIANT_TYPE ("ag")),
1361 n = g_variant_n_children (value);
1362 strv = g_new (gchar *, n + 1);
1364 for (i = 0; i < n; i++)
1368 string = g_variant_get_child_value (value, i);
1369 strv[i] = g_variant_dup_string (string, NULL);
1370 g_variant_unref (string);
1380 /* Type checking, querying, default value {{{1 */
1382 * g_variant_get_type:
1383 * @value: a #GVariant
1384 * @returns: a #GVariantType
1386 * Determines the type of @value.
1388 * The return value is valid for the lifetime of @value and must not
1393 const GVariantType *
1394 g_variant_get_type (GVariant *value)
1396 GVariantTypeInfo *type_info;
1398 g_return_val_if_fail (value != NULL, NULL);
1400 type_info = g_variant_get_type_info (value);
1402 return (GVariantType *) g_variant_type_info_get_type_string (type_info);
1406 * g_variant_get_type_string:
1407 * @value: a #GVariant
1408 * @returns: the type string for the type of @value
1410 * Returns the type string of @value. Unlike the result of calling
1411 * g_variant_type_peek_string(), this string is nul-terminated. This
1412 * string belongs to #GVariant and must not be freed.
1417 g_variant_get_type_string (GVariant *value)
1419 GVariantTypeInfo *type_info;
1421 g_return_val_if_fail (value != NULL, NULL);
1423 type_info = g_variant_get_type_info (value);
1425 return g_variant_type_info_get_type_string (type_info);
1429 * g_variant_is_of_type:
1430 * @value: a #GVariant instance
1431 * @type: a #GVariantType
1432 * @returns: %TRUE if the type of @value matches @type
1434 * Checks if a value has a type matching the provided type.
1439 g_variant_is_of_type (GVariant *value,
1440 const GVariantType *type)
1442 return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
1446 * g_variant_is_container:
1447 * @value: a #GVariant instance
1448 * @returns: %TRUE if @value is a container
1450 * Checks if @value is a container.
1453 g_variant_is_container (GVariant *value)
1455 return g_variant_type_is_container (g_variant_get_type (value));
1459 * g_variant_classify:
1460 * @value: a #GVariant
1461 * @returns: the #GVariantClass of @value
1463 * Classifies @value according to its top-level type.
1469 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
1470 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
1471 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
1472 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
1473 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
1474 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
1475 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
1476 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
1477 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
1478 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
1480 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
1481 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a DBus object path
1483 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a DBus signature string.
1484 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
1485 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
1486 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
1487 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
1488 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
1490 * The range of possible top-level types of #GVariant instances.
1495 g_variant_classify (GVariant *value)
1497 g_return_val_if_fail (value != NULL, 0);
1499 return *g_variant_get_type_string (value);
1503 * g_variant_default_value:
1504 * @type: a definite #GVariantType
1505 * @returns: a reference to a #GVariant of the requested type
1507 * Returns the "default value" for @type. The default boolean instance
1508 * is false, the default value for any numeric type is (positive) zero,
1509 * the default array is empty and the default maybe instance is Nothing.
1510 * The default value for a tuple type is the tuple containing the
1511 * default value for each child. This is roughly equivalent to the
1512 * values produced by the serialiser when it detects invalid data.
1517 g_variant_default_value (const GVariantType *type)
1519 GVariant *broken, *fixed;
1521 g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
1523 /* let the serialiser figure it out */
1524 broken = g_variant_new_from_data (type, NULL, 0, FALSE, NULL, NULL);
1525 fixed = g_variant_get_normal_form (broken);
1526 g_variant_unref (broken);
1531 /* Pretty printer {{{1 */
1533 * g_variant_print_string:
1534 * @value: a #GVariant
1535 * @string: a #GString, or %NULL
1536 * @type_annotate: %TRUE if type information should be included in
1538 * @returns: a #GString containing the string
1540 * Behaves as g_variant_print(), but operates on a #GString.
1542 * If @string is non-%NULL then it is appended to and returned. Else,
1543 * a new empty #GString is allocated and it is returned.
1548 g_variant_print_string (GVariant *value,
1550 gboolean type_annotate)
1552 if G_UNLIKELY (string == NULL)
1553 string = g_string_new (NULL);
1555 switch (g_variant_classify (value))
1557 case G_VARIANT_CLASS_MAYBE:
1559 g_string_append_printf (string, "@%s ",
1560 g_variant_get_type_string (value));
1562 if (g_variant_n_children (value))
1564 gchar *printed_child;
1569 * Consider the case of the type "mmi". In this case we could
1570 * write "just just 4", but "4" alone is totally unambiguous,
1571 * so we try to drop "just" where possible.
1573 * We have to be careful not to always drop "just", though,
1574 * since "nothing" needs to be distinguishable from "just
1575 * nothing". The case where we need to ensure we keep the
1576 * "just" is actually exactly the case where we have a nested
1579 * Instead of searching for that nested Nothing, we just print
1580 * the contained value into a separate string and see if we
1581 * end up with "nothing" at the end of it. If so, we need to
1582 * add "just" at our level.
1584 element = g_variant_get_child_value (value, 0);
1585 printed_child = g_variant_print (element, FALSE);
1586 g_variant_unref (element);
1588 if (g_str_has_suffix (printed_child, "nothing"))
1589 g_string_append (string, "just ");
1590 g_string_append (string, printed_child);
1591 g_free (printed_child);
1594 g_string_append (string, "nothing");
1598 case G_VARIANT_CLASS_ARRAY:
1599 /* it's an array so the first character of the type string is 'a'
1601 * if the first two characters are 'a{' then it's an array of
1602 * dictionary entries (ie: a dictionary) so we print that
1605 if (g_variant_get_type_string (value)[1] == '{')
1608 const gchar *comma = "";
1611 if ((n = g_variant_n_children (value)) == 0)
1614 g_string_append_printf (string, "@%s ",
1615 g_variant_get_type_string (value));
1616 g_string_append (string, "{}");
1620 g_string_append_c (string, '{');
1621 for (i = 0; i < n; i++)
1623 GVariant *entry, *key, *val;
1625 g_string_append (string, comma);
1628 entry = g_variant_get_child_value (value, i);
1629 key = g_variant_get_child_value (entry, 0);
1630 val = g_variant_get_child_value (entry, 1);
1631 g_variant_unref (entry);
1633 g_variant_print_string (key, string, type_annotate);
1634 g_variant_unref (key);
1635 g_string_append (string, ": ");
1636 g_variant_print_string (val, string, type_annotate);
1637 g_variant_unref (val);
1638 type_annotate = FALSE;
1640 g_string_append_c (string, '}');
1643 /* normal (non-dictionary) array */
1645 const gchar *comma = "";
1648 if ((n = g_variant_n_children (value)) == 0)
1651 g_string_append_printf (string, "@%s ",
1652 g_variant_get_type_string (value));
1653 g_string_append (string, "[]");
1657 g_string_append_c (string, '[');
1658 for (i = 0; i < n; i++)
1662 g_string_append (string, comma);
1665 element = g_variant_get_child_value (value, i);
1667 g_variant_print_string (element, string, type_annotate);
1668 g_variant_unref (element);
1669 type_annotate = FALSE;
1671 g_string_append_c (string, ']');
1676 case G_VARIANT_CLASS_TUPLE:
1680 n = g_variant_n_children (value);
1682 g_string_append_c (string, '(');
1683 for (i = 0; i < n; i++)
1687 element = g_variant_get_child_value (value, i);
1688 g_variant_print_string (element, string, type_annotate);
1689 g_string_append (string, ", ");
1690 g_variant_unref (element);
1693 /* for >1 item: remove final ", "
1694 * for 1 item: remove final " ", but leave the ","
1695 * for 0 items: there is only "(", so remove nothing
1697 g_string_truncate (string, string->len - (n > 0) - (n > 1));
1698 g_string_append_c (string, ')');
1702 case G_VARIANT_CLASS_DICT_ENTRY:
1706 g_string_append_c (string, '{');
1708 element = g_variant_get_child_value (value, 0);
1709 g_variant_print_string (element, string, type_annotate);
1710 g_variant_unref (element);
1712 g_string_append (string, ", ");
1714 element = g_variant_get_child_value (value, 1);
1715 g_variant_print_string (element, string, type_annotate);
1716 g_variant_unref (element);
1718 g_string_append_c (string, '}');
1722 case G_VARIANT_CLASS_VARIANT:
1724 GVariant *child = g_variant_get_variant (value);
1726 /* Always annotate types in nested variants, because they are
1727 * (by nature) of variable type.
1729 g_string_append_c (string, '<');
1730 g_variant_print_string (child, string, TRUE);
1731 g_string_append_c (string, '>');
1733 g_variant_unref (child);
1737 case G_VARIANT_CLASS_BOOLEAN:
1738 if (g_variant_get_boolean (value))
1739 g_string_append (string, "true");
1741 g_string_append (string, "false");
1744 case G_VARIANT_CLASS_STRING:
1746 const gchar *str = g_variant_get_string (value, NULL);
1747 gunichar quote = strchr (str, '\'') ? '"' : '\'';
1749 g_string_append_c (string, quote);
1753 gunichar c = g_utf8_get_char (str);
1755 if (c == quote || c == '\\')
1756 g_string_append_c (string, '\\');
1758 if (g_unichar_isprint (c))
1759 g_string_append_unichar (string, c);
1763 g_string_append_c (string, '\\');
1768 g_string_append_c (string, 'a');
1772 g_string_append_c (string, 'b');
1776 g_string_append_c (string, 'f');
1780 g_string_append_c (string, 'n');
1784 g_string_append_c (string, 'r');
1788 g_string_append_c (string, 't');
1792 g_string_append_c (string, 'v');
1796 g_string_append_printf (string, "u%04x", c);
1800 g_string_append_printf (string, "U%08x", c);
1803 str = g_utf8_next_char (str);
1806 g_string_append_c (string, quote);
1810 case G_VARIANT_CLASS_BYTE:
1812 g_string_append (string, "byte ");
1813 g_string_append_printf (string, "0x%02x",
1814 g_variant_get_byte (value));
1817 case G_VARIANT_CLASS_INT16:
1819 g_string_append (string, "int16 ");
1820 g_string_append_printf (string, "%"G_GINT16_FORMAT,
1821 g_variant_get_int16 (value));
1824 case G_VARIANT_CLASS_UINT16:
1826 g_string_append (string, "uint16 ");
1827 g_string_append_printf (string, "%"G_GUINT16_FORMAT,
1828 g_variant_get_uint16 (value));
1831 case G_VARIANT_CLASS_INT32:
1832 /* Never annotate this type because it is the default for numbers
1833 * (and this is a *pretty* printer)
1835 g_string_append_printf (string, "%"G_GINT32_FORMAT,
1836 g_variant_get_int32 (value));
1839 case G_VARIANT_CLASS_HANDLE:
1841 g_string_append (string, "handle ");
1842 g_string_append_printf (string, "%"G_GINT32_FORMAT,
1843 g_variant_get_handle (value));
1846 case G_VARIANT_CLASS_UINT32:
1848 g_string_append (string, "uint32 ");
1849 g_string_append_printf (string, "%"G_GUINT32_FORMAT,
1850 g_variant_get_uint32 (value));
1853 case G_VARIANT_CLASS_INT64:
1855 g_string_append (string, "int64 ");
1856 g_string_append_printf (string, "%"G_GINT64_FORMAT,
1857 g_variant_get_int64 (value));
1860 case G_VARIANT_CLASS_UINT64:
1862 g_string_append (string, "uint64 ");
1863 g_string_append_printf (string, "%"G_GUINT64_FORMAT,
1864 g_variant_get_uint64 (value));
1867 case G_VARIANT_CLASS_DOUBLE:
1872 g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
1874 for (i = 0; buffer[i]; i++)
1875 if (buffer[i] == '.' || buffer[i] == 'e' ||
1876 buffer[i] == 'n' || buffer[i] == 'N')
1879 /* if there is no '.' or 'e' in the float then add one */
1880 if (buffer[i] == '\0')
1887 g_string_append (string, buffer);
1891 case G_VARIANT_CLASS_OBJECT_PATH:
1893 g_string_append (string, "objectpath ");
1894 g_string_append_printf (string, "\'%s\'",
1895 g_variant_get_string (value, NULL));
1898 case G_VARIANT_CLASS_SIGNATURE:
1900 g_string_append (string, "signature ");
1901 g_string_append_printf (string, "\'%s\'",
1902 g_variant_get_string (value, NULL));
1906 g_assert_not_reached ();
1914 * @value: a #GVariant
1915 * @type_annotate: %TRUE if type information should be included in
1917 * @returns: a newly-allocated string holding the result.
1919 * Pretty-prints @value in the format understood by g_variant_parse().
1921 * If @type_annotate is %TRUE, then type information is included in
1925 g_variant_print (GVariant *value,
1926 gboolean type_annotate)
1928 return g_string_free (g_variant_print_string (value, NULL, type_annotate),
1932 /* Hash, Equal, Compare {{{1 */
1935 * @value: a basic #GVariant value as a #gconstpointer
1936 * @returns: a hash value corresponding to @value
1938 * Generates a hash value for a #GVariant instance.
1940 * The output of this function is guaranteed to be the same for a given
1941 * value only per-process. It may change between different processor
1942 * architectures or even different versions of GLib. Do not use this
1943 * function as a basis for building protocols or file formats.
1945 * The type of @value is #gconstpointer only to allow use of this
1946 * function with #GHashTable. @value must be a #GVariant.
1951 g_variant_hash (gconstpointer value_)
1953 GVariant *value = (GVariant *) value_;
1955 switch (g_variant_classify (value))
1957 case G_VARIANT_CLASS_STRING:
1958 case G_VARIANT_CLASS_OBJECT_PATH:
1959 case G_VARIANT_CLASS_SIGNATURE:
1960 return g_str_hash (g_variant_get_string (value, NULL));
1962 case G_VARIANT_CLASS_BOOLEAN:
1963 /* this is a very odd thing to hash... */
1964 return g_variant_get_boolean (value);
1966 case G_VARIANT_CLASS_BYTE:
1967 return g_variant_get_byte (value);
1969 case G_VARIANT_CLASS_INT16:
1970 case G_VARIANT_CLASS_UINT16:
1974 ptr = g_variant_get_data (value);
1982 case G_VARIANT_CLASS_INT32:
1983 case G_VARIANT_CLASS_UINT32:
1984 case G_VARIANT_CLASS_HANDLE:
1988 ptr = g_variant_get_data (value);
1996 case G_VARIANT_CLASS_INT64:
1997 case G_VARIANT_CLASS_UINT64:
1998 case G_VARIANT_CLASS_DOUBLE:
1999 /* need a separate case for these guys because otherwise
2000 * performance could be quite bad on big endian systems
2005 ptr = g_variant_get_data (value);
2008 return ptr[0] + ptr[1];
2014 g_return_val_if_fail (!g_variant_is_container (value), 0);
2015 g_assert_not_reached ();
2021 * @one: a #GVariant instance
2022 * @two: a #GVariant instance
2023 * @returns: %TRUE if @one and @two are equal
2025 * Checks if @one and @two have the same type and value.
2027 * The types of @one and @two are #gconstpointer only to allow use of
2028 * this function with #GHashTable. They must each be a #GVariant.
2033 g_variant_equal (gconstpointer one,
2038 g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2040 if (g_variant_get_type_info ((GVariant *) one) !=
2041 g_variant_get_type_info ((GVariant *) two))
2044 /* if both values are trusted to be in their canonical serialised form
2045 * then a simple memcmp() of their serialised data will answer the
2048 * if not, then this might generate a false negative (since it is
2049 * possible for two different byte sequences to represent the same
2050 * value). for now we solve this by pretty-printing both values and
2051 * comparing the result.
2053 if (g_variant_is_trusted ((GVariant *) one) &&
2054 g_variant_is_trusted ((GVariant *) two))
2056 gconstpointer data_one, data_two;
2057 gsize size_one, size_two;
2059 size_one = g_variant_get_size ((GVariant *) one);
2060 size_two = g_variant_get_size ((GVariant *) two);
2062 if (size_one != size_two)
2065 data_one = g_variant_get_data ((GVariant *) one);
2066 data_two = g_variant_get_data ((GVariant *) two);
2068 equal = memcmp (data_one, data_two, size_one) == 0;
2072 gchar *strone, *strtwo;
2074 strone = g_variant_print ((GVariant *) one, FALSE);
2075 strtwo = g_variant_print ((GVariant *) two, FALSE);
2076 equal = strcmp (strone, strtwo) == 0;
2085 * g_variant_compare:
2086 * @one: a basic-typed #GVariant instance
2087 * @two: a #GVariant instance of the same type
2088 * @returns: negative value if a < b;
2090 * positive value if a > b.
2092 * Compares @one and @two.
2094 * The types of @one and @two are #gconstpointer only to allow use of
2095 * this function with #GTree, #GPtrArray, etc. They must each be a
2098 * Comparison is only defined for basic types (ie: booleans, numbers,
2099 * strings). For booleans, %FALSE is less than %TRUE. Numbers are
2100 * ordered in the usual way. Strings are in ASCII lexographical order.
2102 * It is a programmer error to attempt to compare container values or
2103 * two values that have types that are not exactly equal. For example,
2104 * you can not compare a 32-bit signed integer with a 32-bit unsigned
2105 * integer. Also note that this function is not particularly
2106 * well-behaved when it comes to comparison of doubles; in particular,
2107 * the handling of incomparable values (ie: NaN) is undefined.
2109 * If you only require an equality comparison, g_variant_equal() is more
2115 g_variant_compare (gconstpointer one,
2118 GVariant *a = (GVariant *) one;
2119 GVariant *b = (GVariant *) two;
2121 g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2123 switch (g_variant_classify (a))
2125 case G_VARIANT_CLASS_BYTE:
2126 return ((gint) g_variant_get_byte (a)) -
2127 ((gint) g_variant_get_byte (b));
2129 case G_VARIANT_CLASS_INT16:
2130 return ((gint) g_variant_get_int16 (a)) -
2131 ((gint) g_variant_get_int16 (b));
2133 case G_VARIANT_CLASS_UINT16:
2134 return ((gint) g_variant_get_uint16 (a)) -
2135 ((gint) g_variant_get_uint16 (b));
2137 case G_VARIANT_CLASS_INT32:
2139 gint32 a_val = g_variant_get_int32 (a);
2140 gint32 b_val = g_variant_get_int32 (b);
2142 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2145 case G_VARIANT_CLASS_UINT32:
2147 guint32 a_val = g_variant_get_uint32 (a);
2148 guint32 b_val = g_variant_get_uint32 (b);
2150 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2153 case G_VARIANT_CLASS_INT64:
2155 gint64 a_val = g_variant_get_int64 (a);
2156 gint64 b_val = g_variant_get_int64 (b);
2158 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2161 case G_VARIANT_CLASS_UINT64:
2163 guint64 a_val = g_variant_get_int32 (a);
2164 guint64 b_val = g_variant_get_int32 (b);
2166 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2169 case G_VARIANT_CLASS_DOUBLE:
2171 gdouble a_val = g_variant_get_double (a);
2172 gdouble b_val = g_variant_get_double (b);
2174 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2177 case G_VARIANT_CLASS_STRING:
2178 case G_VARIANT_CLASS_OBJECT_PATH:
2179 case G_VARIANT_CLASS_SIGNATURE:
2180 return strcmp (g_variant_get_string (a, NULL),
2181 g_variant_get_string (b, NULL));
2184 g_return_val_if_fail (!g_variant_is_container (a), 0);
2185 g_assert_not_reached ();
2189 /* GVariantIter {{{1 */
2193 * #GVariantIter is an opaque data structure and can only be accessed
2194 * using the following functions.
2201 const gchar *loop_format;
2207 G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2211 struct stack_iter iter;
2213 GVariant *value_ref;
2217 #define GVSI(i) ((struct stack_iter *) (i))
2218 #define GVHI(i) ((struct heap_iter *) (i))
2219 #define GVSI_MAGIC ((gsize) 3579507750u)
2220 #define GVHI_MAGIC ((gsize) 1450270775u)
2221 #define is_valid_iter(i) (i != NULL && \
2222 GVSI(i)->magic == GVSI_MAGIC)
2223 #define is_valid_heap_iter(i) (GVHI(i)->magic == GVHI_MAGIC && \
2227 * g_variant_iter_new:
2228 * @value: a container #GVariant
2229 * @returns: a new heap-allocated #GVariantIter
2231 * Creates a heap-allocated #GVariantIter for iterating over the items
2234 * Use g_variant_iter_free() to free the return value when you no longer
2237 * A reference is taken to @value and will be released only when
2238 * g_variant_iter_free() is called.
2243 g_variant_iter_new (GVariant *value)
2247 iter = (GVariantIter *) g_slice_new (struct heap_iter);
2248 GVHI(iter)->value_ref = g_variant_ref (value);
2249 GVHI(iter)->magic = GVHI_MAGIC;
2251 g_variant_iter_init (iter, value);
2257 * g_variant_iter_init:
2258 * @iter: a pointer to a #GVariantIter
2259 * @value: a container #GVariant
2260 * @returns: the number of items in @value
2262 * Initialises (without allocating) a #GVariantIter. @iter may be
2263 * completely uninitialised prior to this call; its old value is
2266 * The iterator remains valid for as long as @value exists, and need not
2267 * be freed in any way.
2272 g_variant_iter_init (GVariantIter *iter,
2275 GVSI(iter)->magic = GVSI_MAGIC;
2276 GVSI(iter)->value = value;
2277 GVSI(iter)->n = g_variant_n_children (value);
2279 GVSI(iter)->loop_format = NULL;
2281 return GVSI(iter)->n;
2285 * g_variant_iter_copy:
2286 * @iter: a #GVariantIter
2287 * @returns: a new heap-allocated #GVariantIter
2289 * Creates a new heap-allocated #GVariantIter to iterate over the
2290 * container that was being iterated over by @iter. Iteration begins on
2291 * the new iterator from the current position of the old iterator but
2292 * the two copies are independent past that point.
2294 * Use g_variant_iter_free() to free the return value when you no longer
2297 * A reference is taken to the container that @iter is iterating over
2298 * and will be releated only when g_variant_iter_free() is called.
2303 g_variant_iter_copy (GVariantIter *iter)
2307 g_return_val_if_fail (is_valid_iter (iter), 0);
2309 copy = g_variant_iter_new (GVSI(iter)->value);
2310 GVSI(copy)->i = GVSI(iter)->i;
2316 * g_variant_iter_n_children:
2317 * @iter: a #GVariantIter
2318 * @returns: the number of children in the container
2320 * Queries the number of child items in the container that we are
2321 * iterating over. This is the total number of items -- not the number
2322 * of items remaining.
2324 * This function might be useful for preallocation of arrays.
2329 g_variant_iter_n_children (GVariantIter *iter)
2331 g_return_val_if_fail (is_valid_iter (iter), 0);
2333 return GVSI(iter)->n;
2337 * g_variant_iter_free:
2338 * @iter: a heap-allocated #GVariantIter
2340 * Frees a heap-allocated #GVariantIter. Only call this function on
2341 * iterators that were returned by g_variant_iter_new() or
2342 * g_variant_iter_copy().
2347 g_variant_iter_free (GVariantIter *iter)
2349 g_return_if_fail (is_valid_heap_iter (iter));
2351 g_variant_unref (GVHI(iter)->value_ref);
2352 GVHI(iter)->magic = 0;
2354 g_slice_free (struct heap_iter, GVHI(iter));
2358 * g_variant_iter_next_value:
2359 * @iter: a #GVariantIter
2360 * @returns: a #GVariant, or %NULL
2362 * Gets the next item in the container. If no more items remain then
2363 * %NULL is returned.
2365 * Use g_variant_unref() to drop your reference on the return value when
2366 * you no longer need it.
2369 * <title>Iterating with g_variant_iter_next_value()</title>
2371 * /<!-- -->* recursively iterate a container *<!-- -->/
2373 * iterate_container_recursive (GVariant *container)
2375 * GVariantIter iter;
2378 * g_variant_iter_init (&iter, dictionary);
2379 * while ((child = g_variant_iter_next_value (&iter)))
2381 * g_print ("type '%s'\n", g_variant_get_type_string (child));
2383 * if (g_variant_is_container (child))
2384 * iterate_container_recursive (child);
2386 * g_variant_unref (child);
2395 g_variant_iter_next_value (GVariantIter *iter)
2397 g_return_val_if_fail (is_valid_iter (iter), FALSE);
2399 if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
2401 g_critical ("g_variant_iter_next_value: must not be called again "
2402 "after NULL has already been returned.");
2408 if (GVSI(iter)->i < GVSI(iter)->n)
2409 return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
2414 /* GVariantBuilder {{{1 */
2418 * A utility type for constructing container-type #GVariant instances.
2420 * This is an opaque structure and may only be accessed using the
2421 * following functions.
2423 * #GVariantBuilder is not threadsafe in any way. Do not attempt to
2424 * access it from more than one thread.
2427 struct stack_builder
2429 GVariantBuilder *parent;
2432 /* type constraint explicitly specified by 'type'.
2433 * for tuple types, this moves along as we add more items.
2435 const GVariantType *expected_type;
2437 /* type constraint implied by previous array item.
2439 const GVariantType *prev_item_type;
2441 /* constraints on the number of children. max = -1 for unlimited. */
2445 /* dynamically-growing pointer array */
2446 GVariant **children;
2447 gsize allocated_children;
2450 /* set to '1' if all items in the container will have the same type
2451 * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
2453 guint uniform_item_types : 1;
2455 /* set to '1' initially and changed to '0' if an untrusted value is
2463 G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
2467 GVariantBuilder builder;
2473 #define GVSB(b) ((struct stack_builder *) (b))
2474 #define GVHB(b) ((struct heap_builder *) (b))
2475 #define GVSB_MAGIC ((gsize) 1033660112u)
2476 #define GVHB_MAGIC ((gsize) 3087242682u)
2477 #define is_valid_builder(b) (b != NULL && \
2478 GVSB(b)->magic == GVSB_MAGIC)
2479 #define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
2482 * g_variant_builder_new:
2483 * @type: a container type
2484 * @returns: a #GVariantBuilder
2486 * Allocates and initialises a new #GVariantBuilder.
2488 * You should call g_variant_builder_unref() on the return value when it
2489 * is no longer needed. The memory will not be automatically freed by
2492 * In most cases it is easier to place a #GVariantBuilder directly on
2493 * the stack of the calling function and initialise it with
2494 * g_variant_builder_init().
2499 g_variant_builder_new (const GVariantType *type)
2501 GVariantBuilder *builder;
2503 builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
2504 g_variant_builder_init (builder, type);
2505 GVHB(builder)->magic = GVHB_MAGIC;
2506 GVHB(builder)->ref_count = 1;
2512 * g_variant_builder_unref:
2513 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
2515 * Decreases the reference count on @builder.
2517 * In the event that there are no more references, releases all memory
2518 * associated with the #GVariantBuilder.
2520 * Don't call this on stack-allocated #GVariantBuilder instances or bad
2521 * things will happen.
2526 g_variant_builder_unref (GVariantBuilder *builder)
2528 g_return_if_fail (is_valid_heap_builder (builder));
2530 if (--GVHB(builder)->ref_count)
2533 g_variant_builder_clear (builder);
2534 GVHB(builder)->magic = 0;
2536 g_slice_free (struct heap_builder, GVHB(builder));
2540 * g_variant_builder_ref:
2541 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
2542 * @returns: a new reference to @builder
2544 * Increases the reference count on @builder.
2546 * Don't call this on stack-allocated #GVariantBuilder instances or bad
2547 * things will happen.
2552 g_variant_builder_ref (GVariantBuilder *builder)
2554 g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
2556 GVHB(builder)->ref_count++;
2562 * g_variant_builder_clear:
2563 * @builder: a #GVariantBuilder
2565 * Releases all memory associated with a #GVariantBuilder without
2566 * freeing the #GVariantBuilder structure itself.
2568 * It typically only makes sense to do this on a stack-allocated
2569 * #GVariantBuilder if you want to abort building the value part-way
2570 * through. This function need not be called if you call
2571 * g_variant_builder_end() and it also doesn't need to be called on
2572 * builders allocated with g_variant_builder_new (see
2573 * g_variant_builder_free() for that).
2575 * This function leaves the #GVariantBuilder structure set to all-zeros.
2576 * It is valid to call this function on either an initialised
2577 * #GVariantBuilder or one that is set to all-zeros but it is not valid
2578 * to call this function on uninitialised memory.
2583 g_variant_builder_clear (GVariantBuilder *builder)
2587 if (GVSB(builder)->magic == 0)
2588 /* all-zeros case */
2591 g_return_if_fail (is_valid_builder (builder));
2593 g_variant_type_free (GVSB(builder)->type);
2595 for (i = 0; i < GVSB(builder)->offset; i++)
2596 g_variant_unref (GVSB(builder)->children[i]);
2598 g_free (GVSB(builder)->children);
2600 if (GVSB(builder)->parent)
2602 g_variant_builder_clear (GVSB(builder)->parent);
2603 g_slice_free (GVariantBuilder, GVSB(builder)->parent);
2606 memset (builder, 0, sizeof (GVariantBuilder));
2610 * g_variant_builder_init:
2611 * @builder: a #GVariantBuilder
2612 * @type: a container type
2614 * Initialises a #GVariantBuilder structure.
2616 * @type must be non-%NULL. It specifies the type of container to
2617 * construct. It can be an indefinite type such as
2618 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
2619 * Maybe, array, tuple, dictionary entry and variant-typed values may be
2622 * After the builder is initialised, values are added using
2623 * g_variant_builder_add_value() or g_variant_builder_add().
2625 * After all the child values are added, g_variant_builder_end() frees
2626 * the memory associated with the builder and returns the #GVariant that
2629 * This function completely ignores the previous contents of @builder.
2630 * On one hand this means that it is valid to pass in completely
2631 * uninitialised memory. On the other hand, this means that if you are
2632 * initialising over top of an existing #GVariantBuilder you need to
2633 * first call g_variant_builder_clear() in order to avoid leaking
2636 * You must not call g_variant_builder_ref() or
2637 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
2638 * with this function. If you ever pass a reference to a
2639 * #GVariantBuilder outside of the control of your own code then you
2640 * should assume that the person receiving that reference may try to use
2641 * reference counting; you should use g_variant_builder_new() instead of
2647 g_variant_builder_init (GVariantBuilder *builder,
2648 const GVariantType *type)
2650 g_return_if_fail (type != NULL);
2651 g_return_if_fail (g_variant_type_is_container (type));
2653 memset (builder, 0, sizeof (GVariantBuilder));
2655 GVSB(builder)->type = g_variant_type_copy (type);
2656 GVSB(builder)->magic = GVSB_MAGIC;
2657 GVSB(builder)->trusted = TRUE;
2659 switch (*(const gchar *) type)
2661 case G_VARIANT_CLASS_VARIANT:
2662 GVSB(builder)->uniform_item_types = TRUE;
2663 GVSB(builder)->allocated_children = 1;
2664 GVSB(builder)->expected_type = NULL;
2665 GVSB(builder)->min_items = 1;
2666 GVSB(builder)->max_items = 1;
2669 case G_VARIANT_CLASS_ARRAY:
2670 GVSB(builder)->uniform_item_types = TRUE;
2671 GVSB(builder)->allocated_children = 8;
2672 GVSB(builder)->expected_type =
2673 g_variant_type_element (GVSB(builder)->type);
2674 GVSB(builder)->min_items = 0;
2675 GVSB(builder)->max_items = -1;
2678 case G_VARIANT_CLASS_MAYBE:
2679 GVSB(builder)->uniform_item_types = TRUE;
2680 GVSB(builder)->allocated_children = 1;
2681 GVSB(builder)->expected_type =
2682 g_variant_type_element (GVSB(builder)->type);
2683 GVSB(builder)->min_items = 0;
2684 GVSB(builder)->max_items = 1;
2687 case G_VARIANT_CLASS_DICT_ENTRY:
2688 GVSB(builder)->uniform_item_types = FALSE;
2689 GVSB(builder)->allocated_children = 2;
2690 GVSB(builder)->expected_type =
2691 g_variant_type_key (GVSB(builder)->type);
2692 GVSB(builder)->min_items = 2;
2693 GVSB(builder)->max_items = 2;
2696 case 'r': /* G_VARIANT_TYPE_TUPLE was given */
2697 GVSB(builder)->uniform_item_types = FALSE;
2698 GVSB(builder)->allocated_children = 8;
2699 GVSB(builder)->expected_type = NULL;
2700 GVSB(builder)->min_items = 0;
2701 GVSB(builder)->max_items = -1;
2704 case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
2705 GVSB(builder)->allocated_children = g_variant_type_n_items (type);
2706 GVSB(builder)->expected_type =
2707 g_variant_type_first (GVSB(builder)->type);
2708 GVSB(builder)->min_items = GVSB(builder)->allocated_children;
2709 GVSB(builder)->max_items = GVSB(builder)->allocated_children;
2710 GVSB(builder)->uniform_item_types = FALSE;
2714 g_assert_not_reached ();
2717 GVSB(builder)->children = g_new (GVariant *,
2718 GVSB(builder)->allocated_children);
2722 g_variant_builder_make_room (struct stack_builder *builder)
2724 if (builder->offset == builder->allocated_children)
2726 builder->allocated_children *= 2;
2727 builder->children = g_renew (GVariant *, builder->children,
2728 builder->allocated_children);
2733 * g_variant_builder_add_value:
2734 * @builder: a #GVariantBuilder
2735 * @value: a #GVariant
2737 * Adds @value to @builder.
2739 * It is an error to call this function in any way that would create an
2740 * inconsistent value to be constructed. Some examples of this are
2741 * putting different types of items into an array, putting the wrong
2742 * types or number of items in a tuple, putting more than one value into
2748 g_variant_builder_add_value (GVariantBuilder *builder,
2751 g_return_if_fail (is_valid_builder (builder));
2752 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
2753 g_return_if_fail (!GVSB(builder)->expected_type ||
2754 g_variant_is_of_type (value,
2755 GVSB(builder)->expected_type));
2756 g_return_if_fail (!GVSB(builder)->prev_item_type ||
2757 g_variant_is_of_type (value,
2758 GVSB(builder)->prev_item_type));
2760 GVSB(builder)->trusted &= g_variant_is_trusted (value);
2762 if (!GVSB(builder)->uniform_item_types)
2764 /* advance our expected type pointers */
2765 if (GVSB(builder)->expected_type)
2766 GVSB(builder)->expected_type =
2767 g_variant_type_next (GVSB(builder)->expected_type);
2769 if (GVSB(builder)->prev_item_type)
2770 GVSB(builder)->prev_item_type =
2771 g_variant_type_next (GVSB(builder)->prev_item_type);
2774 GVSB(builder)->prev_item_type = g_variant_get_type (value);
2776 g_variant_builder_make_room (GVSB(builder));
2778 GVSB(builder)->children[GVSB(builder)->offset++] =
2779 g_variant_ref_sink (value);
2783 * g_variant_builder_open:
2784 * @builder: a #GVariantBuilder
2785 * @type: a #GVariantType
2787 * Opens a subcontainer inside the given @builder. When done adding
2788 * items to the subcontainer, g_variant_builder_close() must be called.
2790 * It is an error to call this function in any way that would cause an
2791 * inconsistent value to be constructed (ie: adding too many values or
2792 * a value of an incorrect type).
2797 g_variant_builder_open (GVariantBuilder *builder,
2798 const GVariantType *type)
2800 GVariantBuilder *parent;
2802 g_return_if_fail (is_valid_builder (builder));
2803 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
2804 g_return_if_fail (!GVSB(builder)->expected_type ||
2805 g_variant_type_is_subtype_of (type,
2806 GVSB(builder)->expected_type));
2807 g_return_if_fail (!GVSB(builder)->prev_item_type ||
2808 g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
2811 parent = g_slice_dup (GVariantBuilder, builder);
2812 g_variant_builder_init (builder, type);
2813 GVSB(builder)->parent = parent;
2815 /* push the prev_item_type down into the subcontainer */
2816 if (GVSB(parent)->prev_item_type)
2818 if (!GVSB(builder)->uniform_item_types)
2819 /* tuples and dict entries */
2820 GVSB(builder)->prev_item_type =
2821 g_variant_type_first (GVSB(parent)->prev_item_type);
2823 else if (!g_variant_type_is_variant (GVSB(builder)->type))
2824 /* maybes and arrays */
2825 GVSB(builder)->prev_item_type =
2826 g_variant_type_element (GVSB(parent)->prev_item_type);
2831 * g_variant_builder_close:
2832 * @builder: a #GVariantBuilder
2834 * Closes the subcontainer inside the given @builder that was opened by
2835 * the most recent call to g_variant_builder_open().
2837 * It is an error to call this function in any way that would create an
2838 * inconsistent value to be constructed (ie: too few values added to the
2844 g_variant_builder_close (GVariantBuilder *builder)
2846 GVariantBuilder *parent;
2848 g_return_if_fail (is_valid_builder (builder));
2849 g_return_if_fail (GVSB(builder)->parent != NULL);
2851 parent = GVSB(builder)->parent;
2852 GVSB(builder)->parent = NULL;
2854 g_variant_builder_add_value (parent, g_variant_builder_end (builder));
2857 g_slice_free (GVariantBuilder, parent);
2861 * g_variant_make_maybe_type:
2862 * @element: a #GVariant
2864 * Return the type of a maybe containing @element.
2866 static GVariantType *
2867 g_variant_make_maybe_type (GVariant *element)
2869 return g_variant_type_new_maybe (g_variant_get_type (element));
2873 * g_variant_make_array_type:
2874 * @element: a #GVariant
2876 * Return the type of an array containing @element.
2878 static GVariantType *
2879 g_variant_make_array_type (GVariant *element)
2881 return g_variant_type_new_array (g_variant_get_type (element));
2885 * g_variant_builder_end:
2886 * @builder: a #GVariantBuilder
2887 * @returns: a new, floating, #GVariant
2889 * Ends the builder process and returns the constructed value.
2891 * It is not permissible to use @builder in any way after this call
2892 * except for reference counting operations (in the case of a
2893 * heap-allocated #GVariantBuilder) or by reinitialising it with
2894 * g_variant_builder_init() (in the case of stack-allocated).
2896 * It is an error to call this function in any way that would create an
2897 * inconsistent value to be constructed (ie: insufficient number of
2898 * items added to a container with a specific number of children
2899 * required). It is also an error to call this function if the builder
2900 * was created with an indefinite array or maybe type and no children
2901 * have been added; in this case it is impossible to infer the type of
2907 g_variant_builder_end (GVariantBuilder *builder)
2909 GVariantType *my_type;
2912 g_return_val_if_fail (is_valid_builder (builder), NULL);
2913 g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
2915 g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
2916 GVSB(builder)->prev_item_type != NULL ||
2917 g_variant_type_is_definite (GVSB(builder)->type),
2920 if (g_variant_type_is_definite (GVSB(builder)->type))
2921 my_type = g_variant_type_copy (GVSB(builder)->type);
2923 else if (g_variant_type_is_maybe (GVSB(builder)->type))
2924 my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
2926 else if (g_variant_type_is_array (GVSB(builder)->type))
2927 my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
2929 else if (g_variant_type_is_tuple (GVSB(builder)->type))
2930 my_type = g_variant_make_tuple_type (GVSB(builder)->children,
2931 GVSB(builder)->offset);
2933 else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
2934 my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
2935 GVSB(builder)->children[1]);
2937 g_assert_not_reached ();
2939 value = g_variant_new_from_children (my_type,
2940 g_renew (GVariant *,
2941 GVSB(builder)->children,
2942 GVSB(builder)->offset),
2943 GVSB(builder)->offset,
2944 GVSB(builder)->trusted);
2945 GVSB(builder)->children = NULL;
2946 GVSB(builder)->offset = 0;
2948 g_variant_builder_clear (builder);
2949 g_variant_type_free (my_type);
2954 /* Format strings {{{1 */
2956 * g_variant_format_string_scan:
2957 * @string: a string that may be prefixed with a format string
2958 * @limit: a pointer to the end of @string, or %NULL
2959 * @endptr: location to store the end pointer, or %NULL
2960 * @returns: %TRUE if there was a valid format string
2962 * Checks the string pointed to by @string for starting with a properly
2963 * formed #GVariant varargs format string. If no valid format string is
2964 * found then %FALSE is returned.
2966 * If @string does start with a valid format string then %TRUE is
2967 * returned. If @endptr is non-%NULL then it is updated to point to the
2968 * first character after the format string.
2970 * If @limit is non-%NULL then @limit (and any charater after it) will
2971 * not be accessed and the effect is otherwise equivalent to if the
2972 * character at @limit were nul.
2974 * See the section on <link linkend='gvariant-format-strings'>GVariant
2975 * Format Strings</link>.
2980 g_variant_format_string_scan (const gchar *string,
2982 const gchar **endptr)
2984 #define next_char() (string == limit ? '\0' : *string++)
2985 #define peek_char() (string == limit ? '\0' : *string)
2988 switch (next_char())
2990 case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
2991 case 'x': case 't': case 'h': case 'd': case 's': case 'o':
2992 case 'g': case 'v': case '*': case '?': case 'r':
2996 return g_variant_format_string_scan (string, limit, endptr);
3000 return g_variant_type_string_scan (string, limit, endptr);
3003 while (peek_char() != ')')
3004 if (!g_variant_format_string_scan (string, limit, &string))
3007 next_char(); /* consume ')' */
3017 if (c != 's' && c != 'o' && c != 'g')
3025 /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
3026 * The terminating null character is considered to be
3027 * part of the string.
3029 if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
3033 if (!g_variant_format_string_scan (string, limit, &string))
3036 if (next_char() != '}')
3041 case '^': /* '^as' or '^a&s' only */
3042 if (next_char() != 'a')
3045 if (peek_char() == '&')
3050 if (c != 's' && c != 'o' && c != 'g')
3058 if (c != 's' && c != 'o' && c != 'g')
3077 * g_variant_format_string_scan_type:
3078 * @string: a string that may be prefixed with a format string
3079 * @limit: a pointer to the end of @string
3080 * @endptr: location to store the end pointer, or %NULL
3081 * @returns: a #GVariantType if there was a valid format string
3083 * If @string starts with a valid format string then this function will
3084 * return the type that the format string corresponds to. Otherwise
3085 * this function returns %NULL.
3087 * Use g_variant_type_free() to free the return value when you no longer
3090 * This function is otherwise exactly like
3091 * g_variant_format_string_scan().
3096 g_variant_format_string_scan_type (const gchar *string,
3098 const gchar **endptr)
3100 const gchar *my_end;
3107 if (!g_variant_format_string_scan (string, limit, endptr))
3110 dest = new = g_malloc (*endptr - string + 1);
3111 while (string != *endptr)
3113 if (*string != '@' && *string != '&' && *string != '^')
3119 return (GVariantType *) G_VARIANT_TYPE (new);
3123 valid_format_string (const gchar *format_string,
3127 const gchar *endptr;
3130 type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
3132 if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
3135 g_critical ("`%s' is not a valid GVariant format string",
3138 g_critical ("`%s' does not have a valid GVariant format "
3139 "string as a prefix", format_string);
3142 g_variant_type_free (type);
3147 if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
3152 fragment = g_strndup (format_string, endptr - format_string);
3153 typestr = g_variant_type_dup_string (type);
3155 g_critical ("the GVariant format string `%s' has a type of "
3156 "`%s' but the given value has a type of `%s'",
3157 fragment, typestr, g_variant_get_type_string (value));
3159 g_variant_type_free (type);
3164 g_variant_type_free (type);
3169 /* Variable Arguments {{{1 */
3170 /* We consider 2 main classes of format strings:
3172 * - recursive format strings
3173 * these are ones that result in recursion and the collection of
3174 * possibly more than one argument. Maybe types, tuples,
3175 * dictionary entries.
3177 * - leaf format string
3178 * these result in the collection of a single argument.
3180 * Leaf format strings are further subdivided into two categories:
3182 * - single non-null pointer ("nnp")
3183 * these either collect or return a single non-null pointer.
3186 * these collect or return something else (bool, number, etc).
3188 * Based on the above, the varargs handling code is split into 4 main parts:
3190 * - nnp handling code
3191 * - leaf handling code (which may invoke nnp code)
3192 * - generic handling code (may be recursive, may invoke leaf code)
3193 * - user-facing API (which invokes the generic code)
3195 * Each section implements some of the following functions:
3198 * collect the arguments for the format string as if
3199 * g_variant_new() had been called, but do nothing with them. used
3200 * for skipping over arguments when constructing a Nothing maybe
3204 * create a GVariant *
3207 * unpack a GVariant *
3209 * - free (nnp only):
3210 * free a previously allocated item
3214 g_variant_format_string_is_leaf (const gchar *str)
3216 return str[0] != 'm' && str[0] != '(' && str[0] != '{';
3220 g_variant_format_string_is_nnp (const gchar *str)
3222 return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
3223 str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
3224 str[0] == 'r' || str[0] == 'v' || str[0] == '&';
3227 /* Single non-null pointer ("nnp") {{{2 */
3229 g_variant_valist_free_nnp (const gchar *str,
3235 g_variant_iter_free (ptr);
3239 if (str[2] != '&') /* '^as' */
3255 g_variant_unref (ptr);
3262 g_assert_not_reached ();
3267 g_variant_valist_new_nnp (const gchar **str,
3277 const GVariantType *type;
3280 value = g_variant_builder_end (ptr);
3281 type = g_variant_get_type (value);
3283 if G_UNLIKELY (!g_variant_type_is_array (type))
3284 g_error ("g_variant_new: expected array GVariantBuilder but "
3285 "the built value has type `%s'",
3286 g_variant_get_type_string (value));
3288 type = g_variant_type_element (type);
3290 if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
3291 g_error ("g_variant_new: expected GVariantBuilder array element "
3292 "type `%s' but the built value has element type `%s'",
3293 g_variant_type_dup_string ((GVariantType *) *str),
3294 g_variant_get_type_string (value) + 1);
3296 g_variant_type_string_scan (*str, NULL, str);
3302 return g_variant_new_string (ptr);
3305 return g_variant_new_object_path (ptr);
3308 return g_variant_new_signature (ptr);
3312 const GVariantType *type;
3313 GVariantType *array_type;
3314 GVariant **children;
3319 if ((*str)[1] == '&') /* '^a&s' */
3324 type = (GVariantType *) (*str)++;
3325 array_type = g_variant_type_new_array (type);
3326 length = g_strv_length (strv);
3327 children = g_new (GVariant *, length);
3328 for (i = 0; i < length; i++)
3329 children[i] = g_variant_ref_sink (
3330 g_variant_new_from_trusted (type, strv[i], strlen (strv[i]) + 1));
3332 value = g_variant_new_from_children (array_type, children,
3334 g_variant_type_free (array_type);
3340 if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
3341 g_error ("g_variant_new: expected GVariant of type `%s' but "
3342 "received value has type `%s'",
3343 g_variant_type_dup_string ((GVariantType *) *str),
3344 g_variant_get_type_string (ptr));
3346 g_variant_type_string_scan (*str, NULL, str);
3354 if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
3355 g_error ("g_variant_new: format string `?' expects basic-typed "
3356 "GVariant, but received value has type `%s'",
3357 g_variant_get_type_string (ptr));
3362 if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
3363 g_error ("g_variant_new: format string `r` expects tuple-typed "
3364 "GVariant, but received value has type `%s'",
3365 g_variant_get_type_string (ptr));
3370 return g_variant_new_variant (ptr);
3373 g_assert_not_reached ();
3378 g_variant_valist_get_nnp (const gchar **str,
3384 g_variant_type_string_scan (*str, NULL, str);
3385 return g_variant_iter_new (value);
3389 return (gchar *) g_variant_get_string (value, NULL);
3394 return g_variant_dup_string (value, NULL);
3397 if ((*str)[1] == '&') /* '^a&s' */
3400 return g_variant_get_strv (value, NULL);
3405 return g_variant_dup_strv (value, NULL);
3409 g_variant_type_string_scan (*str, NULL, str);
3415 return g_variant_ref (value);
3418 return g_variant_get_variant (value);
3421 g_assert_not_reached ();
3427 g_variant_valist_skip_leaf (const gchar **str,
3430 if (g_variant_format_string_is_nnp (*str))
3432 g_variant_format_string_scan (*str, NULL, str);
3433 va_arg (*app, gpointer);
3451 va_arg (*app, guint64);
3455 va_arg (*app, gdouble);
3459 g_assert_not_reached ();
3464 g_variant_valist_new_leaf (const gchar **str,
3467 if (g_variant_format_string_is_nnp (*str))
3468 return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
3473 return g_variant_new_boolean (va_arg (*app, gboolean));
3476 return g_variant_new_byte (va_arg (*app, guint));
3479 return g_variant_new_int16 (va_arg (*app, gint));
3482 return g_variant_new_uint16 (va_arg (*app, guint));
3485 return g_variant_new_int32 (va_arg (*app, gint));
3488 return g_variant_new_uint32 (va_arg (*app, guint));
3491 return g_variant_new_int64 (va_arg (*app, gint64));
3494 return g_variant_new_uint64 (va_arg (*app, guint64));
3497 return g_variant_new_handle (va_arg (*app, gint));
3500 return g_variant_new_double (va_arg (*app, gdouble));
3503 g_assert_not_reached ();
3507 /* The code below assumes this */
3508 G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
3509 G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
3512 g_variant_valist_get_leaf (const gchar **str,
3517 gpointer ptr = va_arg (*app, gpointer);
3521 g_variant_format_string_scan (*str, NULL, str);
3525 if (g_variant_format_string_is_nnp (*str))
3527 gpointer *nnp = (gpointer *) ptr;
3529 if (free && *nnp != NULL)
3530 g_variant_valist_free_nnp (*str, *nnp);
3535 *nnp = g_variant_valist_get_nnp (str, value);
3537 g_variant_format_string_scan (*str, NULL, str);
3547 *(gboolean *) ptr = g_variant_get_boolean (value);
3551 *(guchar *) ptr = g_variant_get_byte (value);
3555 *(gint16 *) ptr = g_variant_get_int16 (value);
3559 *(guint16 *) ptr = g_variant_get_uint16 (value);
3563 *(gint32 *) ptr = g_variant_get_int32 (value);
3567 *(guint32 *) ptr = g_variant_get_uint32 (value);
3571 *(gint64 *) ptr = g_variant_get_int64 (value);
3575 *(guint64 *) ptr = g_variant_get_uint64 (value);
3579 *(gint32 *) ptr = g_variant_get_handle (value);
3583 *(gdouble *) ptr = g_variant_get_double (value);
3592 *(guchar *) ptr = 0;
3597 *(guint16 *) ptr = 0;
3604 *(guint32 *) ptr = 0;
3610 *(guint64 *) ptr = 0;
3615 g_assert_not_reached ();
3618 /* Generic (recursive) {{{2 */
3620 g_variant_valist_skip (const gchar **str,
3623 if (g_variant_format_string_is_leaf (*str))
3624 g_variant_valist_skip_leaf (str, app);
3626 else if (**str == 'm') /* maybe */
3630 if (!g_variant_format_string_is_nnp (*str))
3631 va_arg (*app, gboolean);
3633 g_variant_valist_skip (str, app);
3635 else /* tuple, dictionary entry */
3637 g_assert (**str == '(' || **str == '{');
3639 while (**str != ')' && **str != '}')
3640 g_variant_valist_skip (str, app);
3646 g_variant_valist_new (const gchar **str,
3649 if (g_variant_format_string_is_leaf (*str))
3650 return g_variant_valist_new_leaf (str, app);
3652 if (**str == 'm') /* maybe */
3654 GVariantType *type = NULL;
3655 GVariant *value = NULL;
3659 if (g_variant_format_string_is_nnp (*str))
3661 gpointer nnp = va_arg (*app, gpointer);
3664 value = g_variant_valist_new_nnp (str, nnp);
3666 type = g_variant_format_string_scan_type (*str, NULL, str);
3670 gboolean just = va_arg (*app, gboolean);
3673 value = g_variant_valist_new (str, app);
3676 type = g_variant_format_string_scan_type (*str, NULL, NULL);
3677 g_variant_valist_skip (str, app);
3681 value = g_variant_new_maybe (type, value);
3684 g_variant_type_free (type);
3688 else /* tuple, dictionary entry */
3693 g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
3696 g_assert (**str == '{');
3697 g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
3701 while (**str != ')' && **str != '}')
3702 g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
3705 return g_variant_builder_end (&b);
3710 g_variant_valist_get (const gchar **str,
3715 if (g_variant_format_string_is_leaf (*str))
3716 g_variant_valist_get_leaf (str, value, free, app);
3718 else if (**str == 'm')
3723 value = g_variant_get_maybe (value);
3725 if (!g_variant_format_string_is_nnp (*str))
3727 gboolean *ptr = va_arg (*app, gboolean *);
3730 *ptr = value != NULL;
3733 g_variant_valist_get (str, value, free, app);
3736 g_variant_unref (value);
3739 else /* tuple, dictionary entry */
3743 g_assert (**str == '(' || **str == '{');
3746 while (**str != ')' && **str != '}')
3750 GVariant *child = g_variant_get_child_value (value, index++);
3751 g_variant_valist_get (str, child, free, app);
3752 g_variant_unref (child);
3755 g_variant_valist_get (str, NULL, free, app);
3761 /* User-facing API {{{2 */
3764 * @format_string: a #GVariant format string
3765 * @...: arguments, as per @format_string
3766 * @returns: a new floating #GVariant instance
3768 * Creates a new #GVariant instance.
3770 * Think of this function as an analogue to g_strdup_printf().
3772 * The type of the created instance and the arguments that are
3773 * expected by this function are determined by @format_string. See the
3774 * section on <link linkend='gvariant-format-strings'>GVariant Format
3775 * Strings</link>. Please note that the syntax of the format string is
3776 * very likely to be extended in the future.
3778 * The first character of the format string must not be '*' '?' '@' or
3779 * 'r'; in essence, a new #GVariant must always be constructed by this
3780 * function (and not merely passed through it unmodified).
3785 g_variant_new (const gchar *format_string,
3791 g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
3792 format_string[0] != '?' && format_string[0] != '@' &&
3793 format_string[0] != '*' && format_string[0] != 'r',
3796 va_start (ap, format_string);
3797 value = g_variant_new_va (format_string, NULL, &ap);
3805 * @format_string: a string that is prefixed with a format string
3806 * @endptr: location to store the end pointer, or %NULL
3807 * @app: a pointer to a #va_list
3808 * @returns: a new, usually floating, #GVariant
3810 * This function is intended to be used by libraries based on
3811 * #GVariant that want to provide g_variant_new()-like functionality
3814 * The API is more general than g_variant_new() to allow a wider range
3817 * @format_string must still point to a valid format string, but it only
3818 * needs to be nul-terminated if @endptr is %NULL. If @endptr is
3819 * non-%NULL then it is updated to point to the first character past the
3820 * end of the format string.
3822 * @app is a pointer to a #va_list. The arguments, according to
3823 * @format_string, are collected from this #va_list and the list is left
3824 * pointing to the argument following the last.
3826 * These two generalisations allow mixing of multiple calls to
3827 * g_variant_new_va() and g_variant_get_va() within a single actual
3828 * varargs call by the user.
3830 * The return value will be floating if it was a newly created GVariant
3831 * instance (for example, if the format string was "(ii)"). In the case
3832 * that the format_string was '*', '?', 'r', or a format starting with
3833 * '@' then the collected #GVariant pointer will be returned unmodified,
3834 * without adding any additional references.
3836 * In order to behave correctly in all cases it is necessary for the
3837 * calling function to g_variant_ref_sink() the return result before
3838 * returning control to the user that originally provided the pointer.
3839 * At this point, the caller will have their own full reference to the
3840 * result. This can also be done by adding the result to a container,
3841 * or by passing it to another g_variant_new() call.
3846 g_variant_new_va (const gchar *format_string,
3847 const gchar **endptr,
3852 g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
3854 g_return_val_if_fail (app != NULL, NULL);
3856 value = g_variant_valist_new (&format_string, app);
3859 *endptr = format_string;
3866 * @value: a #GVariant instance
3867 * @format_string: a #GVariant format string
3868 * @...: arguments, as per @format_string
3870 * Deconstructs a #GVariant instance.
3872 * Think of this function as an analogue to scanf().
3874 * The arguments that are expected by this function are entirely
3875 * determined by @format_string. @format_string also restricts the
3876 * permissible types of @value. It is an error to give a value with
3877 * an incompatible type. See the section on <link
3878 * linkend='gvariant-format-strings'>GVariant Format Strings</link>.
3879 * Please note that the syntax of the format string is very likely to be
3880 * extended in the future.
3885 g_variant_get (GVariant *value,
3886 const gchar *format_string,
3891 g_return_if_fail (valid_format_string (format_string, TRUE, value));
3893 /* if any direct-pointer-access formats are in use, flatten first */
3894 if (strchr (format_string, '&'))
3895 g_variant_get_data (value);
3897 va_start (ap, format_string);
3898 g_variant_get_va (value, format_string, NULL, &ap);
3904 * @value: a #GVariant
3905 * @format_string: a string that is prefixed with a format string
3906 * @endptr: location to store the end pointer, or %NULL
3907 * @app: a pointer to a #va_list
3909 * This function is intended to be used by libraries based on #GVariant
3910 * that want to provide g_variant_get()-like functionality to their
3913 * The API is more general than g_variant_get() to allow a wider range
3916 * @format_string must still point to a valid format string, but it only
3917 * need to be nul-terminated if @endptr is %NULL. If @endptr is
3918 * non-%NULL then it is updated to point to the first character past the
3919 * end of the format string.
3921 * @app is a pointer to a #va_list. The arguments, according to
3922 * @format_string, are collected from this #va_list and the list is left
3923 * pointing to the argument following the last.
3925 * These two generalisations allow mixing of multiple calls to
3926 * g_variant_new_va() and g_variant_get_va() within a single actual
3927 * varargs call by the user.
3932 g_variant_get_va (GVariant *value,
3933 const gchar *format_string,
3934 const gchar **endptr,
3937 g_return_if_fail (valid_format_string (format_string, !endptr, value));
3938 g_return_if_fail (value != NULL);
3939 g_return_if_fail (app != NULL);
3941 /* if any direct-pointer-access formats are in use, flatten first */
3942 if (strchr (format_string, '&'))
3943 g_variant_get_data (value);
3945 g_variant_valist_get (&format_string, value, FALSE, app);
3948 *endptr = format_string;
3951 /* Varargs-enabled Utility Functions {{{1 */
3954 * g_variant_builder_add:
3955 * @builder: a #GVariantBuilder
3956 * @format_string: a #GVariant varargs format string
3957 * @...: arguments, as per @format_string
3959 * Adds to a #GVariantBuilder.
3961 * This call is a convenience wrapper that is exactly equivalent to
3962 * calling g_variant_new() followed by g_variant_builder_add_value().
3964 * This function might be used as follows:
3968 * make_pointless_dictionary (void)
3970 * GVariantBuilder *builder;
3973 * builder = g_variant_builder_new (G_VARIANT_TYPE_ARRAY);
3974 * for (i = 0; i < 16; i++)
3978 * sprintf (buf, "%d", i);
3979 * g_variant_builder_add (builder, "{is}", i, buf);
3982 * return g_variant_builder_end (builder);
3989 g_variant_builder_add (GVariantBuilder *builder,
3990 const gchar *format_string,
3996 va_start (ap, format_string);
3997 variant = g_variant_new_va (format_string, NULL, &ap);
4000 g_variant_builder_add_value (builder, variant);
4004 * g_variant_get_child:
4005 * @value: a container #GVariant
4006 * @index_: the index of the child to deconstruct
4007 * @format_string: a #GVariant format string
4008 * @...: arguments, as per @format_string
4010 * Reads a child item out of a container #GVariant instance and
4011 * deconstructs it according to @format_string. This call is
4012 * essentially a combination of g_variant_get_child_value() and
4018 g_variant_get_child (GVariant *value,
4020 const gchar *format_string,
4026 child = g_variant_get_child_value (value, index_);
4027 g_return_if_fail (valid_format_string (format_string, TRUE, child));
4029 va_start (ap, format_string);
4030 g_variant_get_va (child, format_string, NULL, &ap);
4033 g_variant_unref (child);
4037 * g_variant_iter_next:
4038 * @iter: a #GVariantIter
4039 * @format_string: a GVariant format string
4040 * @...: the arguments to unpack the value into
4041 * @returns: %TRUE if a value was unpacked, or %FALSE if there as no
4044 * Gets the next item in the container and unpacks it into the variable
4045 * argument list according to @format_string, returning %TRUE.
4047 * If no more items remain then %FALSE is returned.
4049 * All of the pointers given on the variable arguments list of this
4050 * function are assumed to point at uninitialised memory. It is the
4051 * responsibility of the caller to free all of the values returned by
4052 * the unpacking process.
4054 * See the section on <link linkend='gvariant-format-strings'>GVariant
4055 * Format Strings</link>.
4058 * <title>Memory management with g_variant_iter_next()</title>
4060 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4062 * iterate_dictionary (GVariant *dictionary)
4064 * GVariantIter iter;
4068 * g_variant_iter_init (&iter, dictionary);
4069 * while (g_variant_iter_next (&iter, "{sv}", &key, &value))
4071 * g_print ("Item '%s' has type '%s'\n", key,
4072 * g_variant_get_type_string (value));
4074 * /<!-- -->* must free data for ourselves *<!-- -->/
4075 * g_variant_unref (value);
4082 * For a solution that is likely to be more convenient to C programmers
4083 * when dealing with loops, see g_variant_iter_loop().
4088 g_variant_iter_next (GVariantIter *iter,
4089 const gchar *format_string,
4094 value = g_variant_iter_next_value (iter);
4096 g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
4103 va_start (ap, format_string);
4104 g_variant_valist_get (&format_string, value, FALSE, &ap);
4107 g_variant_unref (value);
4110 return value != NULL;
4114 * g_variant_iter_loop:
4115 * @iter: a #GVariantIter
4116 * @format_string: a GVariant format string
4117 * @...: the arguments to unpack the value into
4118 * @returns: %TRUE if a value was unpacked, or %FALSE if there as no
4121 * Gets the next item in the container and unpacks it into the variable
4122 * argument list according to @format_string, returning %TRUE.
4124 * If no more items remain then %FALSE is returned.
4126 * On the first call to this function, the pointers appearing on the
4127 * variable argument list are assumed to point at uninitialised memory.
4128 * On the second and later calls, it is assumed that the same pointers
4129 * will be given and that they will point to the memory as set by the
4130 * previous call to this function. This allows the previous values to
4131 * be freed, as appropriate.
4133 * This function is intended to be used with a while loop as
4134 * demonstrated in the following example. This function can only be
4135 * used when iterating over an array. It is only valid to call this
4136 * function with a string constant for the format string and the same
4137 * string constant must be used each time. Mixing calls to this
4138 * function and g_variant_iter_next() or g_variant_iter_next_value() on
4139 * the same iterator is not recommended.
4141 * See the section on <link linkend='gvariant-format-strings'>GVariant
4142 * Format Strings</link>.
4145 * <title>Memory management with g_variant_iter_loop()</title>
4147 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4149 * iterate_dictionary (GVariant *dictionary)
4151 * GVariantIter iter;
4155 * g_variant_iter_init (&iter, dictionary);
4156 * while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
4158 * g_print ("Item '%s' has type '%s'\n", key,
4159 * g_variant_get_type_string (value));
4161 * /<!-- -->* no need to free 'key' and 'value' here *<!-- -->/
4167 * If you want a slightly less magical alternative that requires more
4168 * typing, see g_variant_iter_next().
4173 g_variant_iter_loop (GVariantIter *iter,
4174 const gchar *format_string,
4177 gboolean first_time = GVSI(iter)->loop_format == NULL;
4181 g_return_val_if_fail (first_time ||
4182 format_string == GVSI(iter)->loop_format,
4187 TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
4188 GVSI(iter)->loop_format = format_string;
4190 if (strchr (format_string, '&'))
4191 g_variant_get_data (GVSI(iter)->value);
4194 value = g_variant_iter_next_value (iter);
4196 g_return_val_if_fail (!first_time ||
4197 valid_format_string (format_string, TRUE, value),
4200 va_start (ap, format_string);
4201 g_variant_valist_get (&format_string, value, !first_time, &ap);
4205 g_variant_unref (value);
4207 return value != NULL;
4210 /* Serialised data {{{1 */
4212 g_variant_deep_copy (GVariant *value)
4214 switch (g_variant_classify (value))
4216 case G_VARIANT_CLASS_MAYBE:
4217 case G_VARIANT_CLASS_ARRAY:
4218 case G_VARIANT_CLASS_TUPLE:
4219 case G_VARIANT_CLASS_DICT_ENTRY:
4220 case G_VARIANT_CLASS_VARIANT:
4222 GVariantBuilder builder;
4226 g_variant_builder_init (&builder, g_variant_get_type (value));
4227 g_variant_iter_init (&iter, value);
4229 while ((child = g_variant_iter_next_value (&iter)))
4231 g_variant_builder_add_value (&builder, g_variant_deep_copy (child));
4232 g_variant_unref (child);
4235 return g_variant_builder_end (&builder);
4238 case G_VARIANT_CLASS_BOOLEAN:
4239 return g_variant_new_boolean (g_variant_get_boolean (value));
4241 case G_VARIANT_CLASS_BYTE:
4242 return g_variant_new_byte (g_variant_get_byte (value));
4244 case G_VARIANT_CLASS_INT16:
4245 return g_variant_new_int16 (g_variant_get_int16 (value));
4247 case G_VARIANT_CLASS_UINT16:
4248 return g_variant_new_uint16 (g_variant_get_uint16 (value));
4250 case G_VARIANT_CLASS_INT32:
4251 return g_variant_new_int32 (g_variant_get_int32 (value));
4253 case G_VARIANT_CLASS_UINT32:
4254 return g_variant_new_uint32 (g_variant_get_uint32 (value));
4256 case G_VARIANT_CLASS_INT64:
4257 return g_variant_new_int64 (g_variant_get_int64 (value));
4259 case G_VARIANT_CLASS_UINT64:
4260 return g_variant_new_uint64 (g_variant_get_uint64 (value));
4262 case G_VARIANT_CLASS_HANDLE:
4263 return g_variant_new_handle (g_variant_get_handle (value));
4265 case G_VARIANT_CLASS_DOUBLE:
4266 return g_variant_new_double (g_variant_get_double (value));
4268 case G_VARIANT_CLASS_STRING:
4269 return g_variant_new_string (g_variant_get_string (value, NULL));
4271 case G_VARIANT_CLASS_OBJECT_PATH:
4272 return g_variant_new_object_path (g_variant_get_string (value, NULL));
4274 case G_VARIANT_CLASS_SIGNATURE:
4275 return g_variant_new_signature (g_variant_get_string (value, NULL));
4278 g_assert_not_reached ();
4282 * g_variant_get_normal_form:
4283 * @value: a #GVariant
4284 * @returns: a trusted #GVariant
4286 * Gets a #GVariant instance that has the same value as @value and is
4287 * trusted to be in normal form.
4289 * If @value is already trusted to be in normal form then a new
4290 * reference to @value is returned.
4292 * If @value is not already trusted, then it is scanned to check if it
4293 * is in normal form. If it is found to be in normal form then it is
4294 * marked as trusted and a new reference to it is returned.
4296 * If @value is found not to be in normal form then a new trusted
4297 * #GVariant is created with the same value as @value.
4299 * It makes sense to call this function if you've received #GVariant
4300 * data from untrusted sources and you want to ensure your serialised
4301 * output is definitely in normal form.
4306 g_variant_get_normal_form (GVariant *value)
4310 if (g_variant_is_normal_form (value))
4311 return g_variant_ref (value);
4313 trusted = g_variant_deep_copy (value);
4314 g_assert (g_variant_is_trusted (trusted));
4316 return g_variant_ref_sink (trusted);
4320 * g_variant_byteswap:
4321 * @value: a #GVariant
4322 * @returns: the byteswapped form of @value
4324 * Performs a byteswapping operation on the contents of @value. The
4325 * result is that all multi-byte numeric data contained in @value is
4326 * byteswapped. That includes 16, 32, and 64bit signed and unsigned
4327 * integers as well as file handles and double precision floating point
4330 * This function is an identity mapping on any value that does not
4331 * contain multi-byte numeric data. That include strings, booleans,
4332 * bytes and containers containing only these things (recursively).
4334 * The returned value is always in normal form and is marked as trusted.
4339 g_variant_byteswap (GVariant *value)
4341 GVariantSerialised serialised;
4346 trusted = g_variant_get_normal_form (value);
4347 serialised.type_info = g_variant_get_type_info (trusted);
4348 serialised.size = g_variant_get_size (trusted);
4349 serialised.data = g_malloc (serialised.size);
4350 g_variant_store (trusted, serialised.data);
4351 g_variant_unref (trusted);
4353 g_variant_serialised_byteswap (serialised);
4355 buffer = g_buffer_new_take_data (serialised.data, serialised.size);
4356 new = g_variant_new_from_buffer (g_variant_get_type (value), buffer, TRUE);
4357 g_buffer_unref (buffer);
4359 return g_variant_ref_sink (new);
4363 * g_variant_new_from_data:
4364 * @type: a definite #GVariantType
4365 * @data: the serialised data
4366 * @size: the size of @data
4367 * @trusted: %TRUE if @data is definitely in normal form
4368 * @notify: function to call when @data is no longer needed
4369 * @user_data: data for @notify
4370 * @returns: a new floating #GVariant of type @type
4372 * Creates a new #GVariant instance from serialised data.
4374 * @type is the type of #GVariant instance that will be constructed.
4375 * The interpretation of @data depends on knowing the type.
4377 * @data is not modified by this function and must remain valid with an
4378 * unchanging value until such a time as @notify is called with
4379 * @user_data. If the contents of @data change before that time then
4380 * the result is undefined.
4382 * If @data is trusted to be serialised data in normal form then
4383 * @trusted should be %TRUE. This applies to serialised data created
4384 * within this process or read from a trusted location on the disk (such
4385 * as a file installed in /usr/lib alongside your application). You
4386 * should set trusted to %FALSE if @data is read from the network, a
4387 * file in the user's home directory, etc.
4389 * @notify will be called with @user_data when @data is no longer
4390 * needed. The exact time of this call is unspecified and might even be
4391 * before this function returns.
4396 g_variant_new_from_data (const GVariantType *type,
4400 GDestroyNotify notify,
4406 g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
4407 g_return_val_if_fail (data != NULL || size == 0, NULL);
4410 buffer = g_buffer_new_from_pointer (data, size, notify, user_data);
4412 buffer = g_buffer_new_from_static_data (data, size);
4414 value = g_variant_new_from_buffer (type, buffer, trusted);
4415 g_buffer_unref (buffer);
4421 #define __G_VARIANT_C__
4422 #include "galiasdef.c"
4424 /* vim:set foldmethod=marker: */