2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the licence, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
20 * Author: Ryan Lortie <desrt@desrt.ca>
27 #include <glib/gvariant-serialiser.h>
28 #include "gvariant-internal.h"
29 #include <glib/gvariant-core.h>
30 #include <glib/gtestutils.h>
31 #include <glib/gstrfuncs.h>
32 #include <glib/ghash.h>
33 #include <glib/gmem.h>
41 * @short_description: strongly typed value datatype
42 * @see_also: GVariantType
44 * #GVariant is a variant datatype; it stores a value along with
45 * information about the type of that value. The range of possible
46 * values is determined by the type. The type system used by #GVariant
49 * #GVariant instances always have a type and a value (which are given
50 * at construction time). The type and value of a #GVariant instance
51 * can never change other than by the #GVariant itself being
52 * destroyed. A #GVariant can not contain a pointer.
54 * #GVariant is reference counted using g_variant_ref() and
55 * g_variant_unref(). #GVariant also has floating reference counts --
56 * see g_variant_ref_sink().
58 * #GVariant is completely threadsafe. A #GVariant instance can be
59 * concurrently accessed in any way from any number of threads without
62 * #GVariant is heavily optimised for dealing with data in serialised
63 * form. It works particularly well with data located in memory-mapped
64 * files. It can perform nearly all deserialisation operations in a
65 * small constant time, usually touching only a single memory page.
66 * Serialised #GVariant data can also be sent over the network.
68 * #GVariant is largely compatible with DBus. Almost all types of
69 * #GVariant instances can be sent over DBus. See #GVariantType for
72 * For convenience to C programmers, #GVariant features powerful
73 * varargs-based value construction and destruction. This feature is
74 * designed to be embedded in other libraries.
76 * There is a Python-inspired text language for describing #GVariant
77 * values. #GVariant includes a printer for this language and a parser
78 * with type inferencing.
81 * <title>Memory Use</title>
83 * #GVariant tries to be quite efficient with respect to memory use.
84 * This section gives a rough idea of how much memory is used by the
85 * current implementation. The information here is subject to change
89 * The memory allocated by #GVariant can be grouped into 4 broad
90 * purposes: memory for serialised data, memory for the type
91 * information cache, buffer management memory and memory for the
92 * #GVariant structure itself.
95 * <title>Serialised Data Memory</title>
97 * This is the memory that is used for storing GVariant data in
98 * serialised form. This is what would be sent over the network or
99 * what would end up on disk.
102 * The amount of memory required to store a boolean is 1 byte. 16,
103 * 32 and 64 bit integers and double precision floating point numbers
104 * use their "natural" size. Strings (including object path and
105 * signature strings) are stored with a nul terminator, and as such
106 * use the length of the string plus 1 byte.
109 * Maybe types use no space at all to represent the null value and
110 * use the same amount of space (sometimes plus one byte) as the
111 * equivalent non-maybe-typed value to represent the non-null case.
114 * Arrays use the amount of space required to store each of their
115 * members, concatenated. Additionally, if the items stored in an
116 * array are not of a fixed-size (ie: strings, other arrays, etc)
117 * then an additional framing offset is stored for each item. The
118 * size of this offset is either 1, 2 or 4 bytes depending on the
119 * overall size of the container. Additionally, extra padding bytes
120 * are added as required for alignment of child values.
123 * Tuples (including dictionary entries) use the amount of space
124 * required to store each of their members, concatenated, plus one
125 * framing offset (as per arrays) for each non-fixed-sized item in
126 * the tuple, except for the last one. Additionally, extra padding
127 * bytes are added as required for alignment of child values.
130 * Variants use the same amount of space as the item inside of the
131 * variant, plus 1 byte, plus the length of the type string for the
132 * item inside the variant.
135 * As an example, consider a dictionary mapping strings to variants.
136 * In the case that the dictionary is empty, 0 bytes are required for
140 * If we add an item "width" that maps to the int32 value of 500 then
141 * we will use 4 byte to store the int32 (so 6 for the variant
142 * containing it) and 6 bytes for the string. The variant must be
143 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
144 * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
145 * for the dictionary entry. An additional 1 byte is added to the
146 * array as a framing offset making a total of 15 bytes.
149 * If we add another entry, "title" that maps to a nullable string
150 * that happens to have a value of null, then we use 0 bytes for the
151 * null value (and 3 bytes for the variant to contain it along with
152 * its type string) plus 6 bytes for the string. Again, we need 2
153 * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
156 * We now require extra padding between the two items in the array.
157 * After the 14 bytes of the first item, that's 2 bytes required. We
158 * now require 2 framing offsets for an extra two bytes. 14 + 2 + 11
159 * + 2 = 29 bytes to encode the entire two-item dictionary.
163 * <title>Type Information Cache</title>
165 * For each GVariant type that currently exists in the program a type
166 * information structure is kept in the type information cache. The
167 * type information structure is required for rapid deserialisation.
170 * Continuing with the above example, if a #GVariant exists with the
171 * type "a{sv}" then a type information struct will exist for
172 * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
173 * will share the same type information. Additionally, all
174 * single-digit types are stored in read-only static memory and do
175 * not contribute to the writable memory footprint of a program using
179 * Aside from the type information structures stored in read-only
180 * memory, there are two forms of type information. One is used for
181 * container types where there is a single element type: arrays and
182 * maybe types. The other is used for container types where there
183 * are multiple element types: tuples and dictionary entries.
186 * Array type info structures are 6 * sizeof (void *), plus the
187 * memory required to store the type string itself. This means that
188 * on 32bit systems, the cache entry for "a{sv}" would require 30
189 * bytes of memory (plus malloc overhead).
192 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
193 * sizeof (void *) for each item in the tuple, plus the memory
194 * required to store the type string itself. A 2-item tuple, for
195 * example, would have a type information structure that consumed
196 * writable memory in the size of 14 * sizeof (void *) (plus type
197 * string) This means that on 32bit systems, the cache entry for
198 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
201 * This means that in total, for our "a{sv}" example, 91 bytes of
202 * type information would be allocated.
205 * The type information cache, additionally, uses a #GHashTable to
206 * store and lookup the cached items and stores a pointer to this
207 * hash table in static storage. The hash table is freed when there
208 * are zero items in the type cache.
211 * Although these sizes may seem large it is important to remember
212 * that a program will probably only have a very small number of
213 * different types of values in it and that only one type information
214 * structure is required for many different values of the same type.
218 * <title>Buffer Management Memory</title>
220 * #GVariant uses an internal buffer management structure to deal
221 * with the various different possible sources of serialised data
222 * that it uses. The buffer is responsible for ensuring that the
223 * correct call is made when the data is no longer in use by
224 * #GVariant. This may involve a g_free() or a g_slice_free() or
225 * even g_mapped_file_unref().
228 * One buffer management structure is used for each chunk of
229 * serialised data. The size of the buffer management structure is 4
230 * * (void *). On 32bit systems, that's 16 bytes.
234 * <title>GVariant structure</title>
236 * The size of a #GVariant structure is 6 * (void *). On 32 bit
237 * systems, that's 24 bytes.
240 * #GVariant structures only exist if they are explicitly created
241 * with API calls. For example, if a #GVariant is constructed out of
242 * serialised data for the example given above (with the dictionary)
243 * then although there are 9 individual values that comprise the
244 * entire dictionary (two keys, two values, two variants containing
245 * the values, two dictionary entries, plus the dictionary itself),
246 * only 1 #GVariant instance exists -- the one refering to the
250 * If calls are made to start accessing the other values then
251 * #GVariant instances will exist for those values only for as long
252 * as they are in use (ie: until you call g_variant_unref()). The
253 * type information is shared. The serialised data and the buffer
254 * management structure for that serialised data is shared by the
259 * <title>Summary</title>
261 * To put the entire example together, for our dictionary mapping
262 * strings to variants (with two entries, as given above), we are
263 * using 91 bytes of memory for type information, 29 byes of memory
264 * for the serialised data, 16 bytes for buffer management and 24
265 * bytes for the #GVariant instance, or a total of 160 bytes, plus
266 * malloc overhead. If we were to use g_variant_get_child_value() to
267 * access the two dictionary entries, we would use an additional 48
268 * bytes. If we were to have other dictionaries of the same type, we
269 * would use more memory for the serialised data and buffer
270 * management for those dictionaries, but the type information would
277 /* definition of GVariant structure is in gvariant-core.c */
279 /* this is a g_return_val_if_fail() for making
280 * sure a (GVariant *) has the required type.
282 #define TYPE_CHECK(value, TYPE, val) \
283 if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
284 g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
285 "g_variant_is_of_type (" #value \
290 /* Numeric Type Constructor/Getters {{{1 */
292 * g_variant_new_from_trusted:
293 * @type: the #GVariantType
294 * @data: the data to use
295 * @size: the size of @data
296 * @returns: a new floating #GVariant
298 * Constructs a new trusted #GVariant instance from the provided data.
299 * This is used to implement g_variant_new_* for all the basic types.
302 g_variant_new_from_trusted (const GVariantType *type,
309 buffer = g_buffer_new_from_data (data, size);
310 value = g_variant_new_from_buffer (type, buffer, TRUE);
311 g_buffer_unref (buffer);
317 * g_variant_new_boolean:
318 * @boolean: a #gboolean value
319 * @returns: a floating reference to a new boolean #GVariant instance
321 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
326 g_variant_new_boolean (gboolean value)
330 return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
334 * g_variant_get_boolean:
335 * @value: a boolean #GVariant instance
336 * @returns: %TRUE or %FALSE
338 * Returns the boolean value of @value.
340 * It is an error to call this function with a @value of any type
341 * other than %G_VARIANT_TYPE_BOOLEAN.
346 g_variant_get_boolean (GVariant *value)
350 TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
352 data = g_variant_get_data (value);
354 return data != NULL ? *data != 0 : FALSE;
357 /* the constructors and accessors for byte, int{16,32,64}, handles and
358 * doubles all look pretty much exactly the same, so we reduce
361 #define NUMERIC_TYPE(TYPE, type, ctype) \
362 GVariant *g_variant_new_##type (ctype value) { \
363 return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
364 &value, sizeof value); \
366 ctype g_variant_get_##type (GVariant *value) { \
368 TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
369 data = g_variant_get_data (value); \
370 return data != NULL ? *data : 0; \
375 * g_variant_new_byte:
376 * @byte: a #guint8 value
377 * @returns: a floating reference to a new byte #GVariant instance
379 * Creates a new byte #GVariant instance.
384 * g_variant_get_byte:
385 * @value: a byte #GVariant instance
386 * @returns: a #guchar
388 * Returns the byte value of @value.
390 * It is an error to call this function with a @value of any type
391 * other than %G_VARIANT_TYPE_BYTE.
395 NUMERIC_TYPE (BYTE, byte, guchar)
398 * g_variant_new_int16:
399 * @int16: a #gint16 value
400 * @returns: a floating reference to a new int16 #GVariant instance
402 * Creates a new int16 #GVariant instance.
407 * g_variant_get_int16:
408 * @value: a int16 #GVariant instance
409 * @returns: a #gint16
411 * Returns the 16-bit signed integer value of @value.
413 * It is an error to call this function with a @value of any type
414 * other than %G_VARIANT_TYPE_INT16.
418 NUMERIC_TYPE (INT16, int16, gint16)
421 * g_variant_new_uint16:
422 * @uint16: a #guint16 value
423 * @returns: a floating reference to a new uint16 #GVariant instance
425 * Creates a new uint16 #GVariant instance.
430 * g_variant_get_uint16:
431 * @value: a uint16 #GVariant instance
432 * @returns: a #guint16
434 * Returns the 16-bit unsigned integer value of @value.
436 * It is an error to call this function with a @value of any type
437 * other than %G_VARIANT_TYPE_UINT16.
441 NUMERIC_TYPE (UINT16, uint16, guint16)
444 * g_variant_new_int32:
445 * @int32: a #gint32 value
446 * @returns: a floating reference to a new int32 #GVariant instance
448 * Creates a new int32 #GVariant instance.
453 * g_variant_get_int32:
454 * @value: a int32 #GVariant instance
455 * @returns: a #gint32
457 * Returns the 32-bit signed integer value of @value.
459 * It is an error to call this function with a @value of any type
460 * other than %G_VARIANT_TYPE_INT32.
464 NUMERIC_TYPE (INT32, int32, gint32)
467 * g_variant_new_uint32:
468 * @uint32: a #guint32 value
469 * @returns: a floating reference to a new uint32 #GVariant instance
471 * Creates a new uint32 #GVariant instance.
476 * g_variant_get_uint32:
477 * @value: a uint32 #GVariant instance
478 * @returns: a #guint32
480 * Returns the 32-bit unsigned integer value of @value.
482 * It is an error to call this function with a @value of any type
483 * other than %G_VARIANT_TYPE_UINT32.
487 NUMERIC_TYPE (UINT32, uint32, guint32)
490 * g_variant_new_int64:
491 * @int64: a #gint64 value
492 * @returns: a floating reference to a new int64 #GVariant instance
494 * Creates a new int64 #GVariant instance.
499 * g_variant_get_int64:
500 * @value: a int64 #GVariant instance
501 * @returns: a #gint64
503 * Returns the 64-bit signed integer value of @value.
505 * It is an error to call this function with a @value of any type
506 * other than %G_VARIANT_TYPE_INT64.
510 NUMERIC_TYPE (INT64, int64, gint64)
513 * g_variant_new_uint64:
514 * @uint64: a #guint64 value
515 * @returns: a floating reference to a new uint64 #GVariant instance
517 * Creates a new uint64 #GVariant instance.
522 * g_variant_get_uint64:
523 * @value: a uint64 #GVariant instance
524 * @returns: a #guint64
526 * Returns the 64-bit unsigned integer value of @value.
528 * It is an error to call this function with a @value of any type
529 * other than %G_VARIANT_TYPE_UINT64.
533 NUMERIC_TYPE (UINT64, uint64, guint64)
536 * g_variant_new_handle:
537 * @handle: a #gint32 value
538 * @returns: a floating reference to a new handle #GVariant instance
540 * Creates a new handle #GVariant instance.
542 * By convention, handles are indexes into an array of file descriptors
543 * that are sent alongside a DBus message. If you're not interacting
544 * with DBus, you probably don't need them.
549 * g_variant_get_handle:
550 * @value: a handle #GVariant instance
551 * @returns: a #gint32
553 * Returns the 32-bit signed integer value of @value.
555 * It is an error to call this function with a @value of any type other
556 * than %G_VARIANT_TYPE_HANDLE.
558 * By convention, handles are indexes into an array of file descriptors
559 * that are sent alongside a DBus message. If you're not interacting
560 * with DBus, you probably don't need them.
564 NUMERIC_TYPE (HANDLE, handle, gint32)
567 * g_variant_new_double:
568 * @floating: a #gdouble floating point value
569 * @returns: a floating reference to a new double #GVariant instance
571 * Creates a new double #GVariant instance.
576 * g_variant_get_double:
577 * @value: a double #GVariant instance
578 * @returns: a #gdouble
580 * Returns the double precision floating point value of @value.
582 * It is an error to call this function with a @value of any type
583 * other than %G_VARIANT_TYPE_DOUBLE.
587 NUMERIC_TYPE (DOUBLE, double, gdouble)
589 /* Container type Constructor / Deconstructors {{{1 */
591 * g_variant_new_maybe:
592 * @child_type: (allow-none): the #GVariantType of the child, or %NULL
593 * @child: (allow-none): the child value, or %NULL
594 * @returns: a floating reference to a new #GVariant maybe instance
596 * Depending on if @child is %NULL, either wraps @child inside of a
597 * maybe container or creates a Nothing instance for the given @type.
599 * At least one of @child_type and @child must be non-%NULL.
600 * If @child_type is non-%NULL then it must be a definite type.
601 * If they are both non-%NULL then @child_type must be the type
604 * If @child is a floating reference (see g_variant_ref_sink()), the new
605 * instance takes ownership of @child.
610 g_variant_new_maybe (const GVariantType *child_type,
613 GVariantType *maybe_type;
616 g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
618 g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
619 g_return_val_if_fail (child_type == NULL || child == NULL ||
620 g_variant_is_of_type (child, child_type),
623 if (child_type == NULL)
624 child_type = g_variant_get_type (child);
626 maybe_type = g_variant_type_new_maybe (child_type);
633 children = g_new (GVariant *, 1);
634 children[0] = g_variant_ref_sink (child);
635 trusted = g_variant_is_trusted (children[0]);
637 value = g_variant_new_from_children (maybe_type, children, 1, trusted);
640 value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
642 g_variant_type_free (maybe_type);
648 * g_variant_get_maybe:
649 * @value: a maybe-typed value
650 * @returns: (allow-none): the contents of @value, or %NULL
652 * Given a maybe-typed #GVariant instance, extract its value. If the
653 * value is Nothing, then this function returns %NULL.
658 g_variant_get_maybe (GVariant *value)
660 TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
662 if (g_variant_n_children (value))
663 return g_variant_get_child_value (value, 0);
669 * g_variant_new_variant:
670 * @value: a #GVariance instance
671 * @returns: a floating reference to a new variant #GVariant instance
673 * Boxes @value. The result is a #GVariant instance representing a
674 * variant containing the original value.
676 * If @child is a floating reference (see g_variant_ref_sink()), the new
677 * instance takes ownership of @child.
682 g_variant_new_variant (GVariant *value)
684 g_return_val_if_fail (value != NULL, NULL);
686 g_variant_ref_sink (value);
688 return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
689 g_memdup (&value, sizeof value),
690 1, g_variant_is_trusted (value));
694 * g_variant_get_variant:
695 * @value: a variant #GVariance instance
696 * @returns: the item contained in the variant
698 * Unboxes @value. The result is the #GVariant instance that was
699 * contained in @value.
704 g_variant_get_variant (GVariant *value)
706 TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
708 return g_variant_get_child_value (value, 0);
712 * g_variant_new_array:
713 * @child_type: (allow-none): the element type of the new array
714 * @children: (allow-none) (array length=n_children): an array of
715 * #GVariant pointers, the children
716 * @n_children: the length of @children
717 * @returns: a floating reference to a new #GVariant array
719 * Creates a new #GVariant array from @children.
721 * @child_type must be non-%NULL if @n_children is zero. Otherwise, the
722 * child type is determined by inspecting the first element of the
723 * @children array. If @child_type is non-%NULL then it must be a
726 * The items of the array are taken from the @children array. No entry
727 * in the @children array may be %NULL.
729 * All items in the array must have the same type, which must be the
730 * same as @child_type, if given.
732 * If the @children are floating references (see g_variant_ref_sink()), the
733 * new instance takes ownership of them as if via g_variant_ref_sink().
738 g_variant_new_array (const GVariantType *child_type,
739 GVariant * const *children,
742 GVariantType *array_type;
743 GVariant **my_children;
748 g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
749 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
750 g_return_val_if_fail (child_type == NULL ||
751 g_variant_type_is_definite (child_type), NULL);
753 my_children = g_new (GVariant *, n_children);
756 if (child_type == NULL)
757 child_type = g_variant_get_type (children[0]);
758 array_type = g_variant_type_new_array (child_type);
760 for (i = 0; i < n_children; i++)
762 TYPE_CHECK (children[i], child_type, NULL);
763 my_children[i] = g_variant_ref_sink (children[i]);
764 trusted &= g_variant_is_trusted (children[i]);
767 value = g_variant_new_from_children (array_type, my_children,
768 n_children, trusted);
769 g_variant_type_free (array_type);
775 * g_variant_make_tuple_type:
776 * @children: (array length=n_children): an array of GVariant *
777 * @n_children: the length of @children
779 * Return the type of a tuple containing @children as its items.
781 static GVariantType *
782 g_variant_make_tuple_type (GVariant * const *children,
785 const GVariantType **types;
789 types = g_new (const GVariantType *, n_children);
791 for (i = 0; i < n_children; i++)
792 types[i] = g_variant_get_type (children[i]);
794 type = g_variant_type_new_tuple (types, n_children);
801 * g_variant_new_tuple:
802 * @children: (array length=n_children): the items to make the tuple out of
803 * @n_children: the length of @children
804 * @returns: a floating reference to a new #GVariant tuple
806 * Creates a new tuple #GVariant out of the items in @children. The
807 * type is determined from the types of @children. No entry in the
808 * @children array may be %NULL.
810 * If @n_children is 0 then the unit tuple is constructed.
812 * If the @children are floating references (see g_variant_ref_sink()), the
813 * new instance takes ownership of them as if via g_variant_ref_sink().
818 g_variant_new_tuple (GVariant * const *children,
821 GVariantType *tuple_type;
822 GVariant **my_children;
827 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
829 my_children = g_new (GVariant *, n_children);
832 for (i = 0; i < n_children; i++)
834 my_children[i] = g_variant_ref_sink (children[i]);
835 trusted &= g_variant_is_trusted (children[i]);
838 tuple_type = g_variant_make_tuple_type (children, n_children);
839 value = g_variant_new_from_children (tuple_type, my_children,
840 n_children, trusted);
841 g_variant_type_free (tuple_type);
847 * g_variant_make_dict_entry_type:
848 * @key: a #GVariant, the key
849 * @val: a #GVariant, the value
851 * Return the type of a dictionary entry containing @key and @val as its
854 static GVariantType *
855 g_variant_make_dict_entry_type (GVariant *key,
858 return g_variant_type_new_dict_entry (g_variant_get_type (key),
859 g_variant_get_type (val));
863 * g_variant_new_dict_entry:
864 * @key: a basic #GVariant, the key
865 * @value: a #GVariant, the value
866 * @returns: a floating reference to a new dictionary entry #GVariant
868 * Creates a new dictionary entry #GVariant. @key and @value must be
871 * @key must be a value of a basic type (ie: not a container).
873 * If the @key or @value are floating references (see g_variant_ref_sink()),
874 * the new instance takes ownership of them as if via g_variant_ref_sink().
879 g_variant_new_dict_entry (GVariant *key,
882 GVariantType *dict_type;
886 g_return_val_if_fail (key != NULL && value != NULL, NULL);
887 g_return_val_if_fail (!g_variant_is_container (key), NULL);
889 children = g_new (GVariant *, 2);
890 children[0] = g_variant_ref_sink (key);
891 children[1] = g_variant_ref_sink (value);
892 trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
894 dict_type = g_variant_make_dict_entry_type (key, value);
895 value = g_variant_new_from_children (dict_type, children, 2, trusted);
896 g_variant_type_free (dict_type);
902 * g_variant_get_fixed_array:
903 * @value: a #GVariant array with fixed-sized elements
904 * @n_elements: a pointer to the location to store the number of items
905 * @element_size: the size of each element
906 * @returns: (array length=n_elements): a pointer to the fixed array
908 * Provides access to the serialised data for an array of fixed-sized
911 * @value must be an array with fixed-sized elements. Numeric types are
912 * fixed-size as are tuples containing only other fixed-sized types.
914 * @element_size must be the size of a single element in the array. For
915 * example, if calling this function for an array of 32 bit integers,
916 * you might say <code>sizeof (gint32)</code>. This value isn't used
917 * except for the purpose of a double-check that the form of the
918 * seralised data matches the caller's expectation.
920 * @n_elements, which must be non-%NULL is set equal to the number of
921 * items in the array.
926 g_variant_get_fixed_array (GVariant *value,
930 GVariantTypeInfo *array_info;
931 gsize array_element_size;
935 TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
937 g_return_val_if_fail (n_elements != NULL, NULL);
938 g_return_val_if_fail (element_size > 0, NULL);
940 array_info = g_variant_get_type_info (value);
941 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
943 g_return_val_if_fail (array_element_size, NULL);
945 if G_UNLIKELY (array_element_size != element_size)
947 if (array_element_size)
948 g_critical ("g_variant_get_fixed_array: assertion "
949 "`g_variant_array_has_fixed_size (value, element_size)' "
950 "failed: array size %"G_GSIZE_FORMAT" does not match "
951 "given element_size %"G_GSIZE_FORMAT".",
952 array_element_size, element_size);
954 g_critical ("g_variant_get_fixed_array: assertion "
955 "`g_variant_array_has_fixed_size (value, element_size)' "
956 "failed: array does not have fixed size.");
959 data = g_variant_get_data (value);
960 size = g_variant_get_size (value);
962 if (size % element_size)
965 *n_elements = size / element_size;
973 /* String type constructor/getters/validation {{{1 */
975 * g_variant_new_string:
976 * @string: a normal utf8 nul-terminated string
977 * @returns: a floating reference to a new string #GVariant instance
979 * Creates a string #GVariant with the contents of @string.
981 * @string must be valid utf8.
986 g_variant_new_string (const gchar *string)
988 g_return_val_if_fail (string != NULL, NULL);
989 g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
991 return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
992 string, strlen (string) + 1);
996 * g_variant_new_object_path:
997 * @object_path: a normal C nul-terminated string
998 * @returns: a floating reference to a new object path #GVariant instance
1000 * Creates a DBus object path #GVariant with the contents of @string.
1001 * @string must be a valid DBus object path. Use
1002 * g_variant_is_object_path() if you're not sure.
1007 g_variant_new_object_path (const gchar *object_path)
1009 g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
1011 return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
1012 object_path, strlen (object_path) + 1);
1016 * g_variant_is_object_path:
1017 * @string: a normal C nul-terminated string
1018 * @returns: %TRUE if @string is a DBus object path
1020 * Determines if a given string is a valid DBus object path. You
1021 * should ensure that a string is a valid DBus object path before
1022 * passing it to g_variant_new_object_path().
1024 * A valid object path starts with '/' followed by zero or more
1025 * sequences of characters separated by '/' characters. Each sequence
1026 * must contain only the characters "[A-Z][a-z][0-9]_". No sequence
1027 * (including the one following the final '/' character) may be empty.
1032 g_variant_is_object_path (const gchar *string)
1034 g_return_val_if_fail (string != NULL, FALSE);
1036 return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1040 * g_variant_new_signature:
1041 * @signature: a normal C nul-terminated string
1042 * @returns: a floating reference to a new signature #GVariant instance
1044 * Creates a DBus type signature #GVariant with the contents of
1045 * @string. @string must be a valid DBus type signature. Use
1046 * g_variant_is_signature() if you're not sure.
1051 g_variant_new_signature (const gchar *signature)
1053 g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1055 return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1056 signature, strlen (signature) + 1);
1060 * g_variant_is_signature:
1061 * @string: a normal C nul-terminated string
1062 * @returns: %TRUE if @string is a DBus type signature
1064 * Determines if a given string is a valid DBus type signature. You
1065 * should ensure that a string is a valid DBus type signature before
1066 * passing it to g_variant_new_signature().
1068 * DBus type signatures consist of zero or more definite #GVariantType
1069 * strings in sequence.
1074 g_variant_is_signature (const gchar *string)
1076 g_return_val_if_fail (string != NULL, FALSE);
1078 return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1082 * g_variant_get_string:
1083 * @value: a string #GVariant instance
1084 * @length: (allow-none) (default NULL) (out): a pointer to a #gsize,
1085 * to store the length
1086 * @returns: the constant string, utf8 encoded
1088 * Returns the string value of a #GVariant instance with a string
1089 * type. This includes the types %G_VARIANT_TYPE_STRING,
1090 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1092 * The string will always be utf8 encoded.
1094 * If @length is non-%NULL then the length of the string (in bytes) is
1095 * returned there. For trusted values, this information is already
1096 * known. For untrusted values, a strlen() will be performed.
1098 * It is an error to call this function with a @value of any type
1099 * other than those three.
1101 * The return value remains valid as long as @value exists.
1106 g_variant_get_string (GVariant *value,
1112 g_return_val_if_fail (value != NULL, NULL);
1113 g_return_val_if_fail (
1114 g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1115 g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1116 g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1118 data = g_variant_get_data (value);
1119 size = g_variant_get_size (value);
1121 if (!g_variant_is_trusted (value))
1123 switch (g_variant_classify (value))
1125 case G_VARIANT_CLASS_STRING:
1126 if (g_variant_serialiser_is_string (data, size))
1133 case G_VARIANT_CLASS_OBJECT_PATH:
1134 if (g_variant_serialiser_is_object_path (data, size))
1141 case G_VARIANT_CLASS_SIGNATURE:
1142 if (g_variant_serialiser_is_signature (data, size))
1150 g_assert_not_reached ();
1161 * g_variant_dup_string:
1162 * @value: a string #GVariant instance
1163 * @length: a pointer to a #gsize, to store the length
1164 * @returns: a newly allocated string, utf8 encoded
1166 * Similar to g_variant_get_string() except that instead of returning
1167 * a constant string, the string is duplicated.
1169 * The string will always be utf8 encoded.
1171 * The return value must be freed using g_free().
1176 g_variant_dup_string (GVariant *value,
1179 return g_strdup (g_variant_get_string (value, length));
1183 * g_variant_new_strv:
1184 * @strv: (array length=length) (element-type utf8): an array of strings
1185 * @length: the length of @strv, or -1
1186 * @returns: a new floating #GVariant instance
1188 * Constructs an array of strings #GVariant from the given array of
1191 * If @length is -1 then @strv is %NULL-terminated.
1196 g_variant_new_strv (const gchar * const *strv,
1202 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1205 length = g_strv_length ((gchar **) strv);
1207 strings = g_new (GVariant *, length);
1208 for (i = 0; i < length; i++)
1209 strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1211 return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
1212 strings, length, TRUE);
1216 * g_variant_get_strv:
1217 * @value: an array of strings #GVariant
1218 * @length: (allow-none): the length of the result, or %NULL
1219 * @returns: (array length=length) (transfer container): an array of constant
1222 * Gets the contents of an array of strings #GVariant. This call
1223 * makes a shallow copy; the return result should be released with
1224 * g_free(), but the individual strings must not be modified.
1226 * If @length is non-%NULL then the number of elements in the result
1227 * is stored there. In any case, the resulting array will be
1230 * For an empty array, @length will be set to 0 and a pointer to a
1231 * %NULL pointer will be returned.
1236 g_variant_get_strv (GVariant *value,
1243 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1245 g_variant_get_data (value);
1246 n = g_variant_n_children (value);
1247 strv = g_new (const gchar *, n + 1);
1249 for (i = 0; i < n; i++)
1253 string = g_variant_get_child_value (value, i);
1254 strv[i] = g_variant_get_string (string, NULL);
1255 g_variant_unref (string);
1266 * g_variant_dup_strv:
1267 * @value: an array of strings #GVariant
1268 * @length: (allow-none): the length of the result, or %NULL
1269 * @returns: (array length=length): an array of strings
1271 * Gets the contents of an array of strings #GVariant. This call
1272 * makes a deep copy; the return result should be released with
1275 * If @length is non-%NULL then the number of elements in the result
1276 * is stored there. In any case, the resulting array will be
1279 * For an empty array, @length will be set to 0 and a pointer to a
1280 * %NULL pointer will be returned.
1285 g_variant_dup_strv (GVariant *value,
1292 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1294 n = g_variant_n_children (value);
1295 strv = g_new (gchar *, n + 1);
1297 for (i = 0; i < n; i++)
1301 string = g_variant_get_child_value (value, i);
1302 strv[i] = g_variant_dup_string (string, NULL);
1303 g_variant_unref (string);
1314 * g_variant_new_bytestring:
1315 * @string: a normal nul-terminated string in no particular encoding
1316 * @returns: a floating reference to a new bytestring #GVariant instance
1318 * Creates an array-of-bytes #GVariant with the contents of @string.
1319 * This function is just like g_variant_new_string() except that the
1320 * string need not be valid utf8.
1322 * The nul terminator character at the end of the string is stored in
1328 g_variant_new_bytestring (const gchar *string)
1330 g_return_val_if_fail (string != NULL, NULL);
1332 return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
1333 string, strlen (string) + 1);
1337 * g_variant_get_bytestring:
1338 * @value: an array-of-bytes #GVariant instance
1339 * @returns: the constant string
1341 * Returns the string value of a #GVariant instance with an
1342 * array-of-bytes type. The string has no particular encoding.
1344 * If the array does not end with a nul terminator character, the empty
1345 * string is returned. For this reason, you can always trust that a
1346 * non-%NULL nul-terminated string will be returned by this function.
1348 * If the array contains a nul terminator character somewhere other than
1349 * the last byte then the returned string is the string, up to the first
1350 * such nul character.
1352 * It is an error to call this function with a @value that is not an
1355 * The return value remains valid as long as @value exists.
1360 g_variant_get_bytestring (GVariant *value)
1362 const gchar *string;
1365 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
1367 /* Won't be NULL since this is an array type */
1368 string = g_variant_get_data (value);
1369 size = g_variant_get_size (value);
1371 if (size && string[size - 1] == '\0')
1378 * g_variant_dup_bytestring:
1379 * @value: an array-of-bytes #GVariant instance
1380 * @length: (allow-none) (default NULL): a pointer to a #gsize, to store
1381 * the length (not including the nul terminator)
1382 * @returns: a newly allocated string
1384 * Similar to g_variant_get_bytestring() except that instead of
1385 * returning a constant string, the string is duplicated.
1387 * The return value must be freed using g_free().
1392 g_variant_dup_bytestring (GVariant *value,
1395 const gchar *original = g_variant_get_bytestring (value);
1398 /* don't crash in case get_bytestring() had an assert failure */
1399 if (original == NULL)
1402 size = strlen (original);
1407 return g_memdup (original, size + 1);
1411 * g_variant_new_bytestring_array:
1412 * @strv: (array length=length): an array of strings
1413 * @length: the length of @strv, or -1
1414 * @returns: a new floating #GVariant instance
1416 * Constructs an array of bytestring #GVariant from the given array of
1419 * If @length is -1 then @strv is %NULL-terminated.
1424 g_variant_new_bytestring_array (const gchar * const *strv,
1430 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1433 length = g_strv_length ((gchar **) strv);
1435 strings = g_new (GVariant *, length);
1436 for (i = 0; i < length; i++)
1437 strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
1439 return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
1440 strings, length, TRUE);
1444 * g_variant_get_bytestring_array:
1445 * @value: an array of array of bytes #GVariant ('aay')
1446 * @length: (allow-none): the length of the result, or %NULL
1447 * @returns: (array length=length): an array of constant strings
1449 * Gets the contents of an array of array of bytes #GVariant. This call
1450 * makes a shallow copy; the return result should be released with
1451 * g_free(), but the individual strings must not be modified.
1453 * If @length is non-%NULL then the number of elements in the result is
1454 * stored there. In any case, the resulting array will be
1457 * For an empty array, @length will be set to 0 and a pointer to a
1458 * %NULL pointer will be returned.
1463 g_variant_get_bytestring_array (GVariant *value,
1470 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1472 g_variant_get_data (value);
1473 n = g_variant_n_children (value);
1474 strv = g_new (const gchar *, n + 1);
1476 for (i = 0; i < n; i++)
1480 string = g_variant_get_child_value (value, i);
1481 strv[i] = g_variant_get_bytestring (string);
1482 g_variant_unref (string);
1493 * g_variant_dup_bytestring_array:
1494 * @value: an array of array of bytes #GVariant ('aay')
1495 * @length: (allow-none): the length of the result, or %NULL
1496 * @returns: (array length=length): an array of strings
1498 * Gets the contents of an array of array of bytes #GVariant. This call
1499 * makes a deep copy; the return result should be released with
1502 * If @length is non-%NULL then the number of elements in the result is
1503 * stored there. In any case, the resulting array will be
1506 * For an empty array, @length will be set to 0 and a pointer to a
1507 * %NULL pointer will be returned.
1512 g_variant_dup_bytestring_array (GVariant *value,
1519 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1521 g_variant_get_data (value);
1522 n = g_variant_n_children (value);
1523 strv = g_new (gchar *, n + 1);
1525 for (i = 0; i < n; i++)
1529 string = g_variant_get_child_value (value, i);
1530 strv[i] = g_variant_dup_bytestring (string, NULL);
1531 g_variant_unref (string);
1541 /* Type checking and querying {{{1 */
1543 * g_variant_get_type:
1544 * @value: a #GVariant
1545 * @returns: a #GVariantType
1547 * Determines the type of @value.
1549 * The return value is valid for the lifetime of @value and must not
1554 const GVariantType *
1555 g_variant_get_type (GVariant *value)
1557 GVariantTypeInfo *type_info;
1559 g_return_val_if_fail (value != NULL, NULL);
1561 type_info = g_variant_get_type_info (value);
1563 return (GVariantType *) g_variant_type_info_get_type_string (type_info);
1567 * g_variant_get_type_string:
1568 * @value: a #GVariant
1569 * @returns: the type string for the type of @value
1571 * Returns the type string of @value. Unlike the result of calling
1572 * g_variant_type_peek_string(), this string is nul-terminated. This
1573 * string belongs to #GVariant and must not be freed.
1578 g_variant_get_type_string (GVariant *value)
1580 GVariantTypeInfo *type_info;
1582 g_return_val_if_fail (value != NULL, NULL);
1584 type_info = g_variant_get_type_info (value);
1586 return g_variant_type_info_get_type_string (type_info);
1590 * g_variant_is_of_type:
1591 * @value: a #GVariant instance
1592 * @type: a #GVariantType
1593 * @returns: %TRUE if the type of @value matches @type
1595 * Checks if a value has a type matching the provided type.
1600 g_variant_is_of_type (GVariant *value,
1601 const GVariantType *type)
1603 return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
1607 * g_variant_is_container:
1608 * @value: a #GVariant instance
1609 * @returns: %TRUE if @value is a container
1611 * Checks if @value is a container.
1614 g_variant_is_container (GVariant *value)
1616 return g_variant_type_is_container (g_variant_get_type (value));
1621 * g_variant_classify:
1622 * @value: a #GVariant
1623 * @returns: the #GVariantClass of @value
1625 * Classifies @value according to its top-level type.
1631 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
1632 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
1633 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
1634 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
1635 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
1636 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
1637 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
1638 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
1639 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
1640 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
1642 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
1643 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a DBus object path
1645 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a DBus signature string.
1646 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
1647 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
1648 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
1649 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
1650 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
1652 * The range of possible top-level types of #GVariant instances.
1657 g_variant_classify (GVariant *value)
1659 g_return_val_if_fail (value != NULL, 0);
1661 return *g_variant_get_type_string (value);
1664 /* Pretty printer {{{1 */
1666 * g_variant_print_string:
1667 * @value: a #GVariant
1668 * @string: (allow-none) (default NULL): a #GString, or %NULL
1669 * @type_annotate: %TRUE if type information should be included in
1671 * @returns: a #GString containing the string
1673 * Behaves as g_variant_print(), but operates on a #GString.
1675 * If @string is non-%NULL then it is appended to and returned. Else,
1676 * a new empty #GString is allocated and it is returned.
1681 g_variant_print_string (GVariant *value,
1683 gboolean type_annotate)
1685 if G_UNLIKELY (string == NULL)
1686 string = g_string_new (NULL);
1688 switch (g_variant_classify (value))
1690 case G_VARIANT_CLASS_MAYBE:
1692 g_string_append_printf (string, "@%s ",
1693 g_variant_get_type_string (value));
1695 if (g_variant_n_children (value))
1697 gchar *printed_child;
1702 * Consider the case of the type "mmi". In this case we could
1703 * write "just just 4", but "4" alone is totally unambiguous,
1704 * so we try to drop "just" where possible.
1706 * We have to be careful not to always drop "just", though,
1707 * since "nothing" needs to be distinguishable from "just
1708 * nothing". The case where we need to ensure we keep the
1709 * "just" is actually exactly the case where we have a nested
1712 * Instead of searching for that nested Nothing, we just print
1713 * the contained value into a separate string and see if we
1714 * end up with "nothing" at the end of it. If so, we need to
1715 * add "just" at our level.
1717 element = g_variant_get_child_value (value, 0);
1718 printed_child = g_variant_print (element, FALSE);
1719 g_variant_unref (element);
1721 if (g_str_has_suffix (printed_child, "nothing"))
1722 g_string_append (string, "just ");
1723 g_string_append (string, printed_child);
1724 g_free (printed_child);
1727 g_string_append (string, "nothing");
1731 case G_VARIANT_CLASS_ARRAY:
1732 /* it's an array so the first character of the type string is 'a'
1734 * if the first two characters are 'ay' then it's a bytestring.
1735 * under certain conditions we print those as strings.
1737 if (g_variant_get_type_string (value)[1] == 'y')
1743 /* first determine if it is a byte string.
1744 * that's when there's a single nul character: at the end.
1746 str = g_variant_get_data (value);
1747 size = g_variant_get_size (value);
1749 for (i = 0; i < size; i++)
1753 /* first nul byte is the last byte -> it's a byte string. */
1756 gchar *escaped = g_strescape (str, NULL);
1758 /* use double quotes only if a ' is in the string */
1759 if (strchr (str, '\''))
1760 g_string_append_printf (string, "b\"%s\"", escaped);
1762 g_string_append_printf (string, "b'%s'", escaped);
1769 /* fall through and handle normally... */;
1773 * if the first two characters are 'a{' then it's an array of
1774 * dictionary entries (ie: a dictionary) so we print that
1777 if (g_variant_get_type_string (value)[1] == '{')
1780 const gchar *comma = "";
1783 if ((n = g_variant_n_children (value)) == 0)
1786 g_string_append_printf (string, "@%s ",
1787 g_variant_get_type_string (value));
1788 g_string_append (string, "{}");
1792 g_string_append_c (string, '{');
1793 for (i = 0; i < n; i++)
1795 GVariant *entry, *key, *val;
1797 g_string_append (string, comma);
1800 entry = g_variant_get_child_value (value, i);
1801 key = g_variant_get_child_value (entry, 0);
1802 val = g_variant_get_child_value (entry, 1);
1803 g_variant_unref (entry);
1805 g_variant_print_string (key, string, type_annotate);
1806 g_variant_unref (key);
1807 g_string_append (string, ": ");
1808 g_variant_print_string (val, string, type_annotate);
1809 g_variant_unref (val);
1810 type_annotate = FALSE;
1812 g_string_append_c (string, '}');
1815 /* normal (non-dictionary) array */
1817 const gchar *comma = "";
1820 if ((n = g_variant_n_children (value)) == 0)
1823 g_string_append_printf (string, "@%s ",
1824 g_variant_get_type_string (value));
1825 g_string_append (string, "[]");
1829 g_string_append_c (string, '[');
1830 for (i = 0; i < n; i++)
1834 g_string_append (string, comma);
1837 element = g_variant_get_child_value (value, i);
1839 g_variant_print_string (element, string, type_annotate);
1840 g_variant_unref (element);
1841 type_annotate = FALSE;
1843 g_string_append_c (string, ']');
1848 case G_VARIANT_CLASS_TUPLE:
1852 n = g_variant_n_children (value);
1854 g_string_append_c (string, '(');
1855 for (i = 0; i < n; i++)
1859 element = g_variant_get_child_value (value, i);
1860 g_variant_print_string (element, string, type_annotate);
1861 g_string_append (string, ", ");
1862 g_variant_unref (element);
1865 /* for >1 item: remove final ", "
1866 * for 1 item: remove final " ", but leave the ","
1867 * for 0 items: there is only "(", so remove nothing
1869 g_string_truncate (string, string->len - (n > 0) - (n > 1));
1870 g_string_append_c (string, ')');
1874 case G_VARIANT_CLASS_DICT_ENTRY:
1878 g_string_append_c (string, '{');
1880 element = g_variant_get_child_value (value, 0);
1881 g_variant_print_string (element, string, type_annotate);
1882 g_variant_unref (element);
1884 g_string_append (string, ", ");
1886 element = g_variant_get_child_value (value, 1);
1887 g_variant_print_string (element, string, type_annotate);
1888 g_variant_unref (element);
1890 g_string_append_c (string, '}');
1894 case G_VARIANT_CLASS_VARIANT:
1896 GVariant *child = g_variant_get_variant (value);
1898 /* Always annotate types in nested variants, because they are
1899 * (by nature) of variable type.
1901 g_string_append_c (string, '<');
1902 g_variant_print_string (child, string, TRUE);
1903 g_string_append_c (string, '>');
1905 g_variant_unref (child);
1909 case G_VARIANT_CLASS_BOOLEAN:
1910 if (g_variant_get_boolean (value))
1911 g_string_append (string, "true");
1913 g_string_append (string, "false");
1916 case G_VARIANT_CLASS_STRING:
1918 const gchar *str = g_variant_get_string (value, NULL);
1919 gunichar quote = strchr (str, '\'') ? '"' : '\'';
1921 g_string_append_c (string, quote);
1925 gunichar c = g_utf8_get_char (str);
1927 if (c == quote || c == '\\')
1928 g_string_append_c (string, '\\');
1930 if (g_unichar_isprint (c))
1931 g_string_append_unichar (string, c);
1935 g_string_append_c (string, '\\');
1940 g_string_append_c (string, 'a');
1944 g_string_append_c (string, 'b');
1948 g_string_append_c (string, 'f');
1952 g_string_append_c (string, 'n');
1956 g_string_append_c (string, 'r');
1960 g_string_append_c (string, 't');
1964 g_string_append_c (string, 'v');
1968 g_string_append_printf (string, "u%04x", c);
1972 g_string_append_printf (string, "U%08x", c);
1975 str = g_utf8_next_char (str);
1978 g_string_append_c (string, quote);
1982 case G_VARIANT_CLASS_BYTE:
1984 g_string_append (string, "byte ");
1985 g_string_append_printf (string, "0x%02x",
1986 g_variant_get_byte (value));
1989 case G_VARIANT_CLASS_INT16:
1991 g_string_append (string, "int16 ");
1992 g_string_append_printf (string, "%"G_GINT16_FORMAT,
1993 g_variant_get_int16 (value));
1996 case G_VARIANT_CLASS_UINT16:
1998 g_string_append (string, "uint16 ");
1999 g_string_append_printf (string, "%"G_GUINT16_FORMAT,
2000 g_variant_get_uint16 (value));
2003 case G_VARIANT_CLASS_INT32:
2004 /* Never annotate this type because it is the default for numbers
2005 * (and this is a *pretty* printer)
2007 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2008 g_variant_get_int32 (value));
2011 case G_VARIANT_CLASS_HANDLE:
2013 g_string_append (string, "handle ");
2014 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2015 g_variant_get_handle (value));
2018 case G_VARIANT_CLASS_UINT32:
2020 g_string_append (string, "uint32 ");
2021 g_string_append_printf (string, "%"G_GUINT32_FORMAT,
2022 g_variant_get_uint32 (value));
2025 case G_VARIANT_CLASS_INT64:
2027 g_string_append (string, "int64 ");
2028 g_string_append_printf (string, "%"G_GINT64_FORMAT,
2029 g_variant_get_int64 (value));
2032 case G_VARIANT_CLASS_UINT64:
2034 g_string_append (string, "uint64 ");
2035 g_string_append_printf (string, "%"G_GUINT64_FORMAT,
2036 g_variant_get_uint64 (value));
2039 case G_VARIANT_CLASS_DOUBLE:
2044 g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
2046 for (i = 0; buffer[i]; i++)
2047 if (buffer[i] == '.' || buffer[i] == 'e' ||
2048 buffer[i] == 'n' || buffer[i] == 'N')
2051 /* if there is no '.' or 'e' in the float then add one */
2052 if (buffer[i] == '\0')
2059 g_string_append (string, buffer);
2063 case G_VARIANT_CLASS_OBJECT_PATH:
2065 g_string_append (string, "objectpath ");
2066 g_string_append_printf (string, "\'%s\'",
2067 g_variant_get_string (value, NULL));
2070 case G_VARIANT_CLASS_SIGNATURE:
2072 g_string_append (string, "signature ");
2073 g_string_append_printf (string, "\'%s\'",
2074 g_variant_get_string (value, NULL));
2078 g_assert_not_reached ();
2086 * @value: a #GVariant
2087 * @type_annotate: %TRUE if type information should be included in
2089 * @returns: a newly-allocated string holding the result.
2091 * Pretty-prints @value in the format understood by g_variant_parse().
2093 * If @type_annotate is %TRUE, then type information is included in
2097 g_variant_print (GVariant *value,
2098 gboolean type_annotate)
2100 return g_string_free (g_variant_print_string (value, NULL, type_annotate),
2104 /* Hash, Equal, Compare {{{1 */
2107 * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
2108 * @returns: a hash value corresponding to @value
2110 * Generates a hash value for a #GVariant instance.
2112 * The output of this function is guaranteed to be the same for a given
2113 * value only per-process. It may change between different processor
2114 * architectures or even different versions of GLib. Do not use this
2115 * function as a basis for building protocols or file formats.
2117 * The type of @value is #gconstpointer only to allow use of this
2118 * function with #GHashTable. @value must be a #GVariant.
2123 g_variant_hash (gconstpointer value_)
2125 GVariant *value = (GVariant *) value_;
2127 switch (g_variant_classify (value))
2129 case G_VARIANT_CLASS_STRING:
2130 case G_VARIANT_CLASS_OBJECT_PATH:
2131 case G_VARIANT_CLASS_SIGNATURE:
2132 return g_str_hash (g_variant_get_string (value, NULL));
2134 case G_VARIANT_CLASS_BOOLEAN:
2135 /* this is a very odd thing to hash... */
2136 return g_variant_get_boolean (value);
2138 case G_VARIANT_CLASS_BYTE:
2139 return g_variant_get_byte (value);
2141 case G_VARIANT_CLASS_INT16:
2142 case G_VARIANT_CLASS_UINT16:
2146 ptr = g_variant_get_data (value);
2154 case G_VARIANT_CLASS_INT32:
2155 case G_VARIANT_CLASS_UINT32:
2156 case G_VARIANT_CLASS_HANDLE:
2160 ptr = g_variant_get_data (value);
2168 case G_VARIANT_CLASS_INT64:
2169 case G_VARIANT_CLASS_UINT64:
2170 case G_VARIANT_CLASS_DOUBLE:
2171 /* need a separate case for these guys because otherwise
2172 * performance could be quite bad on big endian systems
2177 ptr = g_variant_get_data (value);
2180 return ptr[0] + ptr[1];
2186 g_return_val_if_fail (!g_variant_is_container (value), 0);
2187 g_assert_not_reached ();
2193 * @one: (type GVariant): a #GVariant instance
2194 * @two: (type GVariant): a #GVariant instance
2195 * @returns: %TRUE if @one and @two are equal
2197 * Checks if @one and @two have the same type and value.
2199 * The types of @one and @two are #gconstpointer only to allow use of
2200 * this function with #GHashTable. They must each be a #GVariant.
2205 g_variant_equal (gconstpointer one,
2210 g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2212 if (g_variant_get_type_info ((GVariant *) one) !=
2213 g_variant_get_type_info ((GVariant *) two))
2216 /* if both values are trusted to be in their canonical serialised form
2217 * then a simple memcmp() of their serialised data will answer the
2220 * if not, then this might generate a false negative (since it is
2221 * possible for two different byte sequences to represent the same
2222 * value). for now we solve this by pretty-printing both values and
2223 * comparing the result.
2225 if (g_variant_is_trusted ((GVariant *) one) &&
2226 g_variant_is_trusted ((GVariant *) two))
2228 gconstpointer data_one, data_two;
2229 gsize size_one, size_two;
2231 size_one = g_variant_get_size ((GVariant *) one);
2232 size_two = g_variant_get_size ((GVariant *) two);
2234 if (size_one != size_two)
2237 data_one = g_variant_get_data ((GVariant *) one);
2238 data_two = g_variant_get_data ((GVariant *) two);
2240 equal = memcmp (data_one, data_two, size_one) == 0;
2244 gchar *strone, *strtwo;
2246 strone = g_variant_print ((GVariant *) one, FALSE);
2247 strtwo = g_variant_print ((GVariant *) two, FALSE);
2248 equal = strcmp (strone, strtwo) == 0;
2257 * g_variant_compare:
2258 * @one: (type GVariant): a basic-typed #GVariant instance
2259 * @two: (type GVariant): a #GVariant instance of the same type
2260 * @returns: negative value if a < b;
2262 * positive value if a > b.
2264 * Compares @one and @two.
2266 * The types of @one and @two are #gconstpointer only to allow use of
2267 * this function with #GTree, #GPtrArray, etc. They must each be a
2270 * Comparison is only defined for basic types (ie: booleans, numbers,
2271 * strings). For booleans, %FALSE is less than %TRUE. Numbers are
2272 * ordered in the usual way. Strings are in ASCII lexographical order.
2274 * It is a programmer error to attempt to compare container values or
2275 * two values that have types that are not exactly equal. For example,
2276 * you can not compare a 32-bit signed integer with a 32-bit unsigned
2277 * integer. Also note that this function is not particularly
2278 * well-behaved when it comes to comparison of doubles; in particular,
2279 * the handling of incomparable values (ie: NaN) is undefined.
2281 * If you only require an equality comparison, g_variant_equal() is more
2287 g_variant_compare (gconstpointer one,
2290 GVariant *a = (GVariant *) one;
2291 GVariant *b = (GVariant *) two;
2293 g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2295 switch (g_variant_classify (a))
2297 case G_VARIANT_CLASS_BYTE:
2298 return ((gint) g_variant_get_byte (a)) -
2299 ((gint) g_variant_get_byte (b));
2301 case G_VARIANT_CLASS_INT16:
2302 return ((gint) g_variant_get_int16 (a)) -
2303 ((gint) g_variant_get_int16 (b));
2305 case G_VARIANT_CLASS_UINT16:
2306 return ((gint) g_variant_get_uint16 (a)) -
2307 ((gint) g_variant_get_uint16 (b));
2309 case G_VARIANT_CLASS_INT32:
2311 gint32 a_val = g_variant_get_int32 (a);
2312 gint32 b_val = g_variant_get_int32 (b);
2314 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2317 case G_VARIANT_CLASS_UINT32:
2319 guint32 a_val = g_variant_get_uint32 (a);
2320 guint32 b_val = g_variant_get_uint32 (b);
2322 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2325 case G_VARIANT_CLASS_INT64:
2327 gint64 a_val = g_variant_get_int64 (a);
2328 gint64 b_val = g_variant_get_int64 (b);
2330 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2333 case G_VARIANT_CLASS_UINT64:
2335 guint64 a_val = g_variant_get_int32 (a);
2336 guint64 b_val = g_variant_get_int32 (b);
2338 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2341 case G_VARIANT_CLASS_DOUBLE:
2343 gdouble a_val = g_variant_get_double (a);
2344 gdouble b_val = g_variant_get_double (b);
2346 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2349 case G_VARIANT_CLASS_STRING:
2350 case G_VARIANT_CLASS_OBJECT_PATH:
2351 case G_VARIANT_CLASS_SIGNATURE:
2352 return strcmp (g_variant_get_string (a, NULL),
2353 g_variant_get_string (b, NULL));
2356 g_return_val_if_fail (!g_variant_is_container (a), 0);
2357 g_assert_not_reached ();
2361 /* GVariantIter {{{1 */
2365 * #GVariantIter is an opaque data structure and can only be accessed
2366 * using the following functions.
2373 const gchar *loop_format;
2379 G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2383 struct stack_iter iter;
2385 GVariant *value_ref;
2389 #define GVSI(i) ((struct stack_iter *) (i))
2390 #define GVHI(i) ((struct heap_iter *) (i))
2391 #define GVSI_MAGIC ((gsize) 3579507750u)
2392 #define GVHI_MAGIC ((gsize) 1450270775u)
2393 #define is_valid_iter(i) (i != NULL && \
2394 GVSI(i)->magic == GVSI_MAGIC)
2395 #define is_valid_heap_iter(i) (GVHI(i)->magic == GVHI_MAGIC && \
2399 * g_variant_iter_new:
2400 * @value: a container #GVariant
2401 * @returns: a new heap-allocated #GVariantIter
2403 * Creates a heap-allocated #GVariantIter for iterating over the items
2406 * Use g_variant_iter_free() to free the return value when you no longer
2409 * A reference is taken to @value and will be released only when
2410 * g_variant_iter_free() is called.
2415 g_variant_iter_new (GVariant *value)
2419 iter = (GVariantIter *) g_slice_new (struct heap_iter);
2420 GVHI(iter)->value_ref = g_variant_ref (value);
2421 GVHI(iter)->magic = GVHI_MAGIC;
2423 g_variant_iter_init (iter, value);
2429 * g_variant_iter_init:
2430 * @iter: a pointer to a #GVariantIter
2431 * @value: a container #GVariant
2432 * @returns: the number of items in @value
2434 * Initialises (without allocating) a #GVariantIter. @iter may be
2435 * completely uninitialised prior to this call; its old value is
2438 * The iterator remains valid for as long as @value exists, and need not
2439 * be freed in any way.
2444 g_variant_iter_init (GVariantIter *iter,
2447 GVSI(iter)->magic = GVSI_MAGIC;
2448 GVSI(iter)->value = value;
2449 GVSI(iter)->n = g_variant_n_children (value);
2451 GVSI(iter)->loop_format = NULL;
2453 return GVSI(iter)->n;
2457 * g_variant_iter_copy:
2458 * @iter: a #GVariantIter
2459 * @returns: a new heap-allocated #GVariantIter
2461 * Creates a new heap-allocated #GVariantIter to iterate over the
2462 * container that was being iterated over by @iter. Iteration begins on
2463 * the new iterator from the current position of the old iterator but
2464 * the two copies are independent past that point.
2466 * Use g_variant_iter_free() to free the return value when you no longer
2469 * A reference is taken to the container that @iter is iterating over
2470 * and will be releated only when g_variant_iter_free() is called.
2475 g_variant_iter_copy (GVariantIter *iter)
2479 g_return_val_if_fail (is_valid_iter (iter), 0);
2481 copy = g_variant_iter_new (GVSI(iter)->value);
2482 GVSI(copy)->i = GVSI(iter)->i;
2488 * g_variant_iter_n_children:
2489 * @iter: a #GVariantIter
2490 * @returns: the number of children in the container
2492 * Queries the number of child items in the container that we are
2493 * iterating over. This is the total number of items -- not the number
2494 * of items remaining.
2496 * This function might be useful for preallocation of arrays.
2501 g_variant_iter_n_children (GVariantIter *iter)
2503 g_return_val_if_fail (is_valid_iter (iter), 0);
2505 return GVSI(iter)->n;
2509 * g_variant_iter_free:
2510 * @iter: a heap-allocated #GVariantIter
2512 * Frees a heap-allocated #GVariantIter. Only call this function on
2513 * iterators that were returned by g_variant_iter_new() or
2514 * g_variant_iter_copy().
2519 g_variant_iter_free (GVariantIter *iter)
2521 g_return_if_fail (is_valid_heap_iter (iter));
2523 g_variant_unref (GVHI(iter)->value_ref);
2524 GVHI(iter)->magic = 0;
2526 g_slice_free (struct heap_iter, GVHI(iter));
2530 * g_variant_iter_next_value:
2531 * @iter: a #GVariantIter
2532 * @returns: (allow-none): a #GVariant, or %NULL
2534 * Gets the next item in the container. If no more items remain then
2535 * %NULL is returned.
2537 * Use g_variant_unref() to drop your reference on the return value when
2538 * you no longer need it.
2541 * <title>Iterating with g_variant_iter_next_value()</title>
2543 * /<!-- -->* recursively iterate a container *<!-- -->/
2545 * iterate_container_recursive (GVariant *container)
2547 * GVariantIter iter;
2550 * g_variant_iter_init (&iter, dictionary);
2551 * while ((child = g_variant_iter_next_value (&iter)))
2553 * g_print ("type '%s'\n", g_variant_get_type_string (child));
2555 * if (g_variant_is_container (child))
2556 * iterate_container_recursive (child);
2558 * g_variant_unref (child);
2567 g_variant_iter_next_value (GVariantIter *iter)
2569 g_return_val_if_fail (is_valid_iter (iter), FALSE);
2571 if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
2573 g_critical ("g_variant_iter_next_value: must not be called again "
2574 "after NULL has already been returned.");
2580 if (GVSI(iter)->i < GVSI(iter)->n)
2581 return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
2586 /* GVariantBuilder {{{1 */
2590 * A utility type for constructing container-type #GVariant instances.
2592 * This is an opaque structure and may only be accessed using the
2593 * following functions.
2595 * #GVariantBuilder is not threadsafe in any way. Do not attempt to
2596 * access it from more than one thread.
2599 struct stack_builder
2601 GVariantBuilder *parent;
2604 /* type constraint explicitly specified by 'type'.
2605 * for tuple types, this moves along as we add more items.
2607 const GVariantType *expected_type;
2609 /* type constraint implied by previous array item.
2611 const GVariantType *prev_item_type;
2613 /* constraints on the number of children. max = -1 for unlimited. */
2617 /* dynamically-growing pointer array */
2618 GVariant **children;
2619 gsize allocated_children;
2622 /* set to '1' if all items in the container will have the same type
2623 * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
2625 guint uniform_item_types : 1;
2627 /* set to '1' initially and changed to '0' if an untrusted value is
2635 G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
2639 GVariantBuilder builder;
2645 #define GVSB(b) ((struct stack_builder *) (b))
2646 #define GVHB(b) ((struct heap_builder *) (b))
2647 #define GVSB_MAGIC ((gsize) 1033660112u)
2648 #define GVHB_MAGIC ((gsize) 3087242682u)
2649 #define is_valid_builder(b) (b != NULL && \
2650 GVSB(b)->magic == GVSB_MAGIC)
2651 #define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
2654 * g_variant_builder_new:
2655 * @type: a container type
2656 * @returns: a #GVariantBuilder
2658 * Allocates and initialises a new #GVariantBuilder.
2660 * You should call g_variant_builder_unref() on the return value when it
2661 * is no longer needed. The memory will not be automatically freed by
2664 * In most cases it is easier to place a #GVariantBuilder directly on
2665 * the stack of the calling function and initialise it with
2666 * g_variant_builder_init().
2671 g_variant_builder_new (const GVariantType *type)
2673 GVariantBuilder *builder;
2675 builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
2676 g_variant_builder_init (builder, type);
2677 GVHB(builder)->magic = GVHB_MAGIC;
2678 GVHB(builder)->ref_count = 1;
2684 * g_variant_builder_unref:
2685 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
2687 * Decreases the reference count on @builder.
2689 * In the event that there are no more references, releases all memory
2690 * associated with the #GVariantBuilder.
2692 * Don't call this on stack-allocated #GVariantBuilder instances or bad
2693 * things will happen.
2698 g_variant_builder_unref (GVariantBuilder *builder)
2700 g_return_if_fail (is_valid_heap_builder (builder));
2702 if (--GVHB(builder)->ref_count)
2705 g_variant_builder_clear (builder);
2706 GVHB(builder)->magic = 0;
2708 g_slice_free (struct heap_builder, GVHB(builder));
2712 * g_variant_builder_ref:
2713 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
2714 * @returns: a new reference to @builder
2716 * Increases the reference count on @builder.
2718 * Don't call this on stack-allocated #GVariantBuilder instances or bad
2719 * things will happen.
2724 g_variant_builder_ref (GVariantBuilder *builder)
2726 g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
2728 GVHB(builder)->ref_count++;
2734 * g_variant_builder_clear:
2735 * @builder: a #GVariantBuilder
2737 * Releases all memory associated with a #GVariantBuilder without
2738 * freeing the #GVariantBuilder structure itself.
2740 * It typically only makes sense to do this on a stack-allocated
2741 * #GVariantBuilder if you want to abort building the value part-way
2742 * through. This function need not be called if you call
2743 * g_variant_builder_end() and it also doesn't need to be called on
2744 * builders allocated with g_variant_builder_new (see
2745 * g_variant_builder_free() for that).
2747 * This function leaves the #GVariantBuilder structure set to all-zeros.
2748 * It is valid to call this function on either an initialised
2749 * #GVariantBuilder or one that is set to all-zeros but it is not valid
2750 * to call this function on uninitialised memory.
2755 g_variant_builder_clear (GVariantBuilder *builder)
2759 if (GVSB(builder)->magic == 0)
2760 /* all-zeros case */
2763 g_return_if_fail (is_valid_builder (builder));
2765 g_variant_type_free (GVSB(builder)->type);
2767 for (i = 0; i < GVSB(builder)->offset; i++)
2768 g_variant_unref (GVSB(builder)->children[i]);
2770 g_free (GVSB(builder)->children);
2772 if (GVSB(builder)->parent)
2774 g_variant_builder_clear (GVSB(builder)->parent);
2775 g_slice_free (GVariantBuilder, GVSB(builder)->parent);
2778 memset (builder, 0, sizeof (GVariantBuilder));
2782 * g_variant_builder_init:
2783 * @builder: a #GVariantBuilder
2784 * @type: a container type
2786 * Initialises a #GVariantBuilder structure.
2788 * @type must be non-%NULL. It specifies the type of container to
2789 * construct. It can be an indefinite type such as
2790 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
2791 * Maybe, array, tuple, dictionary entry and variant-typed values may be
2794 * After the builder is initialised, values are added using
2795 * g_variant_builder_add_value() or g_variant_builder_add().
2797 * After all the child values are added, g_variant_builder_end() frees
2798 * the memory associated with the builder and returns the #GVariant that
2801 * This function completely ignores the previous contents of @builder.
2802 * On one hand this means that it is valid to pass in completely
2803 * uninitialised memory. On the other hand, this means that if you are
2804 * initialising over top of an existing #GVariantBuilder you need to
2805 * first call g_variant_builder_clear() in order to avoid leaking
2808 * You must not call g_variant_builder_ref() or
2809 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
2810 * with this function. If you ever pass a reference to a
2811 * #GVariantBuilder outside of the control of your own code then you
2812 * should assume that the person receiving that reference may try to use
2813 * reference counting; you should use g_variant_builder_new() instead of
2819 g_variant_builder_init (GVariantBuilder *builder,
2820 const GVariantType *type)
2822 g_return_if_fail (type != NULL);
2823 g_return_if_fail (g_variant_type_is_container (type));
2825 memset (builder, 0, sizeof (GVariantBuilder));
2827 GVSB(builder)->type = g_variant_type_copy (type);
2828 GVSB(builder)->magic = GVSB_MAGIC;
2829 GVSB(builder)->trusted = TRUE;
2831 switch (*(const gchar *) type)
2833 case G_VARIANT_CLASS_VARIANT:
2834 GVSB(builder)->uniform_item_types = TRUE;
2835 GVSB(builder)->allocated_children = 1;
2836 GVSB(builder)->expected_type = NULL;
2837 GVSB(builder)->min_items = 1;
2838 GVSB(builder)->max_items = 1;
2841 case G_VARIANT_CLASS_ARRAY:
2842 GVSB(builder)->uniform_item_types = TRUE;
2843 GVSB(builder)->allocated_children = 8;
2844 GVSB(builder)->expected_type =
2845 g_variant_type_element (GVSB(builder)->type);
2846 GVSB(builder)->min_items = 0;
2847 GVSB(builder)->max_items = -1;
2850 case G_VARIANT_CLASS_MAYBE:
2851 GVSB(builder)->uniform_item_types = TRUE;
2852 GVSB(builder)->allocated_children = 1;
2853 GVSB(builder)->expected_type =
2854 g_variant_type_element (GVSB(builder)->type);
2855 GVSB(builder)->min_items = 0;
2856 GVSB(builder)->max_items = 1;
2859 case G_VARIANT_CLASS_DICT_ENTRY:
2860 GVSB(builder)->uniform_item_types = FALSE;
2861 GVSB(builder)->allocated_children = 2;
2862 GVSB(builder)->expected_type =
2863 g_variant_type_key (GVSB(builder)->type);
2864 GVSB(builder)->min_items = 2;
2865 GVSB(builder)->max_items = 2;
2868 case 'r': /* G_VARIANT_TYPE_TUPLE was given */
2869 GVSB(builder)->uniform_item_types = FALSE;
2870 GVSB(builder)->allocated_children = 8;
2871 GVSB(builder)->expected_type = NULL;
2872 GVSB(builder)->min_items = 0;
2873 GVSB(builder)->max_items = -1;
2876 case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
2877 GVSB(builder)->allocated_children = g_variant_type_n_items (type);
2878 GVSB(builder)->expected_type =
2879 g_variant_type_first (GVSB(builder)->type);
2880 GVSB(builder)->min_items = GVSB(builder)->allocated_children;
2881 GVSB(builder)->max_items = GVSB(builder)->allocated_children;
2882 GVSB(builder)->uniform_item_types = FALSE;
2886 g_assert_not_reached ();
2889 GVSB(builder)->children = g_new (GVariant *,
2890 GVSB(builder)->allocated_children);
2894 g_variant_builder_make_room (struct stack_builder *builder)
2896 if (builder->offset == builder->allocated_children)
2898 builder->allocated_children *= 2;
2899 builder->children = g_renew (GVariant *, builder->children,
2900 builder->allocated_children);
2905 * g_variant_builder_add_value:
2906 * @builder: a #GVariantBuilder
2907 * @value: a #GVariant
2909 * Adds @value to @builder.
2911 * It is an error to call this function in any way that would create an
2912 * inconsistent value to be constructed. Some examples of this are
2913 * putting different types of items into an array, putting the wrong
2914 * types or number of items in a tuple, putting more than one value into
2920 g_variant_builder_add_value (GVariantBuilder *builder,
2923 g_return_if_fail (is_valid_builder (builder));
2924 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
2925 g_return_if_fail (!GVSB(builder)->expected_type ||
2926 g_variant_is_of_type (value,
2927 GVSB(builder)->expected_type));
2928 g_return_if_fail (!GVSB(builder)->prev_item_type ||
2929 g_variant_is_of_type (value,
2930 GVSB(builder)->prev_item_type));
2932 GVSB(builder)->trusted &= g_variant_is_trusted (value);
2934 if (!GVSB(builder)->uniform_item_types)
2936 /* advance our expected type pointers */
2937 if (GVSB(builder)->expected_type)
2938 GVSB(builder)->expected_type =
2939 g_variant_type_next (GVSB(builder)->expected_type);
2941 if (GVSB(builder)->prev_item_type)
2942 GVSB(builder)->prev_item_type =
2943 g_variant_type_next (GVSB(builder)->prev_item_type);
2946 GVSB(builder)->prev_item_type = g_variant_get_type (value);
2948 g_variant_builder_make_room (GVSB(builder));
2950 GVSB(builder)->children[GVSB(builder)->offset++] =
2951 g_variant_ref_sink (value);
2955 * g_variant_builder_open:
2956 * @builder: a #GVariantBuilder
2957 * @type: a #GVariantType
2959 * Opens a subcontainer inside the given @builder. When done adding
2960 * items to the subcontainer, g_variant_builder_close() must be called.
2962 * It is an error to call this function in any way that would cause an
2963 * inconsistent value to be constructed (ie: adding too many values or
2964 * a value of an incorrect type).
2969 g_variant_builder_open (GVariantBuilder *builder,
2970 const GVariantType *type)
2972 GVariantBuilder *parent;
2974 g_return_if_fail (is_valid_builder (builder));
2975 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
2976 g_return_if_fail (!GVSB(builder)->expected_type ||
2977 g_variant_type_is_subtype_of (type,
2978 GVSB(builder)->expected_type));
2979 g_return_if_fail (!GVSB(builder)->prev_item_type ||
2980 g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
2983 parent = g_slice_dup (GVariantBuilder, builder);
2984 g_variant_builder_init (builder, type);
2985 GVSB(builder)->parent = parent;
2987 /* push the prev_item_type down into the subcontainer */
2988 if (GVSB(parent)->prev_item_type)
2990 if (!GVSB(builder)->uniform_item_types)
2991 /* tuples and dict entries */
2992 GVSB(builder)->prev_item_type =
2993 g_variant_type_first (GVSB(parent)->prev_item_type);
2995 else if (!g_variant_type_is_variant (GVSB(builder)->type))
2996 /* maybes and arrays */
2997 GVSB(builder)->prev_item_type =
2998 g_variant_type_element (GVSB(parent)->prev_item_type);
3003 * g_variant_builder_close:
3004 * @builder: a #GVariantBuilder
3006 * Closes the subcontainer inside the given @builder that was opened by
3007 * the most recent call to g_variant_builder_open().
3009 * It is an error to call this function in any way that would create an
3010 * inconsistent value to be constructed (ie: too few values added to the
3016 g_variant_builder_close (GVariantBuilder *builder)
3018 GVariantBuilder *parent;
3020 g_return_if_fail (is_valid_builder (builder));
3021 g_return_if_fail (GVSB(builder)->parent != NULL);
3023 parent = GVSB(builder)->parent;
3024 GVSB(builder)->parent = NULL;
3026 g_variant_builder_add_value (parent, g_variant_builder_end (builder));
3029 g_slice_free (GVariantBuilder, parent);
3033 * g_variant_make_maybe_type:
3034 * @element: a #GVariant
3036 * Return the type of a maybe containing @element.
3038 static GVariantType *
3039 g_variant_make_maybe_type (GVariant *element)
3041 return g_variant_type_new_maybe (g_variant_get_type (element));
3045 * g_variant_make_array_type:
3046 * @element: a #GVariant
3048 * Return the type of an array containing @element.
3050 static GVariantType *
3051 g_variant_make_array_type (GVariant *element)
3053 return g_variant_type_new_array (g_variant_get_type (element));
3057 * g_variant_builder_end:
3058 * @builder: a #GVariantBuilder
3059 * @returns: (transfer none): a new, floating, #GVariant
3061 * Ends the builder process and returns the constructed value.
3063 * It is not permissible to use @builder in any way after this call
3064 * except for reference counting operations (in the case of a
3065 * heap-allocated #GVariantBuilder) or by reinitialising it with
3066 * g_variant_builder_init() (in the case of stack-allocated).
3068 * It is an error to call this function in any way that would create an
3069 * inconsistent value to be constructed (ie: insufficient number of
3070 * items added to a container with a specific number of children
3071 * required). It is also an error to call this function if the builder
3072 * was created with an indefinite array or maybe type and no children
3073 * have been added; in this case it is impossible to infer the type of
3079 g_variant_builder_end (GVariantBuilder *builder)
3081 GVariantType *my_type;
3084 g_return_val_if_fail (is_valid_builder (builder), NULL);
3085 g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
3087 g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
3088 GVSB(builder)->prev_item_type != NULL ||
3089 g_variant_type_is_definite (GVSB(builder)->type),
3092 if (g_variant_type_is_definite (GVSB(builder)->type))
3093 my_type = g_variant_type_copy (GVSB(builder)->type);
3095 else if (g_variant_type_is_maybe (GVSB(builder)->type))
3096 my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
3098 else if (g_variant_type_is_array (GVSB(builder)->type))
3099 my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
3101 else if (g_variant_type_is_tuple (GVSB(builder)->type))
3102 my_type = g_variant_make_tuple_type (GVSB(builder)->children,
3103 GVSB(builder)->offset);
3105 else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
3106 my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
3107 GVSB(builder)->children[1]);
3109 g_assert_not_reached ();
3111 value = g_variant_new_from_children (my_type,
3112 g_renew (GVariant *,
3113 GVSB(builder)->children,
3114 GVSB(builder)->offset),
3115 GVSB(builder)->offset,
3116 GVSB(builder)->trusted);
3117 GVSB(builder)->children = NULL;
3118 GVSB(builder)->offset = 0;
3120 g_variant_builder_clear (builder);
3121 g_variant_type_free (my_type);
3126 /* Format strings {{{1 */
3128 * g_variant_format_string_scan:
3129 * @string: a string that may be prefixed with a format string
3130 * @limit: (allow-none) (default NULL): a pointer to the end of @string,
3132 * @endptr: (allow-none) (default NULL): location to store the end pointer,
3134 * @returns: %TRUE if there was a valid format string
3136 * Checks the string pointed to by @string for starting with a properly
3137 * formed #GVariant varargs format string. If no valid format string is
3138 * found then %FALSE is returned.
3140 * If @string does start with a valid format string then %TRUE is
3141 * returned. If @endptr is non-%NULL then it is updated to point to the
3142 * first character after the format string.
3144 * If @limit is non-%NULL then @limit (and any charater after it) will
3145 * not be accessed and the effect is otherwise equivalent to if the
3146 * character at @limit were nul.
3148 * See the section on <link linkend='gvariant-format-strings'>GVariant
3149 * Format Strings</link>.
3154 g_variant_format_string_scan (const gchar *string,
3156 const gchar **endptr)
3158 #define next_char() (string == limit ? '\0' : *string++)
3159 #define peek_char() (string == limit ? '\0' : *string)
3162 switch (next_char())
3164 case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
3165 case 'x': case 't': case 'h': case 'd': case 's': case 'o':
3166 case 'g': case 'v': case '*': case '?': case 'r':
3170 return g_variant_format_string_scan (string, limit, endptr);
3174 return g_variant_type_string_scan (string, limit, endptr);
3177 while (peek_char() != ')')
3178 if (!g_variant_format_string_scan (string, limit, &string))
3181 next_char(); /* consume ')' */
3191 if (c != 's' && c != 'o' && c != 'g')
3199 /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
3200 * The terminating null character is considered to be
3201 * part of the string.
3203 if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
3207 if (!g_variant_format_string_scan (string, limit, &string))
3210 if (next_char() != '}')
3216 if ((c = next_char()) == 'a')
3218 if ((c = next_char()) == '&')
3220 if ((c = next_char()) == 'a')
3222 if ((c = next_char()) == 'y')
3223 break; /* '^a&ay' */
3232 if ((c = next_char()) == 'y')
3244 if ((c = next_char()) == 'a')
3246 if ((c = next_char()) == 'y')
3256 if (c != 's' && c != 'o' && c != 'g')
3275 * g_variant_format_string_scan_type:
3276 * @string: a string that may be prefixed with a format string
3277 * @limit: (allow-none) (default NULL): a pointer to the end of @string,
3279 * @endptr: (allow-none) (default NULL): location to store the end pointer,
3281 * @returns: (allow-none): a #GVariantType if there was a valid format string
3283 * If @string starts with a valid format string then this function will
3284 * return the type that the format string corresponds to. Otherwise
3285 * this function returns %NULL.
3287 * Use g_variant_type_free() to free the return value when you no longer
3290 * This function is otherwise exactly like
3291 * g_variant_format_string_scan().
3296 g_variant_format_string_scan_type (const gchar *string,
3298 const gchar **endptr)
3300 const gchar *my_end;
3307 if (!g_variant_format_string_scan (string, limit, endptr))
3310 dest = new = g_malloc (*endptr - string + 1);
3311 while (string != *endptr)
3313 if (*string != '@' && *string != '&' && *string != '^')
3319 return (GVariantType *) G_VARIANT_TYPE (new);
3323 valid_format_string (const gchar *format_string,
3327 const gchar *endptr;
3330 type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
3332 if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
3335 g_critical ("`%s' is not a valid GVariant format string",
3338 g_critical ("`%s' does not have a valid GVariant format "
3339 "string as a prefix", format_string);
3342 g_variant_type_free (type);
3347 if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
3352 fragment = g_strndup (format_string, endptr - format_string);
3353 typestr = g_variant_type_dup_string (type);
3355 g_critical ("the GVariant format string `%s' has a type of "
3356 "`%s' but the given value has a type of `%s'",
3357 fragment, typestr, g_variant_get_type_string (value));
3359 g_variant_type_free (type);
3364 g_variant_type_free (type);
3369 /* Variable Arguments {{{1 */
3370 /* We consider 2 main classes of format strings:
3372 * - recursive format strings
3373 * these are ones that result in recursion and the collection of
3374 * possibly more than one argument. Maybe types, tuples,
3375 * dictionary entries.
3377 * - leaf format string
3378 * these result in the collection of a single argument.
3380 * Leaf format strings are further subdivided into two categories:
3382 * - single non-null pointer ("nnp")
3383 * these either collect or return a single non-null pointer.
3386 * these collect or return something else (bool, number, etc).
3388 * Based on the above, the varargs handling code is split into 4 main parts:
3390 * - nnp handling code
3391 * - leaf handling code (which may invoke nnp code)
3392 * - generic handling code (may be recursive, may invoke leaf code)
3393 * - user-facing API (which invokes the generic code)
3395 * Each section implements some of the following functions:
3398 * collect the arguments for the format string as if
3399 * g_variant_new() had been called, but do nothing with them. used
3400 * for skipping over arguments when constructing a Nothing maybe
3404 * create a GVariant *
3407 * unpack a GVariant *
3409 * - free (nnp only):
3410 * free a previously allocated item
3414 g_variant_format_string_is_leaf (const gchar *str)
3416 return str[0] != 'm' && str[0] != '(' && str[0] != '{';
3420 g_variant_format_string_is_nnp (const gchar *str)
3422 return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
3423 str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
3424 str[0] == 'r' || str[0] == 'v' || str[0] == '&';
3427 /* Single non-null pointer ("nnp") {{{2 */
3429 g_variant_valist_free_nnp (const gchar *str,
3435 g_variant_iter_free (ptr);
3439 if (str[2] != '&') /* '^as' */
3455 g_variant_unref (ptr);
3462 g_assert_not_reached ();
3467 g_variant_scan_convenience (const gchar **str,
3490 g_variant_valist_new_nnp (const gchar **str,
3500 const GVariantType *type;
3503 value = g_variant_builder_end (ptr);
3504 type = g_variant_get_type (value);
3506 if G_UNLIKELY (!g_variant_type_is_array (type))
3507 g_error ("g_variant_new: expected array GVariantBuilder but "
3508 "the built value has type `%s'",
3509 g_variant_get_type_string (value));
3511 type = g_variant_type_element (type);
3513 if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
3514 g_error ("g_variant_new: expected GVariantBuilder array element "
3515 "type `%s' but the built value has element type `%s'",
3516 g_variant_type_dup_string ((GVariantType *) *str),
3517 g_variant_get_type_string (value) + 1);
3519 g_variant_type_string_scan (*str, NULL, str);
3525 return g_variant_new_string (ptr);
3528 return g_variant_new_object_path (ptr);
3531 return g_variant_new_signature (ptr);
3538 if (g_variant_scan_convenience (str, &constant, &arrays) == 's')
3539 return g_variant_new_strv (ptr, -1);
3542 return g_variant_new_bytestring_array (ptr, -1);
3544 return g_variant_new_bytestring (ptr);
3548 if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
3549 g_error ("g_variant_new: expected GVariant of type `%s' but "
3550 "received value has type `%s'",
3551 g_variant_type_dup_string ((GVariantType *) *str),
3552 g_variant_get_type_string (ptr));
3554 g_variant_type_string_scan (*str, NULL, str);
3562 if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
3563 g_error ("g_variant_new: format string `?' expects basic-typed "
3564 "GVariant, but received value has type `%s'",
3565 g_variant_get_type_string (ptr));
3570 if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
3571 g_error ("g_variant_new: format string `r` expects tuple-typed "
3572 "GVariant, but received value has type `%s'",
3573 g_variant_get_type_string (ptr));
3578 return g_variant_new_variant (ptr);
3581 g_assert_not_reached ();
3586 g_variant_valist_get_nnp (const gchar **str,
3592 g_variant_type_string_scan (*str, NULL, str);
3593 return g_variant_iter_new (value);
3597 return (gchar *) g_variant_get_string (value, NULL);
3602 return g_variant_dup_string (value, NULL);
3609 if (g_variant_scan_convenience (str, &constant, &arrays) == 's')
3612 return g_variant_get_strv (value, NULL);
3614 return g_variant_dup_strv (value, NULL);
3617 else if (arrays > 1)
3620 return g_variant_get_bytestring_array (value, NULL);
3622 return g_variant_dup_bytestring_array (value, NULL);
3628 return (gchar *) g_variant_get_bytestring (value);
3630 return g_variant_dup_bytestring (value, NULL);
3635 g_variant_type_string_scan (*str, NULL, str);
3641 return g_variant_ref (value);
3644 return g_variant_get_variant (value);
3647 g_assert_not_reached ();
3653 g_variant_valist_skip_leaf (const gchar **str,
3656 if (g_variant_format_string_is_nnp (*str))
3658 g_variant_format_string_scan (*str, NULL, str);
3659 va_arg (*app, gpointer);
3677 va_arg (*app, guint64);
3681 va_arg (*app, gdouble);
3685 g_assert_not_reached ();
3690 g_variant_valist_new_leaf (const gchar **str,
3693 if (g_variant_format_string_is_nnp (*str))
3694 return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
3699 return g_variant_new_boolean (va_arg (*app, gboolean));
3702 return g_variant_new_byte (va_arg (*app, guint));
3705 return g_variant_new_int16 (va_arg (*app, gint));
3708 return g_variant_new_uint16 (va_arg (*app, guint));
3711 return g_variant_new_int32 (va_arg (*app, gint));
3714 return g_variant_new_uint32 (va_arg (*app, guint));
3717 return g_variant_new_int64 (va_arg (*app, gint64));
3720 return g_variant_new_uint64 (va_arg (*app, guint64));
3723 return g_variant_new_handle (va_arg (*app, gint));
3726 return g_variant_new_double (va_arg (*app, gdouble));
3729 g_assert_not_reached ();
3733 /* The code below assumes this */
3734 G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
3735 G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
3738 g_variant_valist_get_leaf (const gchar **str,
3743 gpointer ptr = va_arg (*app, gpointer);
3747 g_variant_format_string_scan (*str, NULL, str);
3751 if (g_variant_format_string_is_nnp (*str))
3753 gpointer *nnp = (gpointer *) ptr;
3755 if (free && *nnp != NULL)
3756 g_variant_valist_free_nnp (*str, *nnp);
3761 *nnp = g_variant_valist_get_nnp (str, value);
3763 g_variant_format_string_scan (*str, NULL, str);
3773 *(gboolean *) ptr = g_variant_get_boolean (value);
3777 *(guchar *) ptr = g_variant_get_byte (value);
3781 *(gint16 *) ptr = g_variant_get_int16 (value);
3785 *(guint16 *) ptr = g_variant_get_uint16 (value);
3789 *(gint32 *) ptr = g_variant_get_int32 (value);
3793 *(guint32 *) ptr = g_variant_get_uint32 (value);
3797 *(gint64 *) ptr = g_variant_get_int64 (value);
3801 *(guint64 *) ptr = g_variant_get_uint64 (value);
3805 *(gint32 *) ptr = g_variant_get_handle (value);
3809 *(gdouble *) ptr = g_variant_get_double (value);
3818 *(guchar *) ptr = 0;
3823 *(guint16 *) ptr = 0;
3830 *(guint32 *) ptr = 0;
3836 *(guint64 *) ptr = 0;
3841 g_assert_not_reached ();
3844 /* Generic (recursive) {{{2 */
3846 g_variant_valist_skip (const gchar **str,
3849 if (g_variant_format_string_is_leaf (*str))
3850 g_variant_valist_skip_leaf (str, app);
3852 else if (**str == 'm') /* maybe */
3856 if (!g_variant_format_string_is_nnp (*str))
3857 va_arg (*app, gboolean);
3859 g_variant_valist_skip (str, app);
3861 else /* tuple, dictionary entry */
3863 g_assert (**str == '(' || **str == '{');
3865 while (**str != ')' && **str != '}')
3866 g_variant_valist_skip (str, app);
3872 g_variant_valist_new (const gchar **str,
3875 if (g_variant_format_string_is_leaf (*str))
3876 return g_variant_valist_new_leaf (str, app);
3878 if (**str == 'm') /* maybe */
3880 GVariantType *type = NULL;
3881 GVariant *value = NULL;
3885 if (g_variant_format_string_is_nnp (*str))
3887 gpointer nnp = va_arg (*app, gpointer);
3890 value = g_variant_valist_new_nnp (str, nnp);
3892 type = g_variant_format_string_scan_type (*str, NULL, str);
3896 gboolean just = va_arg (*app, gboolean);
3899 value = g_variant_valist_new (str, app);
3902 type = g_variant_format_string_scan_type (*str, NULL, NULL);
3903 g_variant_valist_skip (str, app);
3907 value = g_variant_new_maybe (type, value);
3910 g_variant_type_free (type);
3914 else /* tuple, dictionary entry */
3919 g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
3922 g_assert (**str == '{');
3923 g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
3927 while (**str != ')' && **str != '}')
3928 g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
3931 return g_variant_builder_end (&b);
3936 g_variant_valist_get (const gchar **str,
3941 if (g_variant_format_string_is_leaf (*str))
3942 g_variant_valist_get_leaf (str, value, free, app);
3944 else if (**str == 'm')
3949 value = g_variant_get_maybe (value);
3951 if (!g_variant_format_string_is_nnp (*str))
3953 gboolean *ptr = va_arg (*app, gboolean *);
3956 *ptr = value != NULL;
3959 g_variant_valist_get (str, value, free, app);
3962 g_variant_unref (value);
3965 else /* tuple, dictionary entry */
3969 g_assert (**str == '(' || **str == '{');
3972 while (**str != ')' && **str != '}')
3976 GVariant *child = g_variant_get_child_value (value, index++);
3977 g_variant_valist_get (str, child, free, app);
3978 g_variant_unref (child);
3981 g_variant_valist_get (str, NULL, free, app);
3987 /* User-facing API {{{2 */
3990 * @format_string: a #GVariant format string
3991 * @...: arguments, as per @format_string
3992 * @returns: a new floating #GVariant instance
3994 * Creates a new #GVariant instance.
3996 * Think of this function as an analogue to g_strdup_printf().
3998 * The type of the created instance and the arguments that are
3999 * expected by this function are determined by @format_string. See the
4000 * section on <link linkend='gvariant-format-strings'>GVariant Format
4001 * Strings</link>. Please note that the syntax of the format string is
4002 * very likely to be extended in the future.
4004 * The first character of the format string must not be '*' '?' '@' or
4005 * 'r'; in essence, a new #GVariant must always be constructed by this
4006 * function (and not merely passed through it unmodified).
4011 g_variant_new (const gchar *format_string,
4017 g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
4018 format_string[0] != '?' && format_string[0] != '@' &&
4019 format_string[0] != '*' && format_string[0] != 'r',
4022 va_start (ap, format_string);
4023 value = g_variant_new_va (format_string, NULL, &ap);
4031 * @format_string: a string that is prefixed with a format string
4032 * @endptr: (allow-none) (default NULL): location to store the end pointer,
4034 * @app: a pointer to a #va_list
4035 * @returns: a new, usually floating, #GVariant
4037 * This function is intended to be used by libraries based on
4038 * #GVariant that want to provide g_variant_new()-like functionality
4041 * The API is more general than g_variant_new() to allow a wider range
4044 * @format_string must still point to a valid format string, but it only
4045 * needs to be nul-terminated if @endptr is %NULL. If @endptr is
4046 * non-%NULL then it is updated to point to the first character past the
4047 * end of the format string.
4049 * @app is a pointer to a #va_list. The arguments, according to
4050 * @format_string, are collected from this #va_list and the list is left
4051 * pointing to the argument following the last.
4053 * These two generalisations allow mixing of multiple calls to
4054 * g_variant_new_va() and g_variant_get_va() within a single actual
4055 * varargs call by the user.
4057 * The return value will be floating if it was a newly created GVariant
4058 * instance (for example, if the format string was "(ii)"). In the case
4059 * that the format_string was '*', '?', 'r', or a format starting with
4060 * '@' then the collected #GVariant pointer will be returned unmodified,
4061 * without adding any additional references.
4063 * In order to behave correctly in all cases it is necessary for the
4064 * calling function to g_variant_ref_sink() the return result before
4065 * returning control to the user that originally provided the pointer.
4066 * At this point, the caller will have their own full reference to the
4067 * result. This can also be done by adding the result to a container,
4068 * or by passing it to another g_variant_new() call.
4073 g_variant_new_va (const gchar *format_string,
4074 const gchar **endptr,
4079 g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
4081 g_return_val_if_fail (app != NULL, NULL);
4083 value = g_variant_valist_new (&format_string, app);
4086 *endptr = format_string;
4093 * @value: a #GVariant instance
4094 * @format_string: a #GVariant format string
4095 * @...: arguments, as per @format_string
4097 * Deconstructs a #GVariant instance.
4099 * Think of this function as an analogue to scanf().
4101 * The arguments that are expected by this function are entirely
4102 * determined by @format_string. @format_string also restricts the
4103 * permissible types of @value. It is an error to give a value with
4104 * an incompatible type. See the section on <link
4105 * linkend='gvariant-format-strings'>GVariant Format Strings</link>.
4106 * Please note that the syntax of the format string is very likely to be
4107 * extended in the future.
4112 g_variant_get (GVariant *value,
4113 const gchar *format_string,
4118 g_return_if_fail (valid_format_string (format_string, TRUE, value));
4120 /* if any direct-pointer-access formats are in use, flatten first */
4121 if (strchr (format_string, '&'))
4122 g_variant_get_data (value);
4124 va_start (ap, format_string);
4125 g_variant_get_va (value, format_string, NULL, &ap);
4131 * @value: a #GVariant
4132 * @format_string: a string that is prefixed with a format string
4133 * @endptr: (allow-none) (default NULL): location to store the end pointer,
4135 * @app: a pointer to a #va_list
4137 * This function is intended to be used by libraries based on #GVariant
4138 * that want to provide g_variant_get()-like functionality to their
4141 * The API is more general than g_variant_get() to allow a wider range
4144 * @format_string must still point to a valid format string, but it only
4145 * need to be nul-terminated if @endptr is %NULL. If @endptr is
4146 * non-%NULL then it is updated to point to the first character past the
4147 * end of the format string.
4149 * @app is a pointer to a #va_list. The arguments, according to
4150 * @format_string, are collected from this #va_list and the list is left
4151 * pointing to the argument following the last.
4153 * These two generalisations allow mixing of multiple calls to
4154 * g_variant_new_va() and g_variant_get_va() within a single actual
4155 * varargs call by the user.
4160 g_variant_get_va (GVariant *value,
4161 const gchar *format_string,
4162 const gchar **endptr,
4165 g_return_if_fail (valid_format_string (format_string, !endptr, value));
4166 g_return_if_fail (value != NULL);
4167 g_return_if_fail (app != NULL);
4169 /* if any direct-pointer-access formats are in use, flatten first */
4170 if (strchr (format_string, '&'))
4171 g_variant_get_data (value);
4173 g_variant_valist_get (&format_string, value, FALSE, app);
4176 *endptr = format_string;
4179 /* Varargs-enabled Utility Functions {{{1 */
4182 * g_variant_builder_add:
4183 * @builder: a #GVariantBuilder
4184 * @format_string: a #GVariant varargs format string
4185 * @...: arguments, as per @format_string
4187 * Adds to a #GVariantBuilder.
4189 * This call is a convenience wrapper that is exactly equivalent to
4190 * calling g_variant_new() followed by g_variant_builder_add_value().
4192 * This function might be used as follows:
4196 * make_pointless_dictionary (void)
4198 * GVariantBuilder *builder;
4201 * builder = g_variant_builder_new (G_VARIANT_TYPE_ARRAY);
4202 * for (i = 0; i < 16; i++)
4206 * sprintf (buf, "%d", i);
4207 * g_variant_builder_add (builder, "{is}", i, buf);
4210 * return g_variant_builder_end (builder);
4217 g_variant_builder_add (GVariantBuilder *builder,
4218 const gchar *format_string,
4224 va_start (ap, format_string);
4225 variant = g_variant_new_va (format_string, NULL, &ap);
4228 g_variant_builder_add_value (builder, variant);
4232 * g_variant_get_child:
4233 * @value: a container #GVariant
4234 * @index_: the index of the child to deconstruct
4235 * @format_string: a #GVariant format string
4236 * @...: arguments, as per @format_string
4238 * Reads a child item out of a container #GVariant instance and
4239 * deconstructs it according to @format_string. This call is
4240 * essentially a combination of g_variant_get_child_value() and
4246 g_variant_get_child (GVariant *value,
4248 const gchar *format_string,
4254 child = g_variant_get_child_value (value, index_);
4255 g_return_if_fail (valid_format_string (format_string, TRUE, child));
4257 va_start (ap, format_string);
4258 g_variant_get_va (child, format_string, NULL, &ap);
4261 g_variant_unref (child);
4265 * g_variant_iter_next:
4266 * @iter: a #GVariantIter
4267 * @format_string: a GVariant format string
4268 * @...: the arguments to unpack the value into
4269 * @returns: %TRUE if a value was unpacked, or %FALSE if there as no
4272 * Gets the next item in the container and unpacks it into the variable
4273 * argument list according to @format_string, returning %TRUE.
4275 * If no more items remain then %FALSE is returned.
4277 * All of the pointers given on the variable arguments list of this
4278 * function are assumed to point at uninitialised memory. It is the
4279 * responsibility of the caller to free all of the values returned by
4280 * the unpacking process.
4282 * See the section on <link linkend='gvariant-format-strings'>GVariant
4283 * Format Strings</link>.
4286 * <title>Memory management with g_variant_iter_next()</title>
4288 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4290 * iterate_dictionary (GVariant *dictionary)
4292 * GVariantIter iter;
4296 * g_variant_iter_init (&iter, dictionary);
4297 * while (g_variant_iter_next (&iter, "{sv}", &key, &value))
4299 * g_print ("Item '%s' has type '%s'\n", key,
4300 * g_variant_get_type_string (value));
4302 * /<!-- -->* must free data for ourselves *<!-- -->/
4303 * g_variant_unref (value);
4310 * For a solution that is likely to be more convenient to C programmers
4311 * when dealing with loops, see g_variant_iter_loop().
4316 g_variant_iter_next (GVariantIter *iter,
4317 const gchar *format_string,
4322 value = g_variant_iter_next_value (iter);
4324 g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
4331 va_start (ap, format_string);
4332 g_variant_valist_get (&format_string, value, FALSE, &ap);
4335 g_variant_unref (value);
4338 return value != NULL;
4342 * g_variant_iter_loop:
4343 * @iter: a #GVariantIter
4344 * @format_string: a GVariant format string
4345 * @...: the arguments to unpack the value into
4346 * @returns: %TRUE if a value was unpacked, or %FALSE if there as no
4349 * Gets the next item in the container and unpacks it into the variable
4350 * argument list according to @format_string, returning %TRUE.
4352 * If no more items remain then %FALSE is returned.
4354 * On the first call to this function, the pointers appearing on the
4355 * variable argument list are assumed to point at uninitialised memory.
4356 * On the second and later calls, it is assumed that the same pointers
4357 * will be given and that they will point to the memory as set by the
4358 * previous call to this function. This allows the previous values to
4359 * be freed, as appropriate.
4361 * This function is intended to be used with a while loop as
4362 * demonstrated in the following example. This function can only be
4363 * used when iterating over an array. It is only valid to call this
4364 * function with a string constant for the format string and the same
4365 * string constant must be used each time. Mixing calls to this
4366 * function and g_variant_iter_next() or g_variant_iter_next_value() on
4367 * the same iterator is not recommended.
4369 * See the section on <link linkend='gvariant-format-strings'>GVariant
4370 * Format Strings</link>.
4373 * <title>Memory management with g_variant_iter_loop()</title>
4375 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4377 * iterate_dictionary (GVariant *dictionary)
4379 * GVariantIter iter;
4383 * g_variant_iter_init (&iter, dictionary);
4384 * while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
4386 * g_print ("Item '%s' has type '%s'\n", key,
4387 * g_variant_get_type_string (value));
4389 * /<!-- -->* no need to free 'key' and 'value' here *<!-- -->/
4395 * If you want a slightly less magical alternative that requires more
4396 * typing, see g_variant_iter_next().
4401 g_variant_iter_loop (GVariantIter *iter,
4402 const gchar *format_string,
4405 gboolean first_time = GVSI(iter)->loop_format == NULL;
4409 g_return_val_if_fail (first_time ||
4410 format_string == GVSI(iter)->loop_format,
4415 TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
4416 GVSI(iter)->loop_format = format_string;
4418 if (strchr (format_string, '&'))
4419 g_variant_get_data (GVSI(iter)->value);
4422 value = g_variant_iter_next_value (iter);
4424 g_return_val_if_fail (!first_time ||
4425 valid_format_string (format_string, TRUE, value),
4428 va_start (ap, format_string);
4429 g_variant_valist_get (&format_string, value, !first_time, &ap);
4433 g_variant_unref (value);
4435 return value != NULL;
4438 /* Serialised data {{{1 */
4440 g_variant_deep_copy (GVariant *value)
4442 switch (g_variant_classify (value))
4444 case G_VARIANT_CLASS_MAYBE:
4445 case G_VARIANT_CLASS_ARRAY:
4446 case G_VARIANT_CLASS_TUPLE:
4447 case G_VARIANT_CLASS_DICT_ENTRY:
4448 case G_VARIANT_CLASS_VARIANT:
4450 GVariantBuilder builder;
4454 g_variant_builder_init (&builder, g_variant_get_type (value));
4455 g_variant_iter_init (&iter, value);
4457 while ((child = g_variant_iter_next_value (&iter)))
4459 g_variant_builder_add_value (&builder, g_variant_deep_copy (child));
4460 g_variant_unref (child);
4463 return g_variant_builder_end (&builder);
4466 case G_VARIANT_CLASS_BOOLEAN:
4467 return g_variant_new_boolean (g_variant_get_boolean (value));
4469 case G_VARIANT_CLASS_BYTE:
4470 return g_variant_new_byte (g_variant_get_byte (value));
4472 case G_VARIANT_CLASS_INT16:
4473 return g_variant_new_int16 (g_variant_get_int16 (value));
4475 case G_VARIANT_CLASS_UINT16:
4476 return g_variant_new_uint16 (g_variant_get_uint16 (value));
4478 case G_VARIANT_CLASS_INT32:
4479 return g_variant_new_int32 (g_variant_get_int32 (value));
4481 case G_VARIANT_CLASS_UINT32:
4482 return g_variant_new_uint32 (g_variant_get_uint32 (value));
4484 case G_VARIANT_CLASS_INT64:
4485 return g_variant_new_int64 (g_variant_get_int64 (value));
4487 case G_VARIANT_CLASS_UINT64:
4488 return g_variant_new_uint64 (g_variant_get_uint64 (value));
4490 case G_VARIANT_CLASS_HANDLE:
4491 return g_variant_new_handle (g_variant_get_handle (value));
4493 case G_VARIANT_CLASS_DOUBLE:
4494 return g_variant_new_double (g_variant_get_double (value));
4496 case G_VARIANT_CLASS_STRING:
4497 return g_variant_new_string (g_variant_get_string (value, NULL));
4499 case G_VARIANT_CLASS_OBJECT_PATH:
4500 return g_variant_new_object_path (g_variant_get_string (value, NULL));
4502 case G_VARIANT_CLASS_SIGNATURE:
4503 return g_variant_new_signature (g_variant_get_string (value, NULL));
4506 g_assert_not_reached ();
4510 * g_variant_get_normal_form:
4511 * @value: a #GVariant
4512 * @returns: a trusted #GVariant
4514 * Gets a #GVariant instance that has the same value as @value and is
4515 * trusted to be in normal form.
4517 * If @value is already trusted to be in normal form then a new
4518 * reference to @value is returned.
4520 * If @value is not already trusted, then it is scanned to check if it
4521 * is in normal form. If it is found to be in normal form then it is
4522 * marked as trusted and a new reference to it is returned.
4524 * If @value is found not to be in normal form then a new trusted
4525 * #GVariant is created with the same value as @value.
4527 * It makes sense to call this function if you've received #GVariant
4528 * data from untrusted sources and you want to ensure your serialised
4529 * output is definitely in normal form.
4534 g_variant_get_normal_form (GVariant *value)
4538 if (g_variant_is_normal_form (value))
4539 return g_variant_ref (value);
4541 trusted = g_variant_deep_copy (value);
4542 g_assert (g_variant_is_trusted (trusted));
4544 return g_variant_ref_sink (trusted);
4548 * g_variant_byteswap:
4549 * @value: a #GVariant
4550 * @returns: the byteswapped form of @value
4552 * Performs a byteswapping operation on the contents of @value. The
4553 * result is that all multi-byte numeric data contained in @value is
4554 * byteswapped. That includes 16, 32, and 64bit signed and unsigned
4555 * integers as well as file handles and double precision floating point
4558 * This function is an identity mapping on any value that does not
4559 * contain multi-byte numeric data. That include strings, booleans,
4560 * bytes and containers containing only these things (recursively).
4562 * The returned value is always in normal form and is marked as trusted.
4567 g_variant_byteswap (GVariant *value)
4569 GVariantTypeInfo *type_info;
4573 type_info = g_variant_get_type_info (value);
4575 g_variant_type_info_query (type_info, &alignment, NULL);
4578 /* (potentially) contains multi-byte numeric data */
4580 GVariantSerialised serialised;
4584 trusted = g_variant_get_normal_form (value);
4585 serialised.type_info = g_variant_get_type_info (trusted);
4586 serialised.size = g_variant_get_size (trusted);
4587 serialised.data = g_malloc (serialised.size);
4588 g_variant_store (trusted, serialised.data);
4589 g_variant_unref (trusted);
4591 g_variant_serialised_byteswap (serialised);
4593 buffer = g_buffer_new_take_data (serialised.data, serialised.size);
4594 new = g_variant_new_from_buffer (g_variant_get_type (value), buffer, TRUE);
4595 g_buffer_unref (buffer);
4598 /* contains no multi-byte data */
4601 return g_variant_ref_sink (new);
4605 * g_variant_new_from_data:
4606 * @type: a definite #GVariantType
4607 * @data: the serialised data
4608 * @size: the size of @data
4609 * @trusted: %TRUE if @data is definitely in normal form
4610 * @notify: function to call when @data is no longer needed
4611 * @user_data: data for @notify
4612 * @returns: a new floating #GVariant of type @type
4614 * Creates a new #GVariant instance from serialised data.
4616 * @type is the type of #GVariant instance that will be constructed.
4617 * The interpretation of @data depends on knowing the type.
4619 * @data is not modified by this function and must remain valid with an
4620 * unchanging value until such a time as @notify is called with
4621 * @user_data. If the contents of @data change before that time then
4622 * the result is undefined.
4624 * If @data is trusted to be serialised data in normal form then
4625 * @trusted should be %TRUE. This applies to serialised data created
4626 * within this process or read from a trusted location on the disk (such
4627 * as a file installed in /usr/lib alongside your application). You
4628 * should set trusted to %FALSE if @data is read from the network, a
4629 * file in the user's home directory, etc.
4631 * @notify will be called with @user_data when @data is no longer
4632 * needed. The exact time of this call is unspecified and might even be
4633 * before this function returns.
4638 g_variant_new_from_data (const GVariantType *type,
4642 GDestroyNotify notify,
4648 g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
4649 g_return_val_if_fail (data != NULL || size == 0, NULL);
4652 buffer = g_buffer_new_from_pointer (data, size, notify, user_data);
4654 buffer = g_buffer_new_from_static_data (data, size);
4656 value = g_variant_new_from_buffer (type, buffer, trusted);
4657 g_buffer_unref (buffer);
4663 /* vim:set foldmethod=marker: */