2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the licence, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
20 * Author: Ryan Lortie <desrt@desrt.ca>
27 #include <glib/gvariant-serialiser.h>
28 #include "gvariant-internal.h"
29 #include <glib/gvariant-core.h>
30 #include <glib/gtestutils.h>
31 #include <glib/gstrfuncs.h>
32 #include <glib/ghash.h>
33 #include <glib/gmem.h>
42 * @short_description: strongly typed value datatype
43 * @see_also: GVariantType
45 * #GVariant is a variant datatype; it stores a value along with
46 * information about the type of that value. The range of possible
47 * values is determined by the type. The type system used by #GVariant
50 * #GVariant instances always have a type and a value (which are given
51 * at construction time). The type and value of a #GVariant instance
52 * can never change other than by the #GVariant itself being
53 * destroyed. A #GVariant can not contain a pointer.
55 * #GVariant is reference counted using g_variant_ref() and
56 * g_variant_unref(). #GVariant also has floating reference counts --
57 * see g_variant_ref_sink().
59 * #GVariant is completely threadsafe. A #GVariant instance can be
60 * concurrently accessed in any way from any number of threads without
63 * #GVariant is heavily optimised for dealing with data in serialised
64 * form. It works particularly well with data located in memory-mapped
65 * files. It can perform nearly all deserialisation operations in a
66 * small constant time, usually touching only a single memory page.
67 * Serialised #GVariant data can also be sent over the network.
69 * #GVariant is largely compatible with DBus. Almost all types of
70 * #GVariant instances can be sent over DBus. See #GVariantType for
73 * For convenience to C programmers, #GVariant features powerful
74 * varargs-based value construction and destruction. This feature is
75 * designed to be embedded in other libraries.
77 * There is a Python-inspired text language for describing #GVariant
78 * values. #GVariant includes a printer for this language and a parser
79 * with type inferencing.
82 * <title>Memory Use</title>
84 * #GVariant tries to be quite efficient with respect to memory use.
85 * This section gives a rough idea of how much memory is used by the
86 * current implementation. The information here is subject to change
90 * The memory allocated by #GVariant can be grouped into 4 broad
91 * purposes: memory for serialised data, memory for the type
92 * information cache, buffer management memory and memory for the
93 * #GVariant structure itself.
96 * <title>Serialised Data Memory</title>
98 * This is the memory that is used for storing GVariant data in
99 * serialised form. This is what would be sent over the network or
100 * what would end up on disk.
103 * The amount of memory required to store a boolean is 1 byte. 16,
104 * 32 and 64 bit integers and double precision floating point numbers
105 * use their "natural" size. Strings (including object path and
106 * signature strings) are stored with a nul terminator, and as such
107 * use the length of the string plus 1 byte.
110 * Maybe types use no space at all to represent the null value and
111 * use the same amount of space (sometimes plus one byte) as the
112 * equivalent non-maybe-typed value to represent the non-null case.
115 * Arrays use the amount of space required to store each of their
116 * members, concatenated. Additionally, if the items stored in an
117 * array are not of a fixed-size (ie: strings, other arrays, etc)
118 * then an additional framing offset is stored for each item. The
119 * size of this offset is either 1, 2 or 4 bytes depending on the
120 * overall size of the container. Additionally, extra padding bytes
121 * are added as required for alignment of child values.
124 * Tuples (including dictionary entries) use the amount of space
125 * required to store each of their members, concatenated, plus one
126 * framing offset (as per arrays) for each non-fixed-sized item in
127 * the tuple, except for the last one. Additionally, extra padding
128 * bytes are added as required for alignment of child values.
131 * Variants use the same amount of space as the item inside of the
132 * variant, plus 1 byte, plus the length of the type string for the
133 * item inside the variant.
136 * As an example, consider a dictionary mapping strings to variants.
137 * In the case that the dictionary is empty, 0 bytes are required for
141 * If we add an item "width" that maps to the int32 value of 500 then
142 * we will use 4 byte to store the int32 (so 6 for the variant
143 * containing it) and 6 bytes for the string. The variant must be
144 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
145 * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
146 * for the dictionary entry. An additional 1 byte is added to the
147 * array as a framing offset making a total of 15 bytes.
150 * If we add another entry, "title" that maps to a nullable string
151 * that happens to have a value of null, then we use 0 bytes for the
152 * null value (and 3 bytes for the variant to contain it along with
153 * its type string) plus 6 bytes for the string. Again, we need 2
154 * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
157 * We now require extra padding between the two items in the array.
158 * After the 14 bytes of the first item, that's 2 bytes required. We
159 * now require 2 framing offsets for an extra two bytes. 14 + 2 + 11
160 * + 2 = 29 bytes to encode the entire two-item dictionary.
164 * <title>Type Information Cache</title>
166 * For each GVariant type that currently exists in the program a type
167 * information structure is kept in the type information cache. The
168 * type information structure is required for rapid deserialisation.
171 * Continuing with the above example, if a #GVariant exists with the
172 * type "a{sv}" then a type information struct will exist for
173 * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
174 * will share the same type information. Additionally, all
175 * single-digit types are stored in read-only static memory and do
176 * not contribute to the writable memory footprint of a program using
180 * Aside from the type information structures stored in read-only
181 * memory, there are two forms of type information. One is used for
182 * container types where there is a single element type: arrays and
183 * maybe types. The other is used for container types where there
184 * are multiple element types: tuples and dictionary entries.
187 * Array type info structures are 6 * sizeof (void *), plus the
188 * memory required to store the type string itself. This means that
189 * on 32bit systems, the cache entry for "a{sv}" would require 30
190 * bytes of memory (plus malloc overhead).
193 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
194 * sizeof (void *) for each item in the tuple, plus the memory
195 * required to store the type string itself. A 2-item tuple, for
196 * example, would have a type information structure that consumed
197 * writable memory in the size of 14 * sizeof (void *) (plus type
198 * string) This means that on 32bit systems, the cache entry for
199 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
202 * This means that in total, for our "a{sv}" example, 91 bytes of
203 * type information would be allocated.
206 * The type information cache, additionally, uses a #GHashTable to
207 * store and lookup the cached items and stores a pointer to this
208 * hash table in static storage. The hash table is freed when there
209 * are zero items in the type cache.
212 * Although these sizes may seem large it is important to remember
213 * that a program will probably only have a very small number of
214 * different types of values in it and that only one type information
215 * structure is required for many different values of the same type.
219 * <title>Buffer Management Memory</title>
221 * #GVariant uses an internal buffer management structure to deal
222 * with the various different possible sources of serialised data
223 * that it uses. The buffer is responsible for ensuring that the
224 * correct call is made when the data is no longer in use by
225 * #GVariant. This may involve a g_free() or a g_slice_free() or
226 * even g_mapped_file_unref().
229 * One buffer management structure is used for each chunk of
230 * serialised data. The size of the buffer management structure is 4
231 * * (void *). On 32bit systems, that's 16 bytes.
235 * <title>GVariant structure</title>
237 * The size of a #GVariant structure is 6 * (void *). On 32 bit
238 * systems, that's 24 bytes.
241 * #GVariant structures only exist if they are explicitly created
242 * with API calls. For example, if a #GVariant is constructed out of
243 * serialised data for the example given above (with the dictionary)
244 * then although there are 9 individual values that comprise the
245 * entire dictionary (two keys, two values, two variants containing
246 * the values, two dictionary entries, plus the dictionary itself),
247 * only 1 #GVariant instance exists -- the one refering to the
251 * If calls are made to start accessing the other values then
252 * #GVariant instances will exist for those values only for as long
253 * as they are in use (ie: until you call g_variant_unref()). The
254 * type information is shared. The serialised data and the buffer
255 * management structure for that serialised data is shared by the
260 * <title>Summary</title>
262 * To put the entire example together, for our dictionary mapping
263 * strings to variants (with two entries, as given above), we are
264 * using 91 bytes of memory for type information, 29 byes of memory
265 * for the serialised data, 16 bytes for buffer management and 24
266 * bytes for the #GVariant instance, or a total of 160 bytes, plus
267 * malloc overhead. If we were to use g_variant_get_child_value() to
268 * access the two dictionary entries, we would use an additional 48
269 * bytes. If we were to have other dictionaries of the same type, we
270 * would use more memory for the serialised data and buffer
271 * management for those dictionaries, but the type information would
278 /* definition of GVariant structure is in gvariant-core.c */
280 /* this is a g_return_val_if_fail() for making
281 * sure a (GVariant *) has the required type.
283 #define TYPE_CHECK(value, TYPE, val) \
284 if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
285 g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
286 "g_variant_is_of_type (" #value \
291 /* Numeric Type Constructor/Getters {{{1 */
293 * g_variant_new_from_trusted:
294 * @type: the #GVariantType
295 * @data: the data to use
296 * @size: the size of @data
297 * @returns: a new floating #GVariant
299 * Constructs a new trusted #GVariant instance from the provided data.
300 * This is used to implement g_variant_new_* for all the basic types.
303 g_variant_new_from_trusted (const GVariantType *type,
310 buffer = g_buffer_new_from_data (data, size);
311 value = g_variant_new_from_buffer (type, buffer, TRUE);
312 g_buffer_unref (buffer);
318 * g_variant_new_boolean:
319 * @boolean: a #gboolean value
320 * @returns: a new boolean #GVariant instance
322 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
327 g_variant_new_boolean (gboolean value)
331 return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
335 * g_variant_get_boolean:
336 * @value: a boolean #GVariant instance
337 * @returns: %TRUE or %FALSE
339 * Returns the boolean value of @value.
341 * It is an error to call this function with a @value of any type
342 * other than %G_VARIANT_TYPE_BOOLEAN.
347 g_variant_get_boolean (GVariant *value)
351 TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
353 data = g_variant_get_data (value);
355 return data != NULL ? *data != 0 : FALSE;
358 /* the constructors and accessors for byte, int{16,32,64}, handles and
359 * doubles all look pretty much exactly the same, so we reduce
362 #define NUMERIC_TYPE(TYPE, type, ctype) \
363 GVariant *g_variant_new_##type (ctype value) { \
364 return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
365 &value, sizeof value); \
367 ctype g_variant_get_##type (GVariant *value) { \
369 TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
370 data = g_variant_get_data (value); \
371 return data != NULL ? *data : 0; \
376 * g_variant_new_byte:
377 * @byte: a #guint8 value
378 * @returns: a new byte #GVariant instance
380 * Creates a new byte #GVariant instance.
385 * g_variant_get_byte:
386 * @value: a byte #GVariant instance
387 * @returns: a #guchar
389 * Returns the byte value of @value.
391 * It is an error to call this function with a @value of any type
392 * other than %G_VARIANT_TYPE_BYTE.
396 NUMERIC_TYPE (BYTE, byte, guchar)
399 * g_variant_new_int16:
400 * @int16: a #gint16 value
401 * @returns: a new int16 #GVariant instance
403 * Creates a new int16 #GVariant instance.
408 * g_variant_get_int16:
409 * @value: a int16 #GVariant instance
410 * @returns: a #gint16
412 * Returns the 16-bit signed integer value of @value.
414 * It is an error to call this function with a @value of any type
415 * other than %G_VARIANT_TYPE_INT16.
419 NUMERIC_TYPE (INT16, int16, gint16)
422 * g_variant_new_uint16:
423 * @uint16: a #guint16 value
424 * @returns: a new uint16 #GVariant instance
426 * Creates a new uint16 #GVariant instance.
431 * g_variant_get_uint16:
432 * @value: a uint16 #GVariant instance
433 * @returns: a #guint16
435 * Returns the 16-bit unsigned integer value of @value.
437 * It is an error to call this function with a @value of any type
438 * other than %G_VARIANT_TYPE_UINT16.
442 NUMERIC_TYPE (UINT16, uint16, guint16)
445 * g_variant_new_int32:
446 * @int32: a #gint32 value
447 * @returns: a new int32 #GVariant instance
449 * Creates a new int32 #GVariant instance.
454 * g_variant_get_int32:
455 * @value: a int32 #GVariant instance
456 * @returns: a #gint32
458 * Returns the 32-bit signed integer value of @value.
460 * It is an error to call this function with a @value of any type
461 * other than %G_VARIANT_TYPE_INT32.
465 NUMERIC_TYPE (INT32, int32, gint32)
468 * g_variant_new_uint32:
469 * @uint32: a #guint32 value
470 * @returns: a new uint32 #GVariant instance
472 * Creates a new uint32 #GVariant instance.
477 * g_variant_get_uint32:
478 * @value: a uint32 #GVariant instance
479 * @returns: a #guint32
481 * Returns the 32-bit unsigned integer value of @value.
483 * It is an error to call this function with a @value of any type
484 * other than %G_VARIANT_TYPE_UINT32.
488 NUMERIC_TYPE (UINT32, uint32, guint32)
491 * g_variant_new_int64:
492 * @int64: a #gint64 value
493 * @returns: a new int64 #GVariant instance
495 * Creates a new int64 #GVariant instance.
500 * g_variant_get_int64:
501 * @value: a int64 #GVariant instance
502 * @returns: a #gint64
504 * Returns the 64-bit signed integer value of @value.
506 * It is an error to call this function with a @value of any type
507 * other than %G_VARIANT_TYPE_INT64.
511 NUMERIC_TYPE (INT64, int64, gint64)
514 * g_variant_new_uint64:
515 * @uint64: a #guint64 value
516 * @returns: a new uint64 #GVariant instance
518 * Creates a new uint64 #GVariant instance.
523 * g_variant_get_uint64:
524 * @value: a uint64 #GVariant instance
525 * @returns: a #guint64
527 * Returns the 64-bit unsigned integer value of @value.
529 * It is an error to call this function with a @value of any type
530 * other than %G_VARIANT_TYPE_UINT64.
534 NUMERIC_TYPE (UINT64, uint64, guint64)
537 * g_variant_new_handle:
538 * @handle: a #gint32 value
539 * @returns: a new handle #GVariant instance
541 * Creates a new handle #GVariant instance.
543 * By convention, handles are indexes into an array of file descriptors
544 * that are sent alongside a DBus message. If you're not interacting
545 * with DBus, you probably don't need them.
550 * g_variant_get_handle:
551 * @value: a handle #GVariant instance
552 * @returns: a #gint32
554 * Returns the 32-bit signed integer value of @value.
556 * It is an error to call this function with a @value of any type other
557 * than %G_VARIANT_TYPE_HANDLE.
559 * By convention, handles are indexes into an array of file descriptors
560 * that are sent alongside a DBus message. If you're not interacting
561 * with DBus, you probably don't need them.
565 NUMERIC_TYPE (HANDLE, handle, gint32)
568 * g_variant_new_double:
569 * @floating: a #gdouble floating point value
570 * @returns: a new double #GVariant instance
572 * Creates a new double #GVariant instance.
577 * g_variant_get_double:
578 * @value: a double #GVariant instance
579 * @returns: a #gdouble
581 * Returns the double precision floating point value of @value.
583 * It is an error to call this function with a @value of any type
584 * other than %G_VARIANT_TYPE_DOUBLE.
588 NUMERIC_TYPE (DOUBLE, double, gdouble)
590 /* Container type Constructor / Deconstructors {{{1 */
592 * g_variant_new_maybe:
593 * @child_type: the #GVariantType of the child
594 * @child: the child value, or %NULL
595 * @returns: a new #GVariant maybe instance
597 * Depending on if @value is %NULL, either wraps @value inside of a
598 * maybe container or creates a Nothing instance for the given @type.
600 * At least one of @type and @value must be non-%NULL. If @type is
601 * non-%NULL then it must be a definite type. If they are both
602 * non-%NULL then @type must be the type of @value.
607 g_variant_new_maybe (const GVariantType *child_type,
610 GVariantType *maybe_type;
613 g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
615 g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
616 g_return_val_if_fail (child_type == NULL || child == NULL ||
617 g_variant_is_of_type (child, child_type),
620 if (child_type == NULL)
621 child_type = g_variant_get_type (child);
623 maybe_type = g_variant_type_new_maybe (child_type);
630 children = g_new (GVariant *, 1);
631 children[0] = g_variant_ref_sink (child);
632 trusted = g_variant_is_trusted (children[0]);
634 value = g_variant_new_from_children (maybe_type, children, 1, trusted);
637 value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
639 g_variant_type_free (maybe_type);
645 * g_variant_get_maybe:
646 * @value: a maybe-typed value
647 * @returns: the contents of @value, or %NULL
649 * Given a maybe-typed #GVariant instance, extract its value. If the
650 * value is Nothing, then this function returns %NULL.
655 g_variant_get_maybe (GVariant *value)
657 TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
659 if (g_variant_n_children (value))
660 return g_variant_get_child_value (value, 0);
666 * g_variant_new_variant:
667 * @value: a #GVariance instance
668 * @returns: a new variant #GVariant instance
670 * Boxes @value. The result is a #GVariant instance representing a
671 * variant containing the original value.
676 g_variant_new_variant (GVariant *value)
678 g_return_val_if_fail (value != NULL, NULL);
680 g_variant_ref_sink (value);
682 return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
683 g_memdup (&value, sizeof value),
684 1, g_variant_is_trusted (value));
688 * g_variant_get_variant:
689 * @value: a variant #GVariance instance
690 * @returns: the item contained in the variant
692 * Unboxes @value. The result is the #GVariant instance that was
693 * contained in @value.
698 g_variant_get_variant (GVariant *value)
700 TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
702 return g_variant_get_child_value (value, 0);
706 * g_variant_new_array:
707 * @child_type: the element type of the new array
708 * @children: an array of #GVariant pointers, the children
709 * @n_children: the length of @children
710 * @returns: a new #GVariant array
712 * Creates a new #GVariant array from @children.
714 * @child_type must be non-%NULL if @n_children is zero. Otherwise, the
715 * child type is determined by inspecting the first element of the
716 * @children array. If @child_type is non-%NULL then it must be a
719 * The items of the array are taken from the @children array. No entry
720 * in the @children array may be %NULL.
722 * All items in the array must have the same type, which must be the
723 * same as @child_type, if given.
728 g_variant_new_array (const GVariantType *child_type,
729 GVariant * const *children,
732 GVariantType *array_type;
733 GVariant **my_children;
738 g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
739 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
740 g_return_val_if_fail (child_type == NULL ||
741 g_variant_type_is_definite (child_type), NULL);
743 my_children = g_new (GVariant *, n_children);
746 if (child_type == NULL)
747 child_type = g_variant_get_type (children[0]);
748 array_type = g_variant_type_new_array (child_type);
750 for (i = 0; i < n_children; i++)
752 TYPE_CHECK (children[i], child_type, NULL);
753 my_children[i] = g_variant_ref_sink (children[i]);
754 trusted &= g_variant_is_trusted (children[i]);
757 value = g_variant_new_from_children (array_type, my_children,
758 n_children, trusted);
759 g_variant_type_free (array_type);
765 * g_variant_make_tuple_type:
766 * @children: an array of GVariant *
767 * @n_children: the length of @children
769 * Return the type of a tuple containing @children as its items.
771 static GVariantType *
772 g_variant_make_tuple_type (GVariant * const *children,
775 const GVariantType **types;
779 types = g_new (const GVariantType *, n_children);
781 for (i = 0; i < n_children; i++)
782 types[i] = g_variant_get_type (children[i]);
784 type = g_variant_type_new_tuple (types, n_children);
791 * g_variant_new_tuple:
792 * @children: the items to make the tuple out of
793 * @n_children: the length of @children
794 * @returns: a new #GVariant tuple
796 * Creates a new tuple #GVariant out of the items in @children. The
797 * type is determined from the types of @children. No entry in the
798 * @children array may be %NULL.
800 * If @n_children is 0 then the unit tuple is constructed.
805 g_variant_new_tuple (GVariant * const *children,
808 GVariantType *tuple_type;
809 GVariant **my_children;
814 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
816 my_children = g_new (GVariant *, n_children);
819 for (i = 0; i < n_children; i++)
821 my_children[i] = g_variant_ref_sink (children[i]);
822 trusted &= g_variant_is_trusted (children[i]);
825 tuple_type = g_variant_make_tuple_type (children, n_children);
826 value = g_variant_new_from_children (tuple_type, my_children,
827 n_children, trusted);
828 g_variant_type_free (tuple_type);
834 * g_variant_make_dict_entry_type:
835 * @key: a #GVariant, the key
836 * @val: a #GVariant, the value
838 * Return the type of a dictionary entry containing @key and @val as its
841 static GVariantType *
842 g_variant_make_dict_entry_type (GVariant *key,
845 return g_variant_type_new_dict_entry (g_variant_get_type (key),
846 g_variant_get_type (val));
850 * g_variant_new_dict_entry:
851 * @key: a basic #GVariant, the key
852 * @value: a #GVariant, the value
853 * @returns: a new dictionary entry #GVariant
855 * Creates a new dictionary entry #GVariant. @key and @value must be
858 * @key must be a value of a basic type (ie: not a container).
863 g_variant_new_dict_entry (GVariant *key,
866 GVariantType *dict_type;
870 g_return_val_if_fail (key != NULL && value != NULL, NULL);
871 g_return_val_if_fail (!g_variant_is_container (key), NULL);
873 children = g_new (GVariant *, 2);
874 children[0] = g_variant_ref_sink (key);
875 children[1] = g_variant_ref_sink (value);
876 trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
878 dict_type = g_variant_make_dict_entry_type (key, value);
879 value = g_variant_new_from_children (dict_type, children, 2, trusted);
880 g_variant_type_free (dict_type);
886 * g_variant_get_fixed_array:
887 * @value: a #GVariant array with fixed-sized elements
888 * @n_elements: a pointer to the location to store the number of items
889 * @element_size: the size of each element
890 * @returns: a pointer to the fixed array
892 * Provides access to the serialised data for an array of fixed-sized
895 * @value must be an array with fixed-sized elements. Numeric types are
896 * fixed-size as are tuples containing only other fixed-sized types.
898 * @element_size must be the size of a single element in the array. For
899 * example, if calling this function for an array of 32 bit integers,
900 * you might say <code>sizeof (gint32)</code>. This value isn't used
901 * except for the purpose of a double-check that the form of the
902 * seralised data matches the caller's expectation.
904 * @n_elements, which must be non-%NULL is set equal to the number of
905 * items in the array.
910 g_variant_get_fixed_array (GVariant *value,
914 GVariantTypeInfo *array_info;
915 gsize array_element_size;
919 TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
921 g_return_val_if_fail (n_elements != NULL, NULL);
922 g_return_val_if_fail (element_size > 0, NULL);
924 array_info = g_variant_get_type_info (value);
925 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
927 g_return_val_if_fail (array_element_size, NULL);
929 if G_UNLIKELY (array_element_size != element_size)
931 if (array_element_size)
932 g_critical ("g_variant_get_fixed_array: assertion "
933 "`g_variant_array_has_fixed_size (value, element_size)' "
934 "failed: array size %"G_GSIZE_FORMAT" does not match "
935 "given element_size %"G_GSIZE_FORMAT".",
936 array_element_size, element_size);
938 g_critical ("g_variant_get_fixed_array: assertion "
939 "`g_variant_array_has_fixed_size (value, element_size)' "
940 "failed: array does not have fixed size.");
943 data = g_variant_get_data (value);
944 size = g_variant_get_size (value);
946 if (size % element_size)
949 *n_elements = size / element_size;
957 /* String type constructor/getters/validation {{{1 */
959 * g_variant_new_string:
960 * @string: a normal utf8 nul-terminated string
961 * @returns: a new string #GVariant instance
963 * Creates a string #GVariant with the contents of @string.
965 * @string must be valid utf8.
970 g_variant_new_string (const gchar *string)
972 g_return_val_if_fail (string != NULL, NULL);
974 return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
975 string, strlen (string) + 1);
979 * g_variant_new_object_path:
980 * @object_path: a normal C nul-terminated string
981 * @returns: a new object path #GVariant instance
983 * Creates a DBus object path #GVariant with the contents of @string.
984 * @string must be a valid DBus object path. Use
985 * g_variant_is_object_path() if you're not sure.
990 g_variant_new_object_path (const gchar *object_path)
992 g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
994 return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
995 object_path, strlen (object_path) + 1);
999 * g_variant_is_object_path:
1000 * @string: a normal C nul-terminated string
1001 * @returns: %TRUE if @string is a DBus object path
1003 * Determines if a given string is a valid DBus object path. You
1004 * should ensure that a string is a valid DBus object path before
1005 * passing it to g_variant_new_object_path().
1007 * A valid object path starts with '/' followed by zero or more
1008 * sequences of characters separated by '/' characters. Each sequence
1009 * must contain only the characters "[A-Z][a-z][0-9]_". No sequence
1010 * (including the one following the final '/' character) may be empty.
1015 g_variant_is_object_path (const gchar *string)
1017 g_return_val_if_fail (string != NULL, FALSE);
1019 return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1023 * g_variant_new_signature:
1024 * @signature: a normal C nul-terminated string
1025 * @returns: a new signature #GVariant instance
1027 * Creates a DBus type signature #GVariant with the contents of
1028 * @string. @string must be a valid DBus type signature. Use
1029 * g_variant_is_signature() if you're not sure.
1034 g_variant_new_signature (const gchar *signature)
1036 g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1038 return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1039 signature, strlen (signature) + 1);
1043 * g_variant_is_signature:
1044 * @string: a normal C nul-terminated string
1045 * @returns: %TRUE if @string is a DBus type signature
1047 * Determines if a given string is a valid DBus type signature. You
1048 * should ensure that a string is a valid DBus object path before
1049 * passing it to g_variant_new_signature().
1051 * DBus type signatures consist of zero or more definite #GVariantType
1052 * strings in sequence.
1057 g_variant_is_signature (const gchar *string)
1059 g_return_val_if_fail (string != NULL, FALSE);
1061 return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1065 * g_variant_get_string:
1066 * @value: a string #GVariant instance
1067 * @length: a pointer to a #gsize, to store the length
1068 * @returns: the constant string, utf8 encoded
1070 * Returns the string value of a #GVariant instance with a string
1071 * type. This includes the types %G_VARIANT_TYPE_STRING,
1072 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1074 * The string will always be utf8 encoded.
1076 * If @length is non-%NULL then the length of the string (in bytes) is
1077 * returned there. For trusted values, this information is already
1078 * known. For untrusted values, a strlen() will be performed.
1080 * It is an error to call this function with a @value of any type
1081 * other than those three.
1083 * The return value remains valid as long as @value exists.
1088 g_variant_get_string (GVariant *value,
1094 g_return_val_if_fail (value != NULL, NULL);
1095 g_return_val_if_fail (
1096 g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1097 g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1098 g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1100 data = g_variant_get_data (value);
1101 size = g_variant_get_size (value);
1103 if (!g_variant_is_trusted (value))
1105 switch (g_variant_classify (value))
1107 case G_VARIANT_CLASS_STRING:
1108 if (g_variant_serialiser_is_string (data, size))
1115 case G_VARIANT_CLASS_OBJECT_PATH:
1116 if (g_variant_serialiser_is_object_path (data, size))
1123 case G_VARIANT_CLASS_SIGNATURE:
1124 if (g_variant_serialiser_is_signature (data, size))
1132 g_assert_not_reached ();
1143 * g_variant_dup_string:
1144 * @value: a string #GVariant instance
1145 * @length: a pointer to a #gsize, to store the length
1146 * @returns: a newly allocated string, utf8 encoded
1148 * Similar to g_variant_get_string() except that instead of returning
1149 * a constant string, the string is duplicated.
1151 * The string will always be utf8 encoded.
1153 * The return value must be freed using g_free().
1158 g_variant_dup_string (GVariant *value,
1161 return g_strdup (g_variant_get_string (value, length));
1165 * g_variant_new_byte_array:
1166 * @array: a pointer to an array of bytes
1167 * @length: the length of @array, or -1
1168 * @returns: a new floating #GVariant instance
1170 * Constructs an array of bytes #GVariant from the given array of bytes.
1172 * If @length is -1 then @array is taken to be a normal C string (in the
1173 * sense that it is terminated by a nul character). The nul character
1174 * is included in the array. If length is not -1 then it gives the
1175 * length of @array which may then contain nul chracters with no special
1181 g_variant_new_byte_array (gconstpointer array,
1186 const gchar *bytes = array;
1189 while (bytes[length++]);
1192 return g_variant_new_from_trusted (G_VARIANT_TYPE ("ay"),
1197 * g_variant_get_byte_array:
1198 * @value: an array of bytes #GVariant
1199 * @length: the length of the result, or %NULL
1200 * @returns: a pointer to the byte data, or %NULL
1202 * Gets the contents of an array of bytes #GVariant.
1204 * If @length is non-%NULL then it points to a location at which to
1205 * store the length of the array and nul bytes contained within the
1206 * array have no special meaning.
1208 * If @length is %NULL then the caller has no way to determine what the
1209 * length of the returned data might be. In this case, the function
1210 * ensures that the last byte of the array is a nul byte and, if it is
1211 * not, returns %NULL instead. In this way, the caller is assured that
1212 * any non-%NULL pointer that is returned will be nul-terminated.
1214 * The return value remains valid as long as @value exists.
1219 g_variant_get_byte_array (GVariant *value,
1225 TYPE_CHECK (value, G_VARIANT_TYPE ("ay"), NULL);
1227 data = g_variant_get_data (value);
1228 size = g_variant_get_size (value);
1232 const gchar *bytes = data;
1234 if (bytes[size - 1] != '\0')
1244 * g_variant_new_strv:
1245 * @strv: an array of strings
1246 * @length: the length of @strv, or -1
1247 * @returns: a new floating #GVariant instance
1249 * Constructs an array of strings #GVariant from the given array of
1252 * If @length is not -1 then it gives the maximum length of @strv. In
1253 * any case, a %NULL pointer in @strv is taken as a terminator.
1258 g_variant_new_strv (const gchar * const *strv,
1264 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1267 length = g_strv_length ((gchar **) strv);
1269 strings = g_new (GVariant *, length);
1270 for (i = 0; i < length; i++)
1271 strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1273 return g_variant_new_from_children (G_VARIANT_TYPE ("as"),
1274 strings, length, TRUE);
1278 * g_variant_get_strv:
1279 * @value: an array of strings #GVariant
1280 * @length: the length of the result, or %NULL
1281 * @returns: an array of constant strings
1283 * Gets the contents of an array of strings #GVariant. This call
1284 * makes a shallow copy; the return result should be released with
1285 * g_free(), but the individual strings must not be modified.
1287 * If @length is non-%NULL then the number of elements in the result
1288 * is stored there. In any case, the resulting array will be
1291 * For an empty array, @length will be set to 0 and a pointer to a
1292 * %NULL pointer will be returned.
1297 g_variant_get_strv (GVariant *value,
1304 g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("as")) ||
1305 g_variant_is_of_type (value, G_VARIANT_TYPE ("ao")) ||
1306 g_variant_is_of_type (value, G_VARIANT_TYPE ("ag")),
1309 g_variant_get_data (value);
1310 n = g_variant_n_children (value);
1311 strv = g_new (const gchar *, n + 1);
1313 for (i = 0; i < n; i++)
1317 string = g_variant_get_child_value (value, i);
1318 strv[i] = g_variant_get_string (string, NULL);
1319 g_variant_unref (string);
1330 * g_variant_dup_strv:
1331 * @value: an array of strings #GVariant
1332 * @length: the length of the result, or %NULL
1333 * @returns: an array of constant strings
1335 * Gets the contents of an array of strings #GVariant. This call
1336 * makes a deep copy; the return result should be released with
1339 * If @length is non-%NULL then the number of elements in the result
1340 * is stored there. In any case, the resulting array will be
1343 * For an empty array, @length will be set to 0 and a pointer to a
1344 * %NULL pointer will be returned.
1349 g_variant_dup_strv (GVariant *value,
1356 g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("as")) ||
1357 g_variant_is_of_type (value, G_VARIANT_TYPE ("ao")) ||
1358 g_variant_is_of_type (value, G_VARIANT_TYPE ("ag")),
1361 n = g_variant_n_children (value);
1362 strv = g_new (gchar *, n + 1);
1364 for (i = 0; i < n; i++)
1368 string = g_variant_get_child_value (value, i);
1369 strv[i] = g_variant_dup_string (string, NULL);
1370 g_variant_unref (string);
1380 /* Type checking and querying {{{1 */
1382 * g_variant_get_type:
1383 * @value: a #GVariant
1384 * @returns: a #GVariantType
1386 * Determines the type of @value.
1388 * The return value is valid for the lifetime of @value and must not
1393 const GVariantType *
1394 g_variant_get_type (GVariant *value)
1396 GVariantTypeInfo *type_info;
1398 g_return_val_if_fail (value != NULL, NULL);
1400 type_info = g_variant_get_type_info (value);
1402 return (GVariantType *) g_variant_type_info_get_type_string (type_info);
1406 * g_variant_get_type_string:
1407 * @value: a #GVariant
1408 * @returns: the type string for the type of @value
1410 * Returns the type string of @value. Unlike the result of calling
1411 * g_variant_type_peek_string(), this string is nul-terminated. This
1412 * string belongs to #GVariant and must not be freed.
1417 g_variant_get_type_string (GVariant *value)
1419 GVariantTypeInfo *type_info;
1421 g_return_val_if_fail (value != NULL, NULL);
1423 type_info = g_variant_get_type_info (value);
1425 return g_variant_type_info_get_type_string (type_info);
1429 * g_variant_is_of_type:
1430 * @value: a #GVariant instance
1431 * @type: a #GVariantType
1432 * @returns: %TRUE if the type of @value matches @type
1434 * Checks if a value has a type matching the provided type.
1439 g_variant_is_of_type (GVariant *value,
1440 const GVariantType *type)
1442 return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
1446 * g_variant_is_container:
1447 * @value: a #GVariant instance
1448 * @returns: %TRUE if @value is a container
1450 * Checks if @value is a container.
1453 g_variant_is_container (GVariant *value)
1455 return g_variant_type_is_container (g_variant_get_type (value));
1460 * g_variant_classify:
1461 * @value: a #GVariant
1462 * @returns: the #GVariantClass of @value
1464 * Classifies @value according to its top-level type.
1470 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
1471 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
1472 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
1473 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
1474 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
1475 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
1476 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
1477 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
1478 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
1479 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
1481 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
1482 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a DBus object path
1484 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a DBus signature string.
1485 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
1486 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
1487 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
1488 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
1489 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
1491 * The range of possible top-level types of #GVariant instances.
1496 g_variant_classify (GVariant *value)
1498 g_return_val_if_fail (value != NULL, 0);
1500 return *g_variant_get_type_string (value);
1503 /* Pretty printer {{{1 */
1505 * g_variant_print_string:
1506 * @value: a #GVariant
1507 * @string: a #GString, or %NULL
1508 * @type_annotate: %TRUE if type information should be included in
1510 * @returns: a #GString containing the string
1512 * Behaves as g_variant_print(), but operates on a #GString.
1514 * If @string is non-%NULL then it is appended to and returned. Else,
1515 * a new empty #GString is allocated and it is returned.
1520 g_variant_print_string (GVariant *value,
1522 gboolean type_annotate)
1524 if G_UNLIKELY (string == NULL)
1525 string = g_string_new (NULL);
1527 switch (g_variant_classify (value))
1529 case G_VARIANT_CLASS_MAYBE:
1531 g_string_append_printf (string, "@%s ",
1532 g_variant_get_type_string (value));
1534 if (g_variant_n_children (value))
1536 gchar *printed_child;
1541 * Consider the case of the type "mmi". In this case we could
1542 * write "just just 4", but "4" alone is totally unambiguous,
1543 * so we try to drop "just" where possible.
1545 * We have to be careful not to always drop "just", though,
1546 * since "nothing" needs to be distinguishable from "just
1547 * nothing". The case where we need to ensure we keep the
1548 * "just" is actually exactly the case where we have a nested
1551 * Instead of searching for that nested Nothing, we just print
1552 * the contained value into a separate string and see if we
1553 * end up with "nothing" at the end of it. If so, we need to
1554 * add "just" at our level.
1556 element = g_variant_get_child_value (value, 0);
1557 printed_child = g_variant_print (element, FALSE);
1558 g_variant_unref (element);
1560 if (g_str_has_suffix (printed_child, "nothing"))
1561 g_string_append (string, "just ");
1562 g_string_append (string, printed_child);
1563 g_free (printed_child);
1566 g_string_append (string, "nothing");
1570 case G_VARIANT_CLASS_ARRAY:
1571 /* it's an array so the first character of the type string is 'a'
1573 * if the first two characters are 'a{' then it's an array of
1574 * dictionary entries (ie: a dictionary) so we print that
1577 if (g_variant_get_type_string (value)[1] == '{')
1580 const gchar *comma = "";
1583 if ((n = g_variant_n_children (value)) == 0)
1586 g_string_append_printf (string, "@%s ",
1587 g_variant_get_type_string (value));
1588 g_string_append (string, "{}");
1592 g_string_append_c (string, '{');
1593 for (i = 0; i < n; i++)
1595 GVariant *entry, *key, *val;
1597 g_string_append (string, comma);
1600 entry = g_variant_get_child_value (value, i);
1601 key = g_variant_get_child_value (entry, 0);
1602 val = g_variant_get_child_value (entry, 1);
1603 g_variant_unref (entry);
1605 g_variant_print_string (key, string, type_annotate);
1606 g_variant_unref (key);
1607 g_string_append (string, ": ");
1608 g_variant_print_string (val, string, type_annotate);
1609 g_variant_unref (val);
1610 type_annotate = FALSE;
1612 g_string_append_c (string, '}');
1615 /* normal (non-dictionary) array */
1617 const gchar *comma = "";
1620 if ((n = g_variant_n_children (value)) == 0)
1623 g_string_append_printf (string, "@%s ",
1624 g_variant_get_type_string (value));
1625 g_string_append (string, "[]");
1629 g_string_append_c (string, '[');
1630 for (i = 0; i < n; i++)
1634 g_string_append (string, comma);
1637 element = g_variant_get_child_value (value, i);
1639 g_variant_print_string (element, string, type_annotate);
1640 g_variant_unref (element);
1641 type_annotate = FALSE;
1643 g_string_append_c (string, ']');
1648 case G_VARIANT_CLASS_TUPLE:
1652 n = g_variant_n_children (value);
1654 g_string_append_c (string, '(');
1655 for (i = 0; i < n; i++)
1659 element = g_variant_get_child_value (value, i);
1660 g_variant_print_string (element, string, type_annotate);
1661 g_string_append (string, ", ");
1662 g_variant_unref (element);
1665 /* for >1 item: remove final ", "
1666 * for 1 item: remove final " ", but leave the ","
1667 * for 0 items: there is only "(", so remove nothing
1669 g_string_truncate (string, string->len - (n > 0) - (n > 1));
1670 g_string_append_c (string, ')');
1674 case G_VARIANT_CLASS_DICT_ENTRY:
1678 g_string_append_c (string, '{');
1680 element = g_variant_get_child_value (value, 0);
1681 g_variant_print_string (element, string, type_annotate);
1682 g_variant_unref (element);
1684 g_string_append (string, ", ");
1686 element = g_variant_get_child_value (value, 1);
1687 g_variant_print_string (element, string, type_annotate);
1688 g_variant_unref (element);
1690 g_string_append_c (string, '}');
1694 case G_VARIANT_CLASS_VARIANT:
1696 GVariant *child = g_variant_get_variant (value);
1698 /* Always annotate types in nested variants, because they are
1699 * (by nature) of variable type.
1701 g_string_append_c (string, '<');
1702 g_variant_print_string (child, string, TRUE);
1703 g_string_append_c (string, '>');
1705 g_variant_unref (child);
1709 case G_VARIANT_CLASS_BOOLEAN:
1710 if (g_variant_get_boolean (value))
1711 g_string_append (string, "true");
1713 g_string_append (string, "false");
1716 case G_VARIANT_CLASS_STRING:
1718 const gchar *str = g_variant_get_string (value, NULL);
1719 gchar *escaped = g_strescape (str, NULL);
1721 /* use double quotes only if a ' is in the string */
1722 if (strchr (str, '\''))
1723 g_string_append_printf (string, "\"%s\"", escaped);
1725 g_string_append_printf (string, "'%s'", escaped);
1731 case G_VARIANT_CLASS_BYTE:
1733 g_string_append (string, "byte ");
1734 g_string_append_printf (string, "0x%02x",
1735 g_variant_get_byte (value));
1738 case G_VARIANT_CLASS_INT16:
1740 g_string_append (string, "int16 ");
1741 g_string_append_printf (string, "%"G_GINT16_FORMAT,
1742 g_variant_get_int16 (value));
1745 case G_VARIANT_CLASS_UINT16:
1747 g_string_append (string, "uint16 ");
1748 g_string_append_printf (string, "%"G_GUINT16_FORMAT,
1749 g_variant_get_uint16 (value));
1752 case G_VARIANT_CLASS_INT32:
1753 /* Never annotate this type because it is the default for numbers
1754 * (and this is a *pretty* printer)
1756 g_string_append_printf (string, "%"G_GINT32_FORMAT,
1757 g_variant_get_int32 (value));
1760 case G_VARIANT_CLASS_HANDLE:
1762 g_string_append (string, "handle ");
1763 g_string_append_printf (string, "%"G_GINT32_FORMAT,
1764 g_variant_get_handle (value));
1767 case G_VARIANT_CLASS_UINT32:
1769 g_string_append (string, "uint32 ");
1770 g_string_append_printf (string, "%"G_GUINT32_FORMAT,
1771 g_variant_get_uint32 (value));
1774 case G_VARIANT_CLASS_INT64:
1776 g_string_append (string, "int64 ");
1777 g_string_append_printf (string, "%"G_GINT64_FORMAT,
1778 g_variant_get_int64 (value));
1781 case G_VARIANT_CLASS_UINT64:
1783 g_string_append (string, "uint64 ");
1784 g_string_append_printf (string, "%"G_GUINT64_FORMAT,
1785 g_variant_get_uint64 (value));
1788 case G_VARIANT_CLASS_DOUBLE:
1793 g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
1795 for (i = 0; buffer[i]; i++)
1796 if (buffer[i] == '.' || buffer[i] == 'e' ||
1797 buffer[i] == 'n' || buffer[i] == 'N')
1800 /* if there is no '.' or 'e' in the float then add one */
1801 if (buffer[i] == '\0')
1808 g_string_append (string, buffer);
1812 case G_VARIANT_CLASS_OBJECT_PATH:
1814 g_string_append (string, "objectpath ");
1815 g_string_append_printf (string, "\'%s\'",
1816 g_variant_get_string (value, NULL));
1819 case G_VARIANT_CLASS_SIGNATURE:
1821 g_string_append (string, "signature ");
1822 g_string_append_printf (string, "\'%s\'",
1823 g_variant_get_string (value, NULL));
1827 g_assert_not_reached ();
1835 * @value: a #GVariant
1836 * @type_annotate: %TRUE if type information should be included in
1838 * @returns: a newly-allocated string holding the result.
1840 * Pretty-prints @value in the format understood by g_variant_parse().
1842 * If @type_annotate is %TRUE, then type information is included in
1846 g_variant_print (GVariant *value,
1847 gboolean type_annotate)
1849 return g_string_free (g_variant_print_string (value, NULL, type_annotate),
1853 /* Hash, Equal, Compare {{{1 */
1856 * @value: a basic #GVariant value as a #gconstpointer
1857 * @returns: a hash value corresponding to @value
1859 * Generates a hash value for a #GVariant instance.
1861 * The output of this function is guaranteed to be the same for a given
1862 * value only per-process. It may change between different processor
1863 * architectures or even different versions of GLib. Do not use this
1864 * function as a basis for building protocols or file formats.
1866 * The type of @value is #gconstpointer only to allow use of this
1867 * function with #GHashTable. @value must be a #GVariant.
1872 g_variant_hash (gconstpointer value_)
1874 GVariant *value = (GVariant *) value_;
1876 switch (g_variant_classify (value))
1878 case G_VARIANT_CLASS_STRING:
1879 case G_VARIANT_CLASS_OBJECT_PATH:
1880 case G_VARIANT_CLASS_SIGNATURE:
1881 return g_str_hash (g_variant_get_string (value, NULL));
1883 case G_VARIANT_CLASS_BOOLEAN:
1884 /* this is a very odd thing to hash... */
1885 return g_variant_get_boolean (value);
1887 case G_VARIANT_CLASS_BYTE:
1888 return g_variant_get_byte (value);
1890 case G_VARIANT_CLASS_INT16:
1891 case G_VARIANT_CLASS_UINT16:
1895 ptr = g_variant_get_data (value);
1903 case G_VARIANT_CLASS_INT32:
1904 case G_VARIANT_CLASS_UINT32:
1905 case G_VARIANT_CLASS_HANDLE:
1909 ptr = g_variant_get_data (value);
1917 case G_VARIANT_CLASS_INT64:
1918 case G_VARIANT_CLASS_UINT64:
1919 case G_VARIANT_CLASS_DOUBLE:
1920 /* need a separate case for these guys because otherwise
1921 * performance could be quite bad on big endian systems
1926 ptr = g_variant_get_data (value);
1929 return ptr[0] + ptr[1];
1935 g_return_val_if_fail (!g_variant_is_container (value), 0);
1936 g_assert_not_reached ();
1942 * @one: a #GVariant instance
1943 * @two: a #GVariant instance
1944 * @returns: %TRUE if @one and @two are equal
1946 * Checks if @one and @two have the same type and value.
1948 * The types of @one and @two are #gconstpointer only to allow use of
1949 * this function with #GHashTable. They must each be a #GVariant.
1954 g_variant_equal (gconstpointer one,
1959 g_return_val_if_fail (one != NULL && two != NULL, FALSE);
1961 if (g_variant_get_type_info ((GVariant *) one) !=
1962 g_variant_get_type_info ((GVariant *) two))
1965 /* if both values are trusted to be in their canonical serialised form
1966 * then a simple memcmp() of their serialised data will answer the
1969 * if not, then this might generate a false negative (since it is
1970 * possible for two different byte sequences to represent the same
1971 * value). for now we solve this by pretty-printing both values and
1972 * comparing the result.
1974 if (g_variant_is_trusted ((GVariant *) one) &&
1975 g_variant_is_trusted ((GVariant *) two))
1977 gconstpointer data_one, data_two;
1978 gsize size_one, size_two;
1980 size_one = g_variant_get_size ((GVariant *) one);
1981 size_two = g_variant_get_size ((GVariant *) two);
1983 if (size_one != size_two)
1986 data_one = g_variant_get_data ((GVariant *) one);
1987 data_two = g_variant_get_data ((GVariant *) two);
1989 equal = memcmp (data_one, data_two, size_one) == 0;
1993 gchar *strone, *strtwo;
1995 strone = g_variant_print ((GVariant *) one, FALSE);
1996 strtwo = g_variant_print ((GVariant *) two, FALSE);
1997 equal = strcmp (strone, strtwo) == 0;
2006 * g_variant_compare:
2007 * @one: a basic-typed #GVariant instance
2008 * @two: a #GVariant instance of the same type
2009 * @returns: negative value if a < b;
2011 * positive value if a > b.
2013 * Compares @one and @two.
2015 * The types of @one and @two are #gconstpointer only to allow use of
2016 * this function with #GTree, #GPtrArray, etc. They must each be a
2019 * Comparison is only defined for basic types (ie: booleans, numbers,
2020 * strings). For booleans, %FALSE is less than %TRUE. Numbers are
2021 * ordered in the usual way. Strings are in ASCII lexographical order.
2023 * It is a programmer error to attempt to compare container values or
2024 * two values that have types that are not exactly equal. For example,
2025 * you can not compare a 32-bit signed integer with a 32-bit unsigned
2026 * integer. Also note that this function is not particularly
2027 * well-behaved when it comes to comparison of doubles; in particular,
2028 * the handling of incomparable values (ie: NaN) is undefined.
2030 * If you only require an equality comparison, g_variant_equal() is more
2036 g_variant_compare (gconstpointer one,
2039 GVariant *a = (GVariant *) one;
2040 GVariant *b = (GVariant *) two;
2042 g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2044 switch (g_variant_classify (a))
2046 case G_VARIANT_CLASS_BYTE:
2047 return ((gint) g_variant_get_byte (a)) -
2048 ((gint) g_variant_get_byte (b));
2050 case G_VARIANT_CLASS_INT16:
2051 return ((gint) g_variant_get_int16 (a)) -
2052 ((gint) g_variant_get_int16 (b));
2054 case G_VARIANT_CLASS_UINT16:
2055 return ((gint) g_variant_get_uint16 (a)) -
2056 ((gint) g_variant_get_uint16 (b));
2058 case G_VARIANT_CLASS_INT32:
2060 gint32 a_val = g_variant_get_int32 (a);
2061 gint32 b_val = g_variant_get_int32 (b);
2063 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2066 case G_VARIANT_CLASS_UINT32:
2068 guint32 a_val = g_variant_get_uint32 (a);
2069 guint32 b_val = g_variant_get_uint32 (b);
2071 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2074 case G_VARIANT_CLASS_INT64:
2076 gint64 a_val = g_variant_get_int64 (a);
2077 gint64 b_val = g_variant_get_int64 (b);
2079 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2082 case G_VARIANT_CLASS_UINT64:
2084 guint64 a_val = g_variant_get_int32 (a);
2085 guint64 b_val = g_variant_get_int32 (b);
2087 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2090 case G_VARIANT_CLASS_DOUBLE:
2092 gdouble a_val = g_variant_get_double (a);
2093 gdouble b_val = g_variant_get_double (b);
2095 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2098 case G_VARIANT_CLASS_STRING:
2099 case G_VARIANT_CLASS_OBJECT_PATH:
2100 case G_VARIANT_CLASS_SIGNATURE:
2101 return strcmp (g_variant_get_string (a, NULL),
2102 g_variant_get_string (b, NULL));
2105 g_return_val_if_fail (!g_variant_is_container (a), 0);
2106 g_assert_not_reached ();
2110 /* GVariantIter {{{1 */
2114 * #GVariantIter is an opaque data structure and can only be accessed
2115 * using the following functions.
2122 const gchar *loop_format;
2128 G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2132 struct stack_iter iter;
2134 GVariant *value_ref;
2138 #define GVSI(i) ((struct stack_iter *) (i))
2139 #define GVHI(i) ((struct heap_iter *) (i))
2140 #define GVSI_MAGIC ((gsize) 3579507750u)
2141 #define GVHI_MAGIC ((gsize) 1450270775u)
2142 #define is_valid_iter(i) (i != NULL && \
2143 GVSI(i)->magic == GVSI_MAGIC)
2144 #define is_valid_heap_iter(i) (GVHI(i)->magic == GVHI_MAGIC && \
2148 * g_variant_iter_new:
2149 * @value: a container #GVariant
2150 * @returns: a new heap-allocated #GVariantIter
2152 * Creates a heap-allocated #GVariantIter for iterating over the items
2155 * Use g_variant_iter_free() to free the return value when you no longer
2158 * A reference is taken to @value and will be released only when
2159 * g_variant_iter_free() is called.
2164 g_variant_iter_new (GVariant *value)
2168 iter = (GVariantIter *) g_slice_new (struct heap_iter);
2169 GVHI(iter)->value_ref = g_variant_ref (value);
2170 GVHI(iter)->magic = GVHI_MAGIC;
2172 g_variant_iter_init (iter, value);
2178 * g_variant_iter_init:
2179 * @iter: a pointer to a #GVariantIter
2180 * @value: a container #GVariant
2181 * @returns: the number of items in @value
2183 * Initialises (without allocating) a #GVariantIter. @iter may be
2184 * completely uninitialised prior to this call; its old value is
2187 * The iterator remains valid for as long as @value exists, and need not
2188 * be freed in any way.
2193 g_variant_iter_init (GVariantIter *iter,
2196 GVSI(iter)->magic = GVSI_MAGIC;
2197 GVSI(iter)->value = value;
2198 GVSI(iter)->n = g_variant_n_children (value);
2200 GVSI(iter)->loop_format = NULL;
2202 return GVSI(iter)->n;
2206 * g_variant_iter_copy:
2207 * @iter: a #GVariantIter
2208 * @returns: a new heap-allocated #GVariantIter
2210 * Creates a new heap-allocated #GVariantIter to iterate over the
2211 * container that was being iterated over by @iter. Iteration begins on
2212 * the new iterator from the current position of the old iterator but
2213 * the two copies are independent past that point.
2215 * Use g_variant_iter_free() to free the return value when you no longer
2218 * A reference is taken to the container that @iter is iterating over
2219 * and will be releated only when g_variant_iter_free() is called.
2224 g_variant_iter_copy (GVariantIter *iter)
2228 g_return_val_if_fail (is_valid_iter (iter), 0);
2230 copy = g_variant_iter_new (GVSI(iter)->value);
2231 GVSI(copy)->i = GVSI(iter)->i;
2237 * g_variant_iter_n_children:
2238 * @iter: a #GVariantIter
2239 * @returns: the number of children in the container
2241 * Queries the number of child items in the container that we are
2242 * iterating over. This is the total number of items -- not the number
2243 * of items remaining.
2245 * This function might be useful for preallocation of arrays.
2250 g_variant_iter_n_children (GVariantIter *iter)
2252 g_return_val_if_fail (is_valid_iter (iter), 0);
2254 return GVSI(iter)->n;
2258 * g_variant_iter_free:
2259 * @iter: a heap-allocated #GVariantIter
2261 * Frees a heap-allocated #GVariantIter. Only call this function on
2262 * iterators that were returned by g_variant_iter_new() or
2263 * g_variant_iter_copy().
2268 g_variant_iter_free (GVariantIter *iter)
2270 g_return_if_fail (is_valid_heap_iter (iter));
2272 g_variant_unref (GVHI(iter)->value_ref);
2273 GVHI(iter)->magic = 0;
2275 g_slice_free (struct heap_iter, GVHI(iter));
2279 * g_variant_iter_next_value:
2280 * @iter: a #GVariantIter
2281 * @returns: a #GVariant, or %NULL
2283 * Gets the next item in the container. If no more items remain then
2284 * %NULL is returned.
2286 * Use g_variant_unref() to drop your reference on the return value when
2287 * you no longer need it.
2290 * <title>Iterating with g_variant_iter_next_value()</title>
2292 * /<!-- -->* recursively iterate a container *<!-- -->/
2294 * iterate_container_recursive (GVariant *container)
2296 * GVariantIter iter;
2299 * g_variant_iter_init (&iter, dictionary);
2300 * while ((child = g_variant_iter_next_value (&iter)))
2302 * g_print ("type '%s'\n", g_variant_get_type_string (child));
2304 * if (g_variant_is_container (child))
2305 * iterate_container_recursive (child);
2307 * g_variant_unref (child);
2316 g_variant_iter_next_value (GVariantIter *iter)
2318 g_return_val_if_fail (is_valid_iter (iter), FALSE);
2320 if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
2322 g_critical ("g_variant_iter_next_value: must not be called again "
2323 "after NULL has already been returned.");
2329 if (GVSI(iter)->i < GVSI(iter)->n)
2330 return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
2335 /* GVariantBuilder {{{1 */
2339 * A utility type for constructing container-type #GVariant instances.
2341 * This is an opaque structure and may only be accessed using the
2342 * following functions.
2344 * #GVariantBuilder is not threadsafe in any way. Do not attempt to
2345 * access it from more than one thread.
2348 struct stack_builder
2350 GVariantBuilder *parent;
2353 /* type constraint explicitly specified by 'type'.
2354 * for tuple types, this moves along as we add more items.
2356 const GVariantType *expected_type;
2358 /* type constraint implied by previous array item.
2360 const GVariantType *prev_item_type;
2362 /* constraints on the number of children. max = -1 for unlimited. */
2366 /* dynamically-growing pointer array */
2367 GVariant **children;
2368 gsize allocated_children;
2371 /* set to '1' if all items in the container will have the same type
2372 * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
2374 guint uniform_item_types : 1;
2376 /* set to '1' initially and changed to '0' if an untrusted value is
2384 G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
2388 GVariantBuilder builder;
2394 #define GVSB(b) ((struct stack_builder *) (b))
2395 #define GVHB(b) ((struct heap_builder *) (b))
2396 #define GVSB_MAGIC ((gsize) 1033660112u)
2397 #define GVHB_MAGIC ((gsize) 3087242682u)
2398 #define is_valid_builder(b) (b != NULL && \
2399 GVSB(b)->magic == GVSB_MAGIC)
2400 #define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
2403 * g_variant_builder_new:
2404 * @type: a container type
2405 * @returns: a #GVariantBuilder
2407 * Allocates and initialises a new #GVariantBuilder.
2409 * You should call g_variant_builder_unref() on the return value when it
2410 * is no longer needed. The memory will not be automatically freed by
2413 * In most cases it is easier to place a #GVariantBuilder directly on
2414 * the stack of the calling function and initialise it with
2415 * g_variant_builder_init().
2420 g_variant_builder_new (const GVariantType *type)
2422 GVariantBuilder *builder;
2424 builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
2425 g_variant_builder_init (builder, type);
2426 GVHB(builder)->magic = GVHB_MAGIC;
2427 GVHB(builder)->ref_count = 1;
2433 * g_variant_builder_unref:
2434 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
2436 * Decreases the reference count on @builder.
2438 * In the event that there are no more references, releases all memory
2439 * associated with the #GVariantBuilder.
2441 * Don't call this on stack-allocated #GVariantBuilder instances or bad
2442 * things will happen.
2447 g_variant_builder_unref (GVariantBuilder *builder)
2449 g_return_if_fail (is_valid_heap_builder (builder));
2451 if (--GVHB(builder)->ref_count)
2454 g_variant_builder_clear (builder);
2455 GVHB(builder)->magic = 0;
2457 g_slice_free (struct heap_builder, GVHB(builder));
2461 * g_variant_builder_ref:
2462 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
2463 * @returns: a new reference to @builder
2465 * Increases the reference count on @builder.
2467 * Don't call this on stack-allocated #GVariantBuilder instances or bad
2468 * things will happen.
2473 g_variant_builder_ref (GVariantBuilder *builder)
2475 g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
2477 GVHB(builder)->ref_count++;
2483 * g_variant_builder_clear:
2484 * @builder: a #GVariantBuilder
2486 * Releases all memory associated with a #GVariantBuilder without
2487 * freeing the #GVariantBuilder structure itself.
2489 * It typically only makes sense to do this on a stack-allocated
2490 * #GVariantBuilder if you want to abort building the value part-way
2491 * through. This function need not be called if you call
2492 * g_variant_builder_end() and it also doesn't need to be called on
2493 * builders allocated with g_variant_builder_new (see
2494 * g_variant_builder_free() for that).
2496 * This function leaves the #GVariantBuilder structure set to all-zeros.
2497 * It is valid to call this function on either an initialised
2498 * #GVariantBuilder or one that is set to all-zeros but it is not valid
2499 * to call this function on uninitialised memory.
2504 g_variant_builder_clear (GVariantBuilder *builder)
2508 if (GVSB(builder)->magic == 0)
2509 /* all-zeros case */
2512 g_return_if_fail (is_valid_builder (builder));
2514 g_variant_type_free (GVSB(builder)->type);
2516 for (i = 0; i < GVSB(builder)->offset; i++)
2517 g_variant_unref (GVSB(builder)->children[i]);
2519 g_free (GVSB(builder)->children);
2521 if (GVSB(builder)->parent)
2523 g_variant_builder_clear (GVSB(builder)->parent);
2524 g_slice_free (GVariantBuilder, GVSB(builder)->parent);
2527 memset (builder, 0, sizeof (GVariantBuilder));
2531 * g_variant_builder_init:
2532 * @builder: a #GVariantBuilder
2533 * @type: a container type
2535 * Initialises a #GVariantBuilder structure.
2537 * @type must be non-%NULL. It specifies the type of container to
2538 * construct. It can be an indefinite type such as
2539 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
2540 * Maybe, array, tuple, dictionary entry and variant-typed values may be
2543 * After the builder is initialised, values are added using
2544 * g_variant_builder_add_value() or g_variant_builder_add().
2546 * After all the child values are added, g_variant_builder_end() frees
2547 * the memory associated with the builder and returns the #GVariant that
2550 * This function completely ignores the previous contents of @builder.
2551 * On one hand this means that it is valid to pass in completely
2552 * uninitialised memory. On the other hand, this means that if you are
2553 * initialising over top of an existing #GVariantBuilder you need to
2554 * first call g_variant_builder_clear() in order to avoid leaking
2557 * You must not call g_variant_builder_ref() or
2558 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
2559 * with this function. If you ever pass a reference to a
2560 * #GVariantBuilder outside of the control of your own code then you
2561 * should assume that the person receiving that reference may try to use
2562 * reference counting; you should use g_variant_builder_new() instead of
2568 g_variant_builder_init (GVariantBuilder *builder,
2569 const GVariantType *type)
2571 g_return_if_fail (type != NULL);
2572 g_return_if_fail (g_variant_type_is_container (type));
2574 memset (builder, 0, sizeof (GVariantBuilder));
2576 GVSB(builder)->type = g_variant_type_copy (type);
2577 GVSB(builder)->magic = GVSB_MAGIC;
2578 GVSB(builder)->trusted = TRUE;
2580 switch (*(const gchar *) type)
2582 case G_VARIANT_CLASS_VARIANT:
2583 GVSB(builder)->uniform_item_types = TRUE;
2584 GVSB(builder)->allocated_children = 1;
2585 GVSB(builder)->expected_type = NULL;
2586 GVSB(builder)->min_items = 1;
2587 GVSB(builder)->max_items = 1;
2590 case G_VARIANT_CLASS_ARRAY:
2591 GVSB(builder)->uniform_item_types = TRUE;
2592 GVSB(builder)->allocated_children = 8;
2593 GVSB(builder)->expected_type =
2594 g_variant_type_element (GVSB(builder)->type);
2595 GVSB(builder)->min_items = 0;
2596 GVSB(builder)->max_items = -1;
2599 case G_VARIANT_CLASS_MAYBE:
2600 GVSB(builder)->uniform_item_types = TRUE;
2601 GVSB(builder)->allocated_children = 1;
2602 GVSB(builder)->expected_type =
2603 g_variant_type_element (GVSB(builder)->type);
2604 GVSB(builder)->min_items = 0;
2605 GVSB(builder)->max_items = 1;
2608 case G_VARIANT_CLASS_DICT_ENTRY:
2609 GVSB(builder)->uniform_item_types = FALSE;
2610 GVSB(builder)->allocated_children = 2;
2611 GVSB(builder)->expected_type =
2612 g_variant_type_key (GVSB(builder)->type);
2613 GVSB(builder)->min_items = 2;
2614 GVSB(builder)->max_items = 2;
2617 case 'r': /* G_VARIANT_TYPE_TUPLE was given */
2618 GVSB(builder)->uniform_item_types = FALSE;
2619 GVSB(builder)->allocated_children = 8;
2620 GVSB(builder)->expected_type = NULL;
2621 GVSB(builder)->min_items = 0;
2622 GVSB(builder)->max_items = -1;
2625 case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
2626 GVSB(builder)->allocated_children = g_variant_type_n_items (type);
2627 GVSB(builder)->expected_type =
2628 g_variant_type_first (GVSB(builder)->type);
2629 GVSB(builder)->min_items = GVSB(builder)->allocated_children;
2630 GVSB(builder)->max_items = GVSB(builder)->allocated_children;
2631 GVSB(builder)->uniform_item_types = FALSE;
2635 g_assert_not_reached ();
2638 GVSB(builder)->children = g_new (GVariant *,
2639 GVSB(builder)->allocated_children);
2643 g_variant_builder_make_room (struct stack_builder *builder)
2645 if (builder->offset == builder->allocated_children)
2647 builder->allocated_children *= 2;
2648 builder->children = g_renew (GVariant *, builder->children,
2649 builder->allocated_children);
2654 * g_variant_builder_add_value:
2655 * @builder: a #GVariantBuilder
2656 * @value: a #GVariant
2658 * Adds @value to @builder.
2660 * It is an error to call this function in any way that would create an
2661 * inconsistent value to be constructed. Some examples of this are
2662 * putting different types of items into an array, putting the wrong
2663 * types or number of items in a tuple, putting more than one value into
2669 g_variant_builder_add_value (GVariantBuilder *builder,
2672 g_return_if_fail (is_valid_builder (builder));
2673 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
2674 g_return_if_fail (!GVSB(builder)->expected_type ||
2675 g_variant_is_of_type (value,
2676 GVSB(builder)->expected_type));
2677 g_return_if_fail (!GVSB(builder)->prev_item_type ||
2678 g_variant_is_of_type (value,
2679 GVSB(builder)->prev_item_type));
2681 GVSB(builder)->trusted &= g_variant_is_trusted (value);
2683 if (!GVSB(builder)->uniform_item_types)
2685 /* advance our expected type pointers */
2686 if (GVSB(builder)->expected_type)
2687 GVSB(builder)->expected_type =
2688 g_variant_type_next (GVSB(builder)->expected_type);
2690 if (GVSB(builder)->prev_item_type)
2691 GVSB(builder)->prev_item_type =
2692 g_variant_type_next (GVSB(builder)->prev_item_type);
2695 GVSB(builder)->prev_item_type = g_variant_get_type (value);
2697 g_variant_builder_make_room (GVSB(builder));
2699 GVSB(builder)->children[GVSB(builder)->offset++] =
2700 g_variant_ref_sink (value);
2704 * g_variant_builder_open:
2705 * @builder: a #GVariantBuilder
2706 * @type: a #GVariantType
2708 * Opens a subcontainer inside the given @builder. When done adding
2709 * items to the subcontainer, g_variant_builder_close() must be called.
2711 * It is an error to call this function in any way that would cause an
2712 * inconsistent value to be constructed (ie: adding too many values or
2713 * a value of an incorrect type).
2718 g_variant_builder_open (GVariantBuilder *builder,
2719 const GVariantType *type)
2721 GVariantBuilder *parent;
2723 g_return_if_fail (is_valid_builder (builder));
2724 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
2725 g_return_if_fail (!GVSB(builder)->expected_type ||
2726 g_variant_type_is_subtype_of (type,
2727 GVSB(builder)->expected_type));
2728 g_return_if_fail (!GVSB(builder)->prev_item_type ||
2729 g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
2732 parent = g_slice_dup (GVariantBuilder, builder);
2733 g_variant_builder_init (builder, type);
2734 GVSB(builder)->parent = parent;
2736 /* push the prev_item_type down into the subcontainer */
2737 if (GVSB(parent)->prev_item_type)
2739 if (!GVSB(builder)->uniform_item_types)
2740 /* tuples and dict entries */
2741 GVSB(builder)->prev_item_type =
2742 g_variant_type_first (GVSB(parent)->prev_item_type);
2744 else if (!g_variant_type_is_variant (GVSB(builder)->type))
2745 /* maybes and arrays */
2746 GVSB(builder)->prev_item_type =
2747 g_variant_type_element (GVSB(parent)->prev_item_type);
2752 * g_variant_builder_close:
2753 * @builder: a #GVariantBuilder
2755 * Closes the subcontainer inside the given @builder that was opened by
2756 * the most recent call to g_variant_builder_open().
2758 * It is an error to call this function in any way that would create an
2759 * inconsistent value to be constructed (ie: too few values added to the
2765 g_variant_builder_close (GVariantBuilder *builder)
2767 GVariantBuilder *parent;
2769 g_return_if_fail (is_valid_builder (builder));
2770 g_return_if_fail (GVSB(builder)->parent != NULL);
2772 parent = GVSB(builder)->parent;
2773 GVSB(builder)->parent = NULL;
2775 g_variant_builder_add_value (parent, g_variant_builder_end (builder));
2778 g_slice_free (GVariantBuilder, parent);
2782 * g_variant_make_maybe_type:
2783 * @element: a #GVariant
2785 * Return the type of a maybe containing @element.
2787 static GVariantType *
2788 g_variant_make_maybe_type (GVariant *element)
2790 return g_variant_type_new_maybe (g_variant_get_type (element));
2794 * g_variant_make_array_type:
2795 * @element: a #GVariant
2797 * Return the type of an array containing @element.
2799 static GVariantType *
2800 g_variant_make_array_type (GVariant *element)
2802 return g_variant_type_new_array (g_variant_get_type (element));
2806 * g_variant_builder_end:
2807 * @builder: a #GVariantBuilder
2808 * @returns: a new, floating, #GVariant
2810 * Ends the builder process and returns the constructed value.
2812 * It is not permissible to use @builder in any way after this call
2813 * except for reference counting operations (in the case of a
2814 * heap-allocated #GVariantBuilder) or by reinitialising it with
2815 * g_variant_builder_init() (in the case of stack-allocated).
2817 * It is an error to call this function in any way that would create an
2818 * inconsistent value to be constructed (ie: insufficient number of
2819 * items added to a container with a specific number of children
2820 * required). It is also an error to call this function if the builder
2821 * was created with an indefinite array or maybe type and no children
2822 * have been added; in this case it is impossible to infer the type of
2828 g_variant_builder_end (GVariantBuilder *builder)
2830 GVariantType *my_type;
2833 g_return_val_if_fail (is_valid_builder (builder), NULL);
2834 g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
2836 g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
2837 GVSB(builder)->prev_item_type != NULL ||
2838 g_variant_type_is_definite (GVSB(builder)->type),
2841 if (g_variant_type_is_definite (GVSB(builder)->type))
2842 my_type = g_variant_type_copy (GVSB(builder)->type);
2844 else if (g_variant_type_is_maybe (GVSB(builder)->type))
2845 my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
2847 else if (g_variant_type_is_array (GVSB(builder)->type))
2848 my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
2850 else if (g_variant_type_is_tuple (GVSB(builder)->type))
2851 my_type = g_variant_make_tuple_type (GVSB(builder)->children,
2852 GVSB(builder)->offset);
2854 else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
2855 my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
2856 GVSB(builder)->children[1]);
2858 g_assert_not_reached ();
2860 value = g_variant_new_from_children (my_type,
2861 g_renew (GVariant *,
2862 GVSB(builder)->children,
2863 GVSB(builder)->offset),
2864 GVSB(builder)->offset,
2865 GVSB(builder)->trusted);
2866 GVSB(builder)->children = NULL;
2867 GVSB(builder)->offset = 0;
2869 g_variant_builder_clear (builder);
2870 g_variant_type_free (my_type);
2875 /* Format strings {{{1 */
2877 * g_variant_format_string_scan:
2878 * @string: a string that may be prefixed with a format string
2879 * @limit: a pointer to the end of @string, or %NULL
2880 * @endptr: location to store the end pointer, or %NULL
2881 * @returns: %TRUE if there was a valid format string
2883 * Checks the string pointed to by @string for starting with a properly
2884 * formed #GVariant varargs format string. If no valid format string is
2885 * found then %FALSE is returned.
2887 * If @string does start with a valid format string then %TRUE is
2888 * returned. If @endptr is non-%NULL then it is updated to point to the
2889 * first character after the format string.
2891 * If @limit is non-%NULL then @limit (and any charater after it) will
2892 * not be accessed and the effect is otherwise equivalent to if the
2893 * character at @limit were nul.
2895 * See the section on <link linkend='gvariant-format-strings'>GVariant
2896 * Format Strings</link>.
2901 g_variant_format_string_scan (const gchar *string,
2903 const gchar **endptr)
2905 #define next_char() (string == limit ? '\0' : *string++)
2906 #define peek_char() (string == limit ? '\0' : *string)
2909 switch (next_char())
2911 case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
2912 case 'x': case 't': case 'h': case 'd': case 's': case 'o':
2913 case 'g': case 'v': case '*': case '?': case 'r':
2917 return g_variant_format_string_scan (string, limit, endptr);
2921 return g_variant_type_string_scan (string, limit, endptr);
2924 while (peek_char() != ')')
2925 if (!g_variant_format_string_scan (string, limit, &string))
2928 next_char(); /* consume ')' */
2938 if (c != 's' && c != 'o' && c != 'g')
2946 /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
2947 * The terminating null character is considered to be
2948 * part of the string.
2950 if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
2954 if (!g_variant_format_string_scan (string, limit, &string))
2957 if (next_char() != '}')
2962 case '^': /* '^as' or '^a&s' only */
2963 if (next_char() != 'a')
2966 if (peek_char() == '&')
2971 if (c != 's' && c != 'o' && c != 'g')
2979 if (c != 's' && c != 'o' && c != 'g')
2998 * g_variant_format_string_scan_type:
2999 * @string: a string that may be prefixed with a format string
3000 * @limit: a pointer to the end of @string
3001 * @endptr: location to store the end pointer, or %NULL
3002 * @returns: a #GVariantType if there was a valid format string
3004 * If @string starts with a valid format string then this function will
3005 * return the type that the format string corresponds to. Otherwise
3006 * this function returns %NULL.
3008 * Use g_variant_type_free() to free the return value when you no longer
3011 * This function is otherwise exactly like
3012 * g_variant_format_string_scan().
3017 g_variant_format_string_scan_type (const gchar *string,
3019 const gchar **endptr)
3021 const gchar *my_end;
3028 if (!g_variant_format_string_scan (string, limit, endptr))
3031 dest = new = g_malloc (*endptr - string + 1);
3032 while (string != *endptr)
3034 if (*string != '@' && *string != '&' && *string != '^')
3040 return (GVariantType *) G_VARIANT_TYPE (new);
3044 valid_format_string (const gchar *format_string,
3048 const gchar *endptr;
3051 type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
3053 if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
3056 g_critical ("`%s' is not a valid GVariant format string",
3059 g_critical ("`%s' does not have a valid GVariant format "
3060 "string as a prefix", format_string);
3063 g_variant_type_free (type);
3068 if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
3073 fragment = g_strndup (format_string, endptr - format_string);
3074 typestr = g_variant_type_dup_string (type);
3076 g_critical ("the GVariant format string `%s' has a type of "
3077 "`%s' but the given value has a type of `%s'",
3078 fragment, typestr, g_variant_get_type_string (value));
3080 g_variant_type_free (type);
3085 g_variant_type_free (type);
3090 /* Variable Arguments {{{1 */
3091 /* We consider 2 main classes of format strings:
3093 * - recursive format strings
3094 * these are ones that result in recursion and the collection of
3095 * possibly more than one argument. Maybe types, tuples,
3096 * dictionary entries.
3098 * - leaf format string
3099 * these result in the collection of a single argument.
3101 * Leaf format strings are further subdivided into two categories:
3103 * - single non-null pointer ("nnp")
3104 * these either collect or return a single non-null pointer.
3107 * these collect or return something else (bool, number, etc).
3109 * Based on the above, the varargs handling code is split into 4 main parts:
3111 * - nnp handling code
3112 * - leaf handling code (which may invoke nnp code)
3113 * - generic handling code (may be recursive, may invoke leaf code)
3114 * - user-facing API (which invokes the generic code)
3116 * Each section implements some of the following functions:
3119 * collect the arguments for the format string as if
3120 * g_variant_new() had been called, but do nothing with them. used
3121 * for skipping over arguments when constructing a Nothing maybe
3125 * create a GVariant *
3128 * unpack a GVariant *
3130 * - free (nnp only):
3131 * free a previously allocated item
3135 g_variant_format_string_is_leaf (const gchar *str)
3137 return str[0] != 'm' && str[0] != '(' && str[0] != '{';
3141 g_variant_format_string_is_nnp (const gchar *str)
3143 return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
3144 str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
3145 str[0] == 'r' || str[0] == 'v' || str[0] == '&';
3148 /* Single non-null pointer ("nnp") {{{2 */
3150 g_variant_valist_free_nnp (const gchar *str,
3156 g_variant_iter_free (ptr);
3160 if (str[2] != '&') /* '^as' */
3176 g_variant_unref (ptr);
3183 g_assert_not_reached ();
3188 g_variant_valist_new_nnp (const gchar **str,
3198 const GVariantType *type;
3201 value = g_variant_builder_end (ptr);
3202 type = g_variant_get_type (value);
3204 if G_UNLIKELY (!g_variant_type_is_array (type))
3205 g_error ("g_variant_new: expected array GVariantBuilder but "
3206 "the built value has type `%s'",
3207 g_variant_get_type_string (value));
3209 type = g_variant_type_element (type);
3211 if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
3212 g_error ("g_variant_new: expected GVariantBuilder array element "
3213 "type `%s' but the built value has element type `%s'",
3214 g_variant_type_dup_string ((GVariantType *) *str),
3215 g_variant_get_type_string (value) + 1);
3217 g_variant_type_string_scan (*str, NULL, str);
3223 return g_variant_new_string (ptr);
3226 return g_variant_new_object_path (ptr);
3229 return g_variant_new_signature (ptr);
3233 const GVariantType *type;
3234 GVariantType *array_type;
3235 GVariant **children;
3240 if ((*str)[1] == '&') /* '^a&s' */
3245 type = (GVariantType *) (*str)++;
3246 array_type = g_variant_type_new_array (type);
3247 length = g_strv_length (strv);
3248 children = g_new (GVariant *, length);
3249 for (i = 0; i < length; i++)
3250 children[i] = g_variant_ref_sink (
3251 g_variant_new_from_trusted (type, strv[i], strlen (strv[i]) + 1));
3253 value = g_variant_new_from_children (array_type, children,
3255 g_variant_type_free (array_type);
3261 if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
3262 g_error ("g_variant_new: expected GVariant of type `%s' but "
3263 "received value has type `%s'",
3264 g_variant_type_dup_string ((GVariantType *) *str),
3265 g_variant_get_type_string (ptr));
3267 g_variant_type_string_scan (*str, NULL, str);
3275 if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
3276 g_error ("g_variant_new: format string `?' expects basic-typed "
3277 "GVariant, but received value has type `%s'",
3278 g_variant_get_type_string (ptr));
3283 if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
3284 g_error ("g_variant_new: format string `r` expects tuple-typed "
3285 "GVariant, but received value has type `%s'",
3286 g_variant_get_type_string (ptr));
3291 return g_variant_new_variant (ptr);
3294 g_assert_not_reached ();
3299 g_variant_valist_get_nnp (const gchar **str,
3305 g_variant_type_string_scan (*str, NULL, str);
3306 return g_variant_iter_new (value);
3310 return (gchar *) g_variant_get_string (value, NULL);
3315 return g_variant_dup_string (value, NULL);
3318 if ((*str)[1] == '&') /* '^a&s' */
3321 return g_variant_get_strv (value, NULL);
3326 return g_variant_dup_strv (value, NULL);
3330 g_variant_type_string_scan (*str, NULL, str);
3336 return g_variant_ref (value);
3339 return g_variant_get_variant (value);
3342 g_assert_not_reached ();
3348 g_variant_valist_skip_leaf (const gchar **str,
3351 if (g_variant_format_string_is_nnp (*str))
3353 g_variant_format_string_scan (*str, NULL, str);
3354 va_arg (*app, gpointer);
3372 va_arg (*app, guint64);
3376 va_arg (*app, gdouble);
3380 g_assert_not_reached ();
3385 g_variant_valist_new_leaf (const gchar **str,
3388 if (g_variant_format_string_is_nnp (*str))
3389 return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
3394 return g_variant_new_boolean (va_arg (*app, gboolean));
3397 return g_variant_new_byte (va_arg (*app, guint));
3400 return g_variant_new_int16 (va_arg (*app, gint));
3403 return g_variant_new_uint16 (va_arg (*app, guint));
3406 return g_variant_new_int32 (va_arg (*app, gint));
3409 return g_variant_new_uint32 (va_arg (*app, guint));
3412 return g_variant_new_int64 (va_arg (*app, gint64));
3415 return g_variant_new_uint64 (va_arg (*app, guint64));
3418 return g_variant_new_handle (va_arg (*app, gint));
3421 return g_variant_new_double (va_arg (*app, gdouble));
3424 g_assert_not_reached ();
3428 /* The code below assumes this */
3429 G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
3430 G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
3433 g_variant_valist_get_leaf (const gchar **str,
3438 gpointer ptr = va_arg (*app, gpointer);
3442 g_variant_format_string_scan (*str, NULL, str);
3446 if (g_variant_format_string_is_nnp (*str))
3448 gpointer *nnp = (gpointer *) ptr;
3450 if (free && *nnp != NULL)
3451 g_variant_valist_free_nnp (*str, *nnp);
3456 *nnp = g_variant_valist_get_nnp (str, value);
3458 g_variant_format_string_scan (*str, NULL, str);
3468 *(gboolean *) ptr = g_variant_get_boolean (value);
3472 *(guchar *) ptr = g_variant_get_byte (value);
3476 *(gint16 *) ptr = g_variant_get_int16 (value);
3480 *(guint16 *) ptr = g_variant_get_uint16 (value);
3484 *(gint32 *) ptr = g_variant_get_int32 (value);
3488 *(guint32 *) ptr = g_variant_get_uint32 (value);
3492 *(gint64 *) ptr = g_variant_get_int64 (value);
3496 *(guint64 *) ptr = g_variant_get_uint64 (value);
3500 *(gint32 *) ptr = g_variant_get_handle (value);
3504 *(gdouble *) ptr = g_variant_get_double (value);
3513 *(guchar *) ptr = 0;
3518 *(guint16 *) ptr = 0;
3525 *(guint32 *) ptr = 0;
3531 *(guint64 *) ptr = 0;
3536 g_assert_not_reached ();
3539 /* Generic (recursive) {{{2 */
3541 g_variant_valist_skip (const gchar **str,
3544 if (g_variant_format_string_is_leaf (*str))
3545 g_variant_valist_skip_leaf (str, app);
3547 else if (**str == 'm') /* maybe */
3551 if (!g_variant_format_string_is_nnp (*str))
3552 va_arg (*app, gboolean);
3554 g_variant_valist_skip (str, app);
3556 else /* tuple, dictionary entry */
3558 g_assert (**str == '(' || **str == '{');
3560 while (**str != ')' && **str != '}')
3561 g_variant_valist_skip (str, app);
3567 g_variant_valist_new (const gchar **str,
3570 if (g_variant_format_string_is_leaf (*str))
3571 return g_variant_valist_new_leaf (str, app);
3573 if (**str == 'm') /* maybe */
3575 GVariantType *type = NULL;
3576 GVariant *value = NULL;
3580 if (g_variant_format_string_is_nnp (*str))
3582 gpointer nnp = va_arg (*app, gpointer);
3585 value = g_variant_valist_new_nnp (str, nnp);
3587 type = g_variant_format_string_scan_type (*str, NULL, str);
3591 gboolean just = va_arg (*app, gboolean);
3594 value = g_variant_valist_new (str, app);
3597 type = g_variant_format_string_scan_type (*str, NULL, NULL);
3598 g_variant_valist_skip (str, app);
3602 value = g_variant_new_maybe (type, value);
3605 g_variant_type_free (type);
3609 else /* tuple, dictionary entry */
3614 g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
3617 g_assert (**str == '{');
3618 g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
3622 while (**str != ')' && **str != '}')
3623 g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
3626 return g_variant_builder_end (&b);
3631 g_variant_valist_get (const gchar **str,
3636 if (g_variant_format_string_is_leaf (*str))
3637 g_variant_valist_get_leaf (str, value, free, app);
3639 else if (**str == 'm')
3644 value = g_variant_get_maybe (value);
3646 if (!g_variant_format_string_is_nnp (*str))
3648 gboolean *ptr = va_arg (*app, gboolean *);
3651 *ptr = value != NULL;
3654 g_variant_valist_get (str, value, free, app);
3657 g_variant_unref (value);
3660 else /* tuple, dictionary entry */
3664 g_assert (**str == '(' || **str == '{');
3667 while (**str != ')' && **str != '}')
3671 GVariant *child = g_variant_get_child_value (value, index++);
3672 g_variant_valist_get (str, child, free, app);
3673 g_variant_unref (child);
3676 g_variant_valist_get (str, NULL, free, app);
3682 /* User-facing API {{{2 */
3685 * @format_string: a #GVariant format string
3686 * @...: arguments, as per @format_string
3687 * @returns: a new floating #GVariant instance
3689 * Creates a new #GVariant instance.
3691 * Think of this function as an analogue to g_strdup_printf().
3693 * The type of the created instance and the arguments that are
3694 * expected by this function are determined by @format_string. See the
3695 * section on <link linkend='gvariant-format-strings'>GVariant Format
3696 * Strings</link>. Please note that the syntax of the format string is
3697 * very likely to be extended in the future.
3699 * The first character of the format string must not be '*' '?' '@' or
3700 * 'r'; in essence, a new #GVariant must always be constructed by this
3701 * function (and not merely passed through it unmodified).
3706 g_variant_new (const gchar *format_string,
3712 g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
3713 format_string[0] != '?' && format_string[0] != '@' &&
3714 format_string[0] != '*' && format_string[0] != 'r',
3717 va_start (ap, format_string);
3718 value = g_variant_new_va (format_string, NULL, &ap);
3726 * @format_string: a string that is prefixed with a format string
3727 * @endptr: location to store the end pointer, or %NULL
3728 * @app: a pointer to a #va_list
3729 * @returns: a new, usually floating, #GVariant
3731 * This function is intended to be used by libraries based on
3732 * #GVariant that want to provide g_variant_new()-like functionality
3735 * The API is more general than g_variant_new() to allow a wider range
3738 * @format_string must still point to a valid format string, but it only
3739 * needs to be nul-terminated if @endptr is %NULL. If @endptr is
3740 * non-%NULL then it is updated to point to the first character past the
3741 * end of the format string.
3743 * @app is a pointer to a #va_list. The arguments, according to
3744 * @format_string, are collected from this #va_list and the list is left
3745 * pointing to the argument following the last.
3747 * These two generalisations allow mixing of multiple calls to
3748 * g_variant_new_va() and g_variant_get_va() within a single actual
3749 * varargs call by the user.
3751 * The return value will be floating if it was a newly created GVariant
3752 * instance (for example, if the format string was "(ii)"). In the case
3753 * that the format_string was '*', '?', 'r', or a format starting with
3754 * '@' then the collected #GVariant pointer will be returned unmodified,
3755 * without adding any additional references.
3757 * In order to behave correctly in all cases it is necessary for the
3758 * calling function to g_variant_ref_sink() the return result before
3759 * returning control to the user that originally provided the pointer.
3760 * At this point, the caller will have their own full reference to the
3761 * result. This can also be done by adding the result to a container,
3762 * or by passing it to another g_variant_new() call.
3767 g_variant_new_va (const gchar *format_string,
3768 const gchar **endptr,
3773 g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
3775 g_return_val_if_fail (app != NULL, NULL);
3777 value = g_variant_valist_new (&format_string, app);
3780 *endptr = format_string;
3787 * @value: a #GVariant instance
3788 * @format_string: a #GVariant format string
3789 * @...: arguments, as per @format_string
3791 * Deconstructs a #GVariant instance.
3793 * Think of this function as an analogue to scanf().
3795 * The arguments that are expected by this function are entirely
3796 * determined by @format_string. @format_string also restricts the
3797 * permissible types of @value. It is an error to give a value with
3798 * an incompatible type. See the section on <link
3799 * linkend='gvariant-format-strings'>GVariant Format Strings</link>.
3800 * Please note that the syntax of the format string is very likely to be
3801 * extended in the future.
3806 g_variant_get (GVariant *value,
3807 const gchar *format_string,
3812 g_return_if_fail (valid_format_string (format_string, TRUE, value));
3814 /* if any direct-pointer-access formats are in use, flatten first */
3815 if (strchr (format_string, '&'))
3816 g_variant_get_data (value);
3818 va_start (ap, format_string);
3819 g_variant_get_va (value, format_string, NULL, &ap);
3825 * @value: a #GVariant
3826 * @format_string: a string that is prefixed with a format string
3827 * @endptr: location to store the end pointer, or %NULL
3828 * @app: a pointer to a #va_list
3830 * This function is intended to be used by libraries based on #GVariant
3831 * that want to provide g_variant_get()-like functionality to their
3834 * The API is more general than g_variant_get() to allow a wider range
3837 * @format_string must still point to a valid format string, but it only
3838 * need to be nul-terminated if @endptr is %NULL. If @endptr is
3839 * non-%NULL then it is updated to point to the first character past the
3840 * end of the format string.
3842 * @app is a pointer to a #va_list. The arguments, according to
3843 * @format_string, are collected from this #va_list and the list is left
3844 * pointing to the argument following the last.
3846 * These two generalisations allow mixing of multiple calls to
3847 * g_variant_new_va() and g_variant_get_va() within a single actual
3848 * varargs call by the user.
3853 g_variant_get_va (GVariant *value,
3854 const gchar *format_string,
3855 const gchar **endptr,
3858 g_return_if_fail (valid_format_string (format_string, !endptr, value));
3859 g_return_if_fail (value != NULL);
3860 g_return_if_fail (app != NULL);
3862 /* if any direct-pointer-access formats are in use, flatten first */
3863 if (strchr (format_string, '&'))
3864 g_variant_get_data (value);
3866 g_variant_valist_get (&format_string, value, FALSE, app);
3869 *endptr = format_string;
3872 /* Varargs-enabled Utility Functions {{{1 */
3875 * g_variant_builder_add:
3876 * @builder: a #GVariantBuilder
3877 * @format_string: a #GVariant varargs format string
3878 * @...: arguments, as per @format_string
3880 * Adds to a #GVariantBuilder.
3882 * This call is a convenience wrapper that is exactly equivalent to
3883 * calling g_variant_new() followed by g_variant_builder_add_value().
3885 * This function might be used as follows:
3889 * make_pointless_dictionary (void)
3891 * GVariantBuilder *builder;
3894 * builder = g_variant_builder_new (G_VARIANT_TYPE_ARRAY);
3895 * for (i = 0; i < 16; i++)
3899 * sprintf (buf, "%d", i);
3900 * g_variant_builder_add (builder, "{is}", i, buf);
3903 * return g_variant_builder_end (builder);
3910 g_variant_builder_add (GVariantBuilder *builder,
3911 const gchar *format_string,
3917 va_start (ap, format_string);
3918 variant = g_variant_new_va (format_string, NULL, &ap);
3921 g_variant_builder_add_value (builder, variant);
3925 * g_variant_get_child:
3926 * @value: a container #GVariant
3927 * @index_: the index of the child to deconstruct
3928 * @format_string: a #GVariant format string
3929 * @...: arguments, as per @format_string
3931 * Reads a child item out of a container #GVariant instance and
3932 * deconstructs it according to @format_string. This call is
3933 * essentially a combination of g_variant_get_child_value() and
3939 g_variant_get_child (GVariant *value,
3941 const gchar *format_string,
3947 child = g_variant_get_child_value (value, index_);
3948 g_return_if_fail (valid_format_string (format_string, TRUE, child));
3950 va_start (ap, format_string);
3951 g_variant_get_va (child, format_string, NULL, &ap);
3954 g_variant_unref (child);
3958 * g_variant_iter_next:
3959 * @iter: a #GVariantIter
3960 * @format_string: a GVariant format string
3961 * @...: the arguments to unpack the value into
3962 * @returns: %TRUE if a value was unpacked, or %FALSE if there as no
3965 * Gets the next item in the container and unpacks it into the variable
3966 * argument list according to @format_string, returning %TRUE.
3968 * If no more items remain then %FALSE is returned.
3970 * All of the pointers given on the variable arguments list of this
3971 * function are assumed to point at uninitialised memory. It is the
3972 * responsibility of the caller to free all of the values returned by
3973 * the unpacking process.
3976 * <title>Memory management with g_variant_iter_next()</title>
3978 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
3980 * iterate_dictionary (GVariant *dictionary)
3982 * GVariantIter iter;
3986 * g_variant_iter_init (&iter, dictionary);
3987 * while (g_variant_iter_next (&iter, "{sv}", &key, &value))
3989 * g_print ("Item '%s' has type '%s'\n", key,
3990 * g_variant_get_type_string (value));
3992 * /<!-- -->* must free data for ourselves *<!-- -->/
3993 * g_variant_unref (value);
4000 * For a solution that is likely to be more convenient to C programmers
4001 * when dealing with loops, see g_variant_iter_loop().
4006 g_variant_iter_next (GVariantIter *iter,
4007 const gchar *format_string,
4012 value = g_variant_iter_next_value (iter);
4014 g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
4021 va_start (ap, format_string);
4022 g_variant_valist_get (&format_string, value, FALSE, &ap);
4025 g_variant_unref (value);
4028 return value != NULL;
4032 * g_variant_iter_loop:
4033 * @iter: a #GVariantIter
4034 * @format_string: a GVariant format string
4035 * @...: the arguments to unpack the value into
4036 * @returns: %TRUE if a value was unpacked, or %FALSE if there as no
4039 * Gets the next item in the container and unpacks it into the variable
4040 * argument list according to @format_string, returning %TRUE.
4042 * If no more items remain then %FALSE is returned.
4044 * On the first call to this function, the pointers appearing on the
4045 * variable argument list are assumed to point at uninitialised memory.
4046 * On the second and later calls, it is assumed that the same pointers
4047 * will be given and that they will point to the memory as set by the
4048 * previous call to this function. This allows the previous values to
4049 * be freed, as appropriate.
4051 * This function is intended to be used with a while loop as
4052 * demonstrated in the following example. This function can only be
4053 * used when iterating over an array. It is only valid to call this
4054 * function with a string constant for the format string and the same
4055 * string constant must be used each time. Mixing calls to this
4056 * function and g_variant_iter_next() or g_variant_iter_next_value() on
4057 * the same iterator is not recommended.
4060 * <title>Memory management with g_variant_iter_loop()</title>
4062 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4064 * iterate_dictionary (GVariant *dictionary)
4066 * GVariantIter iter;
4070 * g_variant_iter_init (&iter, dictionary);
4071 * while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
4073 * g_print ("Item '%s' has type '%s'\n", key,
4074 * g_variant_get_type_string (value));
4076 * /<!-- -->* no need to free 'key' and 'value' here *<!-- -->/
4082 * If you want a slightly less magical alternative that requires more
4083 * typing, see g_variant_iter_next().
4088 g_variant_iter_loop (GVariantIter *iter,
4089 const gchar *format_string,
4092 gboolean first_time = GVSI(iter)->loop_format == NULL;
4096 g_return_val_if_fail (first_time ||
4097 format_string == GVSI(iter)->loop_format,
4102 TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
4103 GVSI(iter)->loop_format = format_string;
4105 if (strchr (format_string, '&'))
4106 g_variant_get_data (GVSI(iter)->value);
4109 value = g_variant_iter_next_value (iter);
4111 g_return_val_if_fail (!first_time ||
4112 valid_format_string (format_string, TRUE, value),
4115 va_start (ap, format_string);
4116 g_variant_valist_get (&format_string, value, !first_time, &ap);
4120 g_variant_unref (value);
4122 return value != NULL;
4125 /* Serialised data {{{1 */
4127 g_variant_deep_copy (GVariant *value)
4129 switch (g_variant_classify (value))
4131 case G_VARIANT_CLASS_MAYBE:
4132 case G_VARIANT_CLASS_ARRAY:
4133 case G_VARIANT_CLASS_TUPLE:
4134 case G_VARIANT_CLASS_DICT_ENTRY:
4135 case G_VARIANT_CLASS_VARIANT:
4137 GVariantBuilder builder;
4141 g_variant_builder_init (&builder, g_variant_get_type (value));
4142 g_variant_iter_init (&iter, value);
4144 while ((child = g_variant_iter_next_value (&iter)))
4146 g_variant_builder_add_value (&builder, g_variant_deep_copy (child));
4147 g_variant_unref (child);
4150 return g_variant_builder_end (&builder);
4153 case G_VARIANT_CLASS_BOOLEAN:
4154 return g_variant_new_boolean (g_variant_get_boolean (value));
4156 case G_VARIANT_CLASS_BYTE:
4157 return g_variant_new_byte (g_variant_get_byte (value));
4159 case G_VARIANT_CLASS_INT16:
4160 return g_variant_new_int16 (g_variant_get_int16 (value));
4162 case G_VARIANT_CLASS_UINT16:
4163 return g_variant_new_uint16 (g_variant_get_uint16 (value));
4165 case G_VARIANT_CLASS_INT32:
4166 return g_variant_new_int32 (g_variant_get_int32 (value));
4168 case G_VARIANT_CLASS_UINT32:
4169 return g_variant_new_uint32 (g_variant_get_uint32 (value));
4171 case G_VARIANT_CLASS_INT64:
4172 return g_variant_new_int64 (g_variant_get_int64 (value));
4174 case G_VARIANT_CLASS_UINT64:
4175 return g_variant_new_uint64 (g_variant_get_uint64 (value));
4177 case G_VARIANT_CLASS_HANDLE:
4178 return g_variant_new_handle (g_variant_get_handle (value));
4180 case G_VARIANT_CLASS_DOUBLE:
4181 return g_variant_new_double (g_variant_get_double (value));
4183 case G_VARIANT_CLASS_STRING:
4184 return g_variant_new_string (g_variant_get_string (value, NULL));
4186 case G_VARIANT_CLASS_OBJECT_PATH:
4187 return g_variant_new_object_path (g_variant_get_string (value, NULL));
4189 case G_VARIANT_CLASS_SIGNATURE:
4190 return g_variant_new_signature (g_variant_get_string (value, NULL));
4193 g_assert_not_reached ();
4197 * g_variant_get_normal_form:
4198 * @value: a #GVariant
4199 * @returns: a trusted #GVariant
4201 * Gets a #GVariant instance that has the same value as @value and is
4202 * trusted to be in normal form.
4204 * If @value is already trusted to be in normal form then a new
4205 * reference to @value is returned.
4207 * If @value is not already trusted, then it is scanned to check if it
4208 * is in normal form. If it is found to be in normal form then it is
4209 * marked as trusted and a new reference to it is returned.
4211 * If @value is found not to be in normal form then a new trusted
4212 * #GVariant is created with the same value as @value.
4214 * It makes sense to call this function if you've received #GVariant
4215 * data from untrusted sources and you want to ensure your serialised
4216 * output is definitely in normal form.
4221 g_variant_get_normal_form (GVariant *value)
4225 if (g_variant_is_normal_form (value))
4226 return g_variant_ref (value);
4228 trusted = g_variant_deep_copy (value);
4229 g_assert (g_variant_is_trusted (trusted));
4231 return g_variant_ref_sink (trusted);
4235 * g_variant_byteswap:
4236 * @value: a #GVariant
4237 * @returns: the byteswapped form of @value
4239 * Performs a byteswapping operation on the contents of @value. The
4240 * result is that all multi-byte numeric data contained in @value is
4241 * byteswapped. That includes 16, 32, and 64bit signed and unsigned
4242 * integers as well as file handles and double precision floating point
4245 * This function is an identity mapping on any value that does not
4246 * contain multi-byte numeric data. That include strings, booleans,
4247 * bytes and containers containing only these things (recursively).
4249 * The returned value is always in normal form and is marked as trusted.
4254 g_variant_byteswap (GVariant *value)
4256 GVariantSerialised serialised;
4261 trusted = g_variant_get_normal_form (value);
4262 serialised.type_info = g_variant_get_type_info (trusted);
4263 serialised.size = g_variant_get_size (trusted);
4264 serialised.data = g_malloc (serialised.size);
4265 g_variant_store (trusted, serialised.data);
4266 g_variant_unref (trusted);
4268 g_variant_serialised_byteswap (serialised);
4270 buffer = g_buffer_new_take_data (serialised.data, serialised.size);
4271 new = g_variant_new_from_buffer (g_variant_get_type (value), buffer, TRUE);
4272 g_buffer_unref (buffer);
4274 return g_variant_ref_sink (new);
4278 * g_variant_new_from_data:
4279 * @type: a definite #GVariantType
4280 * @data: the serialised data
4281 * @size: the size of @data
4282 * @trusted: %TRUE if @data is definitely in normal form
4283 * @notify: function to call when @data is no longer needed
4284 * @user_data: data for @notify
4285 * @returns: a new floating #GVariant of type @type
4287 * Creates a new #GVariant instance from serialised data.
4289 * @type is the type of #GVariant instance that will be constructed.
4290 * The interpretation of @data depends on knowing the type.
4292 * @data is not modified by this function and must remain valid with an
4293 * unchanging value until such a time as @notify is called with
4294 * @user_data. If the contents of @data change before that time then
4295 * the result is undefined.
4297 * If @data is trusted to be serialised data in normal form then
4298 * @trusted should be %TRUE. This applies to serialised data created
4299 * within this process or read from a trusted location on the disk (such
4300 * as a file installed in /usr/lib alongside your application). You
4301 * should set trusted to %FALSE if @data is read from the network, a
4302 * file in the user's home directory, etc.
4304 * @notify will be called with @user_data when @data is no longer
4305 * needed. The exact time of this call is unspecified and might even be
4306 * before this function returns.
4311 g_variant_new_from_data (const GVariantType *type,
4315 GDestroyNotify notify,
4321 g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
4322 g_return_val_if_fail (data != NULL || size == 0, NULL);
4325 buffer = g_buffer_new_from_pointer (data, size, notify, user_data);
4327 buffer = g_buffer_new_from_static_data (data, size);
4329 value = g_variant_new_from_buffer (type, buffer, trusted);
4330 g_buffer_unref (buffer);
4336 #define __G_VARIANT_C__
4337 #include "galiasdef.c"
4339 /* vim:set foldmethod=marker: */