2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
20 * Author: Ryan Lortie <desrt@desrt.ca>
26 #include "gvariant-serialiser.h"
28 #include <glib/gtestutils.h>
29 #include <glib/gstrfuncs.h>
30 #include <glib/gtypes.h>
37 * After this prologue section, this file has roughly 2 parts.
39 * The first part is split up into sections according to various
40 * container types. Maybe, Array, Tuple, Variant. The Maybe and Array
41 * sections are subdivided for element types being fixed or
42 * variable-sized types.
44 * Each section documents the format of that particular type of
45 * container and implements 5 functions for dealing with it:
48 * - determines (according to serialised data) how many child values
49 * are inside a particular container value.
52 * - gets the type of and the serialised data corresponding to a
53 * given child value within the container value.
56 * - determines how much space would be required to serialise a
57 * container of this type, containing the given children so that
58 * buffers can be preallocated before serialising.
61 * - write the serialised data for a container of this type,
62 * containing the given children, to a buffer.
65 * - check the given data to ensure that it is in normal form. For a
66 * given set of child values, there is exactly one normal form for
67 * the serialised data of a container. Other forms are possible
68 * while maintaining the same children (for example, by inserting
69 * something other than zero bytes as padding) but only one form is
72 * The second part contains the main entry point for each of the above 5
73 * functions and logic to dispatch it to the handler for the appropriate
74 * container type code.
76 * The second part also contains a routine to byteswap serialised
77 * values. This code makes use of the n_children() and get_child()
78 * functions above to do its work so no extra support is needed on a
79 * per-container-type basis.
81 * There is also additional code for checking for normal form. All
82 * numeric types are always in normal form since the full range of
83 * values is permitted (eg: 0 to 255 is a valid byte). Special checks
84 * need to be performed for booleans (only 0 or 1 allowed), strings
85 * (properly nul-terminated) and object paths and signature strings
86 * (meeting the D-Bus specification requirements).
91 * @type_info: the #GVariantTypeInfo of this value
92 * @data: (allow-none): the serialised data of this value, or %NULL
93 * @size: the size of this value
95 * A structure representing a GVariant in serialised form. This
96 * structure is used with #GVariantSerialisedFiller functions and as the
97 * primary interface to the serialiser. See #GVariantSerialisedFiller
98 * for a description of its use there.
100 * When used with the serialiser API functions, the following invariants
101 * apply to all #GVariantTypeSerialised structures passed to and
102 * returned from the serialiser.
104 * @type_info must be non-%NULL.
106 * @data must be properly aligned for the type described by @type_info.
108 * If @type_info describes a fixed-sized type then @size must always be
109 * equal to the fixed size of that type.
111 * For fixed-sized types (and only fixed-sized types), @data may be
112 * %NULL even if @size is non-zero. This happens when a framing error
113 * occurs while attempting to extract a fixed-sized value out of a
114 * variable-sized container. There is no data to return for the
115 * fixed-sized type, yet @size must be non-zero. The effect of this
116 * combination should be as if @data were a pointer to an
117 * appropriately-sized zero-filled region.
121 * g_variant_serialised_check:
122 * @serialised: a #GVariantSerialised struct
124 * Checks @serialised for validity according to the invariants described
128 g_variant_serialised_check (GVariantSerialised serialised)
133 g_assert (serialised.type_info != NULL);
134 g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
137 g_assert_cmpint (serialised.size, ==, fixed_size);
139 g_assert (serialised.size == 0 || serialised.data != NULL);
141 /* Depending on the native alignment requirements of the machine, the
142 * compiler will insert either 3 or 7 padding bytes after the char.
143 * This will result in the sizeof() the struct being 12 or 16.
144 * Subtract 9 to get 3 or 7 which is a nice bitmask to apply to get
145 * the alignment bits that we "care about" being zero: in the
146 * 4-aligned case, we care about 2 bits, and in the 8-aligned case, we
149 alignment &= sizeof (struct {
159 /* Some OSes (FreeBSD is a known example) have a malloc() that returns
160 * unaligned memory if you request small sizes. 'malloc (1);', for
161 * example, has been seen to return pointers aligned to 6 mod 16.
163 * Check if this is a small allocation and return without enforcing
164 * the alignment assertion if this is the case.
166 if (serialised.size <= alignment)
169 g_assert_cmpint (alignment & (gsize) serialised.data, ==, 0);
173 * GVariantSerialisedFiller:
174 * @serialised: a #GVariantSerialised instance to fill
175 * @data: data from the children array
177 * This function is called back from g_variant_serialiser_needed_size()
178 * and g_variant_serialiser_serialise(). It fills in missing details
179 * from a partially-complete #GVariantSerialised.
181 * The @data parameter passed back to the function is one of the items
182 * that was passed to the serialiser in the @children array. It
183 * represents a single child item of the container that is being
184 * serialised. The information filled in to @serialised is the
185 * information for this child.
187 * If the @type_info field of @serialised is %NULL then the callback
188 * function must set it to the type information corresponding to the
189 * type of the child. No reference should be added. If it is non-%NULL
190 * then the callback should assert that it is equal to the actual type
193 * If the @size field is zero then the callback must fill it in with the
194 * required amount of space to store the serialised form of the child.
195 * If it is non-zero then the callback should assert that it is equal to
196 * the needed size of the child.
198 * If @data is non-%NULL then it points to a space that is properly
199 * aligned for and large enough to store the serialised data of the
200 * child. The callback must store the serialised form of the child at
203 * If the child value is another container then the callback will likely
204 * recurse back into the serialiser by calling
205 * g_variant_serialiser_needed_size() to determine @size and
206 * g_variant_serialiser_serialise() to write to @data.
209 /* PART 1: Container types {{{1
211 * This section contains the serialiser implementation functions for
212 * each container type.
217 * Maybe types are handled depending on if the element type of the maybe
218 * type is a fixed-sized or variable-sized type. Although all maybe
219 * types themselves are variable-sized types, herein, a maybe value with
220 * a fixed-sized element type is called a "fixed-sized maybe" for
221 * convenience and a maybe value with a variable-sized element type is
222 * called a "variable-sized maybe".
225 /* Fixed-sized Maybe {{{3
227 * The size of a maybe value with a fixed-sized element type is either 0
228 * or equal to the fixed size of its element type. The case where the
229 * size of the maybe value is zero corresponds to the "Nothing" case and
230 * the case where the size of the maybe value is equal to the fixed size
231 * of the element type corresponds to the "Just" case; in that case, the
232 * serialised data of the child value forms the entire serialised data
233 * of the maybe value.
235 * In the event that a fixed-sized maybe value is presented with a size
236 * that is not equal to the fixed size of the element type then the
237 * value must be taken to be "Nothing".
241 gvs_fixed_sized_maybe_n_children (GVariantSerialised value)
243 gsize element_fixed_size;
245 g_variant_type_info_query_element (value.type_info, NULL,
246 &element_fixed_size);
248 return (element_fixed_size == value.size) ? 1 : 0;
251 static GVariantSerialised
252 gvs_fixed_sized_maybe_get_child (GVariantSerialised value,
255 /* the child has the same bounds as the
256 * container, so just update the type.
258 value.type_info = g_variant_type_info_element (value.type_info);
259 g_variant_type_info_ref (value.type_info);
265 gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo *type_info,
266 GVariantSerialisedFiller gvs_filler,
267 const gpointer *children,
272 gsize element_fixed_size;
274 g_variant_type_info_query_element (type_info, NULL,
275 &element_fixed_size);
277 return element_fixed_size;
284 gvs_fixed_sized_maybe_serialise (GVariantSerialised value,
285 GVariantSerialisedFiller gvs_filler,
286 const gpointer *children,
291 GVariantSerialised child = { NULL, value.data, value.size };
293 gvs_filler (&child, children[0]);
298 gvs_fixed_sized_maybe_is_normal (GVariantSerialised value)
302 gsize element_fixed_size;
304 g_variant_type_info_query_element (value.type_info,
305 NULL, &element_fixed_size);
307 if (value.size != element_fixed_size)
310 /* proper element size: "Just". recurse to the child. */
311 value.type_info = g_variant_type_info_element (value.type_info);
313 return g_variant_serialised_is_normal (value);
316 /* size of 0: "Nothing" */
320 /* Variable-sized Maybe
322 * The size of a maybe value with a variable-sized element type is
323 * either 0 or strictly greater than 0. The case where the size of the
324 * maybe value is zero corresponds to the "Nothing" case and the case
325 * where the size of the maybe value is greater than zero corresponds to
326 * the "Just" case; in that case, the serialised data of the child value
327 * forms the first part of the serialised data of the maybe value and is
328 * followed by a single zero byte. This zero byte is always appended,
329 * regardless of any zero bytes that may already be at the end of the
330 * serialised ata of the child value.
334 gvs_variable_sized_maybe_n_children (GVariantSerialised value)
336 return (value.size > 0) ? 1 : 0;
339 static GVariantSerialised
340 gvs_variable_sized_maybe_get_child (GVariantSerialised value,
343 /* remove the padding byte and update the type. */
344 value.type_info = g_variant_type_info_element (value.type_info);
345 g_variant_type_info_ref (value.type_info);
348 /* if it's zero-sized then it may as well be NULL */
356 gvs_variable_sized_maybe_needed_size (GVariantTypeInfo *type_info,
357 GVariantSerialisedFiller gvs_filler,
358 const gpointer *children,
363 GVariantSerialised child = { 0, };
365 gvs_filler (&child, children[0]);
367 return child.size + 1;
374 gvs_variable_sized_maybe_serialise (GVariantSerialised value,
375 GVariantSerialisedFiller gvs_filler,
376 const gpointer *children,
381 GVariantSerialised child = { NULL, value.data, value.size - 1 };
383 /* write the data for the child. */
384 gvs_filler (&child, children[0]);
385 value.data[child.size] = '\0';
390 gvs_variable_sized_maybe_is_normal (GVariantSerialised value)
395 if (value.data[value.size - 1] != '\0')
398 value.type_info = g_variant_type_info_element (value.type_info);
401 return g_variant_serialised_is_normal (value);
406 * Just as with maybe types, array types are handled depending on if the
407 * element type of the array type is a fixed-sized or variable-sized
408 * type. Similar to maybe types, for convenience, an array value with a
409 * fixed-sized element type is called a "fixed-sized array" and an array
410 * value with a variable-sized element type is called a "variable sized
414 /* Fixed-sized Array {{{3
416 * For fixed sized arrays, the serialised data is simply a concatenation
417 * of the serialised data of each element, in order. Since fixed-sized
418 * values always have a fixed size that is a multiple of their alignment
419 * requirement no extra padding is required.
421 * In the event that a fixed-sized array is presented with a size that
422 * is not an integer multiple of the element size then the value of the
423 * array must be taken as being empty.
427 gvs_fixed_sized_array_n_children (GVariantSerialised value)
429 gsize element_fixed_size;
431 g_variant_type_info_query_element (value.type_info, NULL,
432 &element_fixed_size);
434 if (value.size % element_fixed_size == 0)
435 return value.size / element_fixed_size;
440 static GVariantSerialised
441 gvs_fixed_sized_array_get_child (GVariantSerialised value,
444 GVariantSerialised child = { 0, };
446 child.type_info = g_variant_type_info_element (value.type_info);
447 g_variant_type_info_query (child.type_info, NULL, &child.size);
448 child.data = value.data + (child.size * index_);
449 g_variant_type_info_ref (child.type_info);
455 gvs_fixed_sized_array_needed_size (GVariantTypeInfo *type_info,
456 GVariantSerialisedFiller gvs_filler,
457 const gpointer *children,
460 gsize element_fixed_size;
462 g_variant_type_info_query_element (type_info, NULL, &element_fixed_size);
464 return element_fixed_size * n_children;
468 gvs_fixed_sized_array_serialise (GVariantSerialised value,
469 GVariantSerialisedFiller gvs_filler,
470 const gpointer *children,
473 GVariantSerialised child = { 0, };
476 child.type_info = g_variant_type_info_element (value.type_info);
477 g_variant_type_info_query (child.type_info, NULL, &child.size);
478 child.data = value.data;
480 for (i = 0; i < n_children; i++)
482 gvs_filler (&child, children[i]);
483 child.data += child.size;
488 gvs_fixed_sized_array_is_normal (GVariantSerialised value)
490 GVariantSerialised child = { 0, };
492 child.type_info = g_variant_type_info_element (value.type_info);
493 g_variant_type_info_query (child.type_info, NULL, &child.size);
495 if (value.size % child.size != 0)
498 for (child.data = value.data;
499 child.data < value.data + value.size;
500 child.data += child.size)
502 if (!g_variant_serialised_is_normal (child))
509 /* Variable-sized Array {{{3
511 * Variable sized arrays, containing variable-sized elements, must be
512 * able to determine the boundaries between the elements. The items
513 * cannot simply be concatenated. Additionally, we are faced with the
514 * fact that non-fixed-sized values do not necessarily have a size that
515 * is a multiple of their alignment requirement, so we may need to
516 * insert zero-filled padding.
518 * While it is possible to find the start of an item by starting from
519 * the end of the item before it and padding for alignment, it is not
520 * generally possible to do the reverse operation. For this reason, we
521 * record the end point of each element in the array.
523 * GVariant works in terms of "offsets". An offset is a pointer to a
524 * boundary between two bytes. In 4 bytes of serialised data, there
525 * would be 5 possible offsets: one at the start ('0'), one between each
526 * pair of adjacent bytes ('1', '2', '3') and one at the end ('4').
528 * The numeric value of an offset is an unsigned integer given relative
529 * to the start of the serialised data of the array. Offsets are always
530 * stored in little endian byte order and are always only as big as they
531 * need to be. For example, in 255 bytes of serialised data, there are
532 * 256 offsets. All possibilities can be stored in an 8 bit unsigned
533 * integer. In 256 bytes of serialised data, however, there are 257
534 * possible offsets so 16 bit integers must be used. The size of an
535 * offset is always a power of 2.
537 * The offsets are stored at the end of the serialised data of the
538 * array. They are simply concatenated on without any particular
539 * alignment. The size of the offsets is included in the size of the
540 * serialised data for purposes of determining the size of the offsets.
541 * This presents a possibly ambiguity; in certain cases, a particular
542 * value of array could have two different serialised forms.
544 * Imagine an array containing a single string of 253 bytes in length
545 * (so, 254 bytes including the nul terminator). Now the offset must be
546 * written. If an 8 bit offset is written, it will bring the size of
547 * the array's serialised data to 255 -- which means that the use of an
548 * 8 bit offset was valid. If a 16 bit offset is used then the total
549 * size of the array will be 256 -- which means that the use of a 16 bit
550 * offset was valid. Although both of these will be accepted by the
551 * deserialiser, only the smaller of the two is considered to be in
552 * normal form and that is the one that the serialiser must produce.
555 /* bytes may be NULL if (size == 0). */
557 gvs_read_unaligned_le (guchar *bytes,
562 guchar bytes[GLIB_SIZEOF_SIZE_T];
566 tmpvalue.integer = 0;
568 memcpy (&tmpvalue.bytes, bytes, size);
570 return GSIZE_FROM_LE (tmpvalue.integer);
574 gvs_write_unaligned_le (guchar *bytes,
580 guchar bytes[GLIB_SIZEOF_SIZE_T];
584 tmpvalue.integer = GSIZE_TO_LE (value);
585 memcpy (bytes, &tmpvalue.bytes, size);
589 gvs_get_offset_size (gsize size)
591 if (size > G_MAXUINT32)
594 else if (size > G_MAXUINT16)
597 else if (size > G_MAXUINT8)
607 gvs_calculate_total_size (gsize body_size,
610 if (body_size + 1 * offsets <= G_MAXUINT8)
611 return body_size + 1 * offsets;
613 if (body_size + 2 * offsets <= G_MAXUINT16)
614 return body_size + 2 * offsets;
616 if (body_size + 4 * offsets <= G_MAXUINT32)
617 return body_size + 4 * offsets;
619 return body_size + 8 * offsets;
623 gvs_variable_sized_array_n_children (GVariantSerialised value)
625 gsize offsets_array_size;
632 offset_size = gvs_get_offset_size (value.size);
634 last_end = gvs_read_unaligned_le (value.data + value.size -
635 offset_size, offset_size);
637 if (last_end > value.size)
640 offsets_array_size = value.size - last_end;
642 if (offsets_array_size % offset_size)
645 return offsets_array_size / offset_size;
648 static GVariantSerialised
649 gvs_variable_sized_array_get_child (GVariantSerialised value,
652 GVariantSerialised child = { 0, };
658 child.type_info = g_variant_type_info_element (value.type_info);
659 g_variant_type_info_ref (child.type_info);
661 offset_size = gvs_get_offset_size (value.size);
663 last_end = gvs_read_unaligned_le (value.data + value.size -
664 offset_size, offset_size);
670 start = gvs_read_unaligned_le (value.data + last_end +
671 (offset_size * (index_ - 1)),
674 g_variant_type_info_query (child.type_info, &alignment, NULL);
675 start += (-start) & alignment;
680 end = gvs_read_unaligned_le (value.data + last_end +
681 (offset_size * index_),
684 if (start < end && end <= value.size)
686 child.data = value.data + start;
687 child.size = end - start;
694 gvs_variable_sized_array_needed_size (GVariantTypeInfo *type_info,
695 GVariantSerialisedFiller gvs_filler,
696 const gpointer *children,
703 g_variant_type_info_query (type_info, &alignment, NULL);
706 for (i = 0; i < n_children; i++)
708 GVariantSerialised child = { 0, };
710 offset += (-offset) & alignment;
711 gvs_filler (&child, children[i]);
712 offset += child.size;
715 return gvs_calculate_total_size (offset, n_children);
719 gvs_variable_sized_array_serialise (GVariantSerialised value,
720 GVariantSerialisedFiller gvs_filler,
721 const gpointer *children,
730 g_variant_type_info_query (value.type_info, &alignment, NULL);
731 offset_size = gvs_get_offset_size (value.size);
734 offset_ptr = value.data + value.size - offset_size * n_children;
736 for (i = 0; i < n_children; i++)
738 GVariantSerialised child = { 0, };
740 while (offset & alignment)
741 value.data[offset++] = '\0';
743 child.data = value.data + offset;
744 gvs_filler (&child, children[i]);
745 offset += child.size;
747 gvs_write_unaligned_le (offset_ptr, offset, offset_size);
748 offset_ptr += offset_size;
753 gvs_variable_sized_array_is_normal (GVariantSerialised value)
755 GVariantSerialised child = { 0, };
756 gsize offsets_array_size;
757 guchar *offsets_array;
768 offset_size = gvs_get_offset_size (value.size);
769 last_end = gvs_read_unaligned_le (value.data + value.size -
770 offset_size, offset_size);
772 if (last_end > value.size)
775 offsets_array_size = value.size - last_end;
777 if (offsets_array_size % offset_size)
780 offsets_array = value.data + value.size - offsets_array_size;
781 length = offsets_array_size / offset_size;
786 child.type_info = g_variant_type_info_element (value.type_info);
787 g_variant_type_info_query (child.type_info, &alignment, NULL);
790 for (i = 0; i < length; i++)
794 this_end = gvs_read_unaligned_le (offsets_array + offset_size * i,
797 if (this_end < offset || this_end > last_end)
800 while (offset & alignment)
802 if (!(offset < this_end && value.data[offset] == '\0'))
807 child.data = value.data + offset;
808 child.size = this_end - offset;
813 if (!g_variant_serialised_is_normal (child))
819 g_assert (offset == last_end);
826 * Since tuples can contain a mix of variable- and fixed-sized items,
827 * they are, in terms of serialisation, a hybrid of variable-sized and
828 * fixed-sized arrays.
830 * Offsets are only stored for variable-sized items. Also, since the
831 * number of items in a tuple is known from its type, we are able to
832 * know exactly how many offsets to expect in the serialised data (and
833 * therefore how much space is taken up by the offset array). This
834 * means that we know where the end of the serialised data for the last
835 * item is -- we can just subtract the size of the offset array from the
836 * total size of the tuple. For this reason, the last item in the tuple
837 * doesn't need an offset stored.
839 * Tuple offsets are stored in reverse. This design choice allows
840 * iterator-based deserialisers to be more efficient.
842 * Most of the "heavy lifting" here is handled by the GVariantTypeInfo
843 * for the tuple. See the notes in gvarianttypeinfo.h.
847 gvs_tuple_n_children (GVariantSerialised value)
849 return g_variant_type_info_n_members (value.type_info);
852 static GVariantSerialised
853 gvs_tuple_get_child (GVariantSerialised value,
856 const GVariantMemberInfo *member_info;
857 GVariantSerialised child = { 0, };
861 member_info = g_variant_type_info_member_info (value.type_info, index_);
862 child.type_info = g_variant_type_info_ref (member_info->type_info);
863 offset_size = gvs_get_offset_size (value.size);
865 /* tuples are the only (potentially) fixed-sized containers, so the
866 * only ones that have to deal with the possibility of having %NULL
867 * data with a non-zero %size if errors occurred elsewhere.
869 if G_UNLIKELY (value.data == NULL && value.size != 0)
871 g_variant_type_info_query (child.type_info, NULL, &child.size);
873 /* this can only happen in fixed-sized tuples,
874 * so the child must also be fixed sized.
876 g_assert (child.size != 0);
882 if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
884 if (offset_size * (member_info->i + 2) > value.size)
889 if (offset_size * (member_info->i + 1) > value.size)
891 /* if the child is fixed size, return its size.
892 * if child is not fixed-sized, return size = 0.
894 g_variant_type_info_query (child.type_info, NULL, &child.size);
900 if (member_info->i + 1)
901 start = gvs_read_unaligned_le (value.data + value.size -
902 offset_size * (member_info->i + 1),
907 start += member_info->a;
908 start &= member_info->b;
909 start |= member_info->c;
911 if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST)
912 end = value.size - offset_size * (member_info->i + 1);
914 else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
918 g_variant_type_info_query (child.type_info, NULL, &fixed_size);
919 end = start + fixed_size;
920 child.size = fixed_size;
923 else /* G_VARIANT_MEMEBER_ENDING_OFFSET */
924 end = gvs_read_unaligned_le (value.data + value.size -
925 offset_size * (member_info->i + 2),
928 if (start < end && end <= value.size)
930 child.data = value.data + start;
931 child.size = end - start;
938 gvs_tuple_needed_size (GVariantTypeInfo *type_info,
939 GVariantSerialisedFiller gvs_filler,
940 const gpointer *children,
943 const GVariantMemberInfo *member_info = NULL;
948 g_variant_type_info_query (type_info, NULL, &fixed_size);
955 for (i = 0; i < n_children; i++)
959 member_info = g_variant_type_info_member_info (type_info, i);
960 g_variant_type_info_query (member_info->type_info,
961 &alignment, &fixed_size);
962 offset += (-offset) & alignment;
965 offset += fixed_size;
968 GVariantSerialised child = { 0, };
970 gvs_filler (&child, children[i]);
971 offset += child.size;
975 return gvs_calculate_total_size (offset, member_info->i + 1);
979 gvs_tuple_serialise (GVariantSerialised value,
980 GVariantSerialisedFiller gvs_filler,
981 const gpointer *children,
988 offset_size = gvs_get_offset_size (value.size);
991 for (i = 0; i < n_children; i++)
993 const GVariantMemberInfo *member_info;
994 GVariantSerialised child = { 0, };
997 member_info = g_variant_type_info_member_info (value.type_info, i);
998 g_variant_type_info_query (member_info->type_info, &alignment, NULL);
1000 while (offset & alignment)
1001 value.data[offset++] = '\0';
1003 child.data = value.data + offset;
1004 gvs_filler (&child, children[i]);
1005 offset += child.size;
1007 if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
1009 value.size -= offset_size;
1010 gvs_write_unaligned_le (value.data + value.size,
1011 offset, offset_size);
1015 while (offset < value.size)
1016 value.data[offset++] = '\0';
1020 gvs_tuple_is_normal (GVariantSerialised value)
1028 /* as per the comment in gvs_tuple_get_child() */
1029 if G_UNLIKELY (value.data == NULL && value.size != 0)
1032 offset_size = gvs_get_offset_size (value.size);
1033 length = g_variant_type_info_n_members (value.type_info);
1034 offset_ptr = value.size;
1037 for (i = 0; i < length; i++)
1039 const GVariantMemberInfo *member_info;
1040 GVariantSerialised child;
1045 member_info = g_variant_type_info_member_info (value.type_info, i);
1046 child.type_info = member_info->type_info;
1048 g_variant_type_info_query (child.type_info, &alignment, &fixed_size);
1050 while (offset & alignment)
1052 if (offset > value.size || value.data[offset] != '\0')
1057 child.data = value.data + offset;
1059 switch (member_info->ending_type)
1061 case G_VARIANT_MEMBER_ENDING_FIXED:
1062 end = offset + fixed_size;
1065 case G_VARIANT_MEMBER_ENDING_LAST:
1069 case G_VARIANT_MEMBER_ENDING_OFFSET:
1070 offset_ptr -= offset_size;
1072 if (offset_ptr < offset)
1075 end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size);
1079 g_assert_not_reached ();
1082 if (end < offset || end > offset_ptr)
1085 child.size = end - offset;
1087 if (child.size == 0)
1090 if (!g_variant_serialised_is_normal (child))
1100 g_variant_type_info_query (value.type_info, &alignment, &fixed_size);
1104 g_assert (fixed_size == value.size);
1105 g_assert (offset_ptr == value.size);
1109 if (value.data[offset++] != '\0')
1114 while (offset & alignment)
1115 if (value.data[offset++] != '\0')
1119 g_assert (offset == value.size);
1123 return offset_ptr == offset;
1128 * Variants are stored by storing the serialised data of the child,
1129 * followed by a '\0' character, followed by the type string of the
1132 * In the case that a value is presented that contains no '\0'
1133 * character, or doesn't have a single well-formed definite type string
1134 * following that character, the variant must be taken as containing the
1139 gvs_variant_n_children (GVariantSerialised value)
1144 static inline GVariantSerialised
1145 gvs_variant_get_child (GVariantSerialised value,
1148 GVariantSerialised child = { 0, };
1150 /* NOTE: not O(1) and impossible for it to be... */
1153 /* find '\0' character */
1154 for (child.size = value.size - 1; child.size; child.size--)
1155 if (value.data[child.size] == '\0')
1158 /* ensure we didn't just hit the start of the string */
1159 if (value.data[child.size] == '\0')
1161 const gchar *type_string = (gchar *) &value.data[child.size + 1];
1162 const gchar *limit = (gchar *) &value.data[value.size];
1165 if (g_variant_type_string_scan (type_string, limit, &end) &&
1168 const GVariantType *type = (GVariantType *) type_string;
1170 if (g_variant_type_is_definite (type))
1174 child.type_info = g_variant_type_info_get (type);
1176 if (child.size != 0)
1177 /* only set to non-%NULL if size > 0 */
1178 child.data = value.data;
1180 g_variant_type_info_query (child.type_info,
1183 if (!fixed_size || fixed_size == child.size)
1186 g_variant_type_info_unref (child.type_info);
1192 child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT);
1200 gvs_variant_needed_size (GVariantTypeInfo *type_info,
1201 GVariantSerialisedFiller gvs_filler,
1202 const gpointer *children,
1205 GVariantSerialised child = { 0, };
1206 const gchar *type_string;
1208 gvs_filler (&child, children[0]);
1209 type_string = g_variant_type_info_get_type_string (child.type_info);
1211 return child.size + 1 + strlen (type_string);
1215 gvs_variant_serialise (GVariantSerialised value,
1216 GVariantSerialisedFiller gvs_filler,
1217 const gpointer *children,
1220 GVariantSerialised child = { 0, };
1221 const gchar *type_string;
1223 child.data = value.data;
1225 gvs_filler (&child, children[0]);
1226 type_string = g_variant_type_info_get_type_string (child.type_info);
1227 value.data[child.size] = '\0';
1228 memcpy (value.data + child.size + 1, type_string, strlen (type_string));
1231 static inline gboolean
1232 gvs_variant_is_normal (GVariantSerialised value)
1234 GVariantSerialised child;
1237 child = gvs_variant_get_child (value, 0);
1239 normal = (child.data != NULL || child.size == 0) &&
1240 g_variant_serialised_is_normal (child);
1242 g_variant_type_info_unref (child.type_info);
1249 /* PART 2: Serialiser API {{{1
1251 * This is the implementation of the API of the serialiser as advertised
1252 * in gvariant-serialiser.h.
1255 /* Dispatch Utilities {{{2
1257 * These macros allow a given function (for example,
1258 * g_variant_serialiser_serialise) to be dispatched to the appropriate
1259 * type-specific function above (fixed/variable-sized maybe,
1260 * fixed/variable-sized array, tuple or variant).
1262 #define DISPATCH_FIXED(type_info, before, after) \
1266 g_variant_type_info_query_element (type_info, NULL, \
1271 before ## fixed_sized ## after \
1275 before ## variable_sized ## after \
1279 #define DISPATCH_CASES(type_info, before, after) \
1280 switch (g_variant_type_info_get_type_char (type_info)) \
1282 case G_VARIANT_TYPE_INFO_CHAR_MAYBE: \
1283 DISPATCH_FIXED (type_info, before, _maybe ## after) \
1285 case G_VARIANT_TYPE_INFO_CHAR_ARRAY: \
1286 DISPATCH_FIXED (type_info, before, _array ## after) \
1288 case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY: \
1289 case G_VARIANT_TYPE_INFO_CHAR_TUPLE: \
1291 before ## tuple ## after \
1294 case G_VARIANT_TYPE_INFO_CHAR_VARIANT: \
1296 before ## variant ## after \
1300 /* Serialiser entry points {{{2
1302 * These are the functions that are called in order for the serialiser
1307 * g_variant_serialised_n_children:
1308 * @serialised: a #GVariantSerialised
1310 * For serialised data that represents a container value (maybes,
1311 * tuples, arrays, variants), determine how many child items are inside
1314 * Returns: the number of children
1317 g_variant_serialised_n_children (GVariantSerialised serialised)
1319 g_variant_serialised_check (serialised);
1321 DISPATCH_CASES (serialised.type_info,
1323 return gvs_/**/,/**/_n_children (serialised);
1326 g_assert_not_reached ();
1330 * g_variant_serialised_get_child:
1331 * @serialised: a #GVariantSerialised
1332 * @index_: the index of the child to fetch
1334 * Extracts a child from a serialised data representing a container
1337 * It is an error to call this function with an index out of bounds.
1339 * If the result .data == %NULL and .size > 0 then there has been an
1340 * error extracting the requested fixed-sized value. This number of
1341 * zero bytes needs to be allocated instead.
1343 * In the case that .data == %NULL and .size == 0 then a zero-sized
1344 * item of a variable-sized type is being returned.
1346 * .data is never non-%NULL if size is 0.
1348 * Returns: a #GVariantSerialised for the child
1351 g_variant_serialised_get_child (GVariantSerialised serialised,
1354 GVariantSerialised child;
1356 g_variant_serialised_check (serialised);
1358 if G_LIKELY (index_ < g_variant_serialised_n_children (serialised))
1360 DISPATCH_CASES (serialised.type_info,
1362 child = gvs_/**/,/**/_get_child (serialised, index_);
1363 g_assert (child.size || child.data == NULL);
1364 g_variant_serialised_check (child);
1368 g_assert_not_reached ();
1371 g_error ("Attempt to access item %"G_GSIZE_FORMAT
1372 " in a container with only %"G_GSIZE_FORMAT" items",
1373 index_, g_variant_serialised_n_children (serialised));
1377 * g_variant_serialiser_serialise:
1378 * @serialised: a #GVariantSerialised, properly set up
1379 * @gvs_filler: the filler function
1380 * @children: an array of child items
1381 * @n_children: the size of @children
1383 * Writes data in serialised form.
1385 * The type_info field of @serialised must be filled in to type info for
1386 * the type that we are serialising.
1388 * The size field of @serialised must be filled in with the value
1389 * returned by a previous call to g_variant_serialiser_needed_size().
1391 * The data field of @serialised must be a pointer to a properly-aligned
1392 * memory region large enough to serialise into (ie: at least as big as
1395 * This function is only resonsible for serialising the top-level
1396 * container. @gvs_filler is called on each child of the container in
1397 * order for all of the data of that child to be filled in.
1400 g_variant_serialiser_serialise (GVariantSerialised serialised,
1401 GVariantSerialisedFiller gvs_filler,
1402 const gpointer *children,
1405 g_variant_serialised_check (serialised);
1407 DISPATCH_CASES (serialised.type_info,
1409 gvs_/**/,/**/_serialise (serialised, gvs_filler,
1410 children, n_children);
1414 g_assert_not_reached ();
1418 * g_variant_serialiser_needed_size:
1419 * @type_info: the type to serialise for
1420 * @gvs_filler: the filler function
1421 * @children: an array of child items
1422 * @n_children: the size of @children
1424 * Determines how much memory would be needed to serialise this value.
1426 * This function is only resonsible for performing calculations for the
1427 * top-level container. @gvs_filler is called on each child of the
1428 * container in order to determine its size.
1431 g_variant_serialiser_needed_size (GVariantTypeInfo *type_info,
1432 GVariantSerialisedFiller gvs_filler,
1433 const gpointer *children,
1436 DISPATCH_CASES (type_info,
1438 return gvs_/**/,/**/_needed_size (type_info, gvs_filler,
1439 children, n_children);
1442 g_assert_not_reached ();
1445 /* Byteswapping {{{2 */
1448 * g_variant_serialised_byteswap:
1449 * @value: a #GVariantSerialised
1451 * Byte-swap serialised data. The result of this function is only
1452 * well-defined if the data is in normal form.
1455 g_variant_serialised_byteswap (GVariantSerialised serialised)
1460 g_variant_serialised_check (serialised);
1462 if (!serialised.data)
1465 /* the types we potentially need to byteswap are
1466 * exactly those with alignment requirements.
1468 g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
1472 /* if fixed size and alignment are equal then we are down
1473 * to the base integer type and we should swap it. the
1474 * only exception to this is if we have a tuple with a
1475 * single item, and then swapping it will be OK anyway.
1477 if (alignment + 1 == fixed_size)
1483 guint16 *ptr = (guint16 *) serialised.data;
1485 g_assert_cmpint (serialised.size, ==, 2);
1486 *ptr = GUINT16_SWAP_LE_BE (*ptr);
1492 guint32 *ptr = (guint32 *) serialised.data;
1494 g_assert_cmpint (serialised.size, ==, 4);
1495 *ptr = GUINT32_SWAP_LE_BE (*ptr);
1501 guint64 *ptr = (guint64 *) serialised.data;
1503 g_assert_cmpint (serialised.size, ==, 8);
1504 *ptr = GUINT64_SWAP_LE_BE (*ptr);
1509 g_assert_not_reached ();
1513 /* else, we have a container that potentially contains
1514 * some children that need to be byteswapped.
1520 children = g_variant_serialised_n_children (serialised);
1521 for (i = 0; i < children; i++)
1523 GVariantSerialised child;
1525 child = g_variant_serialised_get_child (serialised, i);
1526 g_variant_serialised_byteswap (child);
1527 g_variant_type_info_unref (child.type_info);
1532 /* Normal form checking {{{2 */
1535 * g_variant_serialised_is_normal:
1536 * @serialised: a #GVariantSerialised
1538 * Determines, recursively if @serialised is in normal form. There is
1539 * precisely one normal form of serialised data for each possible value.
1541 * It is possible that multiple byte sequences form the serialised data
1542 * for a given value if, for example, the padding bytes are filled in
1543 * with something other than zeros, but only one form is the normal
1547 g_variant_serialised_is_normal (GVariantSerialised serialised)
1549 DISPATCH_CASES (serialised.type_info,
1551 return gvs_/**/,/**/_is_normal (serialised);
1555 if (serialised.data == NULL)
1558 /* some hard-coded terminal cases */
1559 switch (g_variant_type_info_get_type_char (serialised.type_info))
1561 case 'b': /* boolean */
1562 return serialised.data[0] < 2;
1564 case 's': /* string */
1565 return g_variant_serialiser_is_string (serialised.data,
1569 return g_variant_serialiser_is_object_path (serialised.data,
1573 return g_variant_serialiser_is_signature (serialised.data,
1577 /* all of the other types are fixed-sized numerical types for
1578 * which all possible values are valid (including various NaN
1579 * representations for floating point values).
1585 /* Validity-checking functions {{{2
1587 * Checks if strings, object paths and signature strings are valid.
1591 * g_variant_serialiser_is_string:
1592 * @data: a possible string
1593 * @size: the size of @data
1595 * Ensures that @data is a valid string with a nul terminator at the end
1596 * and no nul bytes embedded.
1599 g_variant_serialiser_is_string (gconstpointer data,
1602 const gchar *expected_end;
1608 expected_end = ((gchar *) data) + size - 1;
1610 if (*expected_end != '\0')
1613 g_utf8_validate (data, size, &end);
1615 return end == expected_end;
1619 * g_variant_serialiser_is_object_path:
1620 * @data: a possible D-Bus object path
1621 * @size: the size of @data
1623 * Performs the checks for being a valid string.
1625 * Also, ensures that @data is a valid DBus object path, as per the D-Bus
1629 g_variant_serialiser_is_object_path (gconstpointer data,
1632 const gchar *string = data;
1635 if (!g_variant_serialiser_is_string (data, size))
1638 /* The path must begin with an ASCII '/' (integer 47) character */
1639 if (string[0] != '/')
1642 for (i = 1; string[i]; i++)
1643 /* Each element must only contain the ASCII characters
1644 * "[A-Z][a-z][0-9]_"
1646 if (g_ascii_isalnum (string[i]) || string[i] == '_')
1649 /* must consist of elements separated by slash characters. */
1650 else if (string[i] == '/')
1652 /* No element may be the empty string. */
1653 /* Multiple '/' characters cannot occur in sequence. */
1654 if (string[i - 1] == '/')
1661 /* A trailing '/' character is not allowed unless the path is the
1662 * root path (a single '/' character).
1664 if (i > 1 && string[i - 1] == '/')
1671 * g_variant_serialiser_is_signature:
1672 * @data: a possible D-Bus signature
1673 * @size: the size of @data
1675 * Performs the checks for being a valid string.
1677 * Also, ensures that @data is a valid D-Bus type signature, as per the
1678 * D-Bus specification.
1681 g_variant_serialiser_is_signature (gconstpointer data,
1684 const gchar *string = data;
1685 gsize first_invalid;
1687 if (!g_variant_serialiser_is_string (data, size))
1690 /* make sure no non-definite characters appear */
1691 first_invalid = strspn (string, "ybnqiuxthdvasog(){}");
1692 if (string[first_invalid])
1695 /* make sure each type string is well-formed */
1697 if (!g_variant_type_string_scan (string, NULL, &string))
1704 /* vim:set foldmethod=marker: */