2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
20 * Author: Ryan Lortie <desrt@desrt.ca>
26 #include "gvariant-serialiser.h"
28 #include <glib/gtestutils.h>
29 #include <glib/gstrfuncs.h>
30 #include <glib/gtypes.h>
38 * After this prologue section, this file has roughly 2 parts.
40 * The first part is split up into sections according to various
41 * container types. Maybe, Array, Tuple, Variant. The Maybe and Array
42 * sections are subdivided for element types being fixed or
43 * variable-sized types.
45 * Each section documents the format of that particular type of
46 * container and implements 5 functions for dealing with it:
49 * - determines (according to serialised data) how many child values
50 * are inside a particular container value.
53 * - gets the type of and the serialised data corresponding to a
54 * given child value within the container value.
57 * - determines how much space would be required to serialise a
58 * container of this type, containing the given children so that
59 * buffers can be preallocated before serialising.
62 * - write the serialised data for a container of this type,
63 * containing the given children, to a buffer.
66 * - check the given data to ensure that it is in normal form. For a
67 * given set of child values, there is exactly one normal form for
68 * the serialised data of a container. Other forms are possible
69 * while maintaining the same children (for example, by inserting
70 * something other than zero bytes as padding) but only one form is
73 * The second part contains the main entry point for each of the above 5
74 * functions and logic to dispatch it to the handler for the appropriate
75 * container type code.
77 * The second part also contains a routine to byteswap serialised
78 * values. This code makes use of the n_children() and get_child()
79 * functions above to do its work so no extra support is needed on a
80 * per-container-type basis.
82 * There is also additional code for checking for normal form. All
83 * numeric types are always in normal form since the full range of
84 * values is permitted (eg: 0 to 255 is a valid byte). Special checks
85 * need to be performed for booleans (only 0 or 1 allowed), strings
86 * (properly nul-terminated) and object paths and signature strings
87 * (meeting the DBus specification requirements).
92 * @type_info: the #GVariantTypeInfo of this value
93 * @data: the serialised data of this value, or %NULL
94 * @size: the size of this value
96 * A structure representing a GVariant in serialised form. This
97 * structure is used with #GVariantSerialisedFiller functions and as the
98 * primary interface to the serialiser. See #GVariantSerialisedFiller
99 * for a description of its use there.
101 * When used with the serialiser API functions, the following invariants
102 * apply to all #GVariantTypeSerialised structures passed to and
103 * returned from the serialiser.
105 * @type_info must be non-%NULL.
107 * @data must be properly aligned for the type described by @type_info.
109 * If @type_info describes a fixed-sized type then @size must always be
110 * equal to the fixed size of that type.
112 * For fixed-sized types (and only fixed-sized types), @data may be
113 * %NULL even if @size is non-zero. This happens when a framing error
114 * occurs while attempting to extract a fixed-sized value out of a
115 * variable-sized container. There is no data to return for the
116 * fixed-sized type, yet @size must be non-zero. The effect of this
117 * combination should be as if @data were a pointer to an
118 * appropriately-sized zero-filled region.
122 * g_variant_serialised_check:
123 * @serialised: a #GVariantSerialised struct
125 * Checks @serialised for validity according to the invariants described
129 g_variant_serialised_check (GVariantSerialised serialised)
134 g_assert (serialised.type_info != NULL);
135 g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
138 g_assert_cmpint (serialised.size, ==, fixed_size);
140 g_assert (serialised.size == 0 || serialised.data != NULL);
142 g_assert_cmpint (alignment & (gsize) serialised.data, ==, 0);
146 * GVariantSerialisedFiller:
147 * @serialised: a #GVariantSerialised instance to fill
148 * @data: data from the children array
150 * This function is called back from g_variant_serialiser_needed_size()
151 * and g_variant_serialiser_serialise(). It fills in missing details
152 * from a partially-complete #GVariantSerialised.
154 * The @data parameter passed back to the function is one of the items
155 * that was passed to the serialiser in the @children array. It
156 * represents a single child item of the container that is being
157 * serialised. The information filled in to @serialised is the
158 * information for this child.
160 * If the @type_info field of @serialised is %NULL then the callback
161 * function must set it to the type information corresponding to the
162 * type of the child. No reference should be added. If it is non-%NULL
163 * then the callback should assert that it is equal to the actual type
166 * If the @size field is zero then the callback must fill it in with the
167 * required amount of space to store the serialised form of the child.
168 * If it is non-zero then the callback should assert that it is equal to
169 * the needed size of the child.
171 * If @data is non-%NULL then it points to a space that is properly
172 * aligned for and large enough to store the serialised data of the
173 * child. The callback must store the serialised form of the child at
176 * If the child value is another container then the callback will likely
177 * recurse back into the serialiser by calling
178 * g_variant_serialiser_needed_size() to determine @size and
179 * g_variant_serialiser_serialise() to write to @data.
182 /* PART 1: Container types {{{1
184 * This section contains the serialiser implementation functions for
185 * each container type.
190 * Maybe types are handled depending on if the element type of the maybe
191 * type is a fixed-sized or variable-sized type. Although all maybe
192 * types themselves are variable-sized types, herein, a maybe value with
193 * a fixed-sized element type is called a "fixed-sized maybe" for
194 * convenience and a maybe value with a variable-sized element type is
195 * called a "variable-sized maybe".
198 /* Fixed-sized Maybe {{{3
200 * The size of a maybe value with a fixed-sized element type is either 0
201 * or equal to the fixed size of its element type. The case where the
202 * size of the maybe value is zero corresponds to the "Nothing" case and
203 * the case where the size of the maybe value is equal to the fixed size
204 * of the element type corresponds to the "Just" case; in that case, the
205 * serialised data of the child value forms the entire serialised data
206 * of the maybe value.
208 * In the event that a fixed-sized maybe value is presented with a size
209 * that is not equal to the fixed size of the element type then the
210 * value must be taken to be "Nothing".
214 gvs_fixed_sized_maybe_n_children (GVariantSerialised value)
216 gsize element_fixed_size;
218 g_variant_type_info_query_element (value.type_info, NULL,
219 &element_fixed_size);
221 return (element_fixed_size == value.size) ? 1 : 0;
224 static GVariantSerialised
225 gvs_fixed_sized_maybe_get_child (GVariantSerialised value,
228 /* the child has the same bounds as the
229 * container, so just update the type.
231 value.type_info = g_variant_type_info_element (value.type_info);
232 g_variant_type_info_ref (value.type_info);
238 gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo *type_info,
239 GVariantSerialisedFiller gvs_filler,
240 const gpointer *children,
245 gsize element_fixed_size;
247 g_variant_type_info_query_element (type_info, NULL,
248 &element_fixed_size);
250 return element_fixed_size;
257 gvs_fixed_sized_maybe_serialise (GVariantSerialised value,
258 GVariantSerialisedFiller gvs_filler,
259 const gpointer *children,
264 GVariantSerialised child = { NULL, value.data, value.size };
266 gvs_filler (&child, children[0]);
271 gvs_fixed_sized_maybe_is_normal (GVariantSerialised value)
275 gsize element_fixed_size;
277 g_variant_type_info_query_element (value.type_info,
278 NULL, &element_fixed_size);
280 if (value.size != element_fixed_size)
283 /* proper element size: "Just". recurse to the child. */
284 value.type_info = g_variant_type_info_element (value.type_info);
286 return g_variant_serialised_is_normal (value);
289 /* size of 0: "Nothing" */
293 /* Variable-sized Maybe
295 * The size of a maybe value with a variable-sized element type is
296 * either 0 or strictly greater than 0. The case where the size of the
297 * maybe value is zero corresponds to the "Nothing" case and the case
298 * where the size of the maybe value is greater than zero corresponds to
299 * the "Just" case; in that case, the serialised data of the child value
300 * forms the first part of the serialised data of the maybe value and is
301 * followed by a single zero byte. This zero byte is always appended,
302 * regardless of any zero bytes that may already be at the end of the
303 * serialised ata of the child value.
307 gvs_variable_sized_maybe_n_children (GVariantSerialised value)
309 return (value.size > 0) ? 1 : 0;
312 static GVariantSerialised
313 gvs_variable_sized_maybe_get_child (GVariantSerialised value,
316 /* remove the padding byte and update the type. */
317 value.type_info = g_variant_type_info_element (value.type_info);
318 g_variant_type_info_ref (value.type_info);
321 /* if it's zero-sized then it may as well be NULL */
329 gvs_variable_sized_maybe_needed_size (GVariantTypeInfo *type_info,
330 GVariantSerialisedFiller gvs_filler,
331 const gpointer *children,
336 GVariantSerialised child = { };
338 gvs_filler (&child, children[0]);
340 return child.size + 1;
347 gvs_variable_sized_maybe_serialise (GVariantSerialised value,
348 GVariantSerialisedFiller gvs_filler,
349 const gpointer *children,
354 GVariantSerialised child = { NULL, value.data, value.size - 1 };
356 /* write the data for the child. */
357 gvs_filler (&child, children[0]);
358 value.data[child.size] = '\0';
363 gvs_variable_sized_maybe_is_normal (GVariantSerialised value)
368 if (value.data[value.size - 1] != '\0')
371 value.type_info = g_variant_type_info_element (value.type_info);
374 return g_variant_serialised_is_normal (value);
379 * Just as with maybe types, array types are handled depending on if the
380 * element type of the array type is a fixed-sized or variable-sized
381 * type. Similar to maybe types, for convenience, an array value with a
382 * fixed-sized element type is called a "fixed-sized array" and an array
383 * value with a variable-sized element type is called a "variable sized
387 /* Fixed-sized Array {{{3
389 * For fixed sized arrays, the serialised data is simply a concatenation
390 * of the serialised data of each element, in order. Since fixed-sized
391 * values always have a fixed size that is a multiple of their alignment
392 * requirement no extra padding is required.
394 * In the event that a fixed-sized array is presented with a size that
395 * is not an integer multiple of the element size then the value of the
396 * array must be taken as being empty.
400 gvs_fixed_sized_array_n_children (GVariantSerialised value)
402 gsize element_fixed_size;
404 g_variant_type_info_query_element (value.type_info, NULL,
405 &element_fixed_size);
407 if (value.size % element_fixed_size == 0)
408 return value.size / element_fixed_size;
413 static GVariantSerialised
414 gvs_fixed_sized_array_get_child (GVariantSerialised value,
417 GVariantSerialised child = { };
419 child.type_info = g_variant_type_info_element (value.type_info);
420 g_variant_type_info_query (child.type_info, NULL, &child.size);
421 child.data = value.data + (child.size * index_);
422 g_variant_type_info_ref (child.type_info);
428 gvs_fixed_sized_array_needed_size (GVariantTypeInfo *type_info,
429 GVariantSerialisedFiller gvs_filler,
430 const gpointer *children,
433 gsize element_fixed_size;
435 g_variant_type_info_query_element (type_info, NULL, &element_fixed_size);
437 return element_fixed_size * n_children;
441 gvs_fixed_sized_array_serialise (GVariantSerialised value,
442 GVariantSerialisedFiller gvs_filler,
443 const gpointer *children,
446 GVariantSerialised child = { };
449 child.type_info = g_variant_type_info_element (value.type_info);
450 g_variant_type_info_query (child.type_info, NULL, &child.size);
451 child.data = value.data;
453 for (i = 0; i < n_children; i++)
455 gvs_filler (&child, children[i]);
456 child.data += child.size;
461 gvs_fixed_sized_array_is_normal (GVariantSerialised value)
463 GVariantSerialised child = { };
465 child.type_info = g_variant_type_info_element (value.type_info);
466 g_variant_type_info_query (child.type_info, NULL, &child.size);
468 if (value.size % child.size != 0)
471 for (child.data = value.data;
472 child.data < value.data + value.size;
473 child.data += child.size)
475 if (!g_variant_serialised_is_normal (child))
482 /* Variable-sized Array {{{3
484 * Variable sized arrays, containing variable-sized elements, must be
485 * able to determine the boundaries between the elements. The items
486 * cannot simply be concatenated. Additionally, we are faced with the
487 * fact that non-fixed-sized values do not neccessarily have a size that
488 * is a multiple of their alignment requirement, so we may need to
489 * insert zero-filled padding.
491 * While it is possible to find the start of an item by starting from
492 * the end of the item before it and padding for alignment, it is not
493 * generally possible to do the reverse operation. For this reason, we
494 * record the end point of each element in the array.
496 * GVariant works in terms of "offsets". An offset is a pointer to a
497 * boundary between two bytes. In 4 bytes of serialised data, there
498 * would be 5 possible offsets: one at the start ('0'), one between each
499 * pair of adjacent bytes ('1', '2', '3') and one at the end ('4').
501 * The numeric value of an offset is an unsigned integer given relative
502 * to the start of the serialised data of the array. Offsets are always
503 * stored in little endian byte order and are always only as big as they
504 * need to be. For example, in 255 bytes of serialised data, there are
505 * 256 offsets. All possibilities can be stored in an 8 bit unsigned
506 * integer. In 256 bytes of serialised data, however, there are 257
507 * possible offsets so 16 bit integers must be used. The size of an
508 * offset is always a power of 2.
510 * The offsets are stored at the end of the serialised data of the
511 * array. They are simply concatenated on without any particular
512 * alignment. The size of the offsets is included in the size of the
513 * serialised data for purposes of determining the size of the offsets.
514 * This presents a possibly ambiguity; in certain cases, a particular
515 * value of array could have two different serialised forms.
517 * Imagine an array containing a single string of 253 bytes in length
518 * (so, 254 bytes including the nul terminator). Now the offset must be
519 * written. If an 8 bit offset is written, it will bring the size of
520 * the array's serialised data to 255 -- which means that the use of an
521 * 8 bit offset was valid. If a 16 bit offset is used then the total
522 * size of the array will be 256 -- which means that the use of a 16 bit
523 * offset was valid. Although both of these will be accepted by the
524 * deserialiser, only the smaller of the two is considered to be in
525 * normal form and that is the one that the serialiser must produce.
529 gvs_read_unaligned_le (guchar *bytes,
534 guchar bytes[GLIB_SIZEOF_SIZE_T];
538 tmpvalue.integer = 0;
539 memcpy (&tmpvalue.bytes, bytes, size);
541 return GSIZE_FROM_LE (tmpvalue.integer);
545 gvs_write_unaligned_le (guchar *bytes,
551 guchar bytes[GLIB_SIZEOF_SIZE_T];
555 tmpvalue.integer = GSIZE_TO_LE (value);
556 memcpy (bytes, &tmpvalue.bytes, size);
560 gvs_get_offset_size (gsize size)
562 if (size > G_MAXUINT32)
565 else if (size > G_MAXUINT16)
568 else if (size > G_MAXUINT8)
578 gvs_calculate_total_size (gsize body_size,
581 if (body_size + 1 * offsets <= G_MAXUINT8)
582 return body_size + 1 * offsets;
584 if (body_size + 2 * offsets <= G_MAXUINT16)
585 return body_size + 2 * offsets;
587 if (body_size + 4 * offsets <= G_MAXUINT32)
588 return body_size + 4 * offsets;
590 return body_size + 8 * offsets;
594 gvs_variable_sized_array_n_children (GVariantSerialised value)
596 gsize offsets_array_size;
603 offset_size = gvs_get_offset_size (value.size);
605 last_end = gvs_read_unaligned_le (value.data + value.size -
606 offset_size, offset_size);
608 if (last_end > value.size)
611 offsets_array_size = value.size - last_end;
613 if (offsets_array_size % offset_size)
616 return offsets_array_size / offset_size;
619 static GVariantSerialised
620 gvs_variable_sized_array_get_child (GVariantSerialised value,
623 GVariantSerialised child = { };
629 child.type_info = g_variant_type_info_element (value.type_info);
630 g_variant_type_info_ref (child.type_info);
632 offset_size = gvs_get_offset_size (value.size);
634 last_end = gvs_read_unaligned_le (value.data + value.size -
635 offset_size, offset_size);
641 start = gvs_read_unaligned_le (value.data + last_end +
642 (offset_size * (index_ - 1)),
645 g_variant_type_info_query (child.type_info, &alignment, NULL);
646 start += (-start) & alignment;
651 end = gvs_read_unaligned_le (value.data + last_end +
652 (offset_size * index_),
655 if (start < end && end <= value.size)
657 child.data = value.data + start;
658 child.size = end - start;
665 gvs_variable_sized_array_needed_size (GVariantTypeInfo *type_info,
666 GVariantSerialisedFiller gvs_filler,
667 const gpointer *children,
674 g_variant_type_info_query (type_info, &alignment, NULL);
677 for (i = 0; i < n_children; i++)
679 GVariantSerialised child = { };
681 offset += (-offset) & alignment;
682 gvs_filler (&child, children[i]);
683 offset += child.size;
686 return gvs_calculate_total_size (offset, n_children);
690 gvs_variable_sized_array_serialise (GVariantSerialised value,
691 GVariantSerialisedFiller gvs_filler,
692 const gpointer *children,
701 g_variant_type_info_query (value.type_info, &alignment, NULL);
702 offset_size = gvs_get_offset_size (value.size);
705 offset_ptr = value.data + value.size - offset_size * n_children;
707 for (i = 0; i < n_children; i++)
709 GVariantSerialised child = { };
711 while (offset & alignment)
712 value.data[offset++] = '\0';
714 child.data = value.data + offset;
715 gvs_filler (&child, children[i]);
716 offset += child.size;
718 gvs_write_unaligned_le (offset_ptr, offset, offset_size);
719 offset_ptr += offset_size;
724 gvs_variable_sized_array_is_normal (GVariantSerialised value)
726 GVariantSerialised child = { };
727 gsize offsets_array_size;
728 guchar *offsets_array;
739 offset_size = gvs_get_offset_size (value.size);
740 last_end = gvs_read_unaligned_le (value.data + value.size -
741 offset_size, offset_size);
743 if (last_end > value.size)
746 offsets_array_size = value.size - last_end;
748 if (offsets_array_size % offset_size)
751 offsets_array = value.data + value.size - offsets_array_size;
752 length = offsets_array_size / offset_size;
757 child.type_info = g_variant_type_info_element (value.type_info);
758 g_variant_type_info_query (child.type_info, &alignment, NULL);
761 for (i = 0; i < length; i++)
765 this_end = gvs_read_unaligned_le (offsets_array + offset_size * i,
768 if (this_end < offset || this_end > last_end)
771 while (offset & alignment)
773 if (!(offset < this_end && value.data[offset] == '\0'))
778 child.data = value.data + offset;
779 child.size = this_end - offset;
784 if (!g_variant_serialised_is_normal (child))
790 g_assert (offset == last_end);
797 * Since tuples can contain a mix of variable- and fixed-sized items,
798 * they are, in terms of serialisation, a hybrid of variable-sized and
799 * fixed-sized arrays.
801 * Offsets are only stored for variable-sized items. Also, since the
802 * number of items in a tuple is known from its type, we are able to
803 * know exactly how many offsets to expect in the serialised data (and
804 * therefore how much space is taken up by the offset array). This
805 * means that we know where the end of the serialised data for the last
806 * item is -- we can just subtract the size of the offset array from the
807 * total size of the tuple. For this reason, the last item in the tuple
808 * doesn't need an offset stored.
810 * Tuple offsets are stored in reverse. This design choice allows
811 * iterator-based deserialisers to be more efficient.
813 * Most of the "heavy lifting" here is handled by the GVariantTypeInfo
814 * for the tuple. See the notes in gvarianttypeinfo.h.
818 gvs_tuple_n_children (GVariantSerialised value)
820 return g_variant_type_info_n_members (value.type_info);
823 static GVariantSerialised
824 gvs_tuple_get_child (GVariantSerialised value,
827 const GVariantMemberInfo *member_info;
828 GVariantSerialised child = { };
832 member_info = g_variant_type_info_member_info (value.type_info, index_);
833 child.type_info = g_variant_type_info_ref (member_info->type_info);
834 offset_size = gvs_get_offset_size (value.size);
836 /* tuples are the only (potentially) fixed-sized containers, so the
837 * only ones that have to deal with the possibility of having %NULL
838 * data with a non-zero %size if errors occured elsewhere.
840 if G_UNLIKELY (value.data == NULL && value.size != 0)
842 g_variant_type_info_query (child.type_info, NULL, &child.size);
844 /* this can only happen in fixed-sized tuples,
845 * so the child must also be fixed sized.
847 g_assert (child.size != 0);
853 if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
855 if (offset_size * (member_info->i + 2) > value.size)
860 if (offset_size * (member_info->i + 1) > value.size)
862 /* if the child is fixed size, return its size.
863 * if child is not fixed-sized, return size = 0.
865 g_variant_type_info_query (child.type_info, NULL, &child.size);
871 if (member_info->i + 1)
872 start = gvs_read_unaligned_le (value.data + value.size -
873 offset_size * (member_info->i + 1),
878 start += member_info->a;
879 start &= member_info->b;
880 start |= member_info->c;
882 if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST)
883 end = value.size - offset_size * (member_info->i + 1);
885 else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
889 g_variant_type_info_query (child.type_info, NULL, &fixed_size);
890 end = start + fixed_size;
891 child.size = fixed_size;
894 else /* G_VARIANT_MEMEBER_ENDING_OFFSET */
895 end = gvs_read_unaligned_le (value.data + value.size -
896 offset_size * (member_info->i + 2),
899 if (start < end && end <= value.size)
901 child.data = value.data + start;
902 child.size = end - start;
909 gvs_tuple_needed_size (GVariantTypeInfo *type_info,
910 GVariantSerialisedFiller gvs_filler,
911 const gpointer *children,
914 const GVariantMemberInfo *member_info = NULL;
919 g_variant_type_info_query (type_info, NULL, &fixed_size);
926 for (i = 0; i < n_children; i++)
930 member_info = g_variant_type_info_member_info (type_info, i);
931 g_variant_type_info_query (member_info->type_info,
932 &alignment, &fixed_size);
933 offset += (-offset) & alignment;
936 offset += fixed_size;
939 GVariantSerialised child = { };
941 gvs_filler (&child, children[i]);
942 offset += child.size;
946 return gvs_calculate_total_size (offset, member_info->i + 1);
950 gvs_tuple_serialise (GVariantSerialised value,
951 GVariantSerialisedFiller gvs_filler,
952 const gpointer *children,
959 offset_size = gvs_get_offset_size (value.size);
962 for (i = 0; i < n_children; i++)
964 const GVariantMemberInfo *member_info;
965 GVariantSerialised child = { };
968 member_info = g_variant_type_info_member_info (value.type_info, i);
969 g_variant_type_info_query (member_info->type_info, &alignment, NULL);
971 while (offset & alignment)
972 value.data[offset++] = '\0';
974 child.data = value.data + offset;
975 gvs_filler (&child, children[i]);
976 offset += child.size;
978 if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
980 value.size -= offset_size;
981 gvs_write_unaligned_le (value.data + value.size,
982 offset, offset_size);
986 while (offset < value.size)
987 value.data[offset++] = '\0';
991 gvs_tuple_is_normal (GVariantSerialised value)
999 offset_size = gvs_get_offset_size (value.size);
1000 length = g_variant_type_info_n_members (value.type_info);
1001 offset_ptr = value.size;
1004 for (i = 0; i < length; i++)
1006 const GVariantMemberInfo *member_info;
1007 GVariantSerialised child;
1012 member_info = g_variant_type_info_member_info (value.type_info, i);
1013 child.type_info = member_info->type_info;
1015 g_variant_type_info_query (child.type_info, &alignment, &fixed_size);
1017 while (offset & alignment)
1019 if (offset > value.size || value.data[offset] != '\0')
1024 child.data = value.data + offset;
1026 switch (member_info->ending_type)
1028 case G_VARIANT_MEMBER_ENDING_FIXED:
1029 end = offset + fixed_size;
1032 case G_VARIANT_MEMBER_ENDING_LAST:
1036 case G_VARIANT_MEMBER_ENDING_OFFSET:
1037 offset_ptr -= offset_size;
1039 if (offset_ptr < offset)
1042 end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size);
1046 if (end < offset || end > offset_ptr)
1049 child.size = end - offset;
1051 if (child.size == 0)
1054 if (!g_variant_serialised_is_normal (child))
1064 g_variant_type_info_query (value.type_info, &alignment, &fixed_size);
1068 g_assert (fixed_size == value.size);
1069 g_assert (offset_ptr == value.size);
1073 if (value.data[offset++] != '\0')
1078 while (offset & alignment)
1079 if (value.data[offset++] != '\0')
1083 g_assert (offset == value.size);
1087 return offset_ptr == offset;
1092 * Variants are stored by storing the serialised data of the child,
1093 * followed by a '\0' character, followed by the type string of the
1096 * In the case that a value is presented that contains no '\0'
1097 * character, or doesn't have a single well-formed definite type string
1098 * following that character, the variant must be taken as containing the
1103 gvs_variant_n_children (GVariantSerialised value)
1108 static inline GVariantSerialised
1109 gvs_variant_get_child (GVariantSerialised value,
1112 GVariantSerialised child = { };
1114 /* NOTE: not O(1) and impossible for it to be... */
1117 /* find '\0' character */
1118 for (child.size = value.size - 1; child.size; child.size--)
1119 if (value.data[child.size] == '\0')
1122 /* ensure we didn't just hit the start of the string */
1123 if (value.data[child.size] == '\0')
1125 const gchar *type_string = (gchar *) &value.data[child.size + 1];
1126 const gchar *limit = (gchar *) &value.data[value.size];
1129 if (g_variant_type_string_scan (type_string, limit, &end) &&
1132 const GVariantType *type = (GVariantType *) type_string;
1134 if (g_variant_type_is_definite (type))
1138 child.type_info = g_variant_type_info_get (type);
1140 if (child.size != 0)
1141 /* only set to non-%NULL if size > 0 */
1142 child.data = value.data;
1144 g_variant_type_info_query (child.type_info,
1147 if (!fixed_size || fixed_size == child.size)
1150 g_variant_type_info_unref (child.type_info);
1156 child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT);
1164 gvs_variant_needed_size (GVariantTypeInfo *type_info,
1165 GVariantSerialisedFiller gvs_filler,
1166 const gpointer *children,
1169 GVariantSerialised child = { };
1170 const gchar *type_string;
1172 gvs_filler (&child, children[0]);
1173 type_string = g_variant_type_info_get_type_string (child.type_info);
1175 return child.size + 1 + strlen (type_string);
1179 gvs_variant_serialise (GVariantSerialised value,
1180 GVariantSerialisedFiller gvs_filler,
1181 const gpointer *children,
1184 GVariantSerialised child = { };
1185 const gchar *type_string;
1187 child.data = value.data;
1189 gvs_filler (&child, children[0]);
1190 type_string = g_variant_type_info_get_type_string (child.type_info);
1191 value.data[child.size] = '\0';
1192 memcpy (value.data + child.size + 1, type_string, strlen (type_string));
1195 static inline gboolean
1196 gvs_variant_is_normal (GVariantSerialised value)
1198 GVariantSerialised child;
1201 child = gvs_variant_get_child (value, 0);
1203 normal = (child.data != NULL || child.size == 0) &&
1204 g_variant_serialised_is_normal (child);
1206 g_variant_type_info_unref (child.type_info);
1213 /* PART 2: Serialiser API {{{1
1215 * This is the implementation of the API of the serialiser as advertised
1216 * in gvariant-serialiser.h.
1219 /* Dispatch Utilities {{{2
1221 * These macros allow a given function (for example,
1222 * g_variant_serialiser_serialise) to be dispatched to the appropriate
1223 * type-specific function above (fixed/variable-sized maybe,
1224 * fixed/variable-sized array, tuple or variant).
1226 #define DISPATCH_FIXED(type_info, before, after) \
1230 g_variant_type_info_query_element (type_info, NULL, \
1235 before ## fixed_sized ## after \
1239 before ## variable_sized ## after \
1243 #define DISPATCH_CASES(type_info, before, after) \
1244 switch (g_variant_type_info_get_type_char (type_info)) \
1246 case G_VARIANT_TYPE_INFO_CHAR_MAYBE: \
1247 DISPATCH_FIXED (type_info, before, _maybe ## after) \
1249 case G_VARIANT_TYPE_INFO_CHAR_ARRAY: \
1250 DISPATCH_FIXED (type_info, before, _array ## after) \
1252 case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY: \
1253 case G_VARIANT_TYPE_INFO_CHAR_TUPLE: \
1255 before ## tuple ## after \
1258 case G_VARIANT_TYPE_INFO_CHAR_VARIANT: \
1260 before ## variant ## after \
1264 /* Serialiser entry points {{{2
1266 * These are the functions that are called in order for the serialiser
1271 * g_variant_serialised_n_children:
1272 * @serialised: a #GVariantSerialised
1273 * @returns: the number of children
1275 * For serialised data that represents a container value (maybes,
1276 * tuples, arrays, variants), determine how many child items are inside
1280 g_variant_serialised_n_children (GVariantSerialised serialised)
1282 g_variant_serialised_check (serialised);
1284 DISPATCH_CASES (serialised.type_info,
1286 return gvs_/**/,/**/_n_children (serialised);
1289 g_assert_not_reached ();
1293 * g_variant_serialised_get_child:
1294 * @serialised: a #GVariantSerialised
1295 * @index_: the index of the child to fetch
1296 * @returns: a #GVariantSerialised for the child
1298 * Extracts a child from a serialised data representing a container
1301 * It is an error to call this function with an index out of bounds.
1303 * If the result .data == %NULL and .size > 0 then there has been an
1304 * error extracting the requested fixed-sized value. This number of
1305 * zero bytes needs to be allocated instead.
1307 * In the case that .data == %NULL and .size == 0 then a zero-sized
1308 * item of a variable-sized type is being returned.
1310 * .data is never non-%NULL if size is 0.
1313 g_variant_serialised_get_child (GVariantSerialised serialised,
1316 GVariantSerialised child;
1318 g_variant_serialised_check (serialised);
1320 if G_LIKELY (index_ < g_variant_serialised_n_children (serialised))
1322 DISPATCH_CASES (serialised.type_info,
1324 child = gvs_/**/,/**/_get_child (serialised, index_);
1325 g_assert (child.size || child.data == NULL);
1326 g_variant_serialised_check (child);
1330 g_assert_not_reached ();
1333 g_error ("Attempt to access item %"G_GSIZE_FORMAT
1334 " in a container with only %"G_GSIZE_FORMAT" items",
1335 index_, g_variant_serialised_n_children (serialised));
1339 * g_variant_serialiser_serialise:
1340 * @serialised: a #GVariantSerialised, properly set up
1341 * @gvs_filler: the filler function
1342 * @children: an array of child items
1343 * @n_children: the size of @children
1345 * Writes data in serialised form.
1347 * The type_info field of @serialised must be filled in to type info for
1348 * the type that we are serialising.
1350 * The size field of @serialised must be filled in with the value
1351 * returned by a previous call to g_variant_serialiser_needed_size().
1353 * The data field of @serialised must be a pointer to a properly-aligned
1354 * memory region large enough to serialise into (ie: at least as big as
1357 * This function is only resonsible for serialising the top-level
1358 * container. @gvs_filler is called on each child of the container in
1359 * order for all of the data of that child to be filled in.
1362 g_variant_serialiser_serialise (GVariantSerialised serialised,
1363 GVariantSerialisedFiller gvs_filler,
1364 const gpointer *children,
1367 g_variant_serialised_check (serialised);
1369 DISPATCH_CASES (serialised.type_info,
1371 gvs_/**/,/**/_serialise (serialised, gvs_filler,
1372 children, n_children);
1376 g_assert_not_reached ();
1380 * g_variant_serialiser_needed_size:
1381 * @type_info: the type to serialise for
1382 * @gvs_filler: the filler function
1383 * @children: an array of child items
1384 * @n_children: the size of @children
1386 * Determines how much memory would be needed to serialise this value.
1388 * This function is only resonsible for performing calculations for the
1389 * top-level container. @gvs_filler is called on each child of the
1390 * container in order to determine its size.
1393 g_variant_serialiser_needed_size (GVariantTypeInfo *type_info,
1394 GVariantSerialisedFiller gvs_filler,
1395 const gpointer *children,
1398 DISPATCH_CASES (type_info,
1400 return gvs_/**/,/**/_needed_size (type_info, gvs_filler,
1401 children, n_children);
1404 g_assert_not_reached ();
1407 /* Byteswapping {{{2 */
1410 * g_variant_serialised_byteswap:
1411 * @value: a #GVariantSerialised
1413 * Byte-swap serialised data. The result of this function is only
1414 * well-defined if the data is in normal form.
1417 g_variant_serialised_byteswap (GVariantSerialised serialised)
1422 g_variant_serialised_check (serialised);
1424 if (!serialised.data)
1427 /* the types we potentially need to byteswap are
1428 * exactly those with alignment requirements.
1430 g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
1434 /* if fixed size and alignment are equal then we are down
1435 * to the base integer type and we should swap it. the
1436 * only exception to this is if we have a tuple with a
1437 * single item, and then swapping it will be OK anyway.
1439 if (alignment + 1 == fixed_size)
1445 guint16 *ptr = (guint16 *) serialised.data;
1447 g_assert_cmpint (serialised.size, ==, 2);
1448 *ptr = GUINT16_SWAP_LE_BE (*ptr);
1454 guint32 *ptr = (guint32 *) serialised.data;
1456 g_assert_cmpint (serialised.size, ==, 4);
1457 *ptr = GUINT32_SWAP_LE_BE (*ptr);
1463 guint64 *ptr = (guint64 *) serialised.data;
1465 g_assert_cmpint (serialised.size, ==, 8);
1466 *ptr = GUINT64_SWAP_LE_BE (*ptr);
1471 g_assert_not_reached ();
1475 /* else, we have a container that potentially contains
1476 * some children that need to be byteswapped.
1482 children = g_variant_serialised_n_children (serialised);
1483 for (i = 0; i < children; i++)
1485 GVariantSerialised child;
1487 child = g_variant_serialised_get_child (serialised, i);
1488 g_variant_serialised_byteswap (child);
1489 g_variant_type_info_unref (child.type_info);
1494 /* Normal form checking {{{2 */
1497 * g_variant_serialised_is_normal:
1498 * @serialised: a #GVariantSerialised
1500 * Determines, recursively if @serialised is in normal form. There is
1501 * precisely one normal form of serialised data for each possible value.
1503 * It is possible that multiple byte sequences form the serialised data
1504 * for a given value if, for example, the padding bytes are filled in
1505 * with something other than zeros, but only one form is the normal
1509 g_variant_serialised_is_normal (GVariantSerialised serialised)
1511 DISPATCH_CASES (serialised.type_info,
1513 return gvs_/**/,/**/_is_normal (serialised);
1517 /* some hard-coded terminal cases */
1518 switch (g_variant_type_info_get_type_char (serialised.type_info))
1520 case 'b': /* boolean */
1521 return serialised.data[0] < 2;
1523 case 's': /* string */
1524 return g_variant_serialiser_is_string (serialised.data,
1528 return g_variant_serialiser_is_object_path (serialised.data,
1532 return g_variant_serialiser_is_signature (serialised.data,
1536 /* all of the other types are fixed-sized numerical types for
1537 * which all possible values are valid (including various NaN
1538 * representations for floating point values).
1544 /* Validity-checking functions {{{2
1546 * Checks if strings, object paths and signature strings are valid.
1550 * g_variant_serialiser_is_string:
1551 * @data: a possible string
1552 * @size: the size of @data
1554 * Ensures that @data is a valid string with a nul terminator at the end
1555 * and no nul bytes embedded.
1558 g_variant_serialiser_is_string (gconstpointer data,
1561 const gchar *string = data;
1566 if (string[size - 1] != '\0')
1569 return strlen (string) == size - 1;
1573 * g_variant_serialiser_is_object_path:
1574 * @data: a possible DBus object path
1575 * @size: the size of @data
1577 * Performs the checks for being a valid string.
1579 * Also, ensures that @data is a valid DBus object path, as per the DBus
1583 g_variant_serialiser_is_object_path (gconstpointer data,
1586 const gchar *string = data;
1589 if (!g_variant_serialiser_is_string (data, size))
1592 /* The path must begin with an ASCII '/' (integer 47) character */
1593 if (string[0] != '/')
1596 for (i = 1; string[i]; i++)
1597 /* Each element must only contain the ASCII characters
1598 * "[A-Z][a-z][0-9]_"
1600 if (g_ascii_isalnum (string[i]) || string[i] == '_')
1603 /* must consist of elements separated by slash characters. */
1604 else if (string[i] == '/')
1606 /* No element may be the empty string. */
1607 /* Multiple '/' characters cannot occur in sequence. */
1608 if (string[i - 1] == '/')
1615 /* A trailing '/' character is not allowed unless the path is the
1616 * root path (a single '/' character).
1618 if (i > 1 && string[i - 1] == '/')
1625 * g_variant_serialiser_is_signature:
1626 * @data: a possible DBus signature
1627 * @size: the size of @data
1629 * Performs the checks for being a valid string.
1631 * Also, ensures that @data is a valid DBus type signature, as per the
1632 * DBus specification.
1635 g_variant_serialiser_is_signature (gconstpointer data,
1638 const gchar *string = data;
1639 gsize first_invalid;
1641 if (!g_variant_serialiser_is_string (data, size))
1644 /* make sure no non-definite characters appear */
1645 first_invalid = strspn (string, "ybnqiuxthdvasog(){}");
1646 if (string[first_invalid])
1649 /* make sure each type string is well-formed */
1651 if (!g_variant_type_string_scan (string, NULL, &string))
1657 /* vim:set foldmethod=marker: */