1 /* GLIB sliced memory - fast concurrent memory chunk allocator
2 * Copyright (C) 2005 Tim Janik
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
25 #if defined HAVE_POSIX_MEMALIGN && defined POSIX_MEMALIGN_WITH_COMPLIANT_ALLOCS
26 # define HAVE_COMPLIANT_POSIX_MEMALIGN 1
29 #ifdef HAVE_COMPLIANT_POSIX_MEMALIGN
30 #define _XOPEN_SOURCE 600 /* posix_memalign() */
32 #include <stdlib.h> /* posix_memalign() */
35 #include "gmem.h" /* gslice.h */
36 #include "gthreadprivate.h"
40 #include <unistd.h> /* sysconf() */
47 #include <stdio.h> /* fputs/fprintf */
50 /* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
51 * allocator and magazine extensions as outlined in:
52 * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
53 * memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
54 * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
55 * slab allocator to many cpu's and arbitrary resources.
56 * USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
58 * - the thread magazines. for each (aligned) chunk size, a magazine (a list)
59 * of recently freed and soon to be allocated chunks is maintained per thread.
60 * this way, most alloc/free requests can be quickly satisfied from per-thread
61 * free lists which only require one g_private_get() call to retrive the
63 * - the magazine cache. allocating and freeing chunks to/from threads only
64 * occours at magazine sizes from a global depot of magazines. the depot
65 * maintaines a 15 second working set of allocated magazines, so full
66 * magazines are not allocated and released too often.
67 * the chunk size dependent magazine sizes automatically adapt (within limits,
68 * see [3]) to lock contention to properly scale performance across a variety
70 * - the slab allocator. this allocator allocates slabs (blocks of memory) close
71 * to the system page size or multiples thereof which have to be page aligned.
72 * the blocks are divided into smaller chunks which are used to satisfy
73 * allocations from the upper layers. the space provided by the reminder of
74 * the chunk size division is used for cache colorization (random distribution
75 * of chunk addresses) to improve processor cache utilization. multiple slabs
76 * with the same chunk size are kept in a partially sorted ring to allow O(1)
77 * freeing and allocation of chunks (as long as the allocation of an entirely
78 * new slab can be avoided).
79 * - the page allocator. on most modern systems, posix_memalign(3) or
80 * memalign(3) should be available, so this is used to allocate blocks with
81 * system page size based alignments and sizes or multiples thereof.
82 * if no memalign variant is provided, valloc() is used instead and
83 * block sizes are limited to the system page size (no multiples thereof).
84 * as a fallback, on system without even valloc(), a malloc(3)-based page
85 * allocator with alloc-only behaviour is used.
88 * [1] some systems memalign(3) implementations may rely on boundary tagging for
89 * the handed out memory chunks. to avoid excessive page-wise fragmentation,
90 * we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
91 * specified in NATIVE_MALLOC_PADDING.
92 * [2] using the slab allocator alone already provides for a fast and efficient
93 * allocator, it doesn't properly scale beyond single-threaded uses though.
94 * also, the slab allocator implements eager free(3)-ing, i.e. does not
95 * provide any form of caching or working set maintenance. so if used alone,
96 * it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
97 * at certain thresholds.
98 * [3] magazine sizes are bound by an implementation specific minimum size and
99 * a chunk size specific maximum to limit magazine storage sizes to roughly
101 * [4] allocating ca. 8 chunks per block/page keeps a good balance between
102 * external and internal fragmentation (<= 12.5%). [Bonwick94]
105 /* --- macros and constants --- */
106 #define LARGEALIGNMENT (256)
107 #define P2ALIGNMENT (2 * sizeof (gsize)) /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
108 #define ALIGN(size, base) ((base) * (gsize) (((size) + (base) - 1) / (base)))
109 #define NATIVE_MALLOC_PADDING P2ALIGNMENT /* per-page padding left for native malloc(3) see [1] */
110 #define SLAB_INFO_SIZE P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
111 #define MAX_MAGAZINE_SIZE (256) /* see [3] and allocator_get_magazine_threshold() for this */
112 #define MIN_MAGAZINE_SIZE (4)
113 #define MAX_STAMP_COUNTER (7) /* distributes the load of gettimeofday() */
114 #define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8) /* we want at last 8 chunks per page, see [4] */
115 #define MAX_SLAB_INDEX(al) (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
116 #define SLAB_INDEX(al, asize) ((asize) / P2ALIGNMENT - 1) /* asize must be P2ALIGNMENT aligned */
117 #define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
118 #define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)
120 /* optimized version of ALIGN (size, P2ALIGNMENT) */
121 #if GLIB_SIZEOF_SIZE_T * 2 == 8 /* P2ALIGNMENT */
122 #define P2ALIGN(size) (((size) + 0x7) & ~(gsize) 0x7)
123 #elif GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
124 #define P2ALIGN(size) (((size) + 0xf) & ~(gsize) 0xf)
126 #define P2ALIGN(size) ALIGN (size, P2ALIGNMENT)
129 /* special helpers to avoid gmessage.c dependency */
130 static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2);
131 #define mem_assert(cond) do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)
133 /* --- structures --- */
134 typedef struct _ChunkLink ChunkLink;
135 typedef struct _SlabInfo SlabInfo;
136 typedef struct _CachedMagazine CachedMagazine;
144 SlabInfo *next, *prev;
148 gsize count; /* approximative chunks list length */
151 Magazine *magazine1; /* array of MAX_SLAB_INDEX (allocator) */
152 Magazine *magazine2; /* array of MAX_SLAB_INDEX (allocator) */
155 gboolean always_malloc;
156 gboolean bypass_magazines;
157 gboolean debug_blocks;
158 gsize working_set_msecs;
159 guint color_increment;
162 /* const after initialization */
163 gsize min_page_size, max_page_size;
165 gsize max_slab_chunk_size_for_magazine_cache;
167 GMutex *magazine_mutex;
168 ChunkLink **magazines; /* array of MAX_SLAB_INDEX (allocator) */
169 guint *contention_counters; /* array of MAX_SLAB_INDEX (allocator) */
175 SlabInfo **slab_stack; /* array of MAX_SLAB_INDEX (allocator) */
179 /* --- g-slice prototypes --- */
180 static gpointer slab_allocator_alloc_chunk (gsize chunk_size);
181 static void slab_allocator_free_chunk (gsize chunk_size,
183 static void private_thread_memory_cleanup (gpointer data);
184 static gpointer allocator_memalign (gsize alignment,
186 static void allocator_memfree (gsize memsize,
188 static inline void magazine_cache_update_stamp (void);
189 static inline gsize allocator_get_magazine_threshold (Allocator *allocator,
192 /* --- g-slice memory checker --- */
193 static void smc_notify_alloc (void *pointer,
195 static int smc_notify_free (void *pointer,
198 /* --- variables --- */
199 static GPrivate *private_thread_memory = NULL;
200 static gsize sys_page_size = 0;
201 static Allocator allocator[1] = { { 0, }, };
202 static SliceConfig slice_config = {
203 FALSE, /* always_malloc */
204 FALSE, /* bypass_magazines */
205 FALSE, /* debug_blocks */
206 15 * 1000, /* working_set_msecs */
207 1, /* color increment, alt: 0x7fffffff */
209 static GMutex *smc_tree_mutex = NULL; /* mutex for G_SLICE=debug-blocks */
211 /* --- auxillary funcitons --- */
213 g_slice_set_config (GSliceConfig ckey,
216 g_return_if_fail (sys_page_size == 0);
219 case G_SLICE_CONFIG_ALWAYS_MALLOC:
220 slice_config.always_malloc = value != 0;
222 case G_SLICE_CONFIG_BYPASS_MAGAZINES:
223 slice_config.bypass_magazines = value != 0;
225 case G_SLICE_CONFIG_WORKING_SET_MSECS:
226 slice_config.working_set_msecs = value;
228 case G_SLICE_CONFIG_COLOR_INCREMENT:
229 slice_config.color_increment = value;
235 g_slice_get_config (GSliceConfig ckey)
239 case G_SLICE_CONFIG_ALWAYS_MALLOC:
240 return slice_config.always_malloc;
241 case G_SLICE_CONFIG_BYPASS_MAGAZINES:
242 return slice_config.bypass_magazines;
243 case G_SLICE_CONFIG_WORKING_SET_MSECS:
244 return slice_config.working_set_msecs;
245 case G_SLICE_CONFIG_CHUNK_SIZES:
246 return MAX_SLAB_INDEX (allocator);
247 case G_SLICE_CONFIG_COLOR_INCREMENT:
248 return slice_config.color_increment;
255 g_slice_get_config_state (GSliceConfig ckey,
260 g_return_val_if_fail (n_values != NULL, NULL);
265 case G_SLICE_CONFIG_CONTENTION_COUNTER:
266 array[i++] = SLAB_CHUNK_SIZE (allocator, address);
267 array[i++] = allocator->contention_counters[address];
268 array[i++] = allocator_get_magazine_threshold (allocator, address);
270 return g_memdup (array, sizeof (array[0]) * *n_values);
277 slice_config_init (SliceConfig *config)
279 /* don't use g_malloc/g_message here */
281 const gchar *val = _g_getenv_nomalloc ("G_SLICE", buffer);
282 const GDebugKey keys[] = {
283 { "always-malloc", 1 << 0 },
284 { "debug-blocks", 1 << 1 },
286 gint flags = !val ? 0 : g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
287 *config = slice_config;
288 if (flags & (1 << 0)) /* always-malloc */
289 config->always_malloc = TRUE;
290 if (flags & (1 << 1)) /* debug-blocks */
291 config->debug_blocks = TRUE;
295 g_slice_init_nomessage (void)
297 /* we may not use g_error() or friends here */
298 mem_assert (sys_page_size == 0);
299 mem_assert (MIN_MAGAZINE_SIZE >= 4);
303 SYSTEM_INFO system_info;
304 GetSystemInfo (&system_info);
305 sys_page_size = system_info.dwPageSize;
308 sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
310 mem_assert (sys_page_size >= 2 * LARGEALIGNMENT);
311 mem_assert ((sys_page_size & (sys_page_size - 1)) == 0);
312 slice_config_init (&allocator->config);
313 allocator->min_page_size = sys_page_size;
314 #if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN
315 /* allow allocation of pages up to 8KB (with 8KB alignment).
316 * this is useful because many medium to large sized structures
317 * fit less than 8 times (see [4]) into 4KB pages.
318 * we allow very small page sizes here, to reduce wastage in
319 * threads if only small allocations are required (this does
320 * bear the risk of incresing allocation times and fragmentation
323 allocator->min_page_size = MAX (allocator->min_page_size, 4096);
324 allocator->max_page_size = MAX (allocator->min_page_size, 8192);
325 allocator->min_page_size = MIN (allocator->min_page_size, 128);
327 /* we can only align to system page size */
328 allocator->max_page_size = sys_page_size;
330 if (allocator->config.always_malloc)
332 allocator->contention_counters = NULL;
333 allocator->magazines = NULL;
334 allocator->slab_stack = NULL;
338 allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator));
339 allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator));
340 allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator));
343 allocator->magazine_mutex = NULL; /* _g_slice_thread_init_nomessage() */
344 allocator->mutex_counter = 0;
345 allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */
346 allocator->last_stamp = 0;
347 allocator->slab_mutex = NULL; /* _g_slice_thread_init_nomessage() */
348 allocator->color_accu = 0;
349 magazine_cache_update_stamp();
350 /* values cached for performance reasons */
351 allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator);
352 if (allocator->config.always_malloc || allocator->config.bypass_magazines)
353 allocator->max_slab_chunk_size_for_magazine_cache = 0; /* non-optimized cases */
354 /* at this point, g_mem_gc_friendly() should be initialized, this
355 * should have been accomplished by the above g_malloc/g_new calls
360 allocator_categorize (gsize aligned_chunk_size)
362 /* speed up the likely path */
363 if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache))
364 return 1; /* use magazine cache */
366 /* the above will fail (max_slab_chunk_size_for_magazine_cache == 0) if the
367 * allocator is still uninitialized, or if we are not configured to use the
371 g_slice_init_nomessage ();
372 if (!allocator->config.always_malloc &&
373 aligned_chunk_size &&
374 aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator))
376 if (allocator->config.bypass_magazines)
377 return 2; /* use slab allocator, see [2] */
378 return 1; /* use magazine cache */
380 return 0; /* use malloc() */
384 _g_slice_thread_init_nomessage (void)
386 /* we may not use g_error() or friends here */
388 g_slice_init_nomessage();
391 /* g_slice_init_nomessage() has been called already, probably due
392 * to a g_slice_alloc1() before g_thread_init().
395 private_thread_memory = g_private_new (private_thread_memory_cleanup);
396 allocator->magazine_mutex = g_mutex_new();
397 allocator->slab_mutex = g_mutex_new();
398 if (allocator->config.debug_blocks)
399 smc_tree_mutex = g_mutex_new();
403 g_mutex_lock_a (GMutex *mutex,
404 guint *contention_counter)
406 gboolean contention = FALSE;
407 if (!g_mutex_trylock (mutex))
409 g_mutex_lock (mutex);
414 allocator->mutex_counter++;
415 if (allocator->mutex_counter >= 1) /* quickly adapt to contention */
417 allocator->mutex_counter = 0;
418 *contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE);
421 else /* !contention */
423 allocator->mutex_counter--;
424 if (allocator->mutex_counter < -11) /* moderately recover magazine sizes */
426 allocator->mutex_counter = 0;
427 *contention_counter = MAX (*contention_counter, 1) - 1;
432 static inline ThreadMemory*
433 thread_memory_from_self (void)
435 ThreadMemory *tmem = g_private_get (private_thread_memory);
436 if (G_UNLIKELY (!tmem))
438 static ThreadMemory *single_thread_memory = NULL; /* remember single-thread info for multi-threaded case */
439 if (single_thread_memory && g_thread_supported ())
441 g_mutex_lock (allocator->slab_mutex);
442 if (single_thread_memory)
444 /* GSlice has been used before g_thread_init(), and now
445 * we are running threaded. to cope with it, use the saved
446 * thread memory structure from when we weren't threaded.
448 tmem = single_thread_memory;
449 single_thread_memory = NULL; /* slab_mutex protected when multi-threaded */
451 g_mutex_unlock (allocator->slab_mutex);
455 const guint n_magazines = MAX_SLAB_INDEX (allocator);
456 tmem = g_malloc0 (sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines);
457 tmem->magazine1 = (Magazine*) (tmem + 1);
458 tmem->magazine2 = &tmem->magazine1[n_magazines];
460 /* g_private_get/g_private_set works in the single-threaded xor the multi-
461 * threaded case. but not *across* g_thread_init(), after multi-thread
462 * initialization it returns NULL for previously set single-thread data.
464 g_private_set (private_thread_memory, tmem);
465 /* save single-thread thread memory structure, in case we need to
466 * pick it up again after multi-thread initialization happened.
468 if (!single_thread_memory && !g_thread_supported ())
469 single_thread_memory = tmem; /* no slab_mutex created yet */
474 static inline ChunkLink*
475 magazine_chain_pop_head (ChunkLink **magazine_chunks)
477 /* magazine chains are linked via ChunkLink->next.
478 * each ChunkLink->data of the toplevel chain may point to a subchain,
479 * linked via ChunkLink->next. ChunkLink->data of the subchains just
480 * contains uninitialized junk.
482 ChunkLink *chunk = (*magazine_chunks)->data;
483 if (G_UNLIKELY (chunk))
485 /* allocating from freed list */
486 (*magazine_chunks)->data = chunk->next;
490 chunk = *magazine_chunks;
491 *magazine_chunks = chunk->next;
496 #if 0 /* useful for debugging */
498 magazine_count (ChunkLink *head)
505 ChunkLink *child = head->data;
507 for (child = head->data; child; child = child->next)
516 allocator_get_magazine_threshold (Allocator *allocator,
519 /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
520 * which is required by the implementation. also, for moderately sized chunks
521 * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
522 * of chunks available per page/2 to avoid excessive traffic in the magazine
523 * cache for small to medium sized structures.
524 * the upper bound of the magazine size is effectively provided by
525 * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
526 * the content of a single magazine doesn't exceed ca. 16KB.
528 gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
529 guint threshold = MAX (MIN_MAGAZINE_SIZE, allocator->max_page_size / MAX (5 * chunk_size, 5 * 32));
530 guint contention_counter = allocator->contention_counters[ix];
531 if (G_UNLIKELY (contention_counter)) /* single CPU bias */
533 /* adapt contention counter thresholds to chunk sizes */
534 contention_counter = contention_counter * 64 / chunk_size;
535 threshold = MAX (threshold, contention_counter);
540 /* --- magazine cache --- */
542 magazine_cache_update_stamp (void)
544 if (allocator->stamp_counter >= MAX_STAMP_COUNTER)
547 g_get_current_time (&tv);
548 allocator->last_stamp = tv.tv_sec * 1000 + tv.tv_usec / 1000; /* milli seconds */
549 allocator->stamp_counter = 0;
552 allocator->stamp_counter++;
555 static inline ChunkLink*
556 magazine_chain_prepare_fields (ChunkLink *magazine_chunks)
562 /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
563 /* ensure a magazine with at least 4 unused data pointers */
564 chunk1 = magazine_chain_pop_head (&magazine_chunks);
565 chunk2 = magazine_chain_pop_head (&magazine_chunks);
566 chunk3 = magazine_chain_pop_head (&magazine_chunks);
567 chunk4 = magazine_chain_pop_head (&magazine_chunks);
568 chunk4->next = magazine_chunks;
569 chunk3->next = chunk4;
570 chunk2->next = chunk3;
571 chunk1->next = chunk2;
575 /* access the first 3 fields of a specially prepared magazine chain */
576 #define magazine_chain_prev(mc) ((mc)->data)
577 #define magazine_chain_stamp(mc) ((mc)->next->data)
578 #define magazine_chain_uint_stamp(mc) GPOINTER_TO_UINT ((mc)->next->data)
579 #define magazine_chain_next(mc) ((mc)->next->next->data)
580 #define magazine_chain_count(mc) ((mc)->next->next->next->data)
583 magazine_cache_trim (Allocator *allocator,
587 /* g_mutex_lock (allocator->mutex); done by caller */
588 /* trim magazine cache from tail */
589 ChunkLink *current = magazine_chain_prev (allocator->magazines[ix]);
590 ChunkLink *trash = NULL;
591 while (ABS (stamp - magazine_chain_uint_stamp (current)) >= allocator->config.working_set_msecs)
594 ChunkLink *prev = magazine_chain_prev (current);
595 ChunkLink *next = magazine_chain_next (current);
596 magazine_chain_next (prev) = next;
597 magazine_chain_prev (next) = prev;
598 /* clear special fields, put on trash stack */
599 magazine_chain_next (current) = NULL;
600 magazine_chain_count (current) = NULL;
601 magazine_chain_stamp (current) = NULL;
602 magazine_chain_prev (current) = trash;
604 /* fixup list head if required */
605 if (current == allocator->magazines[ix])
607 allocator->magazines[ix] = NULL;
612 g_mutex_unlock (allocator->magazine_mutex);
616 const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
617 g_mutex_lock (allocator->slab_mutex);
621 trash = magazine_chain_prev (current);
622 magazine_chain_prev (current) = NULL; /* clear special field */
625 ChunkLink *chunk = magazine_chain_pop_head (¤t);
626 slab_allocator_free_chunk (chunk_size, chunk);
629 g_mutex_unlock (allocator->slab_mutex);
634 magazine_cache_push_magazine (guint ix,
635 ChunkLink *magazine_chunks,
636 gsize count) /* must be >= MIN_MAGAZINE_SIZE */
638 ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks);
639 ChunkLink *next, *prev;
640 g_mutex_lock (allocator->magazine_mutex);
641 /* add magazine at head */
642 next = allocator->magazines[ix];
644 prev = magazine_chain_prev (next);
646 next = prev = current;
647 magazine_chain_next (prev) = current;
648 magazine_chain_prev (next) = current;
649 magazine_chain_prev (current) = prev;
650 magazine_chain_next (current) = next;
651 magazine_chain_count (current) = (gpointer) count;
653 magazine_cache_update_stamp();
654 magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp);
655 allocator->magazines[ix] = current;
656 /* free old magazines beyond a certain threshold */
657 magazine_cache_trim (allocator, ix, allocator->last_stamp);
658 /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
662 magazine_cache_pop_magazine (guint ix,
665 g_mutex_lock_a (allocator->magazine_mutex, &allocator->contention_counters[ix]);
666 if (!allocator->magazines[ix])
668 guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix);
669 gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
670 ChunkLink *chunk, *head;
671 g_mutex_unlock (allocator->magazine_mutex);
672 g_mutex_lock (allocator->slab_mutex);
673 head = slab_allocator_alloc_chunk (chunk_size);
676 for (i = 1; i < magazine_threshold; i++)
678 chunk->next = slab_allocator_alloc_chunk (chunk_size);
683 g_mutex_unlock (allocator->slab_mutex);
689 ChunkLink *current = allocator->magazines[ix];
690 ChunkLink *prev = magazine_chain_prev (current);
691 ChunkLink *next = magazine_chain_next (current);
693 magazine_chain_next (prev) = next;
694 magazine_chain_prev (next) = prev;
695 allocator->magazines[ix] = next == current ? NULL : next;
696 g_mutex_unlock (allocator->magazine_mutex);
697 /* clear special fields and hand out */
698 *countp = (gsize) magazine_chain_count (current);
699 magazine_chain_prev (current) = NULL;
700 magazine_chain_next (current) = NULL;
701 magazine_chain_count (current) = NULL;
702 magazine_chain_stamp (current) = NULL;
707 /* --- thread magazines --- */
709 private_thread_memory_cleanup (gpointer data)
711 ThreadMemory *tmem = data;
712 const guint n_magazines = MAX_SLAB_INDEX (allocator);
714 for (ix = 0; ix < n_magazines; ix++)
718 mags[0] = &tmem->magazine1[ix];
719 mags[1] = &tmem->magazine2[ix];
720 for (j = 0; j < 2; j++)
722 Magazine *mag = mags[j];
723 if (mag->count >= MIN_MAGAZINE_SIZE)
724 magazine_cache_push_magazine (ix, mag->chunks, mag->count);
727 const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
728 g_mutex_lock (allocator->slab_mutex);
731 ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
732 slab_allocator_free_chunk (chunk_size, chunk);
734 g_mutex_unlock (allocator->slab_mutex);
742 thread_memory_magazine1_reload (ThreadMemory *tmem,
745 Magazine *mag = &tmem->magazine1[ix];
746 mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */
748 mag->chunks = magazine_cache_pop_magazine (ix, &mag->count);
752 thread_memory_magazine2_unload (ThreadMemory *tmem,
755 Magazine *mag = &tmem->magazine2[ix];
756 magazine_cache_push_magazine (ix, mag->chunks, mag->count);
762 thread_memory_swap_magazines (ThreadMemory *tmem,
765 Magazine xmag = tmem->magazine1[ix];
766 tmem->magazine1[ix] = tmem->magazine2[ix];
767 tmem->magazine2[ix] = xmag;
770 static inline gboolean
771 thread_memory_magazine1_is_empty (ThreadMemory *tmem,
774 return tmem->magazine1[ix].chunks == NULL;
777 static inline gboolean
778 thread_memory_magazine2_is_full (ThreadMemory *tmem,
781 return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix);
784 static inline gpointer
785 thread_memory_magazine1_alloc (ThreadMemory *tmem,
788 Magazine *mag = &tmem->magazine1[ix];
789 ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
790 if (G_LIKELY (mag->count > 0))
796 thread_memory_magazine2_free (ThreadMemory *tmem,
800 Magazine *mag = &tmem->magazine2[ix];
801 ChunkLink *chunk = mem;
803 chunk->next = mag->chunks;
808 /* --- API functions --- */
810 g_slice_alloc (gsize mem_size)
815 chunk_size = P2ALIGN (mem_size);
816 acat = allocator_categorize (chunk_size);
817 if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
819 ThreadMemory *tmem = thread_memory_from_self();
820 guint ix = SLAB_INDEX (allocator, chunk_size);
821 if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
823 thread_memory_swap_magazines (tmem, ix);
824 if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
825 thread_memory_magazine1_reload (tmem, ix);
827 mem = thread_memory_magazine1_alloc (tmem, ix);
829 else if (acat == 2) /* allocate through slab allocator */
831 g_mutex_lock (allocator->slab_mutex);
832 mem = slab_allocator_alloc_chunk (chunk_size);
833 g_mutex_unlock (allocator->slab_mutex);
835 else /* delegate to system malloc */
836 mem = g_malloc (mem_size);
837 if (G_UNLIKELY (allocator->config.debug_blocks))
838 smc_notify_alloc (mem, mem_size);
843 g_slice_alloc0 (gsize mem_size)
845 gpointer mem = g_slice_alloc (mem_size);
847 memset (mem, 0, mem_size);
852 g_slice_copy (gsize mem_size,
853 gconstpointer mem_block)
855 gpointer mem = g_slice_alloc (mem_size);
857 memcpy (mem, mem_block, mem_size);
862 g_slice_free1 (gsize mem_size,
865 gsize chunk_size = P2ALIGN (mem_size);
866 guint acat = allocator_categorize (chunk_size);
867 if (G_UNLIKELY (!mem_block))
869 if (G_UNLIKELY (allocator->config.debug_blocks) &&
870 !smc_notify_free (mem_block, mem_size))
872 if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
874 ThreadMemory *tmem = thread_memory_from_self();
875 guint ix = SLAB_INDEX (allocator, chunk_size);
876 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
878 thread_memory_swap_magazines (tmem, ix);
879 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
880 thread_memory_magazine2_unload (tmem, ix);
882 if (G_UNLIKELY (g_mem_gc_friendly))
883 memset (mem_block, 0, chunk_size);
884 thread_memory_magazine2_free (tmem, ix, mem_block);
886 else if (acat == 2) /* allocate through slab allocator */
888 if (G_UNLIKELY (g_mem_gc_friendly))
889 memset (mem_block, 0, chunk_size);
890 g_mutex_lock (allocator->slab_mutex);
891 slab_allocator_free_chunk (chunk_size, mem_block);
892 g_mutex_unlock (allocator->slab_mutex);
894 else /* delegate to system malloc */
896 if (G_UNLIKELY (g_mem_gc_friendly))
897 memset (mem_block, 0, mem_size);
903 g_slice_free_chain_with_offset (gsize mem_size,
907 gpointer slice = mem_chain;
908 /* while the thread magazines and the magazine cache are implemented so that
909 * they can easily be extended to allow for free lists containing more free
910 * lists for the first level nodes, which would allow O(1) freeing in this
911 * function, the benefit of such an extension is questionable, because:
912 * - the magazine size counts will become mere lower bounds which confuses
913 * the code adapting to lock contention;
914 * - freeing a single node to the thread magazines is very fast, so this
915 * O(list_length) operation is multiplied by a fairly small factor;
916 * - memory usage histograms on larger applications seem to indicate that
917 * the amount of released multi node lists is negligible in comparison
918 * to single node releases.
919 * - the major performance bottle neck, namely g_private_get() or
920 * g_mutex_lock()/g_mutex_unlock() has already been moved out of the
921 * inner loop for freeing chained slices.
923 gsize chunk_size = P2ALIGN (mem_size);
924 guint acat = allocator_categorize (chunk_size);
925 if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
927 ThreadMemory *tmem = thread_memory_from_self();
928 guint ix = SLAB_INDEX (allocator, chunk_size);
931 guint8 *current = slice;
932 slice = *(gpointer*) (current + next_offset);
933 if (G_UNLIKELY (allocator->config.debug_blocks) &&
934 !smc_notify_free (current, mem_size))
936 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
938 thread_memory_swap_magazines (tmem, ix);
939 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
940 thread_memory_magazine2_unload (tmem, ix);
942 if (G_UNLIKELY (g_mem_gc_friendly))
943 memset (current, 0, chunk_size);
944 thread_memory_magazine2_free (tmem, ix, current);
947 else if (acat == 2) /* allocate through slab allocator */
949 g_mutex_lock (allocator->slab_mutex);
952 guint8 *current = slice;
953 slice = *(gpointer*) (current + next_offset);
954 if (G_UNLIKELY (allocator->config.debug_blocks) &&
955 !smc_notify_free (current, mem_size))
957 if (G_UNLIKELY (g_mem_gc_friendly))
958 memset (current, 0, chunk_size);
959 slab_allocator_free_chunk (chunk_size, current);
961 g_mutex_unlock (allocator->slab_mutex);
963 else /* delegate to system malloc */
966 guint8 *current = slice;
967 slice = *(gpointer*) (current + next_offset);
968 if (G_UNLIKELY (allocator->config.debug_blocks) &&
969 !smc_notify_free (current, mem_size))
971 if (G_UNLIKELY (g_mem_gc_friendly))
972 memset (current, 0, mem_size);
977 /* --- single page allocator --- */
979 allocator_slab_stack_push (Allocator *allocator,
983 /* insert slab at slab ring head */
984 if (!allocator->slab_stack[ix])
991 SlabInfo *next = allocator->slab_stack[ix], *prev = next->prev;
997 allocator->slab_stack[ix] = sinfo;
1001 allocator_aligned_page_size (Allocator *allocator,
1004 gsize val = 1 << g_bit_storage (n_bytes - 1);
1005 val = MAX (val, allocator->min_page_size);
1010 allocator_add_slab (Allocator *allocator,
1016 gsize addr, padding, n_chunks, color = 0;
1017 gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
1018 /* allocate 1 page for the chunks and the slab */
1019 gpointer aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING);
1020 guint8 *mem = aligned_memory;
1024 const gchar *syserr = "unknown error";
1026 syserr = strerror (errno);
1028 mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
1029 (guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr);
1031 /* mask page adress */
1032 addr = ((gsize) mem / page_size) * page_size;
1033 /* assert alignment */
1034 mem_assert (aligned_memory == (gpointer) addr);
1035 /* basic slab info setup */
1036 sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE);
1037 sinfo->n_allocated = 0;
1038 sinfo->chunks = NULL;
1039 /* figure cache colorization */
1040 n_chunks = ((guint8*) sinfo - mem) / chunk_size;
1041 padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size;
1044 color = (allocator->color_accu * P2ALIGNMENT) % padding;
1045 allocator->color_accu += allocator->config.color_increment;
1047 /* add chunks to free list */
1048 chunk = (ChunkLink*) (mem + color);
1049 sinfo->chunks = chunk;
1050 for (i = 0; i < n_chunks - 1; i++)
1052 chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size);
1053 chunk = chunk->next;
1055 chunk->next = NULL; /* last chunk */
1056 /* add slab to slab ring */
1057 allocator_slab_stack_push (allocator, ix, sinfo);
1061 slab_allocator_alloc_chunk (gsize chunk_size)
1064 guint ix = SLAB_INDEX (allocator, chunk_size);
1065 /* ensure non-empty slab */
1066 if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks)
1067 allocator_add_slab (allocator, ix, chunk_size);
1068 /* allocate chunk */
1069 chunk = allocator->slab_stack[ix]->chunks;
1070 allocator->slab_stack[ix]->chunks = chunk->next;
1071 allocator->slab_stack[ix]->n_allocated++;
1072 /* rotate empty slabs */
1073 if (!allocator->slab_stack[ix]->chunks)
1074 allocator->slab_stack[ix] = allocator->slab_stack[ix]->next;
1079 slab_allocator_free_chunk (gsize chunk_size,
1084 guint ix = SLAB_INDEX (allocator, chunk_size);
1085 gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
1086 gsize addr = ((gsize) mem / page_size) * page_size;
1087 /* mask page adress */
1088 guint8 *page = (guint8*) addr;
1089 SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE);
1090 /* assert valid chunk count */
1091 mem_assert (sinfo->n_allocated > 0);
1092 /* add chunk to free list */
1093 was_empty = sinfo->chunks == NULL;
1094 chunk = (ChunkLink*) mem;
1095 chunk->next = sinfo->chunks;
1096 sinfo->chunks = chunk;
1097 sinfo->n_allocated--;
1098 /* keep slab ring partially sorted, empty slabs at end */
1102 SlabInfo *next = sinfo->next, *prev = sinfo->prev;
1105 if (allocator->slab_stack[ix] == sinfo)
1106 allocator->slab_stack[ix] = next == sinfo ? NULL : next;
1107 /* insert slab at head */
1108 allocator_slab_stack_push (allocator, ix, sinfo);
1110 /* eagerly free complete unused slabs */
1111 if (!sinfo->n_allocated)
1114 SlabInfo *next = sinfo->next, *prev = sinfo->prev;
1117 if (allocator->slab_stack[ix] == sinfo)
1118 allocator->slab_stack[ix] = next == sinfo ? NULL : next;
1120 allocator_memfree (page_size, page);
1124 /* --- memalign implementation --- */
1125 #ifdef HAVE_MALLOC_H
1126 #include <malloc.h> /* memalign() */
1130 * define HAVE_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works, <stdlib.h>
1131 * define HAVE_COMPLIANT_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works for sizes != 2^n, <stdlib.h>
1132 * define HAVE_MEMALIGN 1 // if free(memalign(3)) works, <malloc.h>
1133 * define HAVE_VALLOC 1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
1134 * if none is provided, we implement malloc(3)-based alloc-only page alignment
1137 #if !(HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
1138 static GTrashStack *compat_valloc_trash = NULL;
1142 allocator_memalign (gsize alignment,
1145 gpointer aligned_memory = NULL;
1147 #if HAVE_COMPLIANT_POSIX_MEMALIGN
1148 err = posix_memalign (&aligned_memory, alignment, memsize);
1151 aligned_memory = memalign (alignment, memsize);
1155 aligned_memory = valloc (memsize);
1158 /* simplistic non-freeing page allocator */
1159 mem_assert (alignment == sys_page_size);
1160 mem_assert (memsize <= sys_page_size);
1161 if (!compat_valloc_trash)
1163 const guint n_pages = 16;
1164 guint8 *mem = malloc (n_pages * sys_page_size);
1169 guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size);
1171 i--; /* mem wasn't page aligned */
1173 g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size);
1176 aligned_memory = g_trash_stack_pop (&compat_valloc_trash);
1178 if (!aligned_memory)
1180 return aligned_memory;
1184 allocator_memfree (gsize memsize,
1187 #if HAVE_COMPLIANT_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
1190 mem_assert (memsize <= sys_page_size);
1191 g_trash_stack_push (&compat_valloc_trash, mem);
1196 mem_error (const char *format,
1201 /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
1202 fputs ("\n***MEMORY-ERROR***: ", stderr);
1203 pname = g_get_prgname();
1204 fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid());
1205 va_start (args, format);
1206 vfprintf (stderr, format, args);
1208 fputs ("\n", stderr);
1213 /* --- g-slice memory checker tree --- */
1214 typedef size_t SmcKType; /* key type */
1215 typedef size_t SmcVType; /* value type */
1220 static void smc_tree_insert (SmcKType key,
1222 static gboolean smc_tree_lookup (SmcKType key,
1224 static gboolean smc_tree_remove (SmcKType key);
1227 /* --- g-slice memory checker implementation --- */
1229 smc_notify_alloc (void *pointer,
1232 size_t adress = (size_t) pointer;
1234 smc_tree_insert (adress, size);
1239 smc_notify_ignore (void *pointer)
1241 size_t adress = (size_t) pointer;
1243 smc_tree_remove (adress);
1248 smc_notify_free (void *pointer,
1251 size_t adress = (size_t) pointer;
1256 return 1; /* ignore */
1257 found_one = smc_tree_lookup (adress, &real_size);
1260 fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
1263 if (real_size != size && (real_size || size))
1265 fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size);
1268 if (!smc_tree_remove (adress))
1270 fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
1273 return 1; /* all fine */
1276 /* --- g-slice memory checker tree implementation --- */
1277 #define SMC_TRUNK_COUNT (4093 /* 16381 */) /* prime, to distribute trunk collisions (big, allocated just once) */
1278 #define SMC_BRANCH_COUNT (511) /* prime, to distribute branch collisions */
1279 #define SMC_TRUNK_EXTENT (SMC_BRANCH_COUNT * 2039) /* key adress space per trunk, should distribute uniformly across BRANCH_COUNT */
1280 #define SMC_TRUNK_HASH(k) ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT) /* generate new trunk hash per megabyte (roughly) */
1281 #define SMC_BRANCH_HASH(k) (k % SMC_BRANCH_COUNT)
1285 unsigned int n_entries;
1288 static SmcBranch **smc_tree_root = NULL;
1291 smc_tree_abort (int errval)
1293 const char *syserr = "unknown error";
1295 syserr = strerror (errval);
1297 mem_error ("MemChecker: failure in debugging tree: %s", syserr);
1300 static inline SmcEntry*
1301 smc_tree_branch_grow_L (SmcBranch *branch,
1304 unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]);
1305 unsigned int new_size = old_size + sizeof (branch->entries[0]);
1307 mem_assert (index <= branch->n_entries);
1308 branch->entries = (SmcEntry*) realloc (branch->entries, new_size);
1309 if (!branch->entries)
1310 smc_tree_abort (errno);
1311 entry = branch->entries + index;
1312 g_memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0]));
1313 branch->n_entries += 1;
1317 static inline SmcEntry*
1318 smc_tree_branch_lookup_nearest_L (SmcBranch *branch,
1321 unsigned int n_nodes = branch->n_entries, offs = 0;
1322 SmcEntry *check = branch->entries;
1324 while (offs < n_nodes)
1326 unsigned int i = (offs + n_nodes) >> 1;
1327 check = branch->entries + i;
1328 cmp = key < check->key ? -1 : key != check->key;
1330 return check; /* return exact match */
1333 else /* (cmp > 0) */
1336 /* check points at last mismatch, cmp > 0 indicates greater key */
1337 return cmp > 0 ? check + 1 : check; /* return insertion position for inexact match */
1341 smc_tree_insert (SmcKType key,
1344 unsigned int ix0, ix1;
1347 g_mutex_lock (smc_tree_mutex);
1348 ix0 = SMC_TRUNK_HASH (key);
1349 ix1 = SMC_BRANCH_HASH (key);
1352 smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0]));
1354 smc_tree_abort (errno);
1356 if (!smc_tree_root[ix0])
1358 smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0]));
1359 if (!smc_tree_root[ix0])
1360 smc_tree_abort (errno);
1362 entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1363 if (!entry || /* need create */
1364 entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries || /* need append */
1365 entry->key != key) /* need insert */
1366 entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries);
1368 entry->value = value;
1369 g_mutex_unlock (smc_tree_mutex);
1373 smc_tree_lookup (SmcKType key,
1376 SmcEntry *entry = NULL;
1377 unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
1378 gboolean found_one = FALSE;
1380 g_mutex_lock (smc_tree_mutex);
1381 if (smc_tree_root && smc_tree_root[ix0])
1383 entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1385 entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
1389 *value_p = entry->value;
1392 g_mutex_unlock (smc_tree_mutex);
1397 smc_tree_remove (SmcKType key)
1399 unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
1400 gboolean found_one = FALSE;
1401 g_mutex_lock (smc_tree_mutex);
1402 if (smc_tree_root && smc_tree_root[ix0])
1404 SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
1406 entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
1409 unsigned int i = entry - smc_tree_root[ix0][ix1].entries;
1410 smc_tree_root[ix0][ix1].n_entries -= 1;
1411 g_memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0]));
1412 if (!smc_tree_root[ix0][ix1].n_entries)
1414 /* avoid useless pressure on the memory system */
1415 free (smc_tree_root[ix0][ix1].entries);
1416 smc_tree_root[ix0][ix1].entries = NULL;
1421 g_mutex_unlock (smc_tree_mutex);
1425 #ifdef G_ENABLE_DEBUG
1427 g_slice_debug_tree_statistics (void)
1429 g_mutex_lock (smc_tree_mutex);
1432 unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u;
1434 for (i = 0; i < SMC_TRUNK_COUNT; i++)
1435 if (smc_tree_root[i])
1438 for (j = 0; j < SMC_BRANCH_COUNT; j++)
1439 if (smc_tree_root[i][j].n_entries)
1442 su += smc_tree_root[i][j].n_entries;
1443 en = MIN (en, smc_tree_root[i][j].n_entries);
1444 ex = MAX (ex, smc_tree_root[i][j].n_entries);
1446 else if (smc_tree_root[i][j].entries)
1447 o++; /* formerly used, now empty */
1450 tf = MAX (t, 1.0); /* max(1) to be a valid divisor */
1451 bf = MAX (b, 1.0); /* max(1) to be a valid divisor */
1452 fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o);
1453 fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
1455 100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT));
1456 fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
1460 fprintf (stderr, "GSlice: MemChecker: root=NULL\n");
1461 g_mutex_unlock (smc_tree_mutex);
1463 /* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
1464 * PID %CPU %MEM VSZ RSS COMMAND
1465 * 8887 30.3 45.8 456068 414856 beast-0.7.1 empty.bse
1466 * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
1467 * 114017 103714 2354 344 0 108676 0
1468 * $ cat /proc/8887/status
1479 * (gdb) print g_slice_debug_tree_statistics ()
1480 * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
1481 * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
1482 * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
1485 #endif /* G_ENABLE_DEBUG */
1487 #define __G_SLICE_C__
1488 #include "galiasdef.c"