1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007
3 * Soeren Sandmann (sandmann@daimi.au.dk)
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
23 #include "gsequence.h"
26 #include "gtestutils.h"
31 * @short_description: scalable lists
33 * The #GSequence data structure has the API of a list, but is
34 * implemented internally with a balanced binary tree. This means that
35 * it is possible to maintain a sorted list of n elements in time O(n
36 * log n). The data contained in each element can be either integer
37 * values, by using of the <link
38 * linkend="glib-Type-Conversion-Macros">Type Conversion Macros</link>,
39 * or simply pointers to any type of data.
41 * A #GSequence is accessed through <firstterm>iterators</firstterm>,
42 * represented by a #GSequenceIter. An iterator represents a position
43 * between two elements of the sequence. For example, the
44 * <firstterm>begin</firstterm> iterator represents the gap immediately
45 * before the first element of the sequence, and the
46 * <firstterm>end</firstterm> iterator represents the gap immediately
47 * after the last element. In an empty sequence, the begin and end
48 * iterators are the same.
50 * Some methods on #GSequence operate on ranges of items. For example
51 * g_sequence_foreach_range() will call a user-specified function on
52 * each element with the given range. The range is delimited by the
53 * gaps represented by the passed-in iterators, so if you pass in the
54 * begin and end iterators, the range in question is the entire
57 * The function g_sequence_get() is used with an iterator to access the
58 * element immediately following the gap that the iterator represents.
59 * The iterator is said to <firstterm>point</firstterm> to that element.
61 * Iterators are stable across most operations on a #GSequence. For
62 * example an iterator pointing to some element of a sequence will
63 * continue to point to that element even after the sequence is sorted.
64 * Even moving an element to another sequence using for example
65 * g_sequence_move_range() will not invalidate the iterators pointing
66 * to it. The only operation that will invalidate an iterator is when
67 * the element it points to is removed from any sequence.
73 * The #GSequenceIter struct is an opaque data type representing an
74 * iterator pointing into a #GSequence.
78 * GSequenceIterCompareFunc:
79 * @a: a #GSequenceIter
80 * @b: a #GSequenceIter
82 * @Returns: zero if the iterators are equal, a negative value if @a
83 * comes before @b, and a positive value if @b comes before
86 * A #GSequenceIterCompareFunc is a function used to compare iterators.
87 * It must return zero if the iterators compare equal, a negative value
88 * if @a comes before @b, and a positive value if @b comes before @a.
91 typedef struct _GSequenceNode GSequenceNode;
96 * The #GSequence struct is an opaque data type representing a
97 * <link linkend="glib-Sequences">Sequence</link> data type.
101 GSequenceNode * end_node;
102 GDestroyNotify data_destroy_notify;
103 gboolean access_prohibited;
105 /* The 'real_sequence' is used when temporary sequences are created
106 * to hold nodes that are being rearranged. The 'real_sequence' of such
107 * a temporary sequence points to the sequence that is actually being
108 * manipulated. The only reason we need this is so that when the
109 * sort/sort_changed/search_iter() functions call out to the application
110 * g_sequence_iter_get_sequence() will return the correct sequence.
112 GSequence * real_sequence;
115 struct _GSequenceNode
118 GSequenceNode * parent;
119 GSequenceNode * left;
120 GSequenceNode * right;
121 gpointer data; /* For the end node, this field points
127 * Declaration of GSequenceNode methods
129 static GSequenceNode *node_new (gpointer data);
130 static GSequenceNode *node_get_first (GSequenceNode *node);
131 static GSequenceNode *node_get_last (GSequenceNode *node);
132 static GSequenceNode *node_get_prev (GSequenceNode *node);
133 static GSequenceNode *node_get_next (GSequenceNode *node);
134 static gint node_get_pos (GSequenceNode *node);
135 static GSequenceNode *node_get_by_pos (GSequenceNode *node,
137 static GSequenceNode *node_find (GSequenceNode *haystack,
138 GSequenceNode *needle,
140 GSequenceIterCompareFunc cmp,
142 static GSequenceNode *node_find_closest (GSequenceNode *haystack,
143 GSequenceNode *needle,
145 GSequenceIterCompareFunc cmp,
147 static gint node_get_length (GSequenceNode *node);
148 static void node_free (GSequenceNode *node,
150 static void node_cut (GSequenceNode *split);
151 static void node_insert_before (GSequenceNode *node,
153 static void node_unlink (GSequenceNode *node);
154 static void node_join (GSequenceNode *left,
155 GSequenceNode *right);
156 static void node_insert_sorted (GSequenceNode *node,
159 GSequenceIterCompareFunc cmp_func,
164 * Various helper functions
167 check_seq_access (GSequence *seq)
169 if (G_UNLIKELY (seq->access_prohibited))
171 g_warning ("Accessing a sequence while it is "
172 "being sorted or searched is not allowed");
177 get_sequence (GSequenceNode *node)
179 return (GSequence *)node_get_last (node)->data;
183 check_iter_access (GSequenceIter *iter)
185 check_seq_access (get_sequence (iter));
189 is_end (GSequenceIter *iter)
199 if (iter->parent->right != iter)
202 seq = get_sequence (iter);
204 return seq->end_node == iter;
209 GCompareDataFunc cmp_func;
211 GSequenceNode *end_node;
214 /* This function compares two iters using a normal compare
215 * function and user_data passed in in a SortInfo struct
218 iter_compare (GSequenceIter *node1,
219 GSequenceIter *node2,
222 const SortInfo *info = data;
225 if (node1 == info->end_node)
228 if (node2 == info->end_node)
231 retval = info->cmp_func (node1->data, node2->data, info->cmp_data);
242 * @data_destroy: a #GDestroyNotify function, or %NULL
244 * Creates a new GSequence. The @data_destroy function, if non-%NULL will
245 * be called on all items when the sequence is destroyed and on items that
246 * are removed from the sequence.
248 * Return value: a new #GSequence
253 g_sequence_new (GDestroyNotify data_destroy)
255 GSequence *seq = g_new (GSequence, 1);
256 seq->data_destroy_notify = data_destroy;
258 seq->end_node = node_new (seq);
260 seq->access_prohibited = FALSE;
262 seq->real_sequence = seq;
271 * Frees the memory allocated for @seq. If @seq has a data destroy
272 * function associated with it, that function is called on all items in
278 g_sequence_free (GSequence *seq)
280 g_return_if_fail (seq != NULL);
282 check_seq_access (seq);
284 node_free (seq->end_node, seq);
290 * g_sequence_foreach_range:
291 * @begin: a #GSequenceIter
292 * @end: a #GSequenceIter
294 * @user_data: user data passed to @func
296 * Calls @func for each item in the range (@begin, @end) passing
297 * @user_data to the function.
302 g_sequence_foreach_range (GSequenceIter *begin,
310 g_return_if_fail (func != NULL);
311 g_return_if_fail (begin != NULL);
312 g_return_if_fail (end != NULL);
314 seq = get_sequence (begin);
316 seq->access_prohibited = TRUE;
321 GSequenceIter *next = node_get_next (iter);
323 func (iter->data, user_data);
328 seq->access_prohibited = FALSE;
332 * g_sequence_foreach:
334 * @func: the function to call for each item in @seq
335 * @user_data: user data passed to @func
337 * Calls @func for each item in the sequence passing @user_data
343 g_sequence_foreach (GSequence *seq,
347 GSequenceIter *begin, *end;
349 check_seq_access (seq);
351 begin = g_sequence_get_begin_iter (seq);
352 end = g_sequence_get_end_iter (seq);
354 g_sequence_foreach_range (begin, end, func, user_data);
358 * g_sequence_range_get_midpoint:
359 * @begin: a #GSequenceIter
360 * @end: a #GSequenceIter
362 * Finds an iterator somewhere in the range (@begin, @end). This
363 * iterator will be close to the middle of the range, but is not
364 * guaranteed to be <emphasis>exactly</emphasis> in the middle.
366 * The @begin and @end iterators must both point to the same sequence and
367 * @begin must come before or be equal to @end in the sequence.
369 * Return value: A #GSequenceIter pointing somewhere in the
370 * (@begin, @end) range.
375 g_sequence_range_get_midpoint (GSequenceIter *begin,
378 int begin_pos, end_pos, mid_pos;
380 g_return_val_if_fail (begin != NULL, NULL);
381 g_return_val_if_fail (end != NULL, NULL);
382 g_return_val_if_fail (get_sequence (begin) == get_sequence (end), NULL);
384 begin_pos = node_get_pos (begin);
385 end_pos = node_get_pos (end);
387 g_return_val_if_fail (end_pos >= begin_pos, NULL);
389 mid_pos = begin_pos + (end_pos - begin_pos) / 2;
391 return node_get_by_pos (begin, mid_pos);
395 * g_sequence_iter_compare:
396 * @a: a #GSequenceIter
397 * @b: a #GSequenceIter
399 * Returns a negative number if @a comes before @b, 0 if they are equal,
400 * and a positive number if @a comes after @b.
402 * The @a and @b iterators must point into the same sequence.
404 * Return value: A negative number if @a comes before @b, 0 if they are
405 * equal, and a positive number if @a comes after @b.
410 g_sequence_iter_compare (GSequenceIter *a,
415 g_return_val_if_fail (a != NULL, 0);
416 g_return_val_if_fail (b != NULL, 0);
417 g_return_val_if_fail (get_sequence (a) == get_sequence (b), 0);
419 check_iter_access (a);
420 check_iter_access (b);
422 a_pos = node_get_pos (a);
423 b_pos = node_get_pos (b);
427 else if (a_pos > b_pos)
436 * @data: the data for the new item
438 * Adds a new item to the end of @seq.
440 * Return value: an iterator pointing to the new item
445 g_sequence_append (GSequence *seq,
450 g_return_val_if_fail (seq != NULL, NULL);
452 check_seq_access (seq);
454 node = node_new (data);
455 node_insert_before (seq->end_node, node);
461 * g_sequence_prepend:
463 * @data: the data for the new item
465 * Adds a new item to the front of @seq
467 * Return value: an iterator pointing to the new item
472 g_sequence_prepend (GSequence *seq,
475 GSequenceNode *node, *first;
477 g_return_val_if_fail (seq != NULL, NULL);
479 check_seq_access (seq);
481 node = node_new (data);
482 first = node_get_first (seq->end_node);
484 node_insert_before (first, node);
490 * g_sequence_insert_before:
491 * @iter: a #GSequenceIter
492 * @data: the data for the new item
494 * Inserts a new item just before the item pointed to by @iter.
496 * Return value: an iterator pointing to the new item
501 g_sequence_insert_before (GSequenceIter *iter,
506 g_return_val_if_fail (iter != NULL, NULL);
508 check_iter_access (iter);
510 node = node_new (data);
512 node_insert_before (iter, node);
519 * @iter: a #GSequenceIter
521 * Removes the item pointed to by @iter. It is an error to pass the
522 * end iterator to this function.
524 * If the sequence has a data destroy function associated with it, this
525 * function is called on the data for the removed item.
530 g_sequence_remove (GSequenceIter *iter)
534 g_return_if_fail (iter != NULL);
535 g_return_if_fail (!is_end (iter));
537 check_iter_access (iter);
539 seq = get_sequence (iter);
542 node_free (iter, seq);
546 * g_sequence_remove_range:
547 * @begin: a #GSequenceIter
548 * @end: a #GSequenceIter
550 * Removes all items in the (@begin, @end) range.
552 * If the sequence has a data destroy function associated with it, this
553 * function is called on the data for the removed items.
558 g_sequence_remove_range (GSequenceIter *begin,
561 g_return_if_fail (get_sequence (begin) == get_sequence (end));
563 check_iter_access (begin);
564 check_iter_access (end);
566 g_sequence_move_range (NULL, begin, end);
570 * g_sequence_move_range:
571 * @dest: a #GSequenceIter
572 * @begin: a #GSequenceIter
573 * @end: a #GSequenceIter
575 * Inserts the (@begin, @end) range at the destination pointed to by ptr.
576 * The @begin and @end iters must point into the same sequence. It is
577 * allowed for @dest to point to a different sequence than the one pointed
578 * into by @begin and @end.
580 * If @dest is NULL, the range indicated by @begin and @end is
581 * removed from the sequence. If @dest iter points to a place within
582 * the (@begin, @end) range, the range does not move.
587 g_sequence_move_range (GSequenceIter *dest,
588 GSequenceIter *begin,
592 GSequenceNode *first;
594 g_return_if_fail (begin != NULL);
595 g_return_if_fail (end != NULL);
597 check_iter_access (begin);
598 check_iter_access (end);
600 check_iter_access (dest);
602 src_seq = get_sequence (begin);
604 g_return_if_fail (src_seq == get_sequence (end));
606 /* Dest points to begin or end? */
607 if (dest == begin || dest == end)
610 /* begin comes after end? */
611 if (g_sequence_iter_compare (begin, end) >= 0)
614 /* dest points somewhere in the (begin, end) range? */
615 if (dest && get_sequence (dest) == src_seq &&
616 g_sequence_iter_compare (dest, begin) > 0 &&
617 g_sequence_iter_compare (dest, end) < 0)
622 src_seq = get_sequence (begin);
624 first = node_get_first (begin);
631 node_join (first, end);
635 first = node_get_first (dest);
639 node_join (begin, dest);
642 node_join (first, begin);
646 node_free (begin, src_seq);
653 * @cmp_func: the function used to sort the sequence
654 * @cmp_data: user data passed to @cmp_func
656 * Sorts @seq using @cmp_func.
658 * @cmp_func is passed two items of @seq and should
659 * return 0 if they are equal, a negative value if the
660 * first comes before the second, and a positive value
661 * if the second comes before the first.
666 g_sequence_sort (GSequence *seq,
667 GCompareDataFunc cmp_func,
672 info.cmp_func = cmp_func;
673 info.cmp_data = cmp_data;
674 info.end_node = seq->end_node;
676 check_seq_access (seq);
678 g_sequence_sort_iter (seq, iter_compare, &info);
682 * g_sequence_insert_sorted:
684 * @data: the data to insert
685 * @cmp_func: the function used to compare items in the sequence
686 * @cmp_data: user data passed to @cmp_func.
688 * Inserts @data into @sequence using @func to determine the new
689 * position. The sequence must already be sorted according to @cmp_func;
690 * otherwise the new position of @data is undefined.
692 * @cmp_func is called with two items of the @seq and @user_data.
693 * It should return 0 if the items are equal, a negative value
694 * if the first item comes before the second, and a positive value
695 * if the second item comes before the first.
697 * Return value: a #GSequenceIter pointing to the new item.
702 g_sequence_insert_sorted (GSequence *seq,
704 GCompareDataFunc cmp_func,
709 g_return_val_if_fail (seq != NULL, NULL);
710 g_return_val_if_fail (cmp_func != NULL, NULL);
712 info.cmp_func = cmp_func;
713 info.cmp_data = cmp_data;
714 info.end_node = seq->end_node;
715 check_seq_access (seq);
717 return g_sequence_insert_sorted_iter (seq, data, iter_compare, &info);
721 * g_sequence_sort_changed:
722 * @iter: A #GSequenceIter
723 * @cmp_func: the function used to compare items in the sequence
724 * @cmp_data: user data passed to @cmp_func.
726 * Moves the data pointed to a new position as indicated by @cmp_func. This
727 * function should be called for items in a sequence already sorted according
728 * to @cmp_func whenever some aspect of an item changes so that @cmp_func
729 * may return different values for that item.
731 * @cmp_func is called with two items of the @seq and @user_data.
732 * It should return 0 if the items are equal, a negative value if
733 * the first item comes before the second, and a positive value if
734 * the second item comes before the first.
739 g_sequence_sort_changed (GSequenceIter *iter,
740 GCompareDataFunc cmp_func,
745 g_return_if_fail (!is_end (iter));
747 info.cmp_func = cmp_func;
748 info.cmp_data = cmp_data;
749 info.end_node = get_sequence (iter)->end_node;
750 check_iter_access (iter);
752 g_sequence_sort_changed_iter (iter, iter_compare, &info);
758 * @data: data for the new item
759 * @cmp_func: the function used to compare items in the sequence
760 * @cmp_data: user data passed to @cmp_func.
762 * Returns an iterator pointing to the position where @data would
763 * be inserted according to @cmp_func and @cmp_data.
765 * @cmp_func is called with two items of the @seq and @user_data.
766 * It should return 0 if the items are equal, a negative value if
767 * the first item comes before the second, and a positive value if
768 * the second item comes before the first.
770 * If you are simply searching for an existing element of the sequence,
771 * consider using g_sequence_lookup().
774 * This function will fail if the data contained in the sequence is
775 * unsorted. Use g_sequence_insert_sorted() or
776 * g_sequence_insert_sorted_iter() to add data to your sequence or, if
777 * you want to add a large amount of data, call g_sequence_sort() after
778 * doing unsorted insertions.
781 * Return value: an #GSequenceIter pointing to the position where @data
782 * would have been inserted according to @cmp_func and @cmp_data.
787 g_sequence_search (GSequence *seq,
789 GCompareDataFunc cmp_func,
794 g_return_val_if_fail (seq != NULL, NULL);
796 info.cmp_func = cmp_func;
797 info.cmp_data = cmp_data;
798 info.end_node = seq->end_node;
799 check_seq_access (seq);
801 return g_sequence_search_iter (seq, data, iter_compare, &info);
807 * @data: data to lookup
808 * @cmp_func: the function used to compare items in the sequence
809 * @cmp_data: user data passed to @cmp_func.
811 * Returns an iterator pointing to the position of the first item found
812 * equal to @data according to @cmp_func and @cmp_data. If more than one
813 * item is equal, it is not guaranteed that it is the first which is
814 * returned. In that case, you can use g_sequence_iter_next() and
815 * g_sequence_iter_prev() to get others.
817 * @cmp_func is called with two items of the @seq and @user_data.
818 * It should return 0 if the items are equal, a negative value if
819 * the first item comes before the second, and a positive value if
820 * the second item comes before the first.
823 * This function will fail if the data contained in the sequence is
824 * unsorted. Use g_sequence_insert_sorted() or
825 * g_sequence_insert_sorted_iter() to add data to your sequence or, if
826 * you want to add a large amount of data, call g_sequence_sort() after
827 * doing unsorted insertions.
830 * Return value: an #GSequenceIter pointing to the position of the
831 * first item found equal to @data according to @cmp_func and @cmp_data.
836 g_sequence_lookup (GSequence *seq,
838 GCompareDataFunc cmp_func,
843 g_return_val_if_fail (seq != NULL, NULL);
845 info.cmp_func = cmp_func;
846 info.cmp_data = cmp_data;
847 info.end_node = seq->end_node;
848 check_seq_access (seq);
850 return g_sequence_lookup_iter (seq, data, iter_compare, &info);
854 * g_sequence_sort_iter:
856 * @cmp_func: the function used to compare iterators in the sequence
857 * @cmp_data: user data passed to @cmp_func
859 * Like g_sequence_sort(), but uses a #GSequenceIterCompareFunc instead
860 * of a GCompareDataFunc as the compare function
862 * @cmp_func is called with two iterators pointing into @seq. It should
863 * return 0 if the iterators are equal, a negative value if the first
864 * iterator comes before the second, and a positive value if the second
865 * iterator comes before the first.
870 g_sequence_sort_iter (GSequence *seq,
871 GSequenceIterCompareFunc cmp_func,
875 GSequenceNode *begin, *end;
877 g_return_if_fail (seq != NULL);
878 g_return_if_fail (cmp_func != NULL);
880 check_seq_access (seq);
882 begin = g_sequence_get_begin_iter (seq);
883 end = g_sequence_get_end_iter (seq);
885 tmp = g_sequence_new (NULL);
886 tmp->real_sequence = seq;
888 g_sequence_move_range (g_sequence_get_begin_iter (tmp), begin, end);
890 seq->access_prohibited = TRUE;
891 tmp->access_prohibited = TRUE;
893 while (g_sequence_get_length (tmp) > 0)
895 GSequenceNode *node = g_sequence_get_begin_iter (tmp);
897 node_insert_sorted (seq->end_node, node, seq->end_node,
901 tmp->access_prohibited = FALSE;
902 seq->access_prohibited = FALSE;
904 g_sequence_free (tmp);
908 * g_sequence_sort_changed_iter:
909 * @iter: a #GSequenceIter
910 * @iter_cmp: the function used to compare iterators in the sequence
911 * @cmp_data: user data passed to @cmp_func
913 * Like g_sequence_sort_changed(), but uses
914 * a #GSequenceIterCompareFunc instead of a #GCompareDataFunc as
915 * the compare function.
917 * @iter_cmp is called with two iterators pointing into @seq. It should
918 * return 0 if the iterators are equal, a negative value if the first
919 * iterator comes before the second, and a positive value if the second
920 * iterator comes before the first.
925 g_sequence_sort_changed_iter (GSequenceIter *iter,
926 GSequenceIterCompareFunc iter_cmp,
929 GSequence *seq, *tmp_seq;
930 GSequenceIter *next, *prev;
932 g_return_if_fail (iter != NULL);
933 g_return_if_fail (!is_end (iter));
934 g_return_if_fail (iter_cmp != NULL);
935 check_iter_access (iter);
937 /* If one of the neighbours is equal to iter, then
938 * don't move it. This ensures that sort_changed() is
939 * a stable operation.
942 next = node_get_next (iter);
943 prev = node_get_prev (iter);
945 if (prev != iter && iter_cmp (prev, iter, cmp_data) == 0)
948 if (!is_end (next) && iter_cmp (next, iter, cmp_data) == 0)
951 seq = get_sequence (iter);
953 seq->access_prohibited = TRUE;
955 tmp_seq = g_sequence_new (NULL);
956 tmp_seq->real_sequence = seq;
959 node_insert_before (tmp_seq->end_node, iter);
961 node_insert_sorted (seq->end_node, iter, seq->end_node,
964 g_sequence_free (tmp_seq);
966 seq->access_prohibited = FALSE;
970 * g_sequence_insert_sorted_iter:
972 * @data: data for the new item
973 * @iter_cmp: the function used to compare iterators in the sequence
974 * @cmp_data: user data passed to @cmp_func
976 * Like g_sequence_insert_sorted(), but uses
977 * a #GSequenceIterCompareFunc instead of a #GCompareDataFunc as
978 * the compare function.
980 * @iter_cmp is called with two iterators pointing into @seq.
981 * It should return 0 if the iterators are equal, a negative
982 * value if the first iterator comes before the second, and a
983 * positive value if the second iterator comes before the first.
985 * It is called with two iterators pointing into @seq. It should
986 * return 0 if the iterators are equal, a negative value if the
987 * first iterator comes before the second, and a positive value
988 * if the second iterator comes before the first.
990 * Return value: a #GSequenceIter pointing to the new item
995 g_sequence_insert_sorted_iter (GSequence *seq,
997 GSequenceIterCompareFunc iter_cmp,
1000 GSequenceNode *new_node;
1003 g_return_val_if_fail (seq != NULL, NULL);
1004 g_return_val_if_fail (iter_cmp != NULL, NULL);
1006 check_seq_access (seq);
1008 seq->access_prohibited = TRUE;
1010 /* Create a new temporary sequence and put the new node into
1011 * that. The reason for this is that the user compare function
1012 * will be called with the new node, and if it dereferences,
1013 * "is_end" will be called on it. But that will crash if the
1014 * node is not actually in a sequence.
1016 * node_insert_sorted() makes sure the node is unlinked before
1019 * The reason we need the "iter" versions at all is that that
1020 * is the only kind of compare functions GtkTreeView can use.
1022 tmp_seq = g_sequence_new (NULL);
1023 tmp_seq->real_sequence = seq;
1025 new_node = g_sequence_append (tmp_seq, data);
1027 node_insert_sorted (seq->end_node, new_node,
1028 seq->end_node, iter_cmp, cmp_data);
1030 g_sequence_free (tmp_seq);
1032 seq->access_prohibited = FALSE;
1038 * g_sequence_search_iter:
1039 * @seq: a #GSequence
1040 * @data: data for the new item
1041 * @iter_cmp: the function used to compare iterators in the sequence
1042 * @cmp_data: user data passed to @iter_cmp
1044 * Like g_sequence_search(), but uses a #GSequenceIterCompareFunc
1045 * instead of a #GCompareDataFunc as the compare function.
1047 * @iter_cmp is called with two iterators pointing into @seq.
1048 * It should return 0 if the iterators are equal, a negative value
1049 * if the first iterator comes before the second, and a positive
1050 * value if the second iterator comes before the first.
1052 * If you are simply searching for an existing element of the sequence,
1053 * consider using g_sequence_lookup_iter().
1056 * This function will fail if the data contained in the sequence is
1057 * unsorted. Use g_sequence_insert_sorted() or
1058 * g_sequence_insert_sorted_iter() to add data to your sequence or, if
1059 * you want to add a large amount of data, call g_sequence_sort() after
1060 * doing unsorted insertions.
1063 * Return value: a #GSequenceIter pointing to the position in @seq
1064 * where @data would have been inserted according to @iter_cmp
1070 g_sequence_search_iter (GSequence *seq,
1072 GSequenceIterCompareFunc iter_cmp,
1075 GSequenceNode *node;
1076 GSequenceNode *dummy;
1079 g_return_val_if_fail (seq != NULL, NULL);
1081 check_seq_access (seq);
1083 seq->access_prohibited = TRUE;
1085 tmp_seq = g_sequence_new (NULL);
1086 tmp_seq->real_sequence = seq;
1088 dummy = g_sequence_append (tmp_seq, data);
1090 node = node_find_closest (seq->end_node, dummy,
1091 seq->end_node, iter_cmp, cmp_data);
1093 g_sequence_free (tmp_seq);
1095 seq->access_prohibited = FALSE;
1101 * g_sequence_lookup_iter:
1102 * @seq: a #GSequence
1103 * @data: data to lookup
1104 * @iter_cmp: the function used to compare iterators in the sequence
1105 * @cmp_data: user data passed to @iter_cmp
1107 * Like g_sequence_lookup(), but uses a #GSequenceIterCompareFunc
1108 * instead of a #GCompareDataFunc as the compare function.
1110 * @iter_cmp is called with two iterators pointing into @seq.
1111 * It should return 0 if the iterators are equal, a negative value
1112 * if the first iterator comes before the second, and a positive
1113 * value if the second iterator comes before the first.
1116 * This function will fail if the data contained in the sequence is
1117 * unsorted. Use g_sequence_insert_sorted() or
1118 * g_sequence_insert_sorted_iter() to add data to your sequence or, if
1119 * you want to add a large amount of data, call g_sequence_sort() after
1120 * doing unsorted insertions.
1123 * Return value: an #GSequenceIter pointing to the position of
1124 * the first item found equal to @data according to @cmp_func
1130 g_sequence_lookup_iter (GSequence *seq,
1132 GSequenceIterCompareFunc iter_cmp,
1135 GSequenceNode *node;
1136 GSequenceNode *dummy;
1139 g_return_val_if_fail (seq != NULL, NULL);
1141 check_seq_access (seq);
1143 seq->access_prohibited = TRUE;
1145 tmp_seq = g_sequence_new (NULL);
1146 tmp_seq->real_sequence = seq;
1148 dummy = g_sequence_append (tmp_seq, data);
1150 node = node_find (seq->end_node, dummy,
1151 seq->end_node, iter_cmp, cmp_data);
1153 g_sequence_free (tmp_seq);
1155 seq->access_prohibited = FALSE;
1161 * g_sequence_iter_get_sequence:
1162 * @iter: a #GSequenceIter
1164 * Returns the #GSequence that @iter points into.
1166 * Return value: the #GSequence that @iter points into.
1171 g_sequence_iter_get_sequence (GSequenceIter *iter)
1175 g_return_val_if_fail (iter != NULL, NULL);
1177 seq = get_sequence (iter);
1179 /* For temporary sequences, this points to the sequence that
1180 * is actually being manipulated
1182 return seq->real_sequence;
1187 * @iter: a #GSequenceIter
1189 * Returns the data that @iter points to.
1191 * Return value: the data that @iter points to
1196 g_sequence_get (GSequenceIter *iter)
1198 g_return_val_if_fail (iter != NULL, NULL);
1199 g_return_val_if_fail (!is_end (iter), NULL);
1206 * @iter: a #GSequenceIter
1207 * @data: new data for the item
1209 * Changes the data for the item pointed to by @iter to be @data. If
1210 * the sequence has a data destroy function associated with it, that
1211 * function is called on the existing data that @iter pointed to.
1216 g_sequence_set (GSequenceIter *iter,
1221 g_return_if_fail (iter != NULL);
1222 g_return_if_fail (!is_end (iter));
1224 seq = get_sequence (iter);
1226 /* If @data is identical to iter->data, it is destroyed
1227 * here. This will work right in case of ref-counted objects. Also
1228 * it is similar to what ghashtables do.
1230 * For non-refcounted data it's a little less convenient, but
1231 * code relying on self-setting not destroying would be
1232 * pretty dubious anyway ...
1235 if (seq->data_destroy_notify)
1236 seq->data_destroy_notify (iter->data);
1242 * g_sequence_get_length:
1243 * @seq: a #GSequence
1245 * Returns the length of @seq
1247 * Return value: the length of @seq
1252 g_sequence_get_length (GSequence *seq)
1254 return node_get_length (seq->end_node) - 1;
1258 * g_sequence_get_end_iter:
1259 * @seq: a #GSequence
1261 * Returns the end iterator for @seg
1263 * Return value: the end iterator for @seq
1268 g_sequence_get_end_iter (GSequence *seq)
1270 g_return_val_if_fail (seq != NULL, NULL);
1272 return seq->end_node;
1276 * g_sequence_get_begin_iter:
1277 * @seq: a #GSequence
1279 * Returns the begin iterator for @seq.
1281 * Return value: the begin iterator for @seq.
1286 g_sequence_get_begin_iter (GSequence *seq)
1288 g_return_val_if_fail (seq != NULL, NULL);
1290 return node_get_first (seq->end_node);
1294 clamp_position (GSequence *seq,
1297 gint len = g_sequence_get_length (seq);
1299 if (pos > len || pos < 0)
1306 * if pos > number of items or -1, will return end pointer
1309 * g_sequence_get_iter_at_pos:
1310 * @seq: a #GSequence
1311 * @pos: a position in @seq, or -1 for the end.
1313 * Returns the iterator at position @pos. If @pos is negative or larger
1314 * than the number of items in @seq, the end iterator is returned.
1316 * Return value: The #GSequenceIter at position @pos
1321 g_sequence_get_iter_at_pos (GSequence *seq,
1324 g_return_val_if_fail (seq != NULL, NULL);
1326 pos = clamp_position (seq, pos);
1328 return node_get_by_pos (seq->end_node, pos);
1333 * @src: a #GSequenceIter pointing to the item to move
1334 * @dest: a #GSequenceIter pointing to the position to which
1335 * the item is moved.
1337 * Moves the item pointed to by @src to the position indicated by @dest.
1338 * After calling this function @dest will point to the position immediately
1339 * after @src. It is allowed for @src and @dest to point into different
1345 g_sequence_move (GSequenceIter *src,
1346 GSequenceIter *dest)
1348 g_return_if_fail (src != NULL);
1349 g_return_if_fail (dest != NULL);
1350 g_return_if_fail (!is_end (src));
1356 node_insert_before (dest, src);
1362 * g_sequence_iter_is_end:
1363 * @iter: a #GSequenceIter
1365 * Returns whether @iter is the end iterator
1367 * Return value: Whether @iter is the end iterator.
1372 g_sequence_iter_is_end (GSequenceIter *iter)
1374 g_return_val_if_fail (iter != NULL, FALSE);
1376 return is_end (iter);
1380 * g_sequence_iter_is_begin:
1381 * @iter: a #GSequenceIter
1383 * Returns whether @iter is the begin iterator
1385 * Return value: whether @iter is the begin iterator
1390 g_sequence_iter_is_begin (GSequenceIter *iter)
1392 g_return_val_if_fail (iter != NULL, FALSE);
1394 return (node_get_prev (iter) == iter);
1398 * g_sequence_iter_get_position:
1399 * @iter: a #GSequenceIter
1401 * Returns the position of @iter
1403 * Return value: the position of @iter
1408 g_sequence_iter_get_position (GSequenceIter *iter)
1410 g_return_val_if_fail (iter != NULL, -1);
1412 return node_get_pos (iter);
1416 * g_sequence_iter_next:
1417 * @iter: a #GSequenceIter
1419 * Returns an iterator pointing to the next position after @iter. If
1420 * @iter is the end iterator, the end iterator is returned.
1422 * Return value: a #GSequenceIter pointing to the next position after @iter.
1427 g_sequence_iter_next (GSequenceIter *iter)
1429 g_return_val_if_fail (iter != NULL, NULL);
1431 return node_get_next (iter);
1435 * g_sequence_iter_prev:
1436 * @iter: a #GSequenceIter
1438 * Returns an iterator pointing to the previous position before @iter. If
1439 * @iter is the begin iterator, the begin iterator is returned.
1441 * Return value: a #GSequenceIter pointing to the previous position before
1447 g_sequence_iter_prev (GSequenceIter *iter)
1449 g_return_val_if_fail (iter != NULL, NULL);
1451 return node_get_prev (iter);
1455 * g_sequence_iter_move:
1456 * @iter: a #GSequenceIter
1457 * @delta: A positive or negative number indicating how many positions away
1458 * from @iter the returned #GSequenceIter will be.
1460 * Returns the #GSequenceIter which is @delta positions away from @iter.
1461 * If @iter is closer than -@delta positions to the beginning of the sequence,
1462 * the begin iterator is returned. If @iter is closer than @delta positions
1463 * to the end of the sequence, the end iterator is returned.
1465 * Return value: a #GSequenceIter which is @delta positions away from @iter.
1470 g_sequence_iter_move (GSequenceIter *iter,
1476 g_return_val_if_fail (iter != NULL, NULL);
1478 len = g_sequence_get_length (get_sequence (iter));
1480 new_pos = node_get_pos (iter) + delta;
1484 else if (new_pos > len)
1487 return node_get_by_pos (iter, new_pos);
1492 * @a: a #GSequenceIter
1493 * @b: a #GSequenceIter
1495 * Swaps the items pointed to by @a and @b. It is allowed for @a and @b
1496 * to point into difference sequences.
1501 g_sequence_swap (GSequenceIter *a,
1504 GSequenceNode *leftmost, *rightmost, *rightmost_next;
1507 g_return_if_fail (!g_sequence_iter_is_end (a));
1508 g_return_if_fail (!g_sequence_iter_is_end (b));
1513 a_pos = g_sequence_iter_get_position (a);
1514 b_pos = g_sequence_iter_get_position (b);
1527 rightmost_next = node_get_next (rightmost);
1529 /* The situation is now like this:
1531 * ..., leftmost, ......., rightmost, rightmost_next, ...
1534 g_sequence_move (rightmost, leftmost);
1535 g_sequence_move (leftmost, rightmost_next);
1539 * Implementation of a treap
1544 get_priority (GSequenceNode *node)
1546 guint key = GPOINTER_TO_UINT (node);
1548 /* This hash function is based on one found on Thomas Wang's
1551 * http://www.concentric.net/~Ttwang/tech/inthash.htm
1554 key = (key << 15) - key - 1;
1555 key = key ^ (key >> 12);
1556 key = key + (key << 2);
1557 key = key ^ (key >> 4);
1558 key = key + (key << 3) + (key << 11);
1559 key = key ^ (key >> 16);
1561 /* We rely on 0 being less than all other priorities */
1562 return key? key : 1;
1565 static GSequenceNode *
1566 find_root (GSequenceNode *node)
1568 while (node->parent)
1569 node = node->parent;
1574 static GSequenceNode *
1575 node_new (gpointer data)
1577 GSequenceNode *node = g_slice_new0 (GSequenceNode);
1583 node->parent = NULL;
1588 static GSequenceNode *
1589 node_get_first (GSequenceNode *node)
1591 node = find_root (node);
1599 static GSequenceNode *
1600 node_get_last (GSequenceNode *node)
1602 node = find_root (node);
1610 #define NODE_LEFT_CHILD(n) (((n)->parent) && ((n)->parent->left) == (n))
1611 #define NODE_RIGHT_CHILD(n) (((n)->parent) && ((n)->parent->right) == (n))
1613 static GSequenceNode *
1614 node_get_next (GSequenceNode *node)
1616 GSequenceNode *n = node;
1626 while (NODE_RIGHT_CHILD (n))
1638 static GSequenceNode *
1639 node_get_prev (GSequenceNode *node)
1641 GSequenceNode *n = node;
1651 while (NODE_LEFT_CHILD (n))
1663 #define N_NODES(n) ((n)? (n)->n_nodes : 0)
1666 node_get_pos (GSequenceNode *node)
1671 n_smaller = node->left->n_nodes;
1675 if (NODE_RIGHT_CHILD (node))
1676 n_smaller += N_NODES (node->parent->left) + 1;
1678 node = node->parent;
1684 static GSequenceNode *
1685 node_get_by_pos (GSequenceNode *node,
1690 node = find_root (node);
1692 while ((i = N_NODES (node->left)) != pos)
1708 static GSequenceNode *
1709 node_find (GSequenceNode *haystack,
1710 GSequenceNode *needle,
1712 GSequenceIterCompareFunc iter_cmp,
1717 haystack = find_root (haystack);
1721 /* iter_cmp can't be passed the end node, since the function may
1724 if (haystack == end)
1727 c = iter_cmp (haystack, needle, cmp_data);
1733 haystack = haystack->left;
1735 haystack = haystack->right;
1737 while (haystack != NULL);
1742 static GSequenceNode *
1743 node_find_closest (GSequenceNode *haystack,
1744 GSequenceNode *needle,
1746 GSequenceIterCompareFunc iter_cmp,
1749 GSequenceNode *best;
1752 haystack = find_root (haystack);
1758 /* iter_cmp can't be passed the end node, since the function may
1761 if (haystack == end)
1764 c = iter_cmp (haystack, needle, cmp_data);
1766 /* In the following we don't break even if c == 0. Instead we go on
1767 * searching along the 'bigger' nodes, so that we find the last one
1768 * that is equal to the needle.
1771 haystack = haystack->left;
1773 haystack = haystack->right;
1775 while (haystack != NULL);
1777 /* If the best node is smaller or equal to the data, then move one step
1778 * to the right to make sure the best one is strictly bigger than the data
1780 if (best != end && c <= 0)
1781 best = node_get_next (best);
1787 node_get_length (GSequenceNode *node)
1789 node = find_root (node);
1791 return node->n_nodes;
1795 real_node_free (GSequenceNode *node,
1800 real_node_free (node->left, seq);
1801 real_node_free (node->right, seq);
1803 if (seq && seq->data_destroy_notify && node != seq->end_node)
1804 seq->data_destroy_notify (node->data);
1806 g_slice_free (GSequenceNode, node);
1811 node_free (GSequenceNode *node,
1814 node = find_root (node);
1816 real_node_free (node, seq);
1820 node_update_fields (GSequenceNode *node)
1824 n_nodes += N_NODES (node->left);
1825 n_nodes += N_NODES (node->right);
1827 node->n_nodes = n_nodes;
1831 node_rotate (GSequenceNode *node)
1833 GSequenceNode *tmp, *old;
1835 g_assert (node->parent);
1836 g_assert (node->parent != node);
1838 if (NODE_LEFT_CHILD (node))
1843 node->right = node->parent;
1844 node->parent = node->parent->parent;
1847 if (node->parent->left == node->right)
1848 node->parent->left = node;
1850 node->parent->right = node;
1853 g_assert (node->right);
1855 node->right->parent = node;
1856 node->right->left = tmp;
1858 if (node->right->left)
1859 node->right->left->parent = node->right;
1868 node->left = node->parent;
1869 node->parent = node->parent->parent;
1872 if (node->parent->right == node->left)
1873 node->parent->right = node;
1875 node->parent->left = node;
1878 g_assert (node->left);
1880 node->left->parent = node;
1881 node->left->right = tmp;
1883 if (node->left->right)
1884 node->left->right->parent = node->left;
1889 node_update_fields (old);
1890 node_update_fields (node);
1894 node_update_fields_deep (GSequenceNode *node)
1898 node_update_fields (node);
1900 node_update_fields_deep (node->parent);
1905 rotate_down (GSequenceNode *node,
1910 left = node->left ? get_priority (node->left) : 0;
1911 right = node->right ? get_priority (node->right) : 0;
1913 while (priority < left || priority < right)
1916 node_rotate (node->left);
1918 node_rotate (node->right);
1920 left = node->left ? get_priority (node->left) : 0;
1921 right = node->right ? get_priority (node->right) : 0;
1926 node_cut (GSequenceNode *node)
1928 while (node->parent)
1932 node->left->parent = NULL;
1935 node_update_fields (node);
1937 rotate_down (node, get_priority (node));
1941 node_join (GSequenceNode *left,
1942 GSequenceNode *right)
1944 GSequenceNode *fake = node_new (NULL);
1946 fake->left = find_root (left);
1947 fake->right = find_root (right);
1948 fake->left->parent = fake;
1949 fake->right->parent = fake;
1951 node_update_fields (fake);
1955 node_free (fake, NULL);
1959 node_insert_before (GSequenceNode *node,
1962 new->left = node->left;
1964 new->left->parent = new;
1969 node_update_fields_deep (new);
1971 while (new->parent && get_priority (new) > get_priority (new->parent))
1974 rotate_down (new, get_priority (new));
1978 node_unlink (GSequenceNode *node)
1980 rotate_down (node, 0);
1982 if (NODE_RIGHT_CHILD (node))
1983 node->parent->right = NULL;
1984 else if (NODE_LEFT_CHILD (node))
1985 node->parent->left = NULL;
1988 node_update_fields_deep (node->parent);
1990 node->parent = NULL;
1994 node_insert_sorted (GSequenceNode *node,
1997 GSequenceIterCompareFunc iter_cmp,
2000 GSequenceNode *closest;
2002 closest = node_find_closest (node, new, end, iter_cmp, cmp_data);
2006 node_insert_before (closest, new);