1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
20 /* Originally developed and coded by Makoto Matsumoto and Takuji
21 * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
22 * code from this file in your own programs or libraries.
23 * Further information on the Mersenne Twister can be found at
24 * http://www.math.keio.ac.jp/~matumoto/emt.html
25 * This code was adapted to glib by Sebastian Wilhelmi <wilhelmi@ira.uka.de>.
29 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
30 * file for a list of people on the GLib Team. See the ChangeLog
31 * files for a list of changes. These files are distributed with
32 * GLib at ftp://ftp.gtk.org/pub/gtk/.
43 G_LOCK_DEFINE_STATIC (global_random);
44 static GRand* global_random = NULL;
46 /* Period parameters */
49 #define MATRIX_A 0x9908b0df /* constant vector a */
50 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
51 #define LOWER_MASK 0x7fffffff /* least significant r bits */
53 /* Tempering parameters */
54 #define TEMPERING_MASK_B 0x9d2c5680
55 #define TEMPERING_MASK_C 0xefc60000
56 #define TEMPERING_SHIFT_U(y) (y >> 11)
57 #define TEMPERING_SHIFT_S(y) (y << 7)
58 #define TEMPERING_SHIFT_T(y) (y << 15)
59 #define TEMPERING_SHIFT_L(y) (y >> 18)
63 guint32 mt[N]; /* the array for the state vector */
68 * g_rand_new_with_seed:
69 * @seed: a value to initialize the random number generator.
71 * Creates a new random number generator initialized with @seed.
73 * Return value: the new #GRand.
76 g_rand_new_with_seed (guint32 seed)
78 GRand *rand = g_new0 (GRand, 1);
79 g_rand_set_seed (rand, seed);
86 * Creates a new random number generator initialized with a seed taken
87 * either from <filename>/dev/urandom</filename> (if existing) or from
88 * the current time (as a fallback).
90 * Return value: the new #GRand.
98 static gboolean dev_urandom_exists = TRUE;
100 if (dev_urandom_exists)
102 FILE* dev_urandom = fopen("/dev/urandom", "rb");
105 if (fread (&seed, sizeof (seed), 1, dev_urandom) != 1)
106 dev_urandom_exists = FALSE;
107 fclose (dev_urandom);
110 dev_urandom_exists = FALSE;
113 static gboolean dev_urandom_exists = FALSE;
116 if (!dev_urandom_exists)
118 g_get_current_time (&now);
119 seed = now.tv_sec ^ now.tv_usec;
122 return g_rand_new_with_seed (seed);
129 * Frees the memory allocated for the #GRand.
132 g_rand_free (GRand* rand)
134 g_return_if_fail (rand != NULL);
142 * @seed: a value to reinitialize the random number generator.
144 * Sets the seed for the random number generator #GRand to @seed.
147 g_rand_set_seed (GRand* rand, guint32 seed)
149 g_return_if_fail (rand != NULL);
151 /* setting initial seeds to mt[N] using */
152 /* the generator Line 25 of Table 1 in */
153 /* [KNUTH 1981, The Art of Computer Programming */
154 /* Vol. 2 (2nd Ed.), pp102] */
156 if (seed == 0) /* This would make the PRNG procude only zeros */
157 seed = 0x6b842128; /* Just set it to another number */
159 rand->mt[0]= seed & 0xffffffff;
160 for (rand->mti=1; rand->mti<N; rand->mti++)
161 rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]) & 0xffffffff;
168 * Returns the next random #guint32 from @rand_ equally distributed over
169 * the range [0..2^32-1].
171 * Return value: A random number.
174 g_rand_int (GRand* rand)
177 static const guint32 mag01[2]={0x0, MATRIX_A};
178 /* mag01[x] = x * MATRIX_A for x=0,1 */
180 g_return_val_if_fail (rand != NULL, 0);
182 if (rand->mti >= N) { /* generate N words at one time */
185 for (kk=0;kk<N-M;kk++) {
186 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
187 rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
190 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
191 rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
193 y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
194 rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
199 y = rand->mt[rand->mti++];
200 y ^= TEMPERING_SHIFT_U(y);
201 y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
202 y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
203 y ^= TEMPERING_SHIFT_L(y);
208 /* transform [0..2^32] -> [0..1] */
209 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
214 * @begin: lower closed bound of the interval.
215 * @end: upper open bound of the interval.
217 * Returns the next random #gint32 from @rand_ equally distributed over
218 * the range [@begin..@end-1].
220 * Return value: A random number.
223 g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
225 guint32 dist = end - begin;
228 g_return_val_if_fail (rand != NULL, begin);
229 g_return_val_if_fail (end > begin, begin);
231 /* All tricks doing modulo calculations do not have a perfect
232 * distribution -> We must use the slower way through gdouble for
233 * maximal quality. */
235 if (dist <= 0x10000L) /* 2^16 */
237 /* This method, which only calls g_rand_int once is only good
238 * for (end - begin) <= 2^16, because we only have 32 bits set
239 * from the one call to g_rand_int (). */
241 /* we are using (trans + trans * trans), because g_rand_int only
242 * covers [0..2^32-1] and thus g_rand_int * trans only covers
243 * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
246 gdouble double_rand = g_rand_int (rand) *
247 (G_RAND_DOUBLE_TRANSFORM +
248 G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
250 random = (gint32) (double_rand * dist);
254 /* Now we use g_rand_double_range (), which will set 52 bits for
255 us, so that it is safe to round and still get a decent
257 random = (gint32) g_rand_double_range (rand, 0, dist);
260 return begin + random;
267 * Returns the next random #gdouble from @rand_ equally distributed over
270 * Return value: A random number.
273 g_rand_double (GRand* rand)
275 /* We set all 52 bits after the point for this, not only the first
276 32. Thats why we need two calls to g_rand_int */
277 gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
278 retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
280 /* The following might happen due to very bad rounding luck, but
281 * actually this should be more than rare, we just try again then */
283 return g_rand_double (rand);
289 * g_rand_double_range:
291 * @begin: lower closed bound of the interval.
292 * @end: upper open bound of the interval.
294 * Returns the next random #gdouble from @rand_ equally distributed over
295 * the range [@begin..@end).
297 * Return value: A random number.
300 g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
302 return g_rand_double (rand) * (end - begin) + begin;
308 * Return a random #guint32 equally distributed over the range
311 * Return value: A random number.
317 G_LOCK (global_random);
319 global_random = g_rand_new ();
321 result = g_rand_int (global_random);
322 G_UNLOCK (global_random);
327 * g_random_int_range:
328 * @begin: lower closed bound of the interval.
329 * @end: upper open bound of the interval.
331 * Returns a random #gint32 equally distributed over the range
334 * Return value: A random number.
337 g_random_int_range (gint32 begin, gint32 end)
340 G_LOCK (global_random);
342 global_random = g_rand_new ();
344 result = g_rand_int_range (global_random, begin, end);
345 G_UNLOCK (global_random);
352 * Returns a random #gdouble equally distributed over the range [0..1).
354 * Return value: A random number.
357 g_random_double (void)
360 G_LOCK (global_random);
362 global_random = g_rand_new ();
364 result = g_rand_double (global_random);
365 G_UNLOCK (global_random);
370 * g_random_double_range:
371 * @begin: lower closed bound of the interval.
372 * @end: upper open bound of the interval.
374 * Returns a random #gdouble equally distributed over the range [@begin..@end).
376 * Return value: A random number.
379 g_random_double_range (gdouble begin, gdouble end)
382 G_LOCK (global_random);
384 global_random = g_rand_new ();
386 result = g_rand_double_range (global_random, begin, end);
387 G_UNLOCK (global_random);
393 * @seed: a value to reinitialize the global random number generator.
395 * Sets the seed for the global random number generator, which is used
396 * by the <function>g_random_*</function> functions, to @seed.
399 g_random_set_seed (guint32 seed)
401 G_LOCK (global_random);
403 global_random = g_rand_new_with_seed (seed);
405 g_rand_set_seed (global_random, seed);
406 G_UNLOCK (global_random);