1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
20 /* Originally developed and coded by Makoto Matsumoto and Takuji
21 * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
22 * code from this file in your own programs or libraries.
23 * Further information on the Mersenne Twister can be found at
24 * http://www.math.keio.ac.jp/~matumoto/emt.html
25 * This code was adapted to glib by Sebastian Wilhelmi.
29 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
30 * file for a list of people on the GLib Team. See the ChangeLog
31 * files for a list of changes. These files are distributed with
32 * GLib at ftp://ftp.gtk.org/pub/gtk/.
45 #include <sys/types.h>
51 #include "gthreadinit.h"
54 #include <process.h> /* For getpid() */
57 G_LOCK_DEFINE_STATIC (global_random);
58 static GRand* global_random = NULL;
60 /* Period parameters */
63 #define MATRIX_A 0x9908b0df /* constant vector a */
64 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
65 #define LOWER_MASK 0x7fffffff /* least significant r bits */
67 /* Tempering parameters */
68 #define TEMPERING_MASK_B 0x9d2c5680
69 #define TEMPERING_MASK_C 0xefc60000
70 #define TEMPERING_SHIFT_U(y) (y >> 11)
71 #define TEMPERING_SHIFT_S(y) (y << 7)
72 #define TEMPERING_SHIFT_T(y) (y << 15)
73 #define TEMPERING_SHIFT_L(y) (y >> 18)
76 get_random_version (void)
78 static gboolean initialized = FALSE;
79 static guint random_version;
83 const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
84 if (!version_string || version_string[0] == '\000' ||
85 strcmp (version_string, "2.2") == 0)
87 else if (strcmp (version_string, "2.0") == 0)
91 g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
98 return random_version;
101 /* This is called from g_thread_init(). It's used to
102 * initialize some static data in a threadsafe way.
105 _g_rand_thread_init (void)
107 (void)get_random_version ();
112 guint32 mt[N]; /* the array for the state vector */
117 * g_rand_new_with_seed:
118 * @seed: a value to initialize the random number generator.
120 * Creates a new random number generator initialized with @seed.
122 * Return value: the new #GRand.
125 g_rand_new_with_seed (guint32 seed)
127 GRand *rand = g_new0 (GRand, 1);
128 g_rand_set_seed (rand, seed);
133 * g_rand_new_with_seed_array:
134 * @seed: an array of seeds to initialize the random number generator.
135 * @seed_length: an array of seeds to initialize the random number generator.
137 * Creates a new random number generator initialized with @seed.
139 * Return value: the new #GRand.
144 g_rand_new_with_seed_array (const guint32 *seed, guint seed_length)
146 GRand *rand = g_new0 (GRand, 1);
147 g_rand_set_seed_array (rand, seed, seed_length);
154 * Creates a new random number generator initialized with a seed taken
155 * either from <filename>/dev/urandom</filename> (if existing) or from
156 * the current time (as a fallback).
158 * Return value: the new #GRand.
166 static gboolean dev_urandom_exists = TRUE;
168 if (dev_urandom_exists)
175 dev_urandom = fopen("/dev/urandom", "rb");
177 while G_UNLIKELY (errno == EINTR);
186 r = fread (seed, sizeof (seed), 1, dev_urandom);
188 while G_UNLIKELY (errno == EINTR);
191 dev_urandom_exists = FALSE;
196 fclose (dev_urandom);
198 while G_UNLIKELY (errno == EINTR);
201 dev_urandom_exists = FALSE;
204 static gboolean dev_urandom_exists = FALSE;
207 if (!dev_urandom_exists)
209 g_get_current_time (&now);
210 seed[0] = now.tv_sec;
211 seed[1] = now.tv_usec;
214 seed[3] = getppid ();
220 return g_rand_new_with_seed_array (seed, 4);
227 * Frees the memory allocated for the #GRand.
230 g_rand_free (GRand* rand)
232 g_return_if_fail (rand != NULL);
241 * Copies a #GRand into a new one with the same exact state as before.
242 * This way you can take a snapshot of the random number generator for
245 * Return value: the new #GRand.
250 g_rand_copy (GRand* rand)
254 g_return_val_if_fail (rand != NULL, NULL);
256 new_rand = g_new0 (GRand, 1);
257 memcpy (new_rand, rand, sizeof (GRand));
265 * @seed: a value to reinitialize the random number generator.
267 * Sets the seed for the random number generator #GRand to @seed.
270 g_rand_set_seed (GRand* rand, guint32 seed)
272 g_return_if_fail (rand != NULL);
274 switch (get_random_version ())
277 /* setting initial seeds to mt[N] using */
278 /* the generator Line 25 of Table 1 in */
279 /* [KNUTH 1981, The Art of Computer Programming */
280 /* Vol. 2 (2nd Ed.), pp102] */
282 if (seed == 0) /* This would make the PRNG procude only zeros */
283 seed = 0x6b842128; /* Just set it to another number */
286 for (rand->mti=1; rand->mti<N; rand->mti++)
287 rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
291 /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
292 /* In the previous version (see above), MSBs of the */
293 /* seed affect only MSBs of the array mt[]. */
296 for (rand->mti=1; rand->mti<N; rand->mti++)
297 rand->mt[rand->mti] = 1812433253UL *
298 (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
301 g_assert_not_reached ();
306 * g_rand_set_seed_array:
308 * @seed: array to initialize with
309 * @seed_length: length of array
311 * Initializes the random number generator by an array of
312 * longs. Array can be of arbitrary size, though only the
313 * first 624 values are taken. This function is useful
314 * if you have many low entropy seeds, or if you require more then
315 * 32bits of actual entropy for your application.
320 g_rand_set_seed_array (GRand* rand, const guint32 *seed, guint seed_length)
324 g_return_if_fail (rand != NULL);
325 g_return_if_fail (seed_length >= 1);
327 g_rand_set_seed (rand, 19650218UL);
330 k = (N>seed_length ? N : seed_length);
333 rand->mt[i] = (rand->mt[i] ^
334 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
335 + seed[j] + j; /* non linear */
336 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
340 rand->mt[0] = rand->mt[N-1];
348 rand->mt[i] = (rand->mt[i] ^
349 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
350 - i; /* non linear */
351 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
355 rand->mt[0] = rand->mt[N-1];
360 rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
367 * Returns the next random #guint32 from @rand_ equally distributed over
368 * the range [0..2^32-1].
370 * Return value: A random number.
373 g_rand_int (GRand* rand)
376 static const guint32 mag01[2]={0x0, MATRIX_A};
377 /* mag01[x] = x * MATRIX_A for x=0,1 */
379 g_return_val_if_fail (rand != NULL, 0);
381 if (rand->mti >= N) { /* generate N words at one time */
384 for (kk=0;kk<N-M;kk++) {
385 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
386 rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
389 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
390 rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
392 y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
393 rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
398 y = rand->mt[rand->mti++];
399 y ^= TEMPERING_SHIFT_U(y);
400 y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
401 y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
402 y ^= TEMPERING_SHIFT_L(y);
407 /* transform [0..2^32] -> [0..1] */
408 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
413 * @begin: lower closed bound of the interval.
414 * @end: upper open bound of the interval.
416 * Returns the next random #gint32 from @rand_ equally distributed over
417 * the range [@begin..@end-1].
419 * Return value: A random number.
422 g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
424 guint32 dist = end - begin;
427 g_return_val_if_fail (rand != NULL, begin);
428 g_return_val_if_fail (end > begin, begin);
430 switch (get_random_version ())
433 if (dist <= 0x10000L) /* 2^16 */
435 /* This method, which only calls g_rand_int once is only good
436 * for (end - begin) <= 2^16, because we only have 32 bits set
437 * from the one call to g_rand_int (). */
439 /* we are using (trans + trans * trans), because g_rand_int only
440 * covers [0..2^32-1] and thus g_rand_int * trans only covers
441 * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
444 gdouble double_rand = g_rand_int (rand) *
445 (G_RAND_DOUBLE_TRANSFORM +
446 G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
448 random = (gint32) (double_rand * dist);
452 /* Now we use g_rand_double_range (), which will set 52 bits for
453 us, so that it is safe to round and still get a decent
455 random = (gint32) g_rand_double_range (rand, 0, dist);
463 /* maxvalue is set to the predecessor of the greatest
464 * multiple of dist less or equal 2^32. */
466 if (dist <= 0x80000000u) /* 2^31 */
468 /* maxvalue = 2^32 - 1 - (2^32 % dist) */
469 guint32 leftover = (0x80000000u % dist) * 2;
470 if (leftover >= dist) leftover -= dist;
471 maxvalue = 0xffffffffu - leftover;
477 random = g_rand_int (rand);
478 while (random > maxvalue);
484 random = 0; /* Quiet GCC */
485 g_assert_not_reached ();
488 return begin + random;
495 * Returns the next random #gdouble from @rand_ equally distributed over
498 * Return value: A random number.
501 g_rand_double (GRand* rand)
503 /* We set all 52 bits after the point for this, not only the first
504 32. Thats why we need two calls to g_rand_int */
505 gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
506 retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
508 /* The following might happen due to very bad rounding luck, but
509 * actually this should be more than rare, we just try again then */
511 return g_rand_double (rand);
517 * g_rand_double_range:
519 * @begin: lower closed bound of the interval.
520 * @end: upper open bound of the interval.
522 * Returns the next random #gdouble from @rand_ equally distributed over
523 * the range [@begin..@end).
525 * Return value: A random number.
528 g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
530 return g_rand_double (rand) * (end - begin) + begin;
536 * Return a random #guint32 equally distributed over the range
539 * Return value: A random number.
545 G_LOCK (global_random);
547 global_random = g_rand_new ();
549 result = g_rand_int (global_random);
550 G_UNLOCK (global_random);
555 * g_random_int_range:
556 * @begin: lower closed bound of the interval.
557 * @end: upper open bound of the interval.
559 * Returns a random #gint32 equally distributed over the range
562 * Return value: A random number.
565 g_random_int_range (gint32 begin, gint32 end)
568 G_LOCK (global_random);
570 global_random = g_rand_new ();
572 result = g_rand_int_range (global_random, begin, end);
573 G_UNLOCK (global_random);
580 * Returns a random #gdouble equally distributed over the range [0..1).
582 * Return value: A random number.
585 g_random_double (void)
588 G_LOCK (global_random);
590 global_random = g_rand_new ();
592 result = g_rand_double (global_random);
593 G_UNLOCK (global_random);
598 * g_random_double_range:
599 * @begin: lower closed bound of the interval.
600 * @end: upper open bound of the interval.
602 * Returns a random #gdouble equally distributed over the range [@begin..@end).
604 * Return value: A random number.
607 g_random_double_range (gdouble begin, gdouble end)
610 G_LOCK (global_random);
612 global_random = g_rand_new ();
614 result = g_rand_double_range (global_random, begin, end);
615 G_UNLOCK (global_random);
621 * @seed: a value to reinitialize the global random number generator.
623 * Sets the seed for the global random number generator, which is used
624 * by the <function>g_random_*</function> functions, to @seed.
627 g_random_set_seed (guint32 seed)
629 G_LOCK (global_random);
631 global_random = g_rand_new_with_seed (seed);
633 g_rand_set_seed (global_random, seed);
634 G_UNLOCK (global_random);