1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
20 /* Originally developed and coded by Makoto Matsumoto and Takuji
21 * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
22 * code from this file in your own programs or libraries.
23 * Further information on the Mersenne Twister can be found at
24 * http://www.math.keio.ac.jp/~matumoto/emt.html
25 * This code was adapted to glib by Sebastian Wilhelmi <wilhelmi@ira.uka.de>.
29 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
30 * file for a list of people on the GLib Team. See the ChangeLog
31 * files for a list of changes. These files are distributed with
32 * GLib at ftp://ftp.gtk.org/pub/gtk/.
43 G_LOCK_DEFINE_STATIC (global_random);
44 static GRand* global_random = NULL;
46 /* Period parameters */
49 #define MATRIX_A 0x9908b0df /* constant vector a */
50 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
51 #define LOWER_MASK 0x7fffffff /* least significant r bits */
53 /* Tempering parameters */
54 #define TEMPERING_MASK_B 0x9d2c5680
55 #define TEMPERING_MASK_C 0xefc60000
56 #define TEMPERING_SHIFT_U(y) (y >> 11)
57 #define TEMPERING_SHIFT_S(y) (y << 7)
58 #define TEMPERING_SHIFT_T(y) (y << 15)
59 #define TEMPERING_SHIFT_L(y) (y >> 18)
63 guint32 mt[N]; /* the array for the state vector */
68 * g_rand_new_with_seed:
69 * @seed: a value to initialize the random number generator.
71 * Creates a new random number generator initialized with @seed.
73 * Return value: the new #GRand.
76 g_rand_new_with_seed (guint32 seed)
78 GRand *rand = g_new0 (GRand, 1);
79 g_rand_set_seed (rand, seed);
86 * Creates a new random number generator initialized with a seed taken
87 * either from /dev/urandom (if existing) or from the current time (as
90 * Return value: the new #GRand.
97 static gboolean dev_urandom_exists = TRUE;
99 if (dev_urandom_exists)
101 FILE* dev_urandom = fopen("/dev/urandom", "rb");
104 if (fread (&seed, sizeof (seed), 1, dev_urandom) != 1)
105 dev_urandom_exists = FALSE;
106 fclose (dev_urandom);
109 dev_urandom_exists = FALSE;
111 if (!dev_urandom_exists)
113 g_get_current_time (&now);
114 seed = now.tv_sec ^ now.tv_usec;
117 return g_rand_new_with_seed (seed);
124 * Frees the memory allocated for the #GRand.
127 g_rand_free (GRand* rand)
129 g_return_if_fail (rand != NULL);
137 * @seed: a value to reinitialize the random number generator.
139 * Sets the seed for the random number generator #GRand to @seed.
142 g_rand_set_seed (GRand* rand, guint32 seed)
144 g_return_if_fail (rand != NULL);
146 /* setting initial seeds to mt[N] using */
147 /* the generator Line 25 of Table 1 in */
148 /* [KNUTH 1981, The Art of Computer Programming */
149 /* Vol. 2 (2nd Ed.), pp102] */
151 if (seed == 0) /* This would make the PRNG procude only zeros */
152 seed = 0x6b842128; /* Just set it to another number */
154 rand->mt[0]= seed & 0xffffffff;
155 for (rand->mti=1; rand->mti<N; rand->mti++)
156 rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]) & 0xffffffff;
163 * Return the next random #guint32 from @rand equaly distributed over
164 * the range [0..2^32-1].
166 * Return value: A random number.
169 g_rand_int (GRand* rand)
172 static const guint32 mag01[2]={0x0, MATRIX_A};
173 /* mag01[x] = x * MATRIX_A for x=0,1 */
175 g_return_val_if_fail (rand != NULL, 0);
177 if (rand->mti >= N) { /* generate N words at one time */
180 for (kk=0;kk<N-M;kk++) {
181 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
182 rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
185 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
186 rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
188 y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
189 rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
194 y = rand->mt[rand->mti++];
195 y ^= TEMPERING_SHIFT_U(y);
196 y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
197 y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
198 y ^= TEMPERING_SHIFT_L(y);
203 /* transform [0..2^32] -> [0..1] */
204 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
209 * @begin: lower closed bound of the interval.
210 * @end: upper open bound of the interval.
212 * Return the next random #gint32 from @rand equaly distributed over
213 * the range [@begin..@end-1].
215 * Return value: A random number.
218 g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
220 guint32 dist = end - begin;
223 g_return_val_if_fail (rand != NULL, begin);
224 g_return_val_if_fail (end > begin, begin);
226 /* All tricks doing modulo calculations do not have a perfect
227 * distribution -> We must use the slower way through gdouble for
228 * maximal quality. */
230 if (dist <= 0x10000L) /* 2^16 */
232 /* This method, which only calls g_rand_int once is only good
233 * for (end - begin) <= 2^16, because we only have 32 bits set
234 * from the one call to g_rand_int (). */
236 /* we are using (trans + trans * trans), because g_rand_int only
237 * covers [0..2^32-1] and thus g_rand_int * trans only covers
238 * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
241 gdouble double_rand = g_rand_int (rand) *
242 (G_RAND_DOUBLE_TRANSFORM +
243 G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
245 random = (gint32) (double_rand * dist);
249 /* Now we use g_rand_double_range (), which will set 52 bits for
250 us, so that it is safe to round and still get a decent
252 random = (gint32) g_rand_double_range (rand, 0, dist);
255 return begin + random;
262 * Return the next random #gdouble from @rand equaly distributed over
265 * Return value: A random number.
268 g_rand_double (GRand* rand)
270 /* We set all 52 bits after the point for this, not only the first
271 32. Thats why we need two calls to g_rand_int */
272 gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
273 retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
275 /* The following might happen due to very bad rounding luck, but
276 * actually this should be more than rare, we just try again then */
278 return g_rand_double (rand);
284 * g_rand_double_range:
286 * @begin: lower closed bound of the interval.
287 * @end: upper open bound of the interval.
289 * Return the next random #gdouble from @rand equaly distributed over
290 * the range [@begin..@end).
292 * Return value: A random number.
295 g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
297 return g_rand_double (rand) * (end - begin) + begin;
303 * Return a random #guint32 equaly distributed over the range
306 * Return value: A random number.
312 G_LOCK (global_random);
314 global_random = g_rand_new ();
316 result = g_rand_int (global_random);
317 G_UNLOCK (global_random);
322 * g_random_int_range:
323 * @begin: lower closed bound of the interval.
324 * @end: upper open bound of the interval.
326 * Return a random #gint32 equaly distributed over the range
329 * Return value: A random number.
332 g_random_int_range (gint32 begin, gint32 end)
335 G_LOCK (global_random);
337 global_random = g_rand_new ();
339 result = g_rand_int_range (global_random, begin, end);
340 G_UNLOCK (global_random);
347 * Return a random #gdouble equaly distributed over the range [0..1).
349 * Return value: A random number.
352 g_random_double (void)
355 G_LOCK (global_random);
357 global_random = g_rand_new ();
359 result = g_rand_double (global_random);
360 G_UNLOCK (global_random);
365 * g_random_double_range:
366 * @begin: lower closed bound of the interval.
367 * @end: upper open bound of the interval.
369 * Return a random #gdouble equaly distributed over the range [@begin..@end).
371 * Return value: A random number.
374 g_random_double_range (gdouble begin, gdouble end)
377 G_LOCK (global_random);
379 global_random = g_rand_new ();
381 result = g_rand_double_range (global_random, begin, end);
382 G_UNLOCK (global_random);
388 * @seed: a value to reinitialize the global random number generator.
390 * Sets the seed for the global random number generator, which is used
391 * by te g_random_* functions, to @seed.
394 g_random_set_seed (guint32 seed)
396 G_LOCK (global_random);
398 global_random = g_rand_new_with_seed (seed);
400 g_rand_set_seed (global_random, seed);
401 G_UNLOCK (global_random);