1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
20 /* Originally developed and coded by Makoto Matsumoto and Takuji
21 * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
22 * code from this file in your own programs or libraries.
23 * Further information on the Mersenne Twister can be found at
24 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
25 * This code was adapted to glib by Sebastian Wilhelmi.
29 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
30 * file for a list of people on the GLib Team. See the ChangeLog
31 * files for a list of changes. These files are distributed with
32 * GLib at ftp://ftp.gtk.org/pub/gtk/.
45 #include <sys/types.h>
51 #include "gthreadprivate.h"
55 #include <process.h> /* For getpid() */
59 * SECTION: random_numbers
60 * @title: Random Numbers
61 * @short_description: pseudo-random number generator
63 * The following functions allow you to use a portable, fast and good
64 * pseudo-random number generator (PRNG). It uses the Mersenne Twister
65 * PRNG, which was originally developed by Makoto Matsumoto and Takuji
66 * Nishimura. Further information can be found at
67 * <ulink url="http://www.math.keio.ac.jp/~matumoto/emt.html">
68 * www.math.keio.ac.jp/~matumoto/emt.html</ulink>.
70 * If you just need a random number, you simply call the
71 * <function>g_random_*</function> functions, which will create a
72 * globally used #GRand and use the according
73 * <function>g_rand_*</function> functions internally. Whenever you
74 * need a stream of reproducible random numbers, you better create a
75 * #GRand yourself and use the <function>g_rand_*</function> functions
76 * directly, which will also be slightly faster. Initializing a #GRand
77 * with a certain seed will produce exactly the same series of random
78 * numbers on all platforms. This can thus be used as a seed for e.g.
81 * The <function>g_rand*_range</function> functions will return high
82 * quality equally distributed random numbers, whereas for example the
83 * <literal>(g_random_int()%max)</literal> approach often
84 * doesn't yield equally distributed numbers.
86 * GLib changed the seeding algorithm for the pseudo-random number
87 * generator Mersenne Twister, as used by
88 * <structname>GRand</structname> and <structname>GRandom</structname>.
89 * This was necessary, because some seeds would yield very bad
90 * pseudo-random streams. Also the pseudo-random integers generated by
91 * <function>g_rand*_int_range()</function> will have a slightly better
92 * equal distribution with the new version of GLib.
94 * The original seeding and generation algorithms, as found in GLib
95 * 2.0.x, can be used instead of the new ones by setting the
96 * environment variable <envar>G_RANDOM_VERSION</envar> to the value of
97 * '2.0'. Use the GLib-2.0 algorithms only if you have sequences of
98 * numbers generated with Glib-2.0 that you need to reproduce exactly.
104 * The #GRand struct is an opaque data structure. It should only be
105 * accessed through the <function>g_rand_*</function> functions.
108 G_LOCK_DEFINE_STATIC (global_random);
109 static GRand* global_random = NULL;
111 /* Period parameters */
114 #define MATRIX_A 0x9908b0df /* constant vector a */
115 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
116 #define LOWER_MASK 0x7fffffff /* least significant r bits */
118 /* Tempering parameters */
119 #define TEMPERING_MASK_B 0x9d2c5680
120 #define TEMPERING_MASK_C 0xefc60000
121 #define TEMPERING_SHIFT_U(y) (y >> 11)
122 #define TEMPERING_SHIFT_S(y) (y << 7)
123 #define TEMPERING_SHIFT_T(y) (y << 15)
124 #define TEMPERING_SHIFT_L(y) (y >> 18)
127 get_random_version (void)
129 static gboolean initialized = FALSE;
130 static guint random_version;
134 const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
135 if (!version_string || version_string[0] == '\000' ||
136 strcmp (version_string, "2.2") == 0)
138 else if (strcmp (version_string, "2.0") == 0)
142 g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
149 return random_version;
152 /* This is called from g_thread_init(). It's used to
153 * initialize some static data in a threadsafe way.
156 _g_rand_thread_init (void)
158 (void)get_random_version ();
163 guint32 mt[N]; /* the array for the state vector */
168 * g_rand_new_with_seed:
169 * @seed: a value to initialize the random number generator.
171 * Creates a new random number generator initialized with @seed.
173 * Return value: the new #GRand.
176 g_rand_new_with_seed (guint32 seed)
178 GRand *rand = g_new0 (GRand, 1);
179 g_rand_set_seed (rand, seed);
184 * g_rand_new_with_seed_array:
185 * @seed: an array of seeds to initialize the random number generator.
186 * @seed_length: an array of seeds to initialize the random number generator.
188 * Creates a new random number generator initialized with @seed.
190 * Return value: the new #GRand.
195 g_rand_new_with_seed_array (const guint32 *seed, guint seed_length)
197 GRand *rand = g_new0 (GRand, 1);
198 g_rand_set_seed_array (rand, seed, seed_length);
205 * Creates a new random number generator initialized with a seed taken
206 * either from <filename>/dev/urandom</filename> (if existing) or from
207 * the current time (as a fallback).
209 * Return value: the new #GRand.
217 static gboolean dev_urandom_exists = TRUE;
219 if (dev_urandom_exists)
226 dev_urandom = fopen("/dev/urandom", "rb");
228 while G_UNLIKELY (errno == EINTR);
234 setvbuf (dev_urandom, NULL, _IONBF, 0);
238 r = fread (seed, sizeof (seed), 1, dev_urandom);
240 while G_UNLIKELY (errno == EINTR);
243 dev_urandom_exists = FALSE;
245 fclose (dev_urandom);
248 dev_urandom_exists = FALSE;
251 static gboolean dev_urandom_exists = FALSE;
254 if (!dev_urandom_exists)
256 g_get_current_time (&now);
257 seed[0] = now.tv_sec;
258 seed[1] = now.tv_usec;
261 seed[3] = getppid ();
267 return g_rand_new_with_seed_array (seed, 4);
274 * Frees the memory allocated for the #GRand.
277 g_rand_free (GRand* rand)
279 g_return_if_fail (rand != NULL);
288 * Copies a #GRand into a new one with the same exact state as before.
289 * This way you can take a snapshot of the random number generator for
292 * Return value: the new #GRand.
297 g_rand_copy (GRand* rand)
301 g_return_val_if_fail (rand != NULL, NULL);
303 new_rand = g_new0 (GRand, 1);
304 memcpy (new_rand, rand, sizeof (GRand));
312 * @seed: a value to reinitialize the random number generator.
314 * Sets the seed for the random number generator #GRand to @seed.
317 g_rand_set_seed (GRand* rand, guint32 seed)
319 g_return_if_fail (rand != NULL);
321 switch (get_random_version ())
324 /* setting initial seeds to mt[N] using */
325 /* the generator Line 25 of Table 1 in */
326 /* [KNUTH 1981, The Art of Computer Programming */
327 /* Vol. 2 (2nd Ed.), pp102] */
329 if (seed == 0) /* This would make the PRNG procude only zeros */
330 seed = 0x6b842128; /* Just set it to another number */
333 for (rand->mti=1; rand->mti<N; rand->mti++)
334 rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
338 /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
339 /* In the previous version (see above), MSBs of the */
340 /* seed affect only MSBs of the array mt[]. */
343 for (rand->mti=1; rand->mti<N; rand->mti++)
344 rand->mt[rand->mti] = 1812433253UL *
345 (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
348 g_assert_not_reached ();
353 * g_rand_set_seed_array:
355 * @seed: array to initialize with
356 * @seed_length: length of array
358 * Initializes the random number generator by an array of
359 * longs. Array can be of arbitrary size, though only the
360 * first 624 values are taken. This function is useful
361 * if you have many low entropy seeds, or if you require more then
362 * 32bits of actual entropy for your application.
367 g_rand_set_seed_array (GRand* rand, const guint32 *seed, guint seed_length)
371 g_return_if_fail (rand != NULL);
372 g_return_if_fail (seed_length >= 1);
374 g_rand_set_seed (rand, 19650218UL);
377 k = (N>seed_length ? N : seed_length);
380 rand->mt[i] = (rand->mt[i] ^
381 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
382 + seed[j] + j; /* non linear */
383 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
387 rand->mt[0] = rand->mt[N-1];
395 rand->mt[i] = (rand->mt[i] ^
396 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
397 - i; /* non linear */
398 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
402 rand->mt[0] = rand->mt[N-1];
407 rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
413 * @Returns: a random #gboolean.
415 * Returns a random #gboolean from @rand_. This corresponds to a
416 * unbiased coin toss.
422 * Returns the next random #guint32 from @rand_ equally distributed over
423 * the range [0..2^32-1].
425 * Return value: A random number.
428 g_rand_int (GRand* rand)
431 static const guint32 mag01[2]={0x0, MATRIX_A};
432 /* mag01[x] = x * MATRIX_A for x=0,1 */
434 g_return_val_if_fail (rand != NULL, 0);
436 if (rand->mti >= N) { /* generate N words at one time */
439 for (kk=0;kk<N-M;kk++) {
440 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
441 rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
444 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
445 rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
447 y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
448 rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
453 y = rand->mt[rand->mti++];
454 y ^= TEMPERING_SHIFT_U(y);
455 y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
456 y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
457 y ^= TEMPERING_SHIFT_L(y);
462 /* transform [0..2^32] -> [0..1] */
463 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
468 * @begin: lower closed bound of the interval.
469 * @end: upper open bound of the interval.
471 * Returns the next random #gint32 from @rand_ equally distributed over
472 * the range [@begin..@end-1].
474 * Return value: A random number.
477 g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
479 guint32 dist = end - begin;
482 g_return_val_if_fail (rand != NULL, begin);
483 g_return_val_if_fail (end > begin, begin);
485 switch (get_random_version ())
488 if (dist <= 0x10000L) /* 2^16 */
490 /* This method, which only calls g_rand_int once is only good
491 * for (end - begin) <= 2^16, because we only have 32 bits set
492 * from the one call to g_rand_int (). */
494 /* we are using (trans + trans * trans), because g_rand_int only
495 * covers [0..2^32-1] and thus g_rand_int * trans only covers
496 * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
499 gdouble double_rand = g_rand_int (rand) *
500 (G_RAND_DOUBLE_TRANSFORM +
501 G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
503 random = (gint32) (double_rand * dist);
507 /* Now we use g_rand_double_range (), which will set 52 bits for
508 us, so that it is safe to round and still get a decent
510 random = (gint32) g_rand_double_range (rand, 0, dist);
518 /* maxvalue is set to the predecessor of the greatest
519 * multiple of dist less or equal 2^32. */
521 if (dist <= 0x80000000u) /* 2^31 */
523 /* maxvalue = 2^32 - 1 - (2^32 % dist) */
524 guint32 leftover = (0x80000000u % dist) * 2;
525 if (leftover >= dist) leftover -= dist;
526 maxvalue = 0xffffffffu - leftover;
532 random = g_rand_int (rand);
533 while (random > maxvalue);
539 random = 0; /* Quiet GCC */
540 g_assert_not_reached ();
543 return begin + random;
550 * Returns the next random #gdouble from @rand_ equally distributed over
553 * Return value: A random number.
556 g_rand_double (GRand* rand)
558 /* We set all 52 bits after the point for this, not only the first
559 32. Thats why we need two calls to g_rand_int */
560 gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
561 retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
563 /* The following might happen due to very bad rounding luck, but
564 * actually this should be more than rare, we just try again then */
566 return g_rand_double (rand);
572 * g_rand_double_range:
574 * @begin: lower closed bound of the interval.
575 * @end: upper open bound of the interval.
577 * Returns the next random #gdouble from @rand_ equally distributed over
578 * the range [@begin..@end).
580 * Return value: A random number.
583 g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
585 return g_rand_double (rand) * (end - begin) + begin;
590 * @Returns: a random #gboolean.
592 * Returns a random #gboolean. This corresponds to a unbiased coin toss.
597 * Return a random #guint32 equally distributed over the range
600 * Return value: A random number.
606 G_LOCK (global_random);
608 global_random = g_rand_new ();
610 result = g_rand_int (global_random);
611 G_UNLOCK (global_random);
616 * g_random_int_range:
617 * @begin: lower closed bound of the interval.
618 * @end: upper open bound of the interval.
620 * Returns a random #gint32 equally distributed over the range
623 * Return value: A random number.
626 g_random_int_range (gint32 begin, gint32 end)
629 G_LOCK (global_random);
631 global_random = g_rand_new ();
633 result = g_rand_int_range (global_random, begin, end);
634 G_UNLOCK (global_random);
641 * Returns a random #gdouble equally distributed over the range [0..1).
643 * Return value: A random number.
646 g_random_double (void)
649 G_LOCK (global_random);
651 global_random = g_rand_new ();
653 result = g_rand_double (global_random);
654 G_UNLOCK (global_random);
659 * g_random_double_range:
660 * @begin: lower closed bound of the interval.
661 * @end: upper open bound of the interval.
663 * Returns a random #gdouble equally distributed over the range [@begin..@end).
665 * Return value: A random number.
668 g_random_double_range (gdouble begin, gdouble end)
671 G_LOCK (global_random);
673 global_random = g_rand_new ();
675 result = g_rand_double_range (global_random, begin, end);
676 G_UNLOCK (global_random);
682 * @seed: a value to reinitialize the global random number generator.
684 * Sets the seed for the global random number generator, which is used
685 * by the <function>g_random_*</function> functions, to @seed.
688 g_random_set_seed (guint32 seed)
690 G_LOCK (global_random);
692 global_random = g_rand_new_with_seed (seed);
694 g_rand_set_seed (global_random, seed);
695 G_UNLOCK (global_random);
700 #include "galiasdef.c"