1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 /* Originally developed and coded by Makoto Matsumoto and Takuji
19 * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
20 * code from this file in your own programs or libraries.
21 * Further information on the Mersenne Twister can be found at
22 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
23 * This code was adapted to glib by Sebastian Wilhelmi.
27 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
28 * file for a list of people on the GLib Team. See the ChangeLog
29 * files for a list of changes. These files are distributed with
30 * GLib at ftp://ftp.gtk.org/pub/gtk/.
44 #include <sys/types.h>
50 #include "gtestutils.h"
62 * SECTION:random_numbers
63 * @title: Random Numbers
64 * @short_description: pseudo-random number generator
66 * The following functions allow you to use a portable, fast and good
67 * pseudo-random number generator (PRNG).
69 * Do not use this API for cryptographic purposes such as key
70 * generation, nonces, salts or one-time pads.
72 * This PRNG is suitable for non-cryptographic use such as in games
73 * (shuffling a card deck, generating levels), generating data for a
74 * test suite, etc. If you need random data for cryptographic
75 * purposes, it is recommended to use platform-specific APIs such as
76 * <literal>/dev/random</literal> on Unix, or CryptGenRandom() on
79 * GRand uses the Mersenne Twister PRNG, which was originally
80 * developed by Makoto Matsumoto and Takuji Nishimura. Further
81 * information can be found at <ulink
82 * url="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html">
83 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html</ulink>.
85 * If you just need a random number, you simply call the g_random_*
86 * functions, which will create a globally used #GRand and use the
87 * according g_rand_* functions internally. Whenever you need a
88 * stream of reproducible random numbers, you better create a
89 * #GRand yourself and use the g_rand_* functions directly, which
90 * will also be slightly faster. Initializing a #GRand with a
91 * certain seed will produce exactly the same series of random
92 * numbers on all platforms. This can thus be used as a seed for
95 * The g_rand*_range functions will return high quality equally
96 * distributed random numbers, whereas for example the
97 * <literal>(g_random_int()%max)</literal> approach often
98 * doesn't yield equally distributed numbers.
100 * GLib changed the seeding algorithm for the pseudo-random number
101 * generator Mersenne Twister, as used by #GRand. This was necessary,
102 * because some seeds would yield very bad pseudo-random streams.
103 * Also the pseudo-random integers generated by g_rand*_int_range()
104 * will have a slightly better equal distribution with the new
107 * The original seeding and generation algorithms, as found in
108 * GLib 2.0.x, can be used instead of the new ones by setting the
109 * environment variable <envar>G_RANDOM_VERSION</envar> to the value
110 * of '2.0'. Use the GLib-2.0 algorithms only if you have sequences
111 * of numbers generated with Glib-2.0 that you need to reproduce
118 * The GRand struct is an opaque data structure. It should only be
119 * accessed through the g_rand_* functions.
122 G_LOCK_DEFINE_STATIC (global_random);
124 /* Period parameters */
127 #define MATRIX_A 0x9908b0df /* constant vector a */
128 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
129 #define LOWER_MASK 0x7fffffff /* least significant r bits */
131 /* Tempering parameters */
132 #define TEMPERING_MASK_B 0x9d2c5680
133 #define TEMPERING_MASK_C 0xefc60000
134 #define TEMPERING_SHIFT_U(y) (y >> 11)
135 #define TEMPERING_SHIFT_S(y) (y << 7)
136 #define TEMPERING_SHIFT_T(y) (y << 15)
137 #define TEMPERING_SHIFT_L(y) (y >> 18)
140 get_random_version (void)
142 static gsize initialized = FALSE;
143 static guint random_version;
145 if (g_once_init_enter (&initialized))
147 const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
148 if (!version_string || version_string[0] == '\000' ||
149 strcmp (version_string, "2.2") == 0)
151 else if (strcmp (version_string, "2.0") == 0)
155 g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
159 g_once_init_leave (&initialized, TRUE);
162 return random_version;
167 guint32 mt[N]; /* the array for the state vector */
172 * g_rand_new_with_seed:
173 * @seed: a value to initialize the random number generator
175 * Creates a new random number generator initialized with @seed.
177 * Return value: the new #GRand
180 g_rand_new_with_seed (guint32 seed)
182 GRand *rand = g_new0 (GRand, 1);
183 g_rand_set_seed (rand, seed);
188 * g_rand_new_with_seed_array:
189 * @seed: an array of seeds to initialize the random number generator
190 * @seed_length: an array of seeds to initialize the random number
193 * Creates a new random number generator initialized with @seed.
195 * Return value: the new #GRand
200 g_rand_new_with_seed_array (const guint32 *seed,
203 GRand *rand = g_new0 (GRand, 1);
204 g_rand_set_seed_array (rand, seed, seed_length);
211 * Creates a new random number generator initialized with a seed taken
212 * either from <filename>/dev/urandom</filename> (if existing) or from
213 * the current time (as a fallback).
215 * On Windows, the seed is taken from rand_s().
217 * Return value: the new #GRand
224 static gboolean dev_urandom_exists = TRUE;
227 if (dev_urandom_exists)
233 dev_urandom = fopen("/dev/urandom", "rb");
235 while G_UNLIKELY (dev_urandom == NULL && errno == EINTR);
241 setvbuf (dev_urandom, NULL, _IONBF, 0);
245 r = fread (seed, sizeof (seed), 1, dev_urandom);
247 while G_UNLIKELY (errno == EINTR);
250 dev_urandom_exists = FALSE;
252 fclose (dev_urandom);
255 dev_urandom_exists = FALSE;
258 if (!dev_urandom_exists)
260 g_get_current_time (&now);
261 seed[0] = now.tv_sec;
262 seed[1] = now.tv_usec;
264 seed[3] = getppid ();
266 #else /* G_OS_WIN32 */
269 for (i = 0; i < G_N_ELEMENTS (seed); i++)
273 return g_rand_new_with_seed_array (seed, 4);
280 * Frees the memory allocated for the #GRand.
283 g_rand_free (GRand *rand)
285 g_return_if_fail (rand != NULL);
294 * Copies a #GRand into a new one with the same exact state as before.
295 * This way you can take a snapshot of the random number generator for
298 * Return value: the new #GRand
303 g_rand_copy (GRand *rand)
307 g_return_val_if_fail (rand != NULL, NULL);
309 new_rand = g_new0 (GRand, 1);
310 memcpy (new_rand, rand, sizeof (GRand));
318 * @seed: a value to reinitialize the random number generator
320 * Sets the seed for the random number generator #GRand to @seed.
323 g_rand_set_seed (GRand *rand,
326 g_return_if_fail (rand != NULL);
328 switch (get_random_version ())
331 /* setting initial seeds to mt[N] using */
332 /* the generator Line 25 of Table 1 in */
333 /* [KNUTH 1981, The Art of Computer Programming */
334 /* Vol. 2 (2nd Ed.), pp102] */
336 if (seed == 0) /* This would make the PRNG produce only zeros */
337 seed = 0x6b842128; /* Just set it to another number */
340 for (rand->mti=1; rand->mti<N; rand->mti++)
341 rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
345 /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
346 /* In the previous version (see above), MSBs of the */
347 /* seed affect only MSBs of the array mt[]. */
350 for (rand->mti=1; rand->mti<N; rand->mti++)
351 rand->mt[rand->mti] = 1812433253UL *
352 (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
355 g_assert_not_reached ();
360 * g_rand_set_seed_array:
362 * @seed: array to initialize with
363 * @seed_length: length of array
365 * Initializes the random number generator by an array of longs.
366 * Array can be of arbitrary size, though only the first 624 values
367 * are taken. This function is useful if you have many low entropy
368 * seeds, or if you require more then 32 bits of actual entropy for
374 g_rand_set_seed_array (GRand *rand,
380 g_return_if_fail (rand != NULL);
381 g_return_if_fail (seed_length >= 1);
383 g_rand_set_seed (rand, 19650218UL);
386 k = (N>seed_length ? N : seed_length);
389 rand->mt[i] = (rand->mt[i] ^
390 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
391 + seed[j] + j; /* non linear */
392 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
396 rand->mt[0] = rand->mt[N-1];
404 rand->mt[i] = (rand->mt[i] ^
405 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
406 - i; /* non linear */
407 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
411 rand->mt[0] = rand->mt[N-1];
416 rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
423 * Returns a random #gboolean from @rand_.
424 * This corresponds to a unbiased coin toss.
426 * Returns: a random #gboolean
432 * Returns the next random #guint32 from @rand_ equally distributed over
433 * the range [0..2^32-1].
435 * Return value: a random number
438 g_rand_int (GRand *rand)
441 static const guint32 mag01[2]={0x0, MATRIX_A};
442 /* mag01[x] = x * MATRIX_A for x=0,1 */
444 g_return_val_if_fail (rand != NULL, 0);
446 if (rand->mti >= N) { /* generate N words at one time */
449 for (kk = 0; kk < N - M; kk++) {
450 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
451 rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
453 for (; kk < N - 1; kk++) {
454 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
455 rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
457 y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
458 rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
463 y = rand->mt[rand->mti++];
464 y ^= TEMPERING_SHIFT_U(y);
465 y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
466 y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
467 y ^= TEMPERING_SHIFT_L(y);
472 /* transform [0..2^32] -> [0..1] */
473 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
478 * @begin: lower closed bound of the interval
479 * @end: upper open bound of the interval
481 * Returns the next random #gint32 from @rand_ equally distributed over
482 * the range [@begin..@end-1].
484 * Return value: a random number
487 g_rand_int_range (GRand *rand,
491 guint32 dist = end - begin;
494 g_return_val_if_fail (rand != NULL, begin);
495 g_return_val_if_fail (end > begin, begin);
497 switch (get_random_version ())
500 if (dist <= 0x10000L) /* 2^16 */
502 /* This method, which only calls g_rand_int once is only good
503 * for (end - begin) <= 2^16, because we only have 32 bits set
504 * from the one call to g_rand_int ().
506 * We are using (trans + trans * trans), because g_rand_int only
507 * covers [0..2^32-1] and thus g_rand_int * trans only covers
508 * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
511 gdouble double_rand = g_rand_int (rand) *
512 (G_RAND_DOUBLE_TRANSFORM +
513 G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
515 random = (gint32) (double_rand * dist);
519 /* Now we use g_rand_double_range (), which will set 52 bits
520 * for us, so that it is safe to round and still get a decent
523 random = (gint32) g_rand_double_range (rand, 0, dist);
531 /* maxvalue is set to the predecessor of the greatest
532 * multiple of dist less or equal 2^32.
535 if (dist <= 0x80000000u) /* 2^31 */
537 /* maxvalue = 2^32 - 1 - (2^32 % dist) */
538 guint32 leftover = (0x80000000u % dist) * 2;
539 if (leftover >= dist) leftover -= dist;
540 maxvalue = 0xffffffffu - leftover;
546 random = g_rand_int (rand);
547 while (random > maxvalue);
553 random = 0; /* Quiet GCC */
554 g_assert_not_reached ();
557 return begin + random;
564 * Returns the next random #gdouble from @rand_ equally distributed over
567 * Return value: a random number
570 g_rand_double (GRand *rand)
572 /* We set all 52 bits after the point for this, not only the first
573 32. Thats why we need two calls to g_rand_int */
574 gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
575 retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
577 /* The following might happen due to very bad rounding luck, but
578 * actually this should be more than rare, we just try again then */
580 return g_rand_double (rand);
586 * g_rand_double_range:
588 * @begin: lower closed bound of the interval
589 * @end: upper open bound of the interval
591 * Returns the next random #gdouble from @rand_ equally distributed over
592 * the range [@begin..@end).
594 * Return value: a random number
597 g_rand_double_range (GRand *rand,
603 r = g_rand_double (rand);
605 return r * end - (r - 1) * begin;
609 get_global_random (void)
611 static GRand *global_random;
613 /* called while locked */
615 global_random = g_rand_new ();
617 return global_random;
623 * Returns a random #gboolean.
624 * This corresponds to a unbiased coin toss.
626 * Returns: a random #gboolean
631 * Return a random #guint32 equally distributed over the range
634 * Return value: a random number
640 G_LOCK (global_random);
641 result = g_rand_int (get_global_random ());
642 G_UNLOCK (global_random);
647 * g_random_int_range:
648 * @begin: lower closed bound of the interval
649 * @end: upper open bound of the interval
651 * Returns a random #gint32 equally distributed over the range
654 * Return value: a random number
657 g_random_int_range (gint32 begin,
661 G_LOCK (global_random);
662 result = g_rand_int_range (get_global_random (), begin, end);
663 G_UNLOCK (global_random);
670 * Returns a random #gdouble equally distributed over the range [0..1).
672 * Return value: a random number
675 g_random_double (void)
678 G_LOCK (global_random);
679 result = g_rand_double (get_global_random ());
680 G_UNLOCK (global_random);
685 * g_random_double_range:
686 * @begin: lower closed bound of the interval
687 * @end: upper open bound of the interval
689 * Returns a random #gdouble equally distributed over the range
692 * Return value: a random number
695 g_random_double_range (gdouble begin,
699 G_LOCK (global_random);
700 result = g_rand_double_range (get_global_random (), begin, end);
701 G_UNLOCK (global_random);
707 * @seed: a value to reinitialize the global random number generator
709 * Sets the seed for the global random number generator, which is used
710 * by the g_random_* functions, to @seed.
713 g_random_set_seed (guint32 seed)
715 G_LOCK (global_random);
716 g_rand_set_seed (get_global_random (), seed);
717 G_UNLOCK (global_random);