1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
21 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
22 * file for a list of people on the GLib Team. See the ChangeLog
23 * files for a list of changes. These files are distributed with
24 * GLib at ftp://ftp.gtk.org/pub/gtk/.
32 #include "glibconfig.h"
34 #define DEBUG_MSG(x) /* */
36 /* #define DEBUG_MSG(args) g_message args ; */
52 #include "gstrfuncs.h"
53 #include "gtestutils.h"
63 * @title: Date and Time Functions
64 * @short_description: calendrical calculations and miscellaneous time stuff
66 * The #GDate data structure represents a day between January 1, Year 1,
67 * and sometime a few thousand years in the future (right now it will go
68 * to the year 65535 or so, but g_date_set_parse() only parses up to the
69 * year 8000 or so - just count on "a few thousand"). #GDate is meant to
70 * represent everyday dates, not astronomical dates or historical dates
71 * or ISO timestamps or the like. It extrapolates the current Gregorian
72 * calendar forward and backward in time; there is no attempt to change
73 * the calendar to match time periods or locations. #GDate does not store
74 * time information; it represents a <emphasis>day</emphasis>.
76 * The #GDate implementation has several nice features; it is only a
77 * 64-bit struct, so storing large numbers of dates is very efficient. It
78 * can keep both a Julian and day-month-year representation of the date,
79 * since some calculations are much easier with one representation or the
80 * other. A Julian representation is simply a count of days since some
81 * fixed day in the past; for #GDate the fixed day is January 1, 1 AD.
82 * ("Julian" dates in the #GDate API aren't really Julian dates in the
83 * technical sense; technically, Julian dates count from the start of the
84 * Julian period, Jan 1, 4713 BC).
86 * #GDate is simple to use. First you need a "blank" date; you can get a
87 * dynamically allocated date from g_date_new(), or you can declare an
88 * automatic variable or array and initialize it to a sane state by
89 * calling g_date_clear(). A cleared date is sane; it's safe to call
90 * g_date_set_dmy() and the other mutator functions to initialize the
91 * value of a cleared date. However, a cleared date is initially
92 * <emphasis>invalid</emphasis>, meaning that it doesn't represent a day
93 * that exists. It is undefined to call any of the date calculation
94 * routines on an invalid date. If you obtain a date from a user or other
95 * unpredictable source, you should check its validity with the
96 * g_date_valid() predicate. g_date_valid() is also used to check for
97 * errors with g_date_set_parse() and other functions that can
98 * fail. Dates can be invalidated by calling g_date_clear() again.
100 * <emphasis>It is very important to use the API to access the #GDate
101 * struct.</emphasis> Often only the day-month-year or only the Julian
102 * representation is valid. Sometimes neither is valid. Use the API.
104 * GLib also features #GDateTime which represents a precise time.
110 * Number of microseconds in one second (1 million).
111 * This macro is provided for code readability.
117 * @tv_usec: microseconds
119 * Represents a precise time, with seconds and microseconds.
120 * Similar to the <structname>struct timeval</structname> returned by
121 * the gettimeofday() UNIX system call.
123 * GLib is attempting to unify around the use of 64bit integers to
124 * represent microsecond-precision time. As such, this type will be
125 * removed from a future version of GLib.
130 * @julian_days: the Julian representation of the date
131 * @julian: this bit is set if @julian_days is valid
132 * @dmy: this is set if @day, @month and @year are valid
133 * @day: the day of the day-month-year representation of the date,
134 * as a number between 1 and 31
135 * @month: the day of the day-month-year representation of the date,
136 * as a number between 1 and 12
137 * @year: the day of the day-month-year representation of the date
139 * Represents a day between January 1, Year 1 and a few thousand years in
140 * the future. None of its members should be accessed directly. If the
141 * <structname>GDate</structname> is obtained from g_date_new(), it will
142 * be safe to mutate but invalid and thus not safe for calendrical
143 * computations. If it's declared on the stack, it will contain garbage
144 * so must be initialized with g_date_clear(). g_date_clear() makes the
145 * date invalid but sane. An invalid date doesn't represent a day, it's
146 * "empty." A date becomes valid after you set it to a Julian day or you
147 * set a day, month, and year.
153 * Simply a replacement for <type>time_t</type>. It has been deprecated
154 * since it is <emphasis>not</emphasis> equivalent to <type>time_t</type>
155 * on 64-bit platforms with a 64-bit <type>time_t</type>.
156 * Unrelated to #GTimer.
158 * Note that <type>GTime</type> is defined to always be a 32bit integer,
159 * unlike <type>time_t</type> which may be 64bit on some systems.
160 * Therefore, <type>GTime</type> will overflow in the year 2038, and
161 * you cannot use the address of a <type>GTime</type> variable as argument
162 * to the UNIX time() function. Instead, do the following:
168 * gtime = (GTime)ttime;
175 * @G_DATE_MONTH: a month
176 * @G_DATE_YEAR: a year
178 * This enumeration isn't used in the API, but may be useful if you need
179 * to mark a number as a day, month, or year.
185 * Integer representing a day of the month; between 1 and
186 * 31. #G_DATE_BAD_DAY represents an invalid day of the month.
191 * @G_DATE_BAD_MONTH: invalid value
192 * @G_DATE_JANUARY: January
193 * @G_DATE_FEBRUARY: February
194 * @G_DATE_MARCH: March
195 * @G_DATE_APRIL: April
199 * @G_DATE_AUGUST: August
200 * @G_DATE_SEPTEMBER: September
201 * @G_DATE_OCTOBER: October
202 * @G_DATE_NOVEMBER: November
203 * @G_DATE_DECEMBER: December
205 * Enumeration representing a month; values are #G_DATE_JANUARY,
206 * #G_DATE_FEBRUARY, etc. #G_DATE_BAD_MONTH is the invalid value.
212 * Integer representing a year; #G_DATE_BAD_YEAR is the invalid
213 * value. The year must be 1 or higher; negative (BC) years are not
214 * allowed. The year is represented with four digits.
219 * @G_DATE_BAD_WEEKDAY: invalid value
220 * @G_DATE_MONDAY: Monday
221 * @G_DATE_TUESDAY: Tuesday
222 * @G_DATE_WEDNESDAY: Wednesday
223 * @G_DATE_THURSDAY: Thursday
224 * @G_DATE_FRIDAY: Friday
225 * @G_DATE_SATURDAY: Saturday
226 * @G_DATE_SUNDAY: Sunday
228 * Enumeration representing a day of the week; #G_DATE_MONDAY,
229 * #G_DATE_TUESDAY, etc. #G_DATE_BAD_WEEKDAY is an invalid weekday.
235 * Represents an invalid #GDateDay.
241 * Represents an invalid Julian day number.
247 * Represents an invalid year.
253 * Allocates a #GDate and initializes
254 * it to a sane state. The new date will
255 * be cleared (as if you'd called g_date_clear()) but invalid (it won't
256 * represent an existing day). Free the return value with g_date_free().
258 * Returns: a newly-allocated #GDate
263 GDate *d = g_new0 (GDate, 1); /* happily, 0 is the invalid flag for everything. */
270 * @day: day of the month
271 * @month: month of the year
274 * Like g_date_new(), but also sets the value of the date. Assuming the
275 * day-month-year triplet you pass in represents an existing day, the
276 * returned date will be valid.
278 * Returns: a newly-allocated #GDate initialized with @day, @month, and @year
281 g_date_new_dmy (GDateDay day,
286 g_return_val_if_fail (g_date_valid_dmy (day, m, y), NULL);
288 d = g_new (GDate, 1);
297 g_assert (g_date_valid (d));
304 * @julian_day: days since January 1, Year 1
306 * Like g_date_new(), but also sets the value of the date. Assuming the
307 * Julian day number you pass in is valid (greater than 0, less than an
308 * unreasonably large number), the returned date will be valid.
310 * Returns: a newly-allocated #GDate initialized with @julian_day
313 g_date_new_julian (guint32 julian_day)
316 g_return_val_if_fail (g_date_valid_julian (julian_day), NULL);
318 d = g_new (GDate, 1);
323 d->julian_days = julian_day;
325 g_assert (g_date_valid (d));
332 * @date: a #GDate to free
334 * Frees a #GDate returned from g_date_new().
337 g_date_free (GDate *date)
339 g_return_if_fail (date != NULL);
346 * @date: a #GDate to check
348 * Returns %TRUE if the #GDate represents an existing day. The date must not
349 * contain garbage; it should have been initialized with g_date_clear()
350 * if it wasn't allocated by one of the g_date_new() variants.
352 * Returns: Whether the date is valid
355 g_date_valid (const GDate *d)
357 g_return_val_if_fail (d != NULL, FALSE);
359 return (d->julian || d->dmy);
362 static const guint8 days_in_months[2][13] =
363 { /* error, jan feb mar apr may jun jul aug sep oct nov dec */
364 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
365 { 0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } /* leap year */
368 static const guint16 days_in_year[2][14] =
369 { /* 0, jan feb mar apr may jun jul aug sep oct nov dec */
370 { 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
371 { 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
375 * g_date_valid_month:
378 * Returns %TRUE if the month value is valid. The 12 #GDateMonth
379 * enumeration values are the only valid months.
381 * Returns: %TRUE if the month is valid
384 g_date_valid_month (GDateMonth m)
386 return ( (m > G_DATE_BAD_MONTH) && (m < 13) );
393 * Returns %TRUE if the year is valid. Any year greater than 0 is valid,
394 * though there is a 16-bit limit to what #GDate will understand.
396 * Returns: %TRUE if the year is valid
399 g_date_valid_year (GDateYear y)
401 return ( y > G_DATE_BAD_YEAR );
408 * Returns %TRUE if the day of the month is valid (a day is valid if it's
409 * between 1 and 31 inclusive).
411 * Returns: %TRUE if the day is valid
415 g_date_valid_day (GDateDay d)
417 return ( (d > G_DATE_BAD_DAY) && (d < 32) );
421 * g_date_valid_weekday:
424 * Returns %TRUE if the weekday is valid. The seven #GDateWeekday enumeration
425 * values are the only valid weekdays.
427 * Returns: %TRUE if the weekday is valid
430 g_date_valid_weekday (GDateWeekday w)
432 return ( (w > G_DATE_BAD_WEEKDAY) && (w < 8) );
436 * g_date_valid_julian:
437 * @julian_date: Julian day to check
439 * Returns %TRUE if the Julian day is valid. Anything greater than zero
440 * is basically a valid Julian, though there is a 32-bit limit.
442 * Returns: %TRUE if the Julian day is valid
445 g_date_valid_julian (guint32 j)
447 return (j > G_DATE_BAD_JULIAN);
456 * Returns %TRUE if the day-month-year triplet forms a valid, existing day
457 * in the range of days #GDate understands (Year 1 or later, no more than
458 * a few thousand years in the future).
460 * Returns: %TRUE if the date is a valid one
463 g_date_valid_dmy (GDateDay d,
467 return ( (m > G_DATE_BAD_MONTH) &&
469 (d > G_DATE_BAD_DAY) &&
470 (y > G_DATE_BAD_YEAR) && /* must check before using g_date_is_leap_year */
471 (d <= (g_date_is_leap_year (y) ?
472 days_in_months[1][m] : days_in_months[0][m])) );
476 /* "Julian days" just means an absolute number of days, where Day 1 ==
480 g_date_update_julian (const GDate *const_d)
482 GDate *d = (GDate *) const_d;
486 g_return_if_fail (d != NULL);
487 g_return_if_fail (d->dmy);
488 g_return_if_fail (!d->julian);
489 g_return_if_fail (g_date_valid_dmy (d->day, d->month, d->year));
491 /* What we actually do is: multiply years * 365 days in the year,
492 * add the number of years divided by 4, subtract the number of
493 * years divided by 100 and add the number of years divided by 400,
494 * which accounts for leap year stuff. Code from Steffen Beyer's
498 year = d->year - 1; /* we know d->year > 0 since it's valid */
500 d->julian_days = year * 365U;
501 d->julian_days += (year >>= 2); /* divide by 4 and add */
502 d->julian_days -= (year /= 25); /* divides original # years by 100 */
503 d->julian_days += year >> 2; /* divides by 4, which divides original by 400 */
505 idx = g_date_is_leap_year (d->year) ? 1 : 0;
507 d->julian_days += days_in_year[idx][d->month] + d->day;
509 g_return_if_fail (g_date_valid_julian (d->julian_days));
515 g_date_update_dmy (const GDate *const_d)
517 GDate *d = (GDate *) const_d;
522 guint32 A, B, C, D, E, M;
524 g_return_if_fail (d != NULL);
525 g_return_if_fail (d->julian);
526 g_return_if_fail (!d->dmy);
527 g_return_if_fail (g_date_valid_julian (d->julian_days));
529 /* Formula taken from the Calendar FAQ; the formula was for the
530 * Julian Period which starts on 1 January 4713 BC, so we add
531 * 1,721,425 to the number of days before doing the formula.
533 * I'm sure this can be simplified for our 1 January 1 AD period
534 * start, but I can't figure out how to unpack the formula.
537 A = d->julian_days + 1721425 + 32045;
538 B = ( 4 *(A + 36524) )/ 146097 - 1;
539 C = A - (146097 * B)/4;
540 D = ( 4 * (C + 365) ) / 1461 - 1;
541 E = C - ((1461*D) / 4);
542 M = (5 * (E - 1) + 2)/153;
544 m = M + 3 - (12*(M/10));
545 day = E - (153*M + 2)/5;
546 y = 100 * B + D - 4800 + (M/10);
548 #ifdef G_ENABLE_DEBUG
549 if (!g_date_valid_dmy (day, m, y))
550 g_warning ("\nOOPS julian: %u computed dmy: %u %u %u\n",
551 d->julian_days, day, m, y);
562 * g_date_get_weekday:
565 * Returns the day of the week for a #GDate. The date must be valid.
567 * Returns: day of the week as a #GDateWeekday.
570 g_date_get_weekday (const GDate *d)
572 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_WEEKDAY);
575 g_date_update_julian (d);
577 g_return_val_if_fail (d->julian, G_DATE_BAD_WEEKDAY);
579 return ((d->julian_days - 1) % 7) + 1;
584 * @date: a #GDate to get the month from
586 * Returns the month of the year. The date must be valid.
588 * Returns: month of the year as a #GDateMonth
591 g_date_get_month (const GDate *d)
593 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_MONTH);
596 g_date_update_dmy (d);
598 g_return_val_if_fail (d->dmy, G_DATE_BAD_MONTH);
607 * Returns the year of a #GDate. The date must be valid.
609 * Returns: year in which the date falls
612 g_date_get_year (const GDate *d)
614 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_YEAR);
617 g_date_update_dmy (d);
619 g_return_val_if_fail (d->dmy, G_DATE_BAD_YEAR);
626 * @date: a #GDate to extract the day of the month from
628 * Returns the day of the month. The date must be valid.
630 * Returns: day of the month
633 g_date_get_day (const GDate *d)
635 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_DAY);
638 g_date_update_dmy (d);
640 g_return_val_if_fail (d->dmy, G_DATE_BAD_DAY);
647 * @date: a #GDate to extract the Julian day from
649 * Returns the Julian day or "serial number" of the #GDate. The
650 * Julian day is simply the number of days since January 1, Year 1; i.e.,
651 * January 1, Year 1 is Julian day 1; January 2, Year 1 is Julian day 2,
652 * etc. The date must be valid.
654 * Returns: Julian day
657 g_date_get_julian (const GDate *d)
659 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_JULIAN);
662 g_date_update_julian (d);
664 g_return_val_if_fail (d->julian, G_DATE_BAD_JULIAN);
666 return d->julian_days;
670 * g_date_get_day_of_year:
671 * @date: a #GDate to extract day of year from
673 * Returns the day of the year, where Jan 1 is the first day of the
674 * year. The date must be valid.
676 * Returns: day of the year
679 g_date_get_day_of_year (const GDate *d)
683 g_return_val_if_fail (g_date_valid (d), 0);
686 g_date_update_dmy (d);
688 g_return_val_if_fail (d->dmy, 0);
690 idx = g_date_is_leap_year (d->year) ? 1 : 0;
692 return (days_in_year[idx][d->month] + d->day);
696 * g_date_get_monday_week_of_year:
699 * Returns the week of the year, where weeks are understood to start on
700 * Monday. If the date is before the first Monday of the year, return
701 * 0. The date must be valid.
703 * Returns: week of the year
706 g_date_get_monday_week_of_year (const GDate *d)
712 g_return_val_if_fail (g_date_valid (d), 0);
715 g_date_update_dmy (d);
717 g_return_val_if_fail (d->dmy, 0);
719 g_date_clear (&first, 1);
721 g_date_set_dmy (&first, 1, 1, d->year);
723 wd = g_date_get_weekday (&first) - 1; /* make Monday day 0 */
724 day = g_date_get_day_of_year (d) - 1;
726 return ((day + wd)/7U + (wd == 0 ? 1 : 0));
730 * g_date_get_sunday_week_of_year:
733 * Returns the week of the year during which this date falls, if weeks
734 * are understood to being on Sunday. The date must be valid. Can return
735 * 0 if the day is before the first Sunday of the year.
737 * Returns: week number
740 g_date_get_sunday_week_of_year (const GDate *d)
746 g_return_val_if_fail (g_date_valid (d), 0);
749 g_date_update_dmy (d);
751 g_return_val_if_fail (d->dmy, 0);
753 g_date_clear (&first, 1);
755 g_date_set_dmy (&first, 1, 1, d->year);
757 wd = g_date_get_weekday (&first);
758 if (wd == 7) wd = 0; /* make Sunday day 0 */
759 day = g_date_get_day_of_year (d) - 1;
761 return ((day + wd)/7U + (wd == 0 ? 1 : 0));
765 * g_date_get_iso8601_week_of_year:
766 * @date: a valid #GDate
768 * Returns the week of the year, where weeks are interpreted according
771 * Returns: ISO 8601 week number of the year.
776 g_date_get_iso8601_week_of_year (const GDate *d)
778 guint j, d4, L, d1, w;
780 g_return_val_if_fail (g_date_valid (d), 0);
783 g_date_update_julian (d);
785 g_return_val_if_fail (d->julian, 0);
787 /* Formula taken from the Calendar FAQ; the formula was for the
788 * Julian Period which starts on 1 January 4713 BC, so we add
789 * 1,721,425 to the number of days before doing the formula.
791 j = d->julian_days + 1721425;
792 d4 = (j + 31741 - (j % 7)) % 146097 % 36524 % 1461;
794 d1 = ((d4 - L) % 365) + L;
801 * g_date_days_between:
802 * @date1: the first date
803 * @date2: the second date
805 * Computes the number of days between two dates.
806 * If @date2 is prior to @date1, the returned value is negative.
807 * Both dates must be valid.
809 * Returns: the number of days between @date1 and @date2
812 g_date_days_between (const GDate *d1,
815 g_return_val_if_fail (g_date_valid (d1), 0);
816 g_return_val_if_fail (g_date_valid (d2), 0);
818 return (gint)g_date_get_julian (d2) - (gint)g_date_get_julian (d1);
823 * @date: pointer to one or more dates to clear
824 * @n_dates: number of dates to clear
826 * Initializes one or more #GDate structs to a sane but invalid
827 * state. The cleared dates will not represent an existing date, but will
828 * not contain garbage. Useful to init a date declared on the stack.
829 * Validity can be tested with g_date_valid().
832 g_date_clear (GDate *d, guint ndates)
834 g_return_if_fail (d != NULL);
835 g_return_if_fail (ndates != 0);
837 memset (d, 0x0, ndates*sizeof (GDate));
840 G_LOCK_DEFINE_STATIC (g_date_global);
842 /* These are for the parser, output to the user should use *
843 * g_date_strftime () - this creates more never-freed memory to annoy
844 * all those memory debugger users. :-)
847 static gchar *long_month_names[13] =
852 static gchar *short_month_names[13] =
857 /* This tells us if we need to update the parse info */
858 static gchar *current_locale = NULL;
860 /* order of these in the current locale */
861 static GDateDMY dmy_order[3] =
863 G_DATE_DAY, G_DATE_MONTH, G_DATE_YEAR
866 /* Where to chop two-digit years: i.e., for the 1930 default, numbers
867 * 29 and below are counted as in the year 2000, numbers 30 and above
868 * are counted as in the year 1900.
871 static const GDateYear twodigit_start_year = 1930;
873 /* It is impossible to enter a year between 1 AD and 99 AD with this
876 static gboolean using_twodigit_years = FALSE;
878 /* Adjustment of locale era to AD, non-zero means using locale era
880 static gint locale_era_adjust = 0;
882 struct _GDateParseTokens {
888 typedef struct _GDateParseTokens GDateParseTokens;
892 /* HOLDS: g_date_global_lock */
894 g_date_fill_parse_tokens (const gchar *str, GDateParseTokens *pt)
896 gchar num[4][NUM_LEN+1];
900 /* We count 4, but store 3; so we can give an error
903 num[0][0] = num[1][0] = num[2][0] = num[3][0] = '\0';
905 s = (const guchar *) str;
907 while (*s && pt->num_ints < 4)
911 while (*s && g_ascii_isdigit (*s) && i < NUM_LEN)
913 num[pt->num_ints][i] = *s;
920 num[pt->num_ints][i] = '\0';
924 if (*s == '\0') break;
929 pt->n[0] = pt->num_ints > 0 ? atoi (num[0]) : 0;
930 pt->n[1] = pt->num_ints > 1 ? atoi (num[1]) : 0;
931 pt->n[2] = pt->num_ints > 2 ? atoi (num[2]) : 0;
933 pt->month = G_DATE_BAD_MONTH;
935 if (pt->num_ints < 3)
940 casefold = g_utf8_casefold (str, -1);
941 normalized = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
947 if (long_month_names[i] != NULL)
949 const gchar *found = strstr (normalized, long_month_names[i]);
958 if (short_month_names[i] != NULL)
960 const gchar *found = strstr (normalized, short_month_names[i]);
976 /* HOLDS: g_date_global_lock */
978 g_date_prepare_to_parse (const gchar *str,
979 GDateParseTokens *pt)
981 const gchar *locale = setlocale (LC_TIME, NULL);
982 gboolean recompute_localeinfo = FALSE;
985 g_return_if_fail (locale != NULL); /* should not happen */
987 g_date_clear (&d, 1); /* clear for scratch use */
989 if ( (current_locale == NULL) || (strcmp (locale, current_locale) != 0) )
990 recompute_localeinfo = TRUE; /* Uh, there used to be a reason for the temporary */
992 if (recompute_localeinfo)
995 GDateParseTokens testpt;
998 g_free (current_locale); /* still works if current_locale == NULL */
1000 current_locale = g_strdup (locale);
1002 short_month_names[0] = "Error";
1003 long_month_names[0] = "Error";
1009 g_date_set_dmy (&d, 1, i, 1);
1011 g_return_if_fail (g_date_valid (&d));
1013 g_date_strftime (buf, 127, "%b", &d);
1015 casefold = g_utf8_casefold (buf, -1);
1016 g_free (short_month_names[i]);
1017 short_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1020 g_date_strftime (buf, 127, "%B", &d);
1021 casefold = g_utf8_casefold (buf, -1);
1022 g_free (long_month_names[i]);
1023 long_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1029 /* Determine DMY order */
1031 /* had to pick a random day - don't change this, some strftimes
1032 * are broken on some days, and this one is good so far. */
1033 g_date_set_dmy (&d, 4, 7, 1976);
1035 g_date_strftime (buf, 127, "%x", &d);
1037 g_date_fill_parse_tokens (buf, &testpt);
1040 while (i < testpt.num_ints)
1042 switch (testpt.n[i])
1045 dmy_order[i] = G_DATE_MONTH;
1048 dmy_order[i] = G_DATE_DAY;
1051 using_twodigit_years = TRUE; /* FALL THRU */
1053 dmy_order[i] = G_DATE_YEAR;
1056 /* assume locale era */
1057 locale_era_adjust = 1976 - testpt.n[i];
1058 dmy_order[i] = G_DATE_YEAR;
1064 #if defined(G_ENABLE_DEBUG) && 0
1065 DEBUG_MSG (("**GDate prepared a new set of locale-specific parse rules."));
1069 DEBUG_MSG ((" %s %s", long_month_names[i], short_month_names[i]));
1072 if (using_twodigit_years)
1074 DEBUG_MSG (("**Using twodigit years with cutoff year: %u", twodigit_start_year));
1081 switch (dmy_order[i])
1084 strings[i] = "Month";
1087 strings[i] = "Year";
1098 DEBUG_MSG (("**Order: %s, %s, %s", strings[0], strings[1], strings[2]));
1099 DEBUG_MSG (("**Sample date in this locale: '%s'", buf));
1104 g_date_fill_parse_tokens (str, pt);
1109 * @date: a #GDate to fill in
1110 * @str: string to parse
1112 * Parses a user-inputted string @str, and try to figure out what date it
1113 * represents, taking the <link linkend="setlocale">current locale</link>
1114 * into account. If the string is successfully parsed, the date will be
1115 * valid after the call. Otherwise, it will be invalid. You should check
1116 * using g_date_valid() to see whether the parsing succeeded.
1118 * This function is not appropriate for file formats and the like; it
1119 * isn't very precise, and its exact behavior varies with the locale.
1120 * It's intended to be a heuristic routine that guesses what the user
1121 * means by a given string (and it does work pretty well in that
1125 g_date_set_parse (GDate *d,
1128 GDateParseTokens pt;
1129 guint m = G_DATE_BAD_MONTH, day = G_DATE_BAD_DAY, y = G_DATE_BAD_YEAR;
1131 g_return_if_fail (d != NULL);
1134 g_date_clear (d, 1);
1136 G_LOCK (g_date_global);
1138 g_date_prepare_to_parse (str, &pt);
1140 DEBUG_MSG (("Found %d ints, '%d' '%d' '%d' and written out month %d",
1141 pt.num_ints, pt.n[0], pt.n[1], pt.n[2], pt.month));
1144 if (pt.num_ints == 4)
1146 G_UNLOCK (g_date_global);
1147 return; /* presumably a typo; bail out. */
1150 if (pt.num_ints > 1)
1155 g_assert (pt.num_ints < 4); /* i.e., it is 2 or 3 */
1157 while (i < pt.num_ints && j < 3)
1159 switch (dmy_order[j])
1163 if (pt.num_ints == 2 && pt.month != G_DATE_BAD_MONTH)
1166 ++j; /* skip months, but don't skip this number */
1175 if (pt.num_ints == 2 && pt.month == G_DATE_BAD_MONTH)
1178 ++j; /* skip days, since we may have month/year */
1188 if (locale_era_adjust != 0)
1190 y += locale_era_adjust;
1192 else if (using_twodigit_years && y < 100)
1194 guint two = twodigit_start_year % 100;
1195 guint century = (twodigit_start_year / 100) * 100;
1213 if (pt.num_ints == 3 && !g_date_valid_dmy (day, m, y))
1215 /* Try YYYY MM DD */
1220 if (using_twodigit_years && y < 100)
1221 y = G_DATE_BAD_YEAR; /* avoids ambiguity */
1223 else if (pt.num_ints == 2)
1225 if (m == G_DATE_BAD_MONTH && pt.month != G_DATE_BAD_MONTH)
1229 else if (pt.num_ints == 1)
1231 if (pt.month != G_DATE_BAD_MONTH)
1233 /* Month name and year? */
1240 /* Try yyyymmdd and yymmdd */
1242 m = (pt.n[0]/100) % 100;
1243 day = pt.n[0] % 100;
1246 /* FIXME move this into a separate function */
1247 if (using_twodigit_years && y < 100)
1249 guint two = twodigit_start_year % 100;
1250 guint century = (twodigit_start_year / 100) * 100;
1260 /* See if we got anything valid out of all this. */
1261 /* y < 8000 is to catch 19998 style typos; the library is OK up to 65535 or so */
1262 if (y < 8000 && g_date_valid_dmy (day, m, y))
1269 #ifdef G_ENABLE_DEBUG
1272 DEBUG_MSG (("Rejected DMY %u %u %u", day, m, y));
1275 G_UNLOCK (g_date_global);
1279 * g_date_set_time_t:
1281 * @timet: <type>time_t</type> value to set
1283 * Sets the value of a date to the date corresponding to a time
1284 * specified as a time_t. The time to date conversion is done using
1285 * the user's current timezone.
1287 * To set the value of a date to the current day, you could write:
1289 * g_date_set_time_t (date, time (NULL));
1295 g_date_set_time_t (GDate *date,
1300 g_return_if_fail (date != NULL);
1302 #ifdef HAVE_LOCALTIME_R
1303 localtime_r (&timet, &tm);
1306 struct tm *ptm = localtime (&timet);
1310 /* Happens at least in Microsoft's C library if you pass a
1311 * negative time_t. Use 2000-01-01 as default date.
1313 #ifndef G_DISABLE_CHECKS
1314 g_return_if_fail_warning (G_LOG_DOMAIN, "g_date_set_time", "ptm != NULL");
1322 memcpy ((void *) &tm, (void *) ptm, sizeof(struct tm));
1326 date->julian = FALSE;
1328 date->month = tm.tm_mon + 1;
1329 date->day = tm.tm_mday;
1330 date->year = tm.tm_year + 1900;
1332 g_return_if_fail (g_date_valid_dmy (date->day, date->month, date->year));
1341 * @time_: #GTime value to set.
1343 * Sets the value of a date from a #GTime value.
1344 * The time to date conversion is done using the user's current timezone.
1346 * Deprecated: 2.10: Use g_date_set_time_t() instead.
1349 g_date_set_time (GDate *date,
1352 g_date_set_time_t (date, (time_t) time_);
1356 * g_date_set_time_val:
1358 * @timeval: #GTimeVal value to set
1360 * Sets the value of a date from a #GTimeVal value. Note that the
1361 * @tv_usec member is ignored, because #GDate can't make use of the
1362 * additional precision.
1364 * The time to date conversion is done using the user's current timezone.
1369 g_date_set_time_val (GDate *date,
1372 g_date_set_time_t (date, (time_t) timeval->tv_sec);
1378 * @month: month to set
1380 * Sets the month of the year for a #GDate. If the resulting
1381 * day-month-year triplet is invalid, the date will be invalid.
1384 g_date_set_month (GDate *d,
1387 g_return_if_fail (d != NULL);
1388 g_return_if_fail (g_date_valid_month (m));
1390 if (d->julian && !d->dmy) g_date_update_dmy(d);
1395 if (g_date_valid_dmy (d->day, d->month, d->year))
1406 * Sets the day of the month for a #GDate. If the resulting
1407 * day-month-year triplet is invalid, the date will be invalid.
1410 g_date_set_day (GDate *d,
1413 g_return_if_fail (d != NULL);
1414 g_return_if_fail (g_date_valid_day (day));
1416 if (d->julian && !d->dmy) g_date_update_dmy(d);
1421 if (g_date_valid_dmy (d->day, d->month, d->year))
1430 * @year: year to set
1432 * Sets the year for a #GDate. If the resulting day-month-year
1433 * triplet is invalid, the date will be invalid.
1436 g_date_set_year (GDate *d,
1439 g_return_if_fail (d != NULL);
1440 g_return_if_fail (g_date_valid_year (y));
1442 if (d->julian && !d->dmy) g_date_update_dmy(d);
1447 if (g_date_valid_dmy (d->day, d->month, d->year))
1460 * Sets the value of a #GDate from a day, month, and year.
1461 * The day-month-year triplet must be valid; if you aren't
1462 * sure it is, call g_date_valid_dmy() to check before you
1466 g_date_set_dmy (GDate *d,
1471 g_return_if_fail (d != NULL);
1472 g_return_if_fail (g_date_valid_dmy (day, m, y));
1484 * g_date_set_julian:
1486 * @julian_date: Julian day number (days since January 1, Year 1)
1488 * Sets the value of a #GDate from a Julian day number.
1491 g_date_set_julian (GDate *d,
1494 g_return_if_fail (d != NULL);
1495 g_return_if_fail (g_date_valid_julian (j));
1503 * g_date_is_first_of_month:
1504 * @date: a #GDate to check
1506 * Returns %TRUE if the date is on the first of a month.
1507 * The date must be valid.
1509 * Returns: %TRUE if the date is the first of the month
1512 g_date_is_first_of_month (const GDate *d)
1514 g_return_val_if_fail (g_date_valid (d), FALSE);
1517 g_date_update_dmy (d);
1519 g_return_val_if_fail (d->dmy, FALSE);
1521 if (d->day == 1) return TRUE;
1526 * g_date_is_last_of_month:
1527 * @date: a #GDate to check
1529 * Returns %TRUE if the date is the last day of the month.
1530 * The date must be valid.
1532 * Returns: %TRUE if the date is the last day of the month
1535 g_date_is_last_of_month (const GDate *d)
1539 g_return_val_if_fail (g_date_valid (d), FALSE);
1542 g_date_update_dmy (d);
1544 g_return_val_if_fail (d->dmy, FALSE);
1546 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1548 if (d->day == days_in_months[idx][d->month]) return TRUE;
1554 * @date: a #GDate to increment
1555 * @n_days: number of days to move the date forward
1557 * Increments a date some number of days.
1558 * To move forward by weeks, add weeks*7 days.
1559 * The date must be valid.
1562 g_date_add_days (GDate *d,
1565 g_return_if_fail (g_date_valid (d));
1568 g_date_update_julian (d);
1570 g_return_if_fail (d->julian);
1572 d->julian_days += ndays;
1577 * g_date_subtract_days:
1578 * @date: a #GDate to decrement
1579 * @n_days: number of days to move
1581 * Moves a date some number of days into the past.
1582 * To move by weeks, just move by weeks*7 days.
1583 * The date must be valid.
1586 g_date_subtract_days (GDate *d,
1589 g_return_if_fail (g_date_valid (d));
1592 g_date_update_julian (d);
1594 g_return_if_fail (d->julian);
1595 g_return_if_fail (d->julian_days > ndays);
1597 d->julian_days -= ndays;
1602 * g_date_add_months:
1603 * @date: a #GDate to increment
1604 * @n_months: number of months to move forward
1606 * Increments a date by some number of months.
1607 * If the day of the month is greater than 28,
1608 * this routine may change the day of the month
1609 * (because the destination month may not have
1610 * the current day in it). The date must be valid.
1613 g_date_add_months (GDate *d,
1616 guint years, months;
1619 g_return_if_fail (g_date_valid (d));
1622 g_date_update_dmy (d);
1624 g_return_if_fail (d->dmy);
1626 nmonths += d->month - 1;
1629 months = nmonths%12;
1631 d->month = months + 1;
1634 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1636 if (d->day > days_in_months[idx][d->month])
1637 d->day = days_in_months[idx][d->month];
1641 g_return_if_fail (g_date_valid (d));
1645 * g_date_subtract_months:
1646 * @date: a #GDate to decrement
1647 * @n_months: number of months to move
1649 * Moves a date some number of months into the past.
1650 * If the current day of the month doesn't exist in
1651 * the destination month, the day of the month
1652 * may change. The date must be valid.
1655 g_date_subtract_months (GDate *d,
1658 guint years, months;
1661 g_return_if_fail (g_date_valid (d));
1664 g_date_update_dmy (d);
1666 g_return_if_fail (d->dmy);
1669 months = nmonths%12;
1671 g_return_if_fail (d->year > years);
1675 if (d->month > months) d->month -= months;
1679 d->month = 12 - months;
1683 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1685 if (d->day > days_in_months[idx][d->month])
1686 d->day = days_in_months[idx][d->month];
1690 g_return_if_fail (g_date_valid (d));
1695 * @date: a #GDate to increment
1696 * @n_years: number of years to move forward
1698 * Increments a date by some number of years.
1699 * If the date is February 29, and the destination
1700 * year is not a leap year, the date will be changed
1701 * to February 28. The date must be valid.
1704 g_date_add_years (GDate *d,
1707 g_return_if_fail (g_date_valid (d));
1710 g_date_update_dmy (d);
1712 g_return_if_fail (d->dmy);
1716 if (d->month == 2 && d->day == 29)
1718 if (!g_date_is_leap_year (d->year))
1726 * g_date_subtract_years:
1727 * @date: a #GDate to decrement
1728 * @n_years: number of years to move
1730 * Moves a date some number of years into the past.
1731 * If the current day doesn't exist in the destination
1732 * year (i.e. it's February 29 and you move to a non-leap-year)
1733 * then the day is changed to February 29. The date
1737 g_date_subtract_years (GDate *d,
1740 g_return_if_fail (g_date_valid (d));
1743 g_date_update_dmy (d);
1745 g_return_if_fail (d->dmy);
1746 g_return_if_fail (d->year > nyears);
1750 if (d->month == 2 && d->day == 29)
1752 if (!g_date_is_leap_year (d->year))
1760 * g_date_is_leap_year:
1761 * @year: year to check
1763 * Returns %TRUE if the year is a leap year.
1764 * <footnote><para>For the purposes of this function,
1765 * leap year is every year divisible by 4 unless that year
1766 * is divisible by 100. If it is divisible by 100 it would
1767 * be a leap year only if that year is also divisible
1768 * by 400.</para></footnote>
1770 * Returns: %TRUE if the year is a leap year
1773 g_date_is_leap_year (GDateYear year)
1775 g_return_val_if_fail (g_date_valid_year (year), FALSE);
1777 return ( (((year % 4) == 0) && ((year % 100) != 0)) ||
1778 (year % 400) == 0 );
1782 * g_date_get_days_in_month:
1786 * Returns the number of days in a month, taking leap
1787 * years into account.
1789 * Returns: number of days in @month during the @year
1792 g_date_get_days_in_month (GDateMonth month,
1797 g_return_val_if_fail (g_date_valid_year (year), 0);
1798 g_return_val_if_fail (g_date_valid_month (month), 0);
1800 idx = g_date_is_leap_year (year) ? 1 : 0;
1802 return days_in_months[idx][month];
1806 * g_date_get_monday_weeks_in_year:
1809 * Returns the number of weeks in the year, where weeks
1810 * are taken to start on Monday. Will be 52 or 53. The
1811 * date must be valid. (Years always have 52 7-day periods,
1812 * plus 1 or 2 extra days depending on whether it's a leap
1813 * year. This function is basically telling you how many
1814 * Mondays are in the year, i.e. there are 53 Mondays if
1815 * one of the extra days happens to be a Monday.)
1817 * Returns: number of Mondays in the year
1820 g_date_get_monday_weeks_in_year (GDateYear year)
1824 g_return_val_if_fail (g_date_valid_year (year), 0);
1826 g_date_clear (&d, 1);
1827 g_date_set_dmy (&d, 1, 1, year);
1828 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1829 g_date_set_dmy (&d, 31, 12, year);
1830 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1831 if (g_date_is_leap_year (year))
1833 g_date_set_dmy (&d, 2, 1, year);
1834 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1835 g_date_set_dmy (&d, 30, 12, year);
1836 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1842 * g_date_get_sunday_weeks_in_year:
1843 * @year: year to count weeks in
1845 * Returns the number of weeks in the year, where weeks
1846 * are taken to start on Sunday. Will be 52 or 53. The
1847 * date must be valid. (Years always have 52 7-day periods,
1848 * plus 1 or 2 extra days depending on whether it's a leap
1849 * year. This function is basically telling you how many
1850 * Sundays are in the year, i.e. there are 53 Sundays if
1851 * one of the extra days happens to be a Sunday.)
1853 * Returns: the number of weeks in @year
1856 g_date_get_sunday_weeks_in_year (GDateYear year)
1860 g_return_val_if_fail (g_date_valid_year (year), 0);
1862 g_date_clear (&d, 1);
1863 g_date_set_dmy (&d, 1, 1, year);
1864 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1865 g_date_set_dmy (&d, 31, 12, year);
1866 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1867 if (g_date_is_leap_year (year))
1869 g_date_set_dmy (&d, 2, 1, year);
1870 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1871 g_date_set_dmy (&d, 30, 12, year);
1872 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1879 * @lhs: first date to compare
1880 * @rhs: second date to compare
1882 * qsort()-style comparison function for dates.
1883 * Both dates must be valid.
1885 * Returns: 0 for equal, less than zero if @lhs is less than @rhs,
1886 * greater than zero if @lhs is greater than @rhs
1889 g_date_compare (const GDate *lhs,
1892 g_return_val_if_fail (lhs != NULL, 0);
1893 g_return_val_if_fail (rhs != NULL, 0);
1894 g_return_val_if_fail (g_date_valid (lhs), 0);
1895 g_return_val_if_fail (g_date_valid (rhs), 0);
1897 /* Remember the self-comparison case! I think it works right now. */
1901 if (lhs->julian && rhs->julian)
1903 if (lhs->julian_days < rhs->julian_days) return -1;
1904 else if (lhs->julian_days > rhs->julian_days) return 1;
1907 else if (lhs->dmy && rhs->dmy)
1909 if (lhs->year < rhs->year) return -1;
1910 else if (lhs->year > rhs->year) return 1;
1913 if (lhs->month < rhs->month) return -1;
1914 else if (lhs->month > rhs->month) return 1;
1917 if (lhs->day < rhs->day) return -1;
1918 else if (lhs->day > rhs->day) return 1;
1927 if (!lhs->julian) g_date_update_julian (lhs);
1928 if (!rhs->julian) g_date_update_julian (rhs);
1929 g_return_val_if_fail (lhs->julian, 0);
1930 g_return_val_if_fail (rhs->julian, 0);
1934 return 0; /* warnings */
1938 * g_date_to_struct_tm:
1939 * @date: a #GDate to set the <structname>struct tm</structname> from
1940 * @tm: <structname>struct tm</structname> to fill
1942 * Fills in the date-related bits of a <structname>struct tm</structname>
1943 * using the @date value. Initializes the non-date parts with something
1944 * sane but meaningless.
1947 g_date_to_struct_tm (const GDate *d,
1952 g_return_if_fail (g_date_valid (d));
1953 g_return_if_fail (tm != NULL);
1956 g_date_update_dmy (d);
1958 g_return_if_fail (d->dmy);
1960 /* zero all the irrelevant fields to be sure they're valid */
1962 /* On Linux and maybe other systems, there are weird non-POSIX
1963 * fields on the end of struct tm that choke strftime if they
1964 * contain garbage. So we need to 0 the entire struct, not just the
1965 * fields we know to exist.
1968 memset (tm, 0x0, sizeof (struct tm));
1970 tm->tm_mday = d->day;
1971 tm->tm_mon = d->month - 1; /* 0-11 goes in tm */
1972 tm->tm_year = ((int)d->year) - 1900; /* X/Open says tm_year can be negative */
1974 day = g_date_get_weekday (d);
1975 if (day == 7) day = 0; /* struct tm wants days since Sunday, so Sunday is 0 */
1977 tm->tm_wday = (int)day;
1979 tm->tm_yday = g_date_get_day_of_year (d) - 1; /* 0 to 365 */
1980 tm->tm_isdst = -1; /* -1 means "information not available" */
1985 * @date: a #GDate to clamp
1986 * @min_date: minimum accepted value for @date
1987 * @max_date: maximum accepted value for @date
1989 * If @date is prior to @min_date, sets @date equal to @min_date.
1990 * If @date falls after @max_date, sets @date equal to @max_date.
1991 * Otherwise, @date is unchanged.
1992 * Either of @min_date and @max_date may be %NULL.
1993 * All non-%NULL dates must be valid.
1996 g_date_clamp (GDate *date,
1997 const GDate *min_date,
1998 const GDate *max_date)
2000 g_return_if_fail (g_date_valid (date));
2002 if (min_date != NULL)
2003 g_return_if_fail (g_date_valid (min_date));
2005 if (max_date != NULL)
2006 g_return_if_fail (g_date_valid (max_date));
2008 if (min_date != NULL && max_date != NULL)
2009 g_return_if_fail (g_date_compare (min_date, max_date) <= 0);
2011 if (min_date && g_date_compare (date, min_date) < 0)
2014 if (max_date && g_date_compare (max_date, date) < 0)
2020 * @date1: the first date
2021 * @date2: the second date
2023 * Checks if @date1 is less than or equal to @date2,
2024 * and swap the values if this is not the case.
2027 g_date_order (GDate *date1,
2030 g_return_if_fail (g_date_valid (date1));
2031 g_return_if_fail (g_date_valid (date2));
2033 if (g_date_compare (date1, date2) > 0)
2043 win32_strftime_helper (const GDate *d,
2044 const gchar *format,
2045 const struct tm *tm,
2049 SYSTEMTIME systemtime;
2050 TIME_ZONE_INFORMATION tzinfo;
2056 const wchar_t digits[] = L"0123456789";
2061 systemtime.wYear = tm->tm_year + 1900;
2062 systemtime.wMonth = tm->tm_mon + 1;
2063 systemtime.wDayOfWeek = tm->tm_wday;
2064 systemtime.wDay = tm->tm_mday;
2065 systemtime.wHour = tm->tm_hour;
2066 systemtime.wMinute = tm->tm_min;
2067 systemtime.wSecond = tm->tm_sec;
2068 systemtime.wMilliseconds = 0;
2070 lcid = GetThreadLocale ();
2071 result = g_array_sized_new (FALSE, FALSE, sizeof (wchar_t), MAX (128, strlen (format) * 2));
2076 c = g_utf8_get_char (p);
2079 p = g_utf8_next_char (p);
2083 g_array_free (result, TRUE);
2088 c = g_utf8_get_char (p);
2089 if (c == 'E' || c == 'O')
2091 /* Ignore modified conversion specifiers for now. */
2092 p = g_utf8_next_char (p);
2096 g_array_free (result, TRUE);
2101 c = g_utf8_get_char (p);
2107 if (systemtime.wDayOfWeek == 0)
2110 k = systemtime.wDayOfWeek - 1;
2111 n = GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, NULL, 0);
2112 g_array_set_size (result, result->len + n);
2113 GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2114 g_array_set_size (result, result->len - 1);
2117 if (systemtime.wDayOfWeek == 0)
2120 k = systemtime.wDayOfWeek - 1;
2121 n = GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, NULL, 0);
2122 g_array_set_size (result, result->len + n);
2123 GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2124 g_array_set_size (result, result->len - 1);
2128 n = GetLocaleInfoW (lcid, LOCALE_SABBREVMONTHNAME1+systemtime.wMonth-1, NULL, 0);
2129 g_array_set_size (result, result->len + n);
2130 GetLocaleInfoW (lcid, LOCALE_SABBREVMONTHNAME1+systemtime.wMonth-1, ((wchar_t *) result->data) + result->len - n, n);
2131 g_array_set_size (result, result->len - 1);
2134 n = GetLocaleInfoW (lcid, LOCALE_SMONTHNAME1+systemtime.wMonth-1, NULL, 0);
2135 g_array_set_size (result, result->len + n);
2136 GetLocaleInfoW (lcid, LOCALE_SMONTHNAME1+systemtime.wMonth-1, ((wchar_t *) result->data) + result->len - n, n);
2137 g_array_set_size (result, result->len - 1);
2140 n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2143 g_array_set_size (result, result->len + n);
2144 GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2145 g_array_set_size (result, result->len - 1);
2147 g_array_append_vals (result, L" ", 1);
2148 n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2151 g_array_set_size (result, result->len + n);
2152 GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2153 g_array_set_size (result, result->len - 1);
2157 g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2158 g_array_append_vals (result, digits + (systemtime.wYear/1000)%10, 1);
2161 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2162 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2165 g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2166 g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2167 g_array_append_vals (result, L"/", 1);
2168 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2169 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2170 g_array_append_vals (result, L"/", 1);
2171 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2172 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2175 if (systemtime.wDay >= 10)
2176 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2178 g_array_append_vals (result, L" ", 1);
2179 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2182 /* A GDate has no time fields, so for now we can
2183 * hardcode all time conversions into zeros (or 12 for
2184 * %I). The alternative code snippets in the #else
2185 * branches are here ready to be taken into use when
2186 * needed by a g_strftime() or g_date_and_time_format()
2191 g_array_append_vals (result, L"00", 2);
2193 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2194 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2199 g_array_append_vals (result, L"12", 2);
2201 if (systemtime.wHour == 0)
2202 g_array_append_vals (result, L"12", 2);
2205 g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2206 g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2211 g_array_append_vals (result, digits + (tm->tm_yday+1)/100, 1);
2212 g_array_append_vals (result, digits + ((tm->tm_yday+1)/10)%10, 1);
2213 g_array_append_vals (result, digits + (tm->tm_yday+1)%10, 1);
2216 g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2217 g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2221 g_array_append_vals (result, L"00", 2);
2223 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2224 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2228 g_array_append_vals (result, L"\n", 1);
2231 n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2234 g_array_set_size (result, result->len + n);
2235 GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2236 g_array_set_size (result, result->len - 1);
2240 /* This is a rather odd format. Hard to say what to do.
2241 * Let's always use the POSIX %I:%M:%S %p
2244 g_array_append_vals (result, L"12:00:00", 8);
2246 if (systemtime.wHour == 0)
2247 g_array_append_vals (result, L"12", 2);
2250 g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2251 g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2253 g_array_append_vals (result, L":", 1);
2254 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2255 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2256 g_array_append_vals (result, L":", 1);
2257 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2258 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2259 g_array_append_vals (result, L" ", 1);
2261 n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2264 g_array_set_size (result, result->len + n);
2265 GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2266 g_array_set_size (result, result->len - 1);
2271 g_array_append_vals (result, L"00:00", 5);
2273 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2274 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2275 g_array_append_vals (result, L":", 1);
2276 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2277 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2282 g_array_append_vals (result, L"00", 2);
2284 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2285 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2289 g_array_append_vals (result, L"\t", 1);
2293 g_array_append_vals (result, L"00:00:00", 8);
2295 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2296 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2297 g_array_append_vals (result, L":", 1);
2298 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2299 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2300 g_array_append_vals (result, L":", 1);
2301 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2302 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2306 if (systemtime.wDayOfWeek == 0)
2307 g_array_append_vals (result, L"7", 1);
2309 g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2312 n = g_date_get_sunday_week_of_year (d);
2313 g_array_append_vals (result, digits + n/10, 1);
2314 g_array_append_vals (result, digits + n%10, 1);
2317 n = g_date_get_iso8601_week_of_year (d);
2318 g_array_append_vals (result, digits + n/10, 1);
2319 g_array_append_vals (result, digits + n%10, 1);
2322 g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2325 n = g_date_get_monday_week_of_year (d);
2326 g_array_append_vals (result, digits + n/10, 1);
2327 g_array_append_vals (result, digits + n%10, 1);
2330 n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2333 g_array_set_size (result, result->len + n);
2334 GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2335 g_array_set_size (result, result->len - 1);
2339 n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2342 g_array_set_size (result, result->len + n);
2343 GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2344 g_array_set_size (result, result->len - 1);
2348 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2349 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2352 g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2353 g_array_append_vals (result, digits + (systemtime.wYear/100)%10, 1);
2354 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2355 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2358 n = GetTimeZoneInformation (&tzinfo);
2359 if (n == TIME_ZONE_ID_UNKNOWN)
2361 else if (n == TIME_ZONE_ID_STANDARD)
2362 g_array_append_vals (result, tzinfo.StandardName, wcslen (tzinfo.StandardName));
2363 else if (n == TIME_ZONE_ID_DAYLIGHT)
2364 g_array_append_vals (result, tzinfo.DaylightName, wcslen (tzinfo.DaylightName));
2367 g_array_append_vals (result, L"%", 1);
2371 else if (c <= 0xFFFF)
2374 g_array_append_vals (result, &wc, 1);
2381 ws = g_ucs4_to_utf16 (&c, 1, NULL, &nwc, NULL);
2382 g_array_append_vals (result, ws, nwc);
2385 p = g_utf8_next_char (p);
2388 convbuf = g_utf16_to_utf8 ((wchar_t *) result->data, result->len, NULL, &convlen, NULL);
2389 g_array_free (result, TRUE);
2397 if (slen <= convlen)
2399 /* Ensure only whole characters are copied into the buffer. */
2400 gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2401 g_assert (end != NULL);
2402 convlen = end - convbuf;
2404 /* Return 0 because the buffer isn't large enough. */
2410 memcpy (s, convbuf, convlen);
2421 * @s: destination buffer
2422 * @slen: buffer size
2423 * @format: format string
2424 * @date: valid #GDate
2426 * Generates a printed representation of the date, in a
2427 * <link linkend="setlocale">locale</link>-specific way.
2428 * Works just like the platform's C library strftime() function,
2429 * but only accepts date-related formats; time-related formats
2430 * give undefined results. Date must be valid. Unlike strftime()
2431 * (which uses the locale encoding), works on a UTF-8 format
2432 * string and stores a UTF-8 result.
2434 * This function does not provide any conversion specifiers in
2435 * addition to those implemented by the platform's C library.
2436 * For example, don't expect that using g_date_strftime() would
2437 * make the \%F provided by the C99 strftime() work on Windows
2438 * where the C library only complies to C89.
2440 * Returns: number of characters written to the buffer, or 0 the buffer was too small
2443 g_date_strftime (gchar *s,
2445 const gchar *format,
2450 gsize locale_format_len = 0;
2451 gchar *locale_format;
2457 GError *error = NULL;
2461 g_return_val_if_fail (g_date_valid (d), 0);
2462 g_return_val_if_fail (slen > 0, 0);
2463 g_return_val_if_fail (format != NULL, 0);
2464 g_return_val_if_fail (s != NULL, 0);
2466 g_date_to_struct_tm (d, &tm);
2469 if (!g_utf8_validate (format, -1, NULL))
2474 return win32_strftime_helper (d, format, &tm, s, slen);
2477 locale_format = g_locale_from_utf8 (format, -1, NULL, &locale_format_len, &error);
2481 g_warning (G_STRLOC "Error converting format to locale encoding: %s\n", error->message);
2482 g_error_free (error);
2488 tmpbufsize = MAX (128, locale_format_len * 2);
2491 tmpbuf = g_malloc (tmpbufsize);
2493 /* Set the first byte to something other than '\0', to be able to
2494 * recognize whether strftime actually failed or just returned "".
2497 tmplen = strftime (tmpbuf, tmpbufsize, locale_format, &tm);
2499 if (tmplen == 0 && tmpbuf[0] != '\0')
2504 if (tmpbufsize > 65536)
2506 g_warning (G_STRLOC "Maximum buffer size for g_date_strftime exceeded: giving up\n");
2507 g_free (locale_format);
2516 g_free (locale_format);
2518 convbuf = g_locale_to_utf8 (tmpbuf, tmplen, NULL, &convlen, &error);
2523 g_warning (G_STRLOC "Error converting results of strftime to UTF-8: %s\n", error->message);
2524 g_error_free (error);
2530 if (slen <= convlen)
2532 /* Ensure only whole characters are copied into the buffer.
2534 gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2535 g_assert (end != NULL);
2536 convlen = end - convbuf;
2538 /* Return 0 because the buffer isn't large enough.
2545 memcpy (s, convbuf, convlen);