1 /* gchecksum.h - data hashing functions
3 * Copyright (C) 2007 Emmanuele Bassi <ebassi@gnome.org>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Library General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Library General Public License for more details.
15 * You should have received a copy of the GNU Library General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
25 #include "gchecksum.h"
29 #include "gstrfuncs.h"
30 #include "gtestutils.h"
37 * @title: Data Checksums
38 * @short_description: computes the checksum for data
40 * GLib provides a generic API for computing checksums (or "digests")
41 * for a sequence of arbitrary bytes, using various hashing algorithms
42 * like MD5, SHA-1 and SHA-256. Checksums are commonly used in various
43 * environments and specifications.
45 * GLib supports incremental checksums using the GChecksum data
46 * structure, by calling g_checksum_update() as long as there's data
47 * available and then using g_checksum_get_string() or
48 * g_checksum_get_digest() to compute the checksum and return it either
49 * as a string in hexadecimal form, or as a raw sequence of bytes. To
50 * compute the checksum for binary blobs and NUL-terminated strings in
51 * one go, use the convenience functions g_compute_checksum_for_data()
52 * and g_compute_checksum_for_string(), respectively.
54 * Support for checksums has been added in GLib 2.16
57 #define IS_VALID_TYPE(type) ((type) >= G_CHECKSUM_MD5 && (type) <= G_CHECKSUM_SHA512)
59 /* The fact that these are lower case characters is part of the ABI */
60 static const gchar hex_digits[] = "0123456789abcdef";
62 #define MD5_DATASIZE 64
63 #define MD5_DIGEST_LEN 16
71 guchar data[MD5_DATASIZE];
72 guint32 data32[MD5_DATASIZE / 4];
75 guchar digest[MD5_DIGEST_LEN];
78 #define SHA1_DATASIZE 64
79 #define SHA1_DIGEST_LEN 20
86 /* we pack 64 unsigned chars into 16 32-bit unsigned integers */
89 guchar digest[SHA1_DIGEST_LEN];
92 #define SHA256_DATASIZE 64
93 #define SHA256_DIGEST_LEN 32
100 guint8 data[SHA256_DATASIZE];
102 guchar digest[SHA256_DIGEST_LEN];
105 #define SHA512_BLOCK_LEN 128 /* 1024 bits message block */
106 #define SHA512_DIGEST_LEN 64
112 guint8 block[SHA512_BLOCK_LEN];
117 guchar digest[SHA512_DIGEST_LEN];
134 /* we need different byte swapping functions because MD5 expects buffers
135 * to be little-endian, while SHA1 and SHA256 expect them in big-endian
139 #if G_BYTE_ORDER == G_LITTLE_ENDIAN
140 #define md5_byte_reverse(buffer,length)
142 /* assume that the passed buffer is integer aligned */
144 md5_byte_reverse (guchar *buffer,
151 bit = (guint32) ((unsigned) buffer[3] << 8 | buffer[2]) << 16 |
152 ((unsigned) buffer[1] << 8 | buffer[0]);
153 * (guint32 *) buffer = bit;
158 #endif /* G_BYTE_ORDER == G_LITTLE_ENDIAN */
160 #if G_BYTE_ORDER == G_BIG_ENDIAN
161 #define sha_byte_reverse(buffer,length)
164 sha_byte_reverse (guint32 *buffer,
167 length /= sizeof (guint32);
170 *buffer = GUINT32_SWAP_LE_BE (*buffer);
174 #endif /* G_BYTE_ORDER == G_BIG_ENDIAN */
177 digest_to_string (guint8 *digest,
180 gint len = digest_len * 2;
184 retval = g_new (gchar, len + 1);
186 for (i = 0; i < digest_len; i++)
188 guint8 byte = digest[i];
190 retval[2 * i] = hex_digits[byte >> 4];
191 retval[2 * i + 1] = hex_digits[byte & 0xf];
203 /* This MD5 digest computation is based on the equivalent code
204 * written by Colin Plumb. It came with this notice:
206 * This code implements the MD5 message-digest algorithm.
207 * The algorithm is due to Ron Rivest. This code was
208 * written by Colin Plumb in 1993, no copyright is claimed.
209 * This code is in the public domain; do with it what you wish.
211 * Equivalent code is available from RSA Data Security, Inc.
212 * This code has been tested against that, and is equivalent,
213 * except that you don't need to include two pages of legalese
218 md5_sum_init (Md5sum *md5)
220 /* arbitrary constants */
221 md5->buf[0] = 0x67452301;
222 md5->buf[1] = 0xefcdab89;
223 md5->buf[2] = 0x98badcfe;
224 md5->buf[3] = 0x10325476;
226 md5->bits[0] = md5->bits[1] = 0;
230 * The core of the MD5 algorithm, this alters an existing MD5 hash to
231 * reflect the addition of 16 longwords of new data. md5_sum_update()
232 * blocks the data and converts bytes into longwords for this routine.
235 md5_transform (guint32 buf[4],
236 guint32 const in[16])
238 register guint32 a, b, c, d;
240 /* The four core functions - F1 is optimized somewhat */
241 #define F1(x, y, z) (z ^ (x & (y ^ z)))
242 #define F2(x, y, z) F1 (z, x, y)
243 #define F3(x, y, z) (x ^ y ^ z)
244 #define F4(x, y, z) (y ^ (x | ~z))
246 /* This is the central step in the MD5 algorithm. */
247 #define md5_step(f, w, x, y, z, data, s) \
248 ( w += f (x, y, z) + data, w = w << s | w >> (32 - s), w += x )
255 md5_step (F1, a, b, c, d, in[0] + 0xd76aa478, 7);
256 md5_step (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
257 md5_step (F1, c, d, a, b, in[2] + 0x242070db, 17);
258 md5_step (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
259 md5_step (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
260 md5_step (F1, d, a, b, c, in[5] + 0x4787c62a, 12);
261 md5_step (F1, c, d, a, b, in[6] + 0xa8304613, 17);
262 md5_step (F1, b, c, d, a, in[7] + 0xfd469501, 22);
263 md5_step (F1, a, b, c, d, in[8] + 0x698098d8, 7);
264 md5_step (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
265 md5_step (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
266 md5_step (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
267 md5_step (F1, a, b, c, d, in[12] + 0x6b901122, 7);
268 md5_step (F1, d, a, b, c, in[13] + 0xfd987193, 12);
269 md5_step (F1, c, d, a, b, in[14] + 0xa679438e, 17);
270 md5_step (F1, b, c, d, a, in[15] + 0x49b40821, 22);
272 md5_step (F2, a, b, c, d, in[1] + 0xf61e2562, 5);
273 md5_step (F2, d, a, b, c, in[6] + 0xc040b340, 9);
274 md5_step (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
275 md5_step (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
276 md5_step (F2, a, b, c, d, in[5] + 0xd62f105d, 5);
277 md5_step (F2, d, a, b, c, in[10] + 0x02441453, 9);
278 md5_step (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
279 md5_step (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
280 md5_step (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
281 md5_step (F2, d, a, b, c, in[14] + 0xc33707d6, 9);
282 md5_step (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
283 md5_step (F2, b, c, d, a, in[8] + 0x455a14ed, 20);
284 md5_step (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
285 md5_step (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
286 md5_step (F2, c, d, a, b, in[7] + 0x676f02d9, 14);
287 md5_step (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
289 md5_step (F3, a, b, c, d, in[5] + 0xfffa3942, 4);
290 md5_step (F3, d, a, b, c, in[8] + 0x8771f681, 11);
291 md5_step (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
292 md5_step (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
293 md5_step (F3, a, b, c, d, in[1] + 0xa4beea44, 4);
294 md5_step (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
295 md5_step (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
296 md5_step (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
297 md5_step (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
298 md5_step (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
299 md5_step (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
300 md5_step (F3, b, c, d, a, in[6] + 0x04881d05, 23);
301 md5_step (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
302 md5_step (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
303 md5_step (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
304 md5_step (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
306 md5_step (F4, a, b, c, d, in[0] + 0xf4292244, 6);
307 md5_step (F4, d, a, b, c, in[7] + 0x432aff97, 10);
308 md5_step (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
309 md5_step (F4, b, c, d, a, in[5] + 0xfc93a039, 21);
310 md5_step (F4, a, b, c, d, in[12] + 0x655b59c3, 6);
311 md5_step (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
312 md5_step (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
313 md5_step (F4, b, c, d, a, in[1] + 0x85845dd1, 21);
314 md5_step (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
315 md5_step (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
316 md5_step (F4, c, d, a, b, in[6] + 0xa3014314, 15);
317 md5_step (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
318 md5_step (F4, a, b, c, d, in[4] + 0xf7537e82, 6);
319 md5_step (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
320 md5_step (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
321 md5_step (F4, b, c, d, a, in[9] + 0xeb86d391, 21);
336 md5_sum_update (Md5sum *md5,
343 md5->bits[0] = bit + ((guint32) length << 3);
345 /* carry from low to high */
346 if (md5->bits[0] < bit)
349 md5->bits[1] += length >> 29;
351 /* bytes already in Md5sum->u.data */
352 bit = (bit >> 3) & 0x3f;
354 /* handle any leading odd-sized chunks */
357 guchar *p = md5->u.data + bit;
359 bit = MD5_DATASIZE - bit;
362 memcpy (p, data, length);
366 memcpy (p, data, bit);
368 md5_byte_reverse (md5->u.data, 16);
369 md5_transform (md5->buf, md5->u.data32);
375 /* process data in 64-byte chunks */
376 while (length >= MD5_DATASIZE)
378 memcpy (md5->u.data, data, MD5_DATASIZE);
380 md5_byte_reverse (md5->u.data, 16);
381 md5_transform (md5->buf, md5->u.data32);
383 data += MD5_DATASIZE;
384 length -= MD5_DATASIZE;
387 /* handle any remaining bytes of data */
388 memcpy (md5->u.data, data, length);
391 /* closes a checksum */
393 md5_sum_close (Md5sum *md5)
398 /* Compute number of bytes mod 64 */
399 count = (md5->bits[0] >> 3) & 0x3F;
401 /* Set the first char of padding to 0x80.
402 * This is safe since there is always at least one byte free
404 p = md5->u.data + count;
407 /* Bytes of padding needed to make 64 bytes */
408 count = MD5_DATASIZE - 1 - count;
410 /* Pad out to 56 mod 64 */
413 /* Two lots of padding: Pad the first block to 64 bytes */
414 memset (p, 0, count);
416 md5_byte_reverse (md5->u.data, 16);
417 md5_transform (md5->buf, md5->u.data32);
419 /* Now fill the next block with 56 bytes */
420 memset (md5->u.data, 0, MD5_DATASIZE - 8);
424 /* Pad block to 56 bytes */
425 memset (p, 0, count - 8);
428 md5_byte_reverse (md5->u.data, 14);
430 /* Append length in bits and transform */
431 md5->u.data32[14] = md5->bits[0];
432 md5->u.data32[15] = md5->bits[1];
434 md5_transform (md5->buf, md5->u.data32);
435 md5_byte_reverse ((guchar *) md5->buf, 4);
437 memcpy (md5->digest, md5->buf, 16);
439 /* Reset buffers in case they contain sensitive data */
440 memset (md5->buf, 0, sizeof (md5->buf));
441 memset (md5->u.data, 0, sizeof (md5->u.data));
445 md5_sum_to_string (Md5sum *md5)
447 return digest_to_string (md5->digest, MD5_DIGEST_LEN);
451 md5_sum_digest (Md5sum *md5,
456 for (i = 0; i < MD5_DIGEST_LEN; i++)
457 digest[i] = md5->digest[i];
464 /* The following implementation comes from D-Bus dbus-sha.c. I've changed
465 * it to use GLib types and to work more like the MD5 implementation above.
466 * I left the comments to have an history of this code.
467 * -- Emmanuele Bassi, ebassi@gnome.org
470 /* The following comments have the history of where this code
471 * comes from. I actually copied it from GNet in GNOME CVS.
476 * sha.h : Implementation of the Secure Hash Algorithm
478 * Part of the Python Cryptography Toolkit, version 1.0.0
480 * Copyright (C) 1995, A.M. Kuchling
482 * Distribute and use freely; there are no restrictions on further
483 * dissemination and usage except those imposed by the laws of your
484 * country of residence.
488 /* SHA: NIST's Secure Hash Algorithm */
490 /* Based on SHA code originally posted to sci.crypt by Peter Gutmann
491 in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
492 Modified to test for endianness on creation of SHA objects by AMK.
493 Also, the original specification of SHA was found to have a weakness
494 by NSA/NIST. This code implements the fixed version of SHA.
497 /* Here's the first paragraph of Peter Gutmann's posting:
499 The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
500 SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
501 what's changed in the new version. The fix is a simple change which involves
502 adding a single rotate in the initial expansion function. It is unknown
503 whether this is an optimal solution to the problem which was discovered in the
504 SHA or whether it's simply a bandaid which fixes the problem with a minimum of
505 effort (for example the reengineering of a great many Capstone chips).
509 sha1_sum_init (Sha1sum *sha1)
511 /* initialize constants */
512 sha1->buf[0] = 0x67452301L;
513 sha1->buf[1] = 0xEFCDAB89L;
514 sha1->buf[2] = 0x98BADCFEL;
515 sha1->buf[3] = 0x10325476L;
516 sha1->buf[4] = 0xC3D2E1F0L;
518 /* initialize bits */
519 sha1->bits[0] = sha1->bits[1] = 0;
522 /* The SHA f()-functions. */
524 #define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */
525 #define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */
526 #define f3(x,y,z) (( x & y) | (z & (x | y))) /* Rounds 40-59 */
527 #define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */
529 /* The SHA Mysterious Constants */
530 #define K1 0x5A827999L /* Rounds 0-19 */
531 #define K2 0x6ED9EBA1L /* Rounds 20-39 */
532 #define K3 0x8F1BBCDCL /* Rounds 40-59 */
533 #define K4 0xCA62C1D6L /* Rounds 60-79 */
535 /* 32-bit rotate left - kludged with shifts */
536 #define ROTL(n,X) (((X) << n ) | ((X) >> (32 - n)))
538 /* The initial expanding function. The hash function is defined over an
539 80-word expanded input array W, where the first 16 are copies of the input
540 data, and the remaining 64 are defined by
542 W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
544 This implementation generates these values on the fly in a circular
545 buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
548 The updated SHA changes the expanding function by adding a rotate of 1
549 bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
550 for this information */
552 #define expand(W,i) (W[ i & 15 ] = ROTL (1, (W[ i & 15] ^ \
558 /* The prototype SHA sub-round. The fundamental sub-round is:
560 a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
566 but this is implemented by unrolling the loop 5 times and renaming the
567 variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
568 This code is then replicated 20 times for each of the 4 functions, using
569 the next 20 values from the W[] array each time */
571 #define subRound(a, b, c, d, e, f, k, data) \
572 (e += ROTL (5, a) + f(b, c, d) + k + data, b = ROTL (30, b))
575 sha1_transform (guint32 buf[5],
578 guint32 A, B, C, D, E;
586 /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
587 subRound (A, B, C, D, E, f1, K1, in[0]);
588 subRound (E, A, B, C, D, f1, K1, in[1]);
589 subRound (D, E, A, B, C, f1, K1, in[2]);
590 subRound (C, D, E, A, B, f1, K1, in[3]);
591 subRound (B, C, D, E, A, f1, K1, in[4]);
592 subRound (A, B, C, D, E, f1, K1, in[5]);
593 subRound (E, A, B, C, D, f1, K1, in[6]);
594 subRound (D, E, A, B, C, f1, K1, in[7]);
595 subRound (C, D, E, A, B, f1, K1, in[8]);
596 subRound (B, C, D, E, A, f1, K1, in[9]);
597 subRound (A, B, C, D, E, f1, K1, in[10]);
598 subRound (E, A, B, C, D, f1, K1, in[11]);
599 subRound (D, E, A, B, C, f1, K1, in[12]);
600 subRound (C, D, E, A, B, f1, K1, in[13]);
601 subRound (B, C, D, E, A, f1, K1, in[14]);
602 subRound (A, B, C, D, E, f1, K1, in[15]);
603 subRound (E, A, B, C, D, f1, K1, expand (in, 16));
604 subRound (D, E, A, B, C, f1, K1, expand (in, 17));
605 subRound (C, D, E, A, B, f1, K1, expand (in, 18));
606 subRound (B, C, D, E, A, f1, K1, expand (in, 19));
608 subRound (A, B, C, D, E, f2, K2, expand (in, 20));
609 subRound (E, A, B, C, D, f2, K2, expand (in, 21));
610 subRound (D, E, A, B, C, f2, K2, expand (in, 22));
611 subRound (C, D, E, A, B, f2, K2, expand (in, 23));
612 subRound (B, C, D, E, A, f2, K2, expand (in, 24));
613 subRound (A, B, C, D, E, f2, K2, expand (in, 25));
614 subRound (E, A, B, C, D, f2, K2, expand (in, 26));
615 subRound (D, E, A, B, C, f2, K2, expand (in, 27));
616 subRound (C, D, E, A, B, f2, K2, expand (in, 28));
617 subRound (B, C, D, E, A, f2, K2, expand (in, 29));
618 subRound (A, B, C, D, E, f2, K2, expand (in, 30));
619 subRound (E, A, B, C, D, f2, K2, expand (in, 31));
620 subRound (D, E, A, B, C, f2, K2, expand (in, 32));
621 subRound (C, D, E, A, B, f2, K2, expand (in, 33));
622 subRound (B, C, D, E, A, f2, K2, expand (in, 34));
623 subRound (A, B, C, D, E, f2, K2, expand (in, 35));
624 subRound (E, A, B, C, D, f2, K2, expand (in, 36));
625 subRound (D, E, A, B, C, f2, K2, expand (in, 37));
626 subRound (C, D, E, A, B, f2, K2, expand (in, 38));
627 subRound (B, C, D, E, A, f2, K2, expand (in, 39));
629 subRound (A, B, C, D, E, f3, K3, expand (in, 40));
630 subRound (E, A, B, C, D, f3, K3, expand (in, 41));
631 subRound (D, E, A, B, C, f3, K3, expand (in, 42));
632 subRound (C, D, E, A, B, f3, K3, expand (in, 43));
633 subRound (B, C, D, E, A, f3, K3, expand (in, 44));
634 subRound (A, B, C, D, E, f3, K3, expand (in, 45));
635 subRound (E, A, B, C, D, f3, K3, expand (in, 46));
636 subRound (D, E, A, B, C, f3, K3, expand (in, 47));
637 subRound (C, D, E, A, B, f3, K3, expand (in, 48));
638 subRound (B, C, D, E, A, f3, K3, expand (in, 49));
639 subRound (A, B, C, D, E, f3, K3, expand (in, 50));
640 subRound (E, A, B, C, D, f3, K3, expand (in, 51));
641 subRound (D, E, A, B, C, f3, K3, expand (in, 52));
642 subRound (C, D, E, A, B, f3, K3, expand (in, 53));
643 subRound (B, C, D, E, A, f3, K3, expand (in, 54));
644 subRound (A, B, C, D, E, f3, K3, expand (in, 55));
645 subRound (E, A, B, C, D, f3, K3, expand (in, 56));
646 subRound (D, E, A, B, C, f3, K3, expand (in, 57));
647 subRound (C, D, E, A, B, f3, K3, expand (in, 58));
648 subRound (B, C, D, E, A, f3, K3, expand (in, 59));
650 subRound (A, B, C, D, E, f4, K4, expand (in, 60));
651 subRound (E, A, B, C, D, f4, K4, expand (in, 61));
652 subRound (D, E, A, B, C, f4, K4, expand (in, 62));
653 subRound (C, D, E, A, B, f4, K4, expand (in, 63));
654 subRound (B, C, D, E, A, f4, K4, expand (in, 64));
655 subRound (A, B, C, D, E, f4, K4, expand (in, 65));
656 subRound (E, A, B, C, D, f4, K4, expand (in, 66));
657 subRound (D, E, A, B, C, f4, K4, expand (in, 67));
658 subRound (C, D, E, A, B, f4, K4, expand (in, 68));
659 subRound (B, C, D, E, A, f4, K4, expand (in, 69));
660 subRound (A, B, C, D, E, f4, K4, expand (in, 70));
661 subRound (E, A, B, C, D, f4, K4, expand (in, 71));
662 subRound (D, E, A, B, C, f4, K4, expand (in, 72));
663 subRound (C, D, E, A, B, f4, K4, expand (in, 73));
664 subRound (B, C, D, E, A, f4, K4, expand (in, 74));
665 subRound (A, B, C, D, E, f4, K4, expand (in, 75));
666 subRound (E, A, B, C, D, f4, K4, expand (in, 76));
667 subRound (D, E, A, B, C, f4, K4, expand (in, 77));
668 subRound (C, D, E, A, B, f4, K4, expand (in, 78));
669 subRound (B, C, D, E, A, f4, K4, expand (in, 79));
671 /* Build message digest */
692 sha1_sum_update (Sha1sum *sha1,
693 const guchar *buffer,
699 /* Update bitcount */
701 if ((sha1->bits[0] = tmp + ((guint32) count << 3) ) < tmp)
702 sha1->bits[1] += 1; /* Carry from low to high */
703 sha1->bits[1] += count >> 29;
705 /* Get count of bytes already in data */
706 dataCount = (guint) (tmp >> 3) & 0x3F;
708 /* Handle any leading odd-sized chunks */
711 guchar *p = (guchar *) sha1->data + dataCount;
713 dataCount = SHA1_DATASIZE - dataCount;
714 if (count < dataCount)
716 memcpy (p, buffer, count);
720 memcpy (p, buffer, dataCount);
722 sha_byte_reverse (sha1->data, SHA1_DATASIZE);
723 sha1_transform (sha1->buf, sha1->data);
729 /* Process data in SHA1_DATASIZE chunks */
730 while (count >= SHA1_DATASIZE)
732 memcpy (sha1->data, buffer, SHA1_DATASIZE);
734 sha_byte_reverse (sha1->data, SHA1_DATASIZE);
735 sha1_transform (sha1->buf, sha1->data);
737 buffer += SHA1_DATASIZE;
738 count -= SHA1_DATASIZE;
741 /* Handle any remaining bytes of data. */
742 memcpy (sha1->data, buffer, count);
745 /* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
746 1 0* (64-bit count of bits processed, MSB-first) */
748 sha1_sum_close (Sha1sum *sha1)
753 /* Compute number of bytes mod 64 */
754 count = (gint) ((sha1->bits[0] >> 3) & 0x3f);
756 /* Set the first char of padding to 0x80. This is safe since there is
757 always at least one byte free */
758 data_p = (guchar *) sha1->data + count;
761 /* Bytes of padding needed to make 64 bytes */
762 count = SHA1_DATASIZE - 1 - count;
764 /* Pad out to 56 mod 64 */
767 /* Two lots of padding: Pad the first block to 64 bytes */
768 memset (data_p, 0, count);
770 sha_byte_reverse (sha1->data, SHA1_DATASIZE);
771 sha1_transform (sha1->buf, sha1->data);
773 /* Now fill the next block with 56 bytes */
774 memset (sha1->data, 0, SHA1_DATASIZE - 8);
778 /* Pad block to 56 bytes */
779 memset (data_p, 0, count - 8);
782 /* Append length in bits and transform */
783 sha1->data[14] = sha1->bits[1];
784 sha1->data[15] = sha1->bits[0];
786 sha_byte_reverse (sha1->data, SHA1_DATASIZE - 8);
787 sha1_transform (sha1->buf, sha1->data);
788 sha_byte_reverse (sha1->buf, SHA1_DIGEST_LEN);
790 memcpy (sha1->digest, sha1->buf, SHA1_DIGEST_LEN);
792 /* Reset buffers in case they contain sensitive data */
793 memset (sha1->buf, 0, sizeof (sha1->buf));
794 memset (sha1->data, 0, sizeof (sha1->data));
798 sha1_sum_to_string (Sha1sum *sha1)
800 return digest_to_string (sha1->digest, SHA1_DIGEST_LEN);
804 sha1_sum_digest (Sha1sum *sha1,
809 for (i = 0; i < SHA1_DIGEST_LEN; i++)
810 digest[i] = sha1->digest[i];
817 /* adapted from the SHA256 implementation in gsk/src/hash/gskhash.c.
819 * Copyright (C) 2006 Dave Benson
820 * Released under the terms of the GNU Lesser General Public License
824 sha256_sum_init (Sha256sum *sha256)
826 sha256->buf[0] = 0x6a09e667;
827 sha256->buf[1] = 0xbb67ae85;
828 sha256->buf[2] = 0x3c6ef372;
829 sha256->buf[3] = 0xa54ff53a;
830 sha256->buf[4] = 0x510e527f;
831 sha256->buf[5] = 0x9b05688c;
832 sha256->buf[6] = 0x1f83d9ab;
833 sha256->buf[7] = 0x5be0cd19;
835 sha256->bits[0] = sha256->bits[1] = 0;
838 #define GET_UINT32(n,b,i) G_STMT_START{ \
839 (n) = ((guint32) (b)[(i) ] << 24) \
840 | ((guint32) (b)[(i) + 1] << 16) \
841 | ((guint32) (b)[(i) + 2] << 8) \
842 | ((guint32) (b)[(i) + 3] ); } G_STMT_END
844 #define PUT_UINT32(n,b,i) G_STMT_START{ \
845 (b)[(i) ] = (guint8) ((n) >> 24); \
846 (b)[(i) + 1] = (guint8) ((n) >> 16); \
847 (b)[(i) + 2] = (guint8) ((n) >> 8); \
848 (b)[(i) + 3] = (guint8) ((n) ); } G_STMT_END
851 sha256_transform (guint32 buf[8],
852 guint8 const data[64])
854 guint32 temp1, temp2, W[64];
855 guint32 A, B, C, D, E, F, G, H;
857 GET_UINT32 (W[0], data, 0);
858 GET_UINT32 (W[1], data, 4);
859 GET_UINT32 (W[2], data, 8);
860 GET_UINT32 (W[3], data, 12);
861 GET_UINT32 (W[4], data, 16);
862 GET_UINT32 (W[5], data, 20);
863 GET_UINT32 (W[6], data, 24);
864 GET_UINT32 (W[7], data, 28);
865 GET_UINT32 (W[8], data, 32);
866 GET_UINT32 (W[9], data, 36);
867 GET_UINT32 (W[10], data, 40);
868 GET_UINT32 (W[11], data, 44);
869 GET_UINT32 (W[12], data, 48);
870 GET_UINT32 (W[13], data, 52);
871 GET_UINT32 (W[14], data, 56);
872 GET_UINT32 (W[15], data, 60);
874 #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
875 #define ROTR(x,n) (SHR (x,n) | (x << (32 - n)))
877 #define S0(x) (ROTR (x, 7) ^ ROTR (x,18) ^ SHR (x, 3))
878 #define S1(x) (ROTR (x,17) ^ ROTR (x,19) ^ SHR (x,10))
879 #define S2(x) (ROTR (x, 2) ^ ROTR (x,13) ^ ROTR (x,22))
880 #define S3(x) (ROTR (x, 6) ^ ROTR (x,11) ^ ROTR (x,25))
882 #define F0(x,y,z) ((x & y) | (z & (x | y)))
883 #define F1(x,y,z) (z ^ (x & (y ^ z)))
885 #define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + \
886 S0(W[t - 15]) + W[t - 16])
888 #define P(a,b,c,d,e,f,g,h,x,K) G_STMT_START { \
889 temp1 = h + S3(e) + F1(e,f,g) + K + x; \
890 temp2 = S2(a) + F0(a,b,c); \
891 d += temp1; h = temp1 + temp2; } G_STMT_END
902 P (A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98);
903 P (H, A, B, C, D, E, F, G, W[ 1], 0x71374491);
904 P (G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF);
905 P (F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5);
906 P (E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B);
907 P (D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1);
908 P (C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4);
909 P (B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5);
910 P (A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98);
911 P (H, A, B, C, D, E, F, G, W[ 9], 0x12835B01);
912 P (G, H, A, B, C, D, E, F, W[10], 0x243185BE);
913 P (F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
914 P (E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
915 P (D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
916 P (C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
917 P (B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
918 P (A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
919 P (H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
920 P (G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
921 P (F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
922 P (E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
923 P (D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
924 P (C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
925 P (B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
926 P (A, B, C, D, E, F, G, H, R(24), 0x983E5152);
927 P (H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
928 P (G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
929 P (F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
930 P (E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
931 P (D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
932 P (C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
933 P (B, C, D, E, F, G, H, A, R(31), 0x14292967);
934 P (A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
935 P (H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
936 P (G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
937 P (F, G, H, A, B, C, D, E, R(35), 0x53380D13);
938 P (E, F, G, H, A, B, C, D, R(36), 0x650A7354);
939 P (D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
940 P (C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
941 P (B, C, D, E, F, G, H, A, R(39), 0x92722C85);
942 P (A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
943 P (H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
944 P (G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
945 P (F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
946 P (E, F, G, H, A, B, C, D, R(44), 0xD192E819);
947 P (D, E, F, G, H, A, B, C, R(45), 0xD6990624);
948 P (C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
949 P (B, C, D, E, F, G, H, A, R(47), 0x106AA070);
950 P (A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
951 P (H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
952 P (G, H, A, B, C, D, E, F, R(50), 0x2748774C);
953 P (F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
954 P (E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
955 P (D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
956 P (C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
957 P (B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
958 P (A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
959 P (H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
960 P (G, H, A, B, C, D, E, F, R(58), 0x84C87814);
961 P (F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
962 P (E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
963 P (D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
964 P (C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
965 P (B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
989 sha256_sum_update (Sha256sum *sha256,
990 const guchar *buffer,
994 const guint8 *input = buffer;
999 left = sha256->bits[0] & 0x3F;
1002 sha256->bits[0] += length;
1003 sha256->bits[0] &= 0xFFFFFFFF;
1005 if (sha256->bits[0] < length)
1008 if (left > 0 && length >= fill)
1010 memcpy ((sha256->data + left), input, fill);
1012 sha256_transform (sha256->buf, sha256->data);
1019 while (length >= SHA256_DATASIZE)
1021 sha256_transform (sha256->buf, input);
1028 memcpy (sha256->data + left, input, length);
1031 static guint8 sha256_padding[64] =
1033 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1034 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1035 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1036 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1040 sha256_sum_close (Sha256sum *sha256)
1046 high = (sha256->bits[0] >> 29)
1047 | (sha256->bits[1] << 3);
1048 low = (sha256->bits[0] << 3);
1050 PUT_UINT32 (high, msglen, 0);
1051 PUT_UINT32 (low, msglen, 4);
1053 last = sha256->bits[0] & 0x3F;
1054 padn = (last < 56) ? (56 - last) : (120 - last);
1056 sha256_sum_update (sha256, sha256_padding, padn);
1057 sha256_sum_update (sha256, msglen, 8);
1059 PUT_UINT32 (sha256->buf[0], sha256->digest, 0);
1060 PUT_UINT32 (sha256->buf[1], sha256->digest, 4);
1061 PUT_UINT32 (sha256->buf[2], sha256->digest, 8);
1062 PUT_UINT32 (sha256->buf[3], sha256->digest, 12);
1063 PUT_UINT32 (sha256->buf[4], sha256->digest, 16);
1064 PUT_UINT32 (sha256->buf[5], sha256->digest, 20);
1065 PUT_UINT32 (sha256->buf[6], sha256->digest, 24);
1066 PUT_UINT32 (sha256->buf[7], sha256->digest, 28);
1073 sha256_sum_to_string (Sha256sum *sha256)
1075 return digest_to_string (sha256->digest, SHA256_DIGEST_LEN);
1079 sha256_sum_digest (Sha256sum *sha256,
1084 for (i = 0; i < SHA256_DIGEST_LEN; i++)
1085 digest[i] = sha256->digest[i];
1091 * Implemented following FIPS-180-2 standard at
1092 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.
1093 * References in the form [§x.y.z] map to sections in that document.
1095 * Author: Eduardo Lima Mitev <elima@igalia.com>
1098 /* SHA-384 and SHA-512 functions [§4.1.3] */
1099 #define Ch(x,y,z) ((x & y) ^ (~x & z))
1100 #define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
1101 #define SHR(n,x) (x >> n)
1102 #define ROTR(n,x) (SHR (n, x) | (x << (64 - n)))
1103 #define SIGMA0(x) (ROTR (28, x) ^ ROTR (34, x) ^ ROTR (39, x))
1104 #define SIGMA1(x) (ROTR (14, x) ^ ROTR (18, x) ^ ROTR (41, x))
1105 #define sigma0(x) (ROTR ( 1, x) ^ ROTR ( 8, x) ^ SHR ( 7, x))
1106 #define sigma1(x) (ROTR (19, x) ^ ROTR (61, x) ^ SHR ( 6, x))
1108 #define PUT_UINT64(n,b,i) G_STMT_START{ \
1109 (b)[(i) ] = (guint8) (n >> 56); \
1110 (b)[(i) + 1] = (guint8) (n >> 48); \
1111 (b)[(i) + 2] = (guint8) (n >> 40); \
1112 (b)[(i) + 3] = (guint8) (n >> 32); \
1113 (b)[(i) + 4] = (guint8) (n >> 24); \
1114 (b)[(i) + 5] = (guint8) (n >> 16); \
1115 (b)[(i) + 6] = (guint8) (n >> 8); \
1116 (b)[(i) + 7] = (guint8) (n ); } G_STMT_END
1119 sha512_sum_init (Sha512sum *sha512)
1121 /* Initial Hash Value [§5.3.4] */
1122 sha512->H[0] = 0x6a09e667f3bcc908;
1123 sha512->H[1] = 0xbb67ae8584caa73b;
1124 sha512->H[2] = 0x3c6ef372fe94f82b;
1125 sha512->H[3] = 0xa54ff53a5f1d36f1;
1126 sha512->H[4] = 0x510e527fade682d1;
1127 sha512->H[5] = 0x9b05688c2b3e6c1f;
1128 sha512->H[6] = 0x1f83d9abfb41bd6b;
1129 sha512->H[7] = 0x5be0cd19137e2179;
1131 sha512->block_len = 0;
1133 sha512->data_len[0] = 0;
1134 sha512->data_len[1] = 0;
1137 /* SHA-384 and SHA-512 constants [§4.2.3] */
1138 static const guint64 SHA512_K[80] = {
1139 0x428a2f98d728ae22, 0x7137449123ef65cd,
1140 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
1141 0x3956c25bf348b538, 0x59f111f1b605d019,
1142 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
1143 0xd807aa98a3030242, 0x12835b0145706fbe,
1144 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
1145 0x72be5d74f27b896f, 0x80deb1fe3b1696b1,
1146 0x9bdc06a725c71235, 0xc19bf174cf692694,
1147 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
1148 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
1149 0x2de92c6f592b0275, 0x4a7484aa6ea6e483,
1150 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
1151 0x983e5152ee66dfab, 0xa831c66d2db43210,
1152 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
1153 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
1154 0x06ca6351e003826f, 0x142929670a0e6e70,
1155 0x27b70a8546d22ffc, 0x2e1b21385c26c926,
1156 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
1157 0x650a73548baf63de, 0x766a0abb3c77b2a8,
1158 0x81c2c92e47edaee6, 0x92722c851482353b,
1159 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
1160 0xc24b8b70d0f89791, 0xc76c51a30654be30,
1161 0xd192e819d6ef5218, 0xd69906245565a910,
1162 0xf40e35855771202a, 0x106aa07032bbd1b8,
1163 0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
1164 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
1165 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
1166 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
1167 0x748f82ee5defb2fc, 0x78a5636f43172f60,
1168 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
1169 0x90befffa23631e28, 0xa4506cebde82bde9,
1170 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
1171 0xca273eceea26619c, 0xd186b8c721c0c207,
1172 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
1173 0x06f067aa72176fba, 0x0a637dc5a2c898a6,
1174 0x113f9804bef90dae, 0x1b710b35131c471b,
1175 0x28db77f523047d84, 0x32caab7b40c72493,
1176 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
1177 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
1178 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
1182 sha512_transform (guint64 H[8],
1183 guint8 const data[SHA512_BLOCK_LEN])
1187 guint64 a, b, c, d, e, f, g, h;
1191 /* SHA-512 hash computation [§6.3.2] */
1193 /* prepare the message schedule */
1194 for (i = 0; i < 16; i++)
1199 ((guint64) data[p + 0] << 56) |
1200 ((guint64) data[p + 1] << 48) |
1201 ((guint64) data[p + 2] << 40) |
1202 ((guint64) data[p + 3] << 32) |
1203 ((guint64) data[p + 4] << 24) |
1204 ((guint64) data[p + 5] << 16) |
1205 ((guint64) data[p + 6] << 8) |
1206 ((guint64) data[p + 7] );
1209 for (t = 0; t < 80; t++)
1213 W[t] = sigma1 (W[t - 2]) + W[t - 7] + sigma0 (W[t - 15]) + W[t - 16];
1215 /* initialize the eight working variables */
1225 for (t = 0; t < 80; t++)
1229 T1 = h + SIGMA1 (e) + Ch (e, f, g) + SHA512_K[t] + W[t];
1230 T2 = SIGMA0 (a) + Maj (a, b, c);
1241 /* Compute the intermediate hash value H */
1253 sha512_sum_update (Sha512sum *sha512,
1254 const guchar *buffer,
1257 gsize block_left, offset = 0;
1262 sha512->data_len[0] += length * 8;
1263 if (sha512->data_len[0] < length)
1264 sha512->data_len[1]++;
1266 /* try to fill current block */
1267 block_left = SHA512_BLOCK_LEN - sha512->block_len;
1272 fill_len = MIN (block_left, length);
1273 memcpy (sha512->block + sha512->block_len, buffer, fill_len);
1274 sha512->block_len += fill_len;
1278 if (sha512->block_len == SHA512_BLOCK_LEN)
1280 sha512_transform (sha512->H, sha512->block);
1281 sha512->block_len = 0;
1285 /* process complete blocks */
1286 while (length >= SHA512_BLOCK_LEN)
1288 memcpy (sha512->block, buffer + offset, SHA512_BLOCK_LEN);
1290 sha512_transform (sha512->H, sha512->block);
1292 length -= SHA512_BLOCK_LEN;
1293 offset += SHA512_BLOCK_LEN;
1296 /* keep remaining data for next block */
1299 memcpy (sha512->block, buffer + offset, length);
1300 sha512->block_len = length;
1305 sha512_sum_close (Sha512sum *sha512)
1309 guint8 pad[SHA512_BLOCK_LEN * 2] = { 0, };
1313 /* apply padding [§5.1.2] */
1314 l = sha512->block_len * 8;
1315 zeros = 896 - (l + 1);
1320 pad[0] = 0x80; /* 1000 0000 */
1324 memset (pad + pad_len, 0x00, zeros / 8);
1325 pad_len += zeros / 8;
1328 /* put message bit length at the end of padding */
1329 PUT_UINT64 (sha512->data_len[1], pad, pad_len);
1332 PUT_UINT64 (sha512->data_len[0], pad, pad_len);
1335 /* update checksum with the padded block */
1336 sha512_sum_update (sha512, pad, pad_len);
1338 /* copy resulting 64-bit words into digest */
1339 for (i = 0; i < 8; i++)
1340 PUT_UINT64 (sha512->H[i], sha512->digest, i * 8);
1344 sha512_sum_to_string (Sha512sum *sha512)
1346 return digest_to_string (sha512->digest, SHA512_DIGEST_LEN);
1350 sha512_sum_digest (Sha512sum *sha512,
1353 memcpy (digest, sha512->digest, SHA512_DIGEST_LEN);
1372 * g_checksum_type_get_length:
1373 * @checksum_type: a #GChecksumType
1375 * Gets the length in bytes of digests of type @checksum_type
1377 * Return value: the checksum length, or -1 if @checksum_type is
1383 g_checksum_type_get_length (GChecksumType checksum_type)
1387 switch (checksum_type)
1389 case G_CHECKSUM_MD5:
1390 len = MD5_DIGEST_LEN;
1392 case G_CHECKSUM_SHA1:
1393 len = SHA1_DIGEST_LEN;
1395 case G_CHECKSUM_SHA256:
1396 len = SHA256_DIGEST_LEN;
1398 case G_CHECKSUM_SHA512:
1399 len = SHA512_DIGEST_LEN;
1411 * @checksum_type: the desired type of checksum
1413 * Creates a new #GChecksum, using the checksum algorithm @checksum_type.
1414 * If the @checksum_type is not known, %NULL is returned.
1415 * A #GChecksum can be used to compute the checksum, or digest, of an
1416 * arbitrary binary blob, using different hashing algorithms.
1418 * A #GChecksum works by feeding a binary blob through g_checksum_update()
1419 * until there is data to be checked; the digest can then be extracted
1420 * using g_checksum_get_string(), which will return the checksum as a
1421 * hexadecimal string; or g_checksum_get_digest(), which will return a
1422 * vector of raw bytes. Once either g_checksum_get_string() or
1423 * g_checksum_get_digest() have been called on a #GChecksum, the checksum
1424 * will be closed and it won't be possible to call g_checksum_update()
1427 * Return value: (transfer full): the newly created #GChecksum, or %NULL.
1428 * Use g_checksum_free() to free the memory allocated by it.
1433 g_checksum_new (GChecksumType checksum_type)
1435 GChecksum *checksum;
1437 if (! IS_VALID_TYPE (checksum_type))
1440 checksum = g_slice_new0 (GChecksum);
1441 checksum->type = checksum_type;
1443 g_checksum_reset (checksum);
1450 * @checksum: the #GChecksum to reset
1452 * Resets the state of the @checksum back to its initial state.
1457 g_checksum_reset (GChecksum *checksum)
1459 g_return_if_fail (checksum != NULL);
1461 g_free (checksum->digest_str);
1462 checksum->digest_str = NULL;
1464 switch (checksum->type)
1466 case G_CHECKSUM_MD5:
1467 md5_sum_init (&(checksum->sum.md5));
1469 case G_CHECKSUM_SHA1:
1470 sha1_sum_init (&(checksum->sum.sha1));
1472 case G_CHECKSUM_SHA256:
1473 sha256_sum_init (&(checksum->sum.sha256));
1475 case G_CHECKSUM_SHA512:
1476 sha512_sum_init (&(checksum->sum.sha512));
1479 g_assert_not_reached ();
1486 * @checksum: the #GChecksum to copy
1488 * Copies a #GChecksum. If @checksum has been closed, by calling
1489 * g_checksum_get_string() or g_checksum_get_digest(), the copied
1490 * checksum will be closed as well.
1492 * Return value: the copy of the passed #GChecksum. Use g_checksum_free()
1493 * when finished using it.
1498 g_checksum_copy (const GChecksum *checksum)
1502 g_return_val_if_fail (checksum != NULL, NULL);
1504 copy = g_slice_new (GChecksum);
1507 copy->digest_str = g_strdup (checksum->digest_str);
1514 * @checksum: a #GChecksum
1516 * Frees the memory allocated for @checksum.
1521 g_checksum_free (GChecksum *checksum)
1523 if (G_LIKELY (checksum))
1525 g_free (checksum->digest_str);
1527 g_slice_free (GChecksum, checksum);
1532 * g_checksum_update:
1533 * @checksum: a #GChecksum
1534 * @data: (array length=length) (element-type guint8): buffer used to compute the checksum
1535 * @length: size of the buffer, or -1 if it is a null-terminated string.
1537 * Feeds @data into an existing #GChecksum. The checksum must still be
1538 * open, that is g_checksum_get_string() or g_checksum_get_digest() must
1539 * not have been called on @checksum.
1544 g_checksum_update (GChecksum *checksum,
1548 g_return_if_fail (checksum != NULL);
1549 g_return_if_fail (length == 0 || data != NULL);
1552 length = strlen ((const gchar *) data);
1554 if (checksum->digest_str)
1556 g_warning ("The checksum '%s' has been closed and cannot be updated "
1558 checksum->digest_str);
1562 switch (checksum->type)
1564 case G_CHECKSUM_MD5:
1565 md5_sum_update (&(checksum->sum.md5), data, length);
1567 case G_CHECKSUM_SHA1:
1568 sha1_sum_update (&(checksum->sum.sha1), data, length);
1570 case G_CHECKSUM_SHA256:
1571 sha256_sum_update (&(checksum->sum.sha256), data, length);
1573 case G_CHECKSUM_SHA512:
1574 sha512_sum_update (&(checksum->sum.sha512), data, length);
1577 g_assert_not_reached ();
1583 * g_checksum_get_string:
1584 * @checksum: a #GChecksum
1586 * Gets the digest as an hexadecimal string.
1588 * Once this function has been called the #GChecksum can no longer be
1589 * updated with g_checksum_update().
1591 * The hexadecimal characters will be lower case.
1593 * Return value: the hexadecimal representation of the checksum. The
1594 * returned string is owned by the checksum and should not be modified
1600 g_checksum_get_string (GChecksum *checksum)
1604 g_return_val_if_fail (checksum != NULL, NULL);
1606 if (checksum->digest_str)
1607 return checksum->digest_str;
1609 switch (checksum->type)
1611 case G_CHECKSUM_MD5:
1612 md5_sum_close (&(checksum->sum.md5));
1613 str = md5_sum_to_string (&(checksum->sum.md5));
1615 case G_CHECKSUM_SHA1:
1616 sha1_sum_close (&(checksum->sum.sha1));
1617 str = sha1_sum_to_string (&(checksum->sum.sha1));
1619 case G_CHECKSUM_SHA256:
1620 sha256_sum_close (&(checksum->sum.sha256));
1621 str = sha256_sum_to_string (&(checksum->sum.sha256));
1623 case G_CHECKSUM_SHA512:
1624 sha512_sum_close (&(checksum->sum.sha512));
1625 str = sha512_sum_to_string (&(checksum->sum.sha512));
1628 g_assert_not_reached ();
1632 checksum->digest_str = str;
1634 return checksum->digest_str;
1638 * g_checksum_get_digest: (skip)
1639 * @checksum: a #GChecksum
1640 * @buffer: output buffer
1641 * @digest_len: an inout parameter. The caller initializes it to the size of @buffer.
1642 * After the call it contains the length of the digest.
1644 * Gets the digest from @checksum as a raw binary vector and places it
1645 * into @buffer. The size of the digest depends on the type of checksum.
1647 * Once this function has been called, the #GChecksum is closed and can
1648 * no longer be updated with g_checksum_update().
1653 g_checksum_get_digest (GChecksum *checksum,
1657 gboolean checksum_open = FALSE;
1661 g_return_if_fail (checksum != NULL);
1663 len = g_checksum_type_get_length (checksum->type);
1664 g_return_if_fail (*digest_len >= len);
1666 checksum_open = !!(checksum->digest_str == NULL);
1668 switch (checksum->type)
1670 case G_CHECKSUM_MD5:
1673 md5_sum_close (&(checksum->sum.md5));
1674 str = md5_sum_to_string (&(checksum->sum.md5));
1676 md5_sum_digest (&(checksum->sum.md5), buffer);
1678 case G_CHECKSUM_SHA1:
1681 sha1_sum_close (&(checksum->sum.sha1));
1682 str = sha1_sum_to_string (&(checksum->sum.sha1));
1684 sha1_sum_digest (&(checksum->sum.sha1), buffer);
1686 case G_CHECKSUM_SHA256:
1689 sha256_sum_close (&(checksum->sum.sha256));
1690 str = sha256_sum_to_string (&(checksum->sum.sha256));
1692 sha256_sum_digest (&(checksum->sum.sha256), buffer);
1694 case G_CHECKSUM_SHA512:
1697 sha512_sum_close (&(checksum->sum.sha512));
1698 str = sha512_sum_to_string (&(checksum->sum.sha512));
1700 sha512_sum_digest (&(checksum->sum.sha512), buffer);
1703 g_assert_not_reached ();
1708 checksum->digest_str = str;
1714 * g_compute_checksum_for_data:
1715 * @checksum_type: a #GChecksumType
1716 * @data: (array length=length) (element-type guint8): binary blob to compute the digest of
1717 * @length: length of @data
1719 * Computes the checksum for a binary @data of @length. This is a
1720 * convenience wrapper for g_checksum_new(), g_checksum_get_string()
1721 * and g_checksum_free().
1723 * The hexadecimal string returned will be in lower case.
1725 * Return value: the digest of the binary data as a string in hexadecimal.
1726 * The returned string should be freed with g_free() when done using it.
1731 g_compute_checksum_for_data (GChecksumType checksum_type,
1735 GChecksum *checksum;
1738 g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
1739 g_return_val_if_fail (length == 0 || data != NULL, NULL);
1741 checksum = g_checksum_new (checksum_type);
1745 g_checksum_update (checksum, data, length);
1746 retval = g_strdup (g_checksum_get_string (checksum));
1747 g_checksum_free (checksum);
1753 * g_compute_checksum_for_string:
1754 * @checksum_type: a #GChecksumType
1755 * @str: the string to compute the checksum of
1756 * @length: the length of the string, or -1 if the string is null-terminated.
1758 * Computes the checksum of a string.
1760 * The hexadecimal string returned will be in lower case.
1762 * Return value: the checksum as a hexadecimal string. The returned string
1763 * should be freed with g_free() when done using it.
1768 g_compute_checksum_for_string (GChecksumType checksum_type,
1772 g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
1773 g_return_val_if_fail (length == 0 || str != NULL, NULL);
1776 length = strlen (str);
1778 return g_compute_checksum_for_data (checksum_type, (const guchar *) str, length);
1782 * g_compute_checksum_for_bytes:
1783 * @checksum_type: a #GChecksumType
1784 * @data: binary blob to compute the digest of
1786 * Computes the checksum for a binary @data. This is a
1787 * convenience wrapper for g_checksum_new(), g_checksum_get_string()
1788 * and g_checksum_free().
1790 * The hexadecimal string returned will be in lower case.
1792 * Return value: the digest of the binary data as a string in hexadecimal.
1793 * The returned string should be freed with g_free() when done using it.
1798 g_compute_checksum_for_bytes (GChecksumType checksum_type,
1801 gconstpointer byte_data;
1804 g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
1805 g_return_val_if_fail (data != NULL, NULL);
1807 byte_data = g_bytes_get_data (data, &length);
1808 return g_compute_checksum_for_data (checksum_type, byte_data, length);