1 /* gbase64.c - Base64 encoding/decoding
3 * Copyright (C) 2006 Alexander Larsson <alexl@redhat.com>
4 * Copyright (C) 2000-2003 Ximian Inc.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Library General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Library General Public License for more details.
16 * You should have received a copy of the GNU Library General Public
17 * License along with this library; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 02111-1307, USA.
21 * This is based on code in camel, written by:
22 * Michael Zucchi <notzed@ximian.com>
23 * Jeffrey Stedfast <fejj@ximian.com>
31 #include "gtestutils.h"
37 * @title: Base64 Encoding
38 * @short_description: encodes and decodes data in Base64 format
40 * Base64 is an encoding that allows a sequence of arbitrary bytes to be
41 * encoded as a sequence of printable ASCII characters. For the definition
42 * of Base64, see <ulink url="http://www.ietf.org/rfc/rfc1421.txt">RFC
43 * 1421</ulink> or <ulink url="http://www.ietf.org/rfc/rfc2045.txt">RFC
44 * 2045</ulink>. Base64 is most commonly used as a MIME transfer encoding
47 * GLib supports incremental encoding using g_base64_encode_step() and
48 * g_base64_encode_close(). Incremental decoding can be done with
49 * g_base64_decode_step(). To encode or decode data in one go, use
50 * g_base64_encode() or g_base64_decode(). To avoid memory allocation when
51 * decoding, you can use g_base64_decode_inplace().
53 * Support for Base64 encoding has been added in GLib 2.12.
56 static const char base64_alphabet[] =
57 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
60 * g_base64_encode_step:
61 * @in: (array length=len) (element-type guint8): the binary data to encode
62 * @len: the length of @in
63 * @break_lines: whether to break long lines
64 * @out: (out) (array) (element-type guint8): pointer to destination buffer
65 * @state: (inout): Saved state between steps, initialize to 0
66 * @save: (inout): Saved state between steps, initialize to 0
68 * Incrementally encode a sequence of binary data into its Base-64 stringified
69 * representation. By calling this function multiple times you can convert
70 * data in chunks to avoid having to have the full encoded data in memory.
72 * When all of the data has been converted you must call
73 * g_base64_encode_close() to flush the saved state.
75 * The output buffer must be large enough to fit all the data that will
76 * be written to it. Due to the way base64 encodes you will need
77 * at least: (@len / 3 + 1) * 4 + 4 bytes (+ 4 may be needed in case of
78 * non-zero state). If you enable line-breaking you will need at least:
79 * ((@len / 3 + 1) * 4 + 4) / 72 + 1 bytes of extra space.
81 * @break_lines is typically used when putting base64-encoded data in emails.
82 * It breaks the lines at 72 columns instead of putting all of the text on
83 * the same line. This avoids problems with long lines in the email system.
84 * Note however that it breaks the lines with <literal>LF</literal>
85 * characters, not <literal>CR LF</literal> sequences, so the result cannot
86 * be passed directly to SMTP or certain other protocols.
88 * Return value: The number of bytes of output that was written
93 g_base64_encode_step (const guchar *in,
103 g_return_val_if_fail (in != NULL, 0);
104 g_return_val_if_fail (out != NULL, 0);
105 g_return_val_if_fail (state != NULL, 0);
106 g_return_val_if_fail (save != NULL, 0);
114 if (len + ((char *) save) [0] > 2)
116 const guchar *inend = in+len-2;
122 switch (((char *) save) [0])
125 c1 = ((unsigned char *) save) [1];
128 c1 = ((unsigned char *) save) [1];
129 c2 = ((unsigned char *) save) [2];
134 * yes, we jump into the loop, no i'm not going to change it,
137 while (inptr < inend)
144 *outptr++ = base64_alphabet [ c1 >> 2 ];
145 *outptr++ = base64_alphabet [ c2 >> 4 |
147 *outptr++ = base64_alphabet [ ((c2 &0x0f) << 2) |
149 *outptr++ = base64_alphabet [ c3 & 0x3f ];
150 /* this is a bit ugly ... */
151 if (break_lines && (++already) >= 19)
158 ((char *)save)[0] = 0;
159 len = 2 - (inptr - inend);
167 /* points to the slot for the next char to save */
168 saveout = & (((char *)save)[1]) + ((char *)save)[0];
170 /* len can only be 0 1 or 2 */
173 case 2: *saveout++ = *inptr++;
174 case 1: *saveout++ = *inptr++;
176 ((char *)save)[0] += len;
183 * g_base64_encode_close:
184 * @break_lines: whether to break long lines
185 * @out: (out) (array) (element-type guint8): pointer to destination buffer
186 * @state: (inout): Saved state from g_base64_encode_step()
187 * @save: (inout): Saved state from g_base64_encode_step()
189 * Flush the status from a sequence of calls to g_base64_encode_step().
191 * The output buffer must be large enough to fit all the data that will
192 * be written to it. It will need up to 4 bytes, or up to 5 bytes if
193 * line-breaking is enabled.
195 * Return value: The number of bytes of output that was written
200 g_base64_encode_close (gboolean break_lines,
208 g_return_val_if_fail (out != NULL, 0);
209 g_return_val_if_fail (state != NULL, 0);
210 g_return_val_if_fail (save != NULL, 0);
212 c1 = ((unsigned char *) save) [1];
213 c2 = ((unsigned char *) save) [2];
215 switch (((char *) save) [0])
218 outptr [2] = base64_alphabet[ ( (c2 &0x0f) << 2 ) ];
219 g_assert (outptr [2] != 0);
224 outptr [0] = base64_alphabet [ c1 >> 2 ];
225 outptr [1] = base64_alphabet [ c2 >> 4 | ( (c1&0x3) << 4 )];
241 * @data: (array length=len) (element-type guint8): the binary data to encode
242 * @len: the length of @data
244 * Encode a sequence of binary data into its Base-64 stringified
247 * Return value: (transfer full): a newly allocated, zero-terminated Base-64
248 * encoded string representing @data. The returned string must
249 * be freed with g_free().
254 g_base64_encode (const guchar *data,
258 gint state = 0, outlen;
261 g_return_val_if_fail (data != NULL || len == 0, NULL);
263 /* We can use a smaller limit here, since we know the saved state is 0,
264 +1 is needed for trailing \0, also check for unlikely integer overflow */
265 if (len >= ((G_MAXSIZE - 1) / 4 - 1) * 3)
266 g_error("%s: input too large for Base64 encoding (%"G_GSIZE_FORMAT" chars)",
269 out = g_malloc ((len / 3 + 1) * 4 + 1);
271 outlen = g_base64_encode_step (data, len, FALSE, out, &state, &save);
272 outlen += g_base64_encode_close (FALSE, out + outlen, &state, &save);
275 return (gchar *) out;
278 static const unsigned char mime_base64_rank[256] = {
279 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
280 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
281 255,255,255,255,255,255,255,255,255,255,255, 62,255,255,255, 63,
282 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,255,255,255, 0,255,255,
283 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
284 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,255,255,255,255,255,
285 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
286 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,255,255,255,255,255,
287 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
288 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
289 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
290 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
291 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
292 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
293 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
294 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
298 * g_base64_decode_step:
299 * @in: (array length=len) (element-type guint8): binary input data
300 * @len: max length of @in data to decode
301 * @out: (out) (array) (element-type guint8): output buffer
302 * @state: (inout): Saved state between steps, initialize to 0
303 * @save: (inout): Saved state between steps, initialize to 0
305 * Incrementally decode a sequence of binary data from its Base-64 stringified
306 * representation. By calling this function multiple times you can convert
307 * data in chunks to avoid having to have the full encoded data in memory.
309 * The output buffer must be large enough to fit all the data that will
310 * be written to it. Since base64 encodes 3 bytes in 4 chars you need
311 * at least: (@len / 4) * 3 + 3 bytes (+ 3 may be needed in case of non-zero
314 * Return value: The number of bytes of output that was written
319 g_base64_decode_step (const gchar *in,
333 g_return_val_if_fail (in != NULL, 0);
334 g_return_val_if_fail (out != NULL, 0);
335 g_return_val_if_fail (state != NULL, 0);
336 g_return_val_if_fail (save != NULL, 0);
341 inend = (const guchar *)in+len;
344 /* convert 4 base64 bytes to 3 normal bytes */
348 last[0] = last[1] = 0;
350 /* we use the sign in the state to determine if we got a padding character
351 in the previous sequence */
358 inptr = (const guchar *)in;
359 while (inptr < inend)
362 rank = mime_base64_rank [c];
382 *state = last[0] == '=' ? -i : i;
389 * @text: zero-terminated string with base64 text to decode
390 * @out_len: (out): The length of the decoded data is written here
392 * Decode a sequence of Base-64 encoded text into binary data. Note
393 * that the returned binary data is not necessarily zero-terminated,
394 * so it should not be used as a character string.
396 * Return value: (transfer full) (array length=out_len) (element-type guint8):
397 * newly allocated buffer containing the binary data
398 * that @text represents. The returned buffer must
399 * be freed with g_free().
404 g_base64_decode (const gchar *text,
412 g_return_val_if_fail (text != NULL, NULL);
413 g_return_val_if_fail (out_len != NULL, NULL);
415 input_length = strlen (text);
417 /* We can use a smaller limit here, since we know the saved state is 0,
418 +1 used to avoid calling g_malloc0(0), and hence returning NULL */
419 ret = g_malloc0 ((input_length / 4) * 3 + 1);
421 *out_len = g_base64_decode_step (text, input_length, ret, &state, &save);
427 * g_base64_decode_inplace:
428 * @text: (inout) (array length=out_len) (element-type guint8): zero-terminated
429 * string with base64 text to decode
430 * @out_len: (inout): The length of the decoded data is written here
432 * Decode a sequence of Base-64 encoded text into binary data
433 * by overwriting the input data.
435 * Return value: (transfer none): The binary data that @text responds. This pointer
436 * is the same as the input @text.
441 g_base64_decode_inplace (gchar *text,
444 gint input_length, state = 0;
447 g_return_val_if_fail (text != NULL, NULL);
448 g_return_val_if_fail (out_len != NULL, NULL);
450 input_length = strlen (text);
452 g_return_val_if_fail (input_length > 1, NULL);
454 *out_len = g_base64_decode_step (text, input_length, (guchar *) text, &state, &save);
456 return (guchar *) text;