Fix date of last commit.
[external/binutils.git] / gdb / z8k-tdep.c
1 /* Target-machine dependent code for Zilog Z8000, for GDB.
2    Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
3
4    This file is part of GDB.
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 2 of the License, or
9    (at your option) any later version.
10
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 59 Temple Place - Suite 330,
19    Boston, MA 02111-1307, USA.  */
20
21 /*
22    Contributed by Steve Chamberlain
23    sac@cygnus.com
24  */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "obstack.h"
29 #include "symtab.h"
30 #include "gdbcmd.h"
31 #include "gdbtypes.h"
32 #include "dis-asm.h"
33 #include "gdbcore.h"
34
35 #include "value.h" /* For read_register() */
36
37
38 static int read_memory_pointer (CORE_ADDR x);
39
40 /* Return the saved PC from this frame.
41
42    If the frame has a memory copy of SRP_REGNUM, use that.  If not,
43    just use the register SRP_REGNUM itself.  */
44
45 CORE_ADDR
46 z8k_frame_saved_pc (struct frame_info *frame)
47 {
48   return read_memory_pointer (frame->frame + (BIG ? 4 : 2));
49 }
50
51 #define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
52 #define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
53 #define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
54 #define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
55 #define IS_SUB2_SP(x) (x==0x1b87)
56 #define IS_MOVK_R5(x) (x==0x7905)
57 #define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
58 #define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
59
60 /* work out how much local space is on the stack and
61    return the pc pointing to the first push */
62
63 static CORE_ADDR
64 skip_adjust (CORE_ADDR pc, int *size)
65 {
66   *size = 0;
67
68   if (IS_PUSH_FP (read_memory_short (pc))
69       && IS_MOV_SP_FP (read_memory_short (pc + 2)))
70     {
71       /* This is a function with an explict frame pointer */
72       pc += 4;
73       *size += 2;               /* remember the frame pointer */
74     }
75
76   /* remember any stack adjustment */
77   if (IS_SUB_SP (read_memory_short (pc)))
78     {
79       *size += read_memory_short (pc + 2);
80       pc += 4;
81     }
82   return pc;
83 }
84
85 static CORE_ADDR examine_frame (CORE_ADDR, CORE_ADDR * regs, CORE_ADDR);
86 static CORE_ADDR
87 examine_frame (CORE_ADDR pc, CORE_ADDR *regs, CORE_ADDR sp)
88 {
89   int w = read_memory_short (pc);
90   int offset = 0;
91   int regno;
92
93   for (regno = 0; regno < NUM_REGS; regno++)
94     regs[regno] = 0;
95
96   while (IS_PUSHW (w) || IS_PUSHL (w))
97     {
98       /* work out which register is being pushed to where */
99       if (IS_PUSHL (w))
100         {
101           regs[w & 0xf] = offset;
102           regs[(w & 0xf) + 1] = offset + 2;
103           offset += 4;
104         }
105       else
106         {
107           regs[w & 0xf] = offset;
108           offset += 2;
109         }
110       pc += 2;
111       w = read_memory_short (pc);
112     }
113
114   if (IS_MOVE_FP (w))
115     {
116       /* We know the fp */
117
118     }
119   else if (IS_SUB_SP (w))
120     {
121       /* Subtracting a value from the sp, so were in a function
122          which needs stack space for locals, but has no fp.  We fake up
123          the values as if we had an fp */
124       regs[FP_REGNUM] = sp;
125     }
126   else
127     {
128       /* This one didn't have an fp, we'll fake it up */
129       regs[SP_REGNUM] = sp;
130     }
131   /* stack pointer contains address of next frame */
132   /*  regs[fp_regnum()] = fp; */
133   regs[SP_REGNUM] = sp;
134   return pc;
135 }
136
137 CORE_ADDR
138 z8k_skip_prologue (CORE_ADDR start_pc)
139 {
140   CORE_ADDR dummy[NUM_REGS];
141
142   return examine_frame (start_pc, dummy, 0);
143 }
144
145 CORE_ADDR
146 z8k_addr_bits_remove (CORE_ADDR addr)
147 {
148   return (addr & PTR_MASK);
149 }
150
151 static int
152 read_memory_pointer (CORE_ADDR x)
153 {
154   return read_memory_integer (ADDR_BITS_REMOVE (x), BIG ? 4 : 2);
155 }
156
157 CORE_ADDR
158 z8k_frame_chain (struct frame_info *thisframe)
159 {
160   if (thisframe->prev == 0)
161     {
162       /* This is the top of the stack, let's get the sp for real */
163     }
164   if (!inside_entry_file (thisframe->pc))
165     {
166       return read_memory_pointer (thisframe->frame);
167     }
168   return 0;
169 }
170
171 void
172 init_frame_pc (void)
173 {
174   abort ();
175 }
176
177 /* Put here the code to store, into a struct frame_saved_regs,
178    the addresses of the saved registers of frame described by FRAME_INFO.
179    This includes special registers such as pc and fp saved in special
180    ways in the stack frame.  sp is even more special:
181    the address we return for it IS the sp for the next frame.  */
182
183 void
184 z8k_frame_init_saved_regs (struct frame_info *frame_info)
185 {
186   CORE_ADDR pc;
187   int w;
188
189   frame_saved_regs_zalloc (frame_info);
190   pc = get_pc_function_start (frame_info->pc);
191
192   /* wander down the instruction stream */
193   examine_frame (pc, frame_info->saved_regs, frame_info->frame);
194
195 }
196
197 void
198 z8k_push_dummy_frame (void)
199 {
200   abort ();
201 }
202
203 int
204 gdb_print_insn_z8k (bfd_vma memaddr, disassemble_info *info)
205 {
206   if (BIG)
207     return print_insn_z8001 (memaddr, info);
208   else
209     return print_insn_z8002 (memaddr, info);
210 }
211
212 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
213    is not the address of a valid instruction, the address of the next
214    instruction beyond ADDR otherwise.  *PWORD1 receives the first word
215    of the instruction. */
216
217 CORE_ADDR
218 NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, short *pword1)
219 {
220   char buf[2];
221   if (addr < lim + 8)
222     {
223       read_memory (addr, buf, 2);
224       *pword1 = extract_signed_integer (buf, 2);
225
226       return addr + 2;
227     }
228   return 0;
229 }
230
231 #if 0
232 /* Put here the code to store, into a struct frame_saved_regs,
233    the addresses of the saved registers of frame described by FRAME_INFO.
234    This includes special registers such as pc and fp saved in special
235    ways in the stack frame.  sp is even more special:
236    the address we return for it IS the sp for the next frame.
237
238    We cache the result of doing this in the frame_cache_obstack, since
239    it is fairly expensive.  */
240
241 void
242 frame_find_saved_regs (struct frame_info *fip, struct frame_saved_regs *fsrp)
243 {
244   int locals;
245   CORE_ADDR pc;
246   CORE_ADDR adr;
247   int i;
248
249   memset (fsrp, 0, sizeof *fsrp);
250
251   pc = skip_adjust (get_pc_function_start (fip->pc), &locals);
252
253   {
254     adr = FRAME_FP (fip) - locals;
255     for (i = 0; i < 8; i++)
256       {
257         int word = read_memory_short (pc);
258
259         pc += 2;
260         if (IS_PUSHL (word))
261           {
262             fsrp->regs[word & 0xf] = adr;
263             fsrp->regs[(word & 0xf) + 1] = adr - 2;
264             adr -= 4;
265           }
266         else if (IS_PUSHW (word))
267           {
268             fsrp->regs[word & 0xf] = adr;
269             adr -= 2;
270           }
271         else
272           break;
273       }
274
275   }
276
277   fsrp->regs[PC_REGNUM] = fip->frame + 4;
278   fsrp->regs[FP_REGNUM] = fip->frame;
279
280 }
281 #endif
282
283 int
284 z8k_saved_pc_after_call (struct frame_info *frame)
285 {
286   return ADDR_BITS_REMOVE
287     (read_memory_integer (read_register (SP_REGNUM), PTR_SIZE));
288 }
289
290
291 void
292 extract_return_value (struct type *type, char *regbuf, char *valbuf)
293 {
294   int b;
295   int len = TYPE_LENGTH (type);
296
297   for (b = 0; b < len; b += 2)
298     {
299       int todo = len - b;
300
301       if (todo > 2)
302         todo = 2;
303       memcpy (valbuf + b, regbuf + b, todo);
304     }
305 }
306
307 void
308 write_return_value (struct type *type, char *valbuf)
309 {
310   int reg;
311   int len;
312
313   for (len = 0; len < TYPE_LENGTH (type); len += 2)
314     write_register_bytes (REGISTER_BYTE (len / 2 + 2), valbuf + len, 2);
315 }
316
317 void
318 store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
319 {
320   write_register (2, addr);
321 }
322
323
324 void
325 z8k_print_register_hook (int regno)
326 {
327   if ((regno & 1) == 0 && regno < 16)
328     {
329       unsigned short l[2];
330
331       read_relative_register_raw_bytes (regno, (char *) (l + 0));
332       read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
333       printf_unfiltered ("\t");
334       printf_unfiltered ("%04x%04x", l[0], l[1]);
335     }
336
337   if ((regno & 3) == 0 && regno < 16)
338     {
339       unsigned short l[4];
340
341       read_relative_register_raw_bytes (regno, (char *) (l + 0));
342       read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
343       read_relative_register_raw_bytes (regno + 2, (char *) (l + 2));
344       read_relative_register_raw_bytes (regno + 3, (char *) (l + 3));
345
346       printf_unfiltered ("\t");
347       printf_unfiltered ("%04x%04x%04x%04x", l[0], l[1], l[2], l[3]);
348     }
349   if (regno == 15)
350     {
351       unsigned short rval;
352       int i;
353
354       read_relative_register_raw_bytes (regno, (char *) (&rval));
355
356       printf_unfiltered ("\n");
357       for (i = 0; i < 10; i += 2)
358         {
359           printf_unfiltered ("(sp+%d=%04x)", i,
360                              (unsigned int)read_memory_short (rval + i));
361         }
362     }
363
364 }
365
366 void
367 z8k_pop_frame (void)
368 {
369 }
370
371 struct cmd_list_element *setmemorylist;
372
373 void
374 z8k_set_pointer_size (int newsize)
375 {
376   static int oldsize = 0;
377
378   if (oldsize != newsize)
379     {
380       printf_unfiltered ("pointer size set to %d bits\n", newsize);
381       oldsize = newsize;
382       if (newsize == 32)
383         {
384           BIG = 1;
385         }
386       else
387         {
388           BIG = 0;
389         }
390       /* FIXME: This code should be using the GDBARCH framework to
391          handle changed type sizes.  If this problem is ever fixed
392          (the direct reference to _initialize_gdbtypes() below
393          eliminated) then Makefile.in should be updated so that
394          z8k-tdep.c is again compiled with -Werror. */
395       _initialize_gdbtypes ();
396     }
397 }
398
399 static void
400 segmented_command (char *args, int from_tty)
401 {
402   z8k_set_pointer_size (32);
403 }
404
405 static void
406 unsegmented_command (char *args, int from_tty)
407 {
408   z8k_set_pointer_size (16);
409 }
410
411 static void
412 set_memory (char *args, int from_tty)
413 {
414   printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
415   help_list (setmemorylist, "set memory ", -1, gdb_stdout);
416 }
417
418 void
419 _initialize_z8ktdep (void)
420 {
421   tm_print_insn = gdb_print_insn_z8k;
422
423   add_prefix_cmd ("memory", no_class, set_memory,
424                   "set the memory model", &setmemorylist, "set memory ", 0,
425                   &setlist);
426   add_cmd ("segmented", class_support, segmented_command,
427            "Set segmented memory model.", &setmemorylist);
428   add_cmd ("unsegmented", class_support, unsegmented_command,
429            "Set unsegmented memory model.", &setmemorylist);
430
431 }