1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "solib-svr4.h"
32 #include "floatformat.h"
34 #include "reggroups.h"
37 #include "dummy-frame.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
44 #include "arch-utils.h"
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
58 static unsigned int xtensa_debug_level = 0;
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
114 #define XTENSA_ENTRY_LENGTH 3
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
124 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133 /* Convert a live A-register number to the corresponding AR-register
136 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
145 return arreg + tdep->ar_base;
148 /* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
151 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
163 /* Read Xtensa register directly from the hardware. */
165 xtensa_read_register (int regnum)
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
173 /* Write Xtensa register directly to the hardware. */
175 xtensa_write_register (int regnum, ULONGEST value)
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180 /* Return the window size of the previous call to the function from which we
183 This function is used to extract the return value after a called function
184 has returned to the caller. On Xtensa, the register that holds the return
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
192 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
203 insn = extract_unsigned_integer (buf, 3, byte_order);
205 /* Decode call instruction:
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
213 if (byte_order == BFD_ENDIAN_LITTLE)
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
227 /* REGISTER INFORMATION */
229 /* Find register by name. */
231 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
245 /* Returns the name of a register. */
247 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
249 /* Return the name stored in the register map. */
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
258 /* Return the type of a register. Create a new type, if necessary. */
261 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265 /* Return signed integer for ARx and Ax registers. */
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
270 return builtin_type (gdbarch)->builtin_int;
272 if (regnum == gdbarch_pc_regnum (gdbarch)
273 || regnum == tdep->a0_base + 1)
274 return builtin_type (gdbarch)->builtin_data_ptr;
276 /* Return the stored type for all other registers. */
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
280 xtensa_register_t* reg = &tdep->regmap[regnum];
282 /* Set ctype for this register (only the first time). */
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
289 /* We always use the memory representation,
290 even if the register width is smaller. */
294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
315 if (tp->size == size)
320 char *name = xstrprintf ("int%d", size * 8);
322 tp = XNEW (struct ctype_cache);
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
327 = arch_integer_type (gdbarch, size * 8, 1, name);
331 reg->ctype = tp->virtual_type;
337 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
342 /* Return the 'local' register number for stubs, dwarf2, etc.
343 The debugging information enumerates registers starting from 0 for A0
344 to n for An. So, we only have to add the base number for A0. */
347 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
351 if (regnum >= 0 && regnum < 16)
352 return gdbarch_tdep (gdbarch)->a0_base + regnum;
355 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
357 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
393 mem |= (buffer[bytesize - i - 1] << 24);
398 for (i = 0; i < bytesize; i++)
401 mem |= (buffer[i] << 24);
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
431 regval |= mem << (size - shift);
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
438 /* Don't overwrite the unmasked areas. */
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
476 int r = mask->mask[i].reg_num;
479 enum register_status status;
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
485 regval = (unsigned int) val;
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
496 regval &= (0xffffffff >> (32 - size));
498 mem |= regval << shift;
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
512 mem = regval >> (size - shift);
519 /* Copy value to target byte order. */
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
528 buffer[bytesize - i - 1] = mem & 0xff;
532 for (i = 0; i < bytesize; i++)
536 buffer[i] = mem & 0xff;
544 /* Read pseudo registers. */
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
562 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
563 enum register_status status;
565 status = regcache_raw_read (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
568 if (status != REG_VALID)
570 regnum = arreg_number (gdbarch, regnum,
571 extract_unsigned_integer (buf, 4, byte_order));
574 /* We can always read non-pseudo registers. */
575 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
576 return regcache_raw_read (regcache, regnum, buffer);
578 /* We have to find out how to deal with priveleged registers.
579 Let's treat them as pseudo-registers, but we cannot read/write them. */
581 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
589 /* Pseudo registers. */
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
595 xtensa_register_type_t type = reg->type;
596 int flags = gdbarch_tdep (gdbarch)->target_flags;
598 /* We cannot read Unknown or Unmapped registers. */
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
603 warning (_("cannot read register %s"),
604 xtensa_register_name (gdbarch, regnum));
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
615 warning (_("cannot read register"));
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
622 warning (_("cannot read register"));
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
629 return xtensa_register_read_masked (regcache, reg, buffer);
631 /* Assume that we can read the register. */
632 return regcache_raw_read (regcache, regnum, buffer);
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
640 /* Write pseudo registers. */
643 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
646 const gdb_byte *buffer)
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
651 regnum, xtensa_register_name (gdbarch, regnum));
653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
658 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
660 regcache_raw_read (regcache,
661 gdbarch_tdep (gdbarch)->wb_regnum, buf);
662 regnum = arreg_number (gdbarch, regnum,
663 extract_unsigned_integer (buf, 4, byte_order));
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
669 regcache_raw_write (regcache, regnum, buffer);
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
678 /* Pseudo registers. */
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
684 xtensa_register_type_t type = reg->type;
685 int flags = gdbarch_tdep (gdbarch)->target_flags;
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
693 warning (_("cannot write register %s"),
694 xtensa_register_name (gdbarch, regnum));
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
705 warning (_("cannot write register"));
709 /* On some targets (esp. simulators), we can always write
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
713 warning (_("cannot write register"));
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
721 xtensa_register_write_masked (regcache, reg, buffer);
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
733 static struct reggroup *xtensa_ar_reggroup;
734 static struct reggroup *xtensa_user_reggroup;
735 static struct reggroup *xtensa_vectra_reggroup;
736 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
739 xtensa_init_reggroups (void)
742 char cpname[] = "cp0";
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
751 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
756 xtensa_add_reggroups (struct gdbarch *gdbarch)
760 /* Predefined groups. */
761 reggroup_add (gdbarch, all_reggroup);
762 reggroup_add (gdbarch, save_reggroup);
763 reggroup_add (gdbarch, restore_reggroup);
764 reggroup_add (gdbarch, system_reggroup);
765 reggroup_add (gdbarch, vector_reggroup);
766 reggroup_add (gdbarch, general_reggroup);
767 reggroup_add (gdbarch, float_reggroup);
769 /* Xtensa-specific groups. */
770 reggroup_add (gdbarch, xtensa_ar_reggroup);
771 reggroup_add (gdbarch, xtensa_user_reggroup);
772 reggroup_add (gdbarch, xtensa_vectra_reggroup);
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 reggroup_add (gdbarch, xtensa_cp[i]);
779 xtensa_coprocessor_register_group (struct reggroup *group)
783 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
784 if (group == xtensa_cp[i])
790 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE \
792 | XTENSA_REGISTER_FLAGS_VOLATILE)
794 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
795 | XTENSA_REGISTER_FLAGS_WRITABLE)
798 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
800 struct reggroup *group)
802 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
803 xtensa_register_type_t type = reg->type;
804 xtensa_register_group_t rg = reg->group;
807 if (group == save_reggroup)
808 /* Every single register should be included into the list of registers
809 to be watched for changes while using -data-list-changed-registers. */
812 /* First, skip registers that are not visible to this target
813 (unknown and unmapped registers when not using ISS). */
815 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
817 if (group == all_reggroup)
819 if (group == xtensa_ar_reggroup)
820 return rg & xtRegisterGroupAddrReg;
821 if (group == xtensa_user_reggroup)
822 return rg & xtRegisterGroupUser;
823 if (group == float_reggroup)
824 return rg & xtRegisterGroupFloat;
825 if (group == general_reggroup)
826 return rg & xtRegisterGroupGeneral;
827 if (group == system_reggroup)
828 return rg & xtRegisterGroupState;
829 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
830 return rg & xtRegisterGroupVectra;
831 if (group == restore_reggroup)
832 return (regnum < gdbarch_num_regs (gdbarch)
833 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
834 cp_number = xtensa_coprocessor_register_group (group);
836 return rg & (xtRegisterGroupCP0 << cp_number);
842 /* Supply register REGNUM from the buffer specified by GREGS and LEN
843 in the general-purpose register set REGSET to register cache
844 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
847 xtensa_supply_gregset (const struct regset *regset,
853 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
854 struct gdbarch *gdbarch = get_regcache_arch (rc);
857 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
859 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
861 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
863 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
865 (char *) ®s->windowbase);
866 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
868 (char *) ®s->windowstart);
869 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
871 (char *) ®s->lbeg);
872 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
874 (char *) ®s->lend);
875 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
877 (char *) ®s->lcount);
878 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
880 (char *) ®s->sar);
881 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
882 && regnum < gdbarch_tdep (gdbarch)->ar_base
883 + gdbarch_tdep (gdbarch)->num_aregs)
884 regcache_raw_supply (rc, regnum,
885 (char *) ®s->ar[regnum - gdbarch_tdep
886 (gdbarch)->ar_base]);
887 else if (regnum == -1)
889 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
890 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
891 (char *) ®s->ar[i]);
896 /* Xtensa register set. */
902 xtensa_supply_gregset
906 /* Iterate over supported core file register note sections. */
909 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
910 iterate_over_regset_sections_cb *cb,
912 const struct regcache *regcache)
914 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
916 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
921 /* Handling frames. */
923 /* Number of registers to save in case of Windowed ABI. */
924 #define XTENSA_NUM_SAVED_AREGS 12
926 /* Frame cache part for Windowed ABI. */
927 typedef struct xtensa_windowed_frame_cache
929 int wb; /* WINDOWBASE of the previous frame. */
930 int callsize; /* Call size of this frame. */
931 int ws; /* WINDOWSTART of the previous frame. It keeps track of
932 life windows only. If there is no bit set for the
933 window, that means it had been already spilled
934 because of window overflow. */
936 /* Addresses of spilled A-registers.
937 AREGS[i] == -1, if corresponding AR is alive. */
938 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
939 } xtensa_windowed_frame_cache_t;
941 /* Call0 ABI Definitions. */
943 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
945 #define C0_NREGS 16 /* Number of A-registers to track. */
946 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
947 #define C0_SP 1 /* Register used as SP. */
948 #define C0_FP 15 /* Register used as FP. */
949 #define C0_RA 0 /* Register used as return address. */
950 #define C0_ARGS 2 /* Register used as first arg/retval. */
951 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
953 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
954 A-register where the current content of the reg came from (in terms
955 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
956 mean that the orignal content of the register was saved to the stack.
957 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
958 know where SP will end up until the entire prologue has been analyzed. */
960 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
961 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
962 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
964 extern xtensa_isa xtensa_default_isa;
966 typedef struct xtensa_c0reg
968 int fr_reg; /* original register from which register content
969 is derived, or C0_CONST, or C0_INEXP. */
970 int fr_ofs; /* constant offset from reg, or immediate value. */
971 int to_stk; /* offset from original SP to register (4-byte aligned),
972 or C0_NOSTK if register has not been saved. */
975 /* Frame cache part for Call0 ABI. */
976 typedef struct xtensa_call0_frame_cache
978 int c0_frmsz; /* Stack frame size. */
979 int c0_hasfp; /* Current frame uses frame pointer. */
980 int fp_regnum; /* A-register used as FP. */
981 int c0_fp; /* Actual value of frame pointer. */
982 int c0_fpalign; /* Dinamic adjustment for the stack
983 pointer. It's an AND mask. Zero,
984 if alignment was not adjusted. */
985 int c0_old_sp; /* In case of dynamic adjustment, it is
986 a register holding unaligned sp.
987 C0_INEXP, when undefined. */
988 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
989 stack offset. C0_NOSTK otherwise. */
991 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
992 } xtensa_call0_frame_cache_t;
994 typedef struct xtensa_frame_cache
996 CORE_ADDR base; /* Stack pointer of this frame. */
997 CORE_ADDR pc; /* PC of this frame at the function entry point. */
998 CORE_ADDR ra; /* The raw return address of this frame. */
999 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1000 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1001 int call0; /* It's a call0 framework (else windowed). */
1004 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1005 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1007 } xtensa_frame_cache_t;
1010 static struct xtensa_frame_cache *
1011 xtensa_alloc_frame_cache (int windowed)
1013 xtensa_frame_cache_t *cache;
1016 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1018 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1025 cache->call0 = !windowed;
1028 cache->c0.c0_frmsz = -1;
1029 cache->c0.c0_hasfp = 0;
1030 cache->c0.fp_regnum = -1;
1031 cache->c0.c0_fp = -1;
1032 cache->c0.c0_fpalign = 0;
1033 cache->c0.c0_old_sp = C0_INEXP;
1034 cache->c0.c0_sp_ofs = C0_NOSTK;
1036 for (i = 0; i < C0_NREGS; i++)
1038 cache->c0.c0_rt[i].fr_reg = i;
1039 cache->c0.c0_rt[i].fr_ofs = 0;
1040 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1047 cache->wd.callsize = -1;
1049 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1050 cache->wd.aregs[i] = -1;
1057 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1059 return address & ~15;
1064 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1069 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1070 host_address_to_string (next_frame));
1072 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1073 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1075 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1081 static struct frame_id
1082 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1086 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1088 pc = get_frame_pc (this_frame);
1089 fp = get_frame_register_unsigned
1090 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1092 /* Make dummy frame ID unique by adding a constant. */
1093 return frame_id_build (fp + SP_ALIGNMENT, pc);
1096 /* Returns true, if instruction to execute next is unique to Xtensa Window
1097 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1100 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1102 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1103 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1106 if (byte_order == BFD_ENDIAN_BIG)
1108 /* Check, if this is L32E or S32E. */
1109 code = insn & 0xf000ff00;
1110 if ((code == 0x00009000) || (code == 0x00009400))
1112 /* Check, if this is RFWU or RFWO. */
1113 code = insn & 0xffffff00;
1114 return ((code == 0x00430000) || (code == 0x00530000));
1118 /* Check, if this is L32E or S32E. */
1119 code = insn & 0x00ff000f;
1120 if ((code == 0x090000) || (code == 0x490000))
1122 /* Check, if this is RFWU or RFWO. */
1123 code = insn & 0x00ffffff;
1124 return ((code == 0x00003400) || (code == 0x00003500));
1128 /* Returns the best guess about which register is a frame pointer
1129 for the function containing CURRENT_PC. */
1131 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1132 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1135 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1137 #define RETURN_FP goto done
1139 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1140 CORE_ADDR start_addr;
1142 xtensa_insnbuf ins, slot;
1143 gdb_byte ibuf[XTENSA_ISA_BSZ];
1144 CORE_ADDR ia, bt, ba;
1146 int ilen, islots, is;
1148 const char *opcname;
1150 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1151 if (start_addr == 0)
1154 isa = xtensa_default_isa;
1155 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1156 ins = xtensa_insnbuf_alloc (isa);
1157 slot = xtensa_insnbuf_alloc (isa);
1160 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1162 if (ia + xtensa_isa_maxlength (isa) > bt)
1165 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1166 ? ba + XTENSA_ISA_BSZ : current_pc;
1167 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1171 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1172 ifmt = xtensa_format_decode (isa, ins);
1173 if (ifmt == XTENSA_UNDEFINED)
1175 ilen = xtensa_format_length (isa, ifmt);
1176 if (ilen == XTENSA_UNDEFINED)
1178 islots = xtensa_format_num_slots (isa, ifmt);
1179 if (islots == XTENSA_UNDEFINED)
1182 for (is = 0; is < islots; ++is)
1184 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1187 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1188 if (opc == XTENSA_UNDEFINED)
1191 opcname = xtensa_opcode_name (isa, opc);
1193 if (strcasecmp (opcname, "mov.n") == 0
1194 || strcasecmp (opcname, "or") == 0)
1196 unsigned int register_operand;
1198 /* Possible candidate for setting frame pointer
1199 from A1. This is what we are looking for. */
1201 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1202 is, slot, ®ister_operand) != 0)
1204 if (xtensa_operand_decode (isa, opc, 1, ®ister_operand) != 0)
1206 if (register_operand == 1) /* Mov{.n} FP A1. */
1208 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1209 ®ister_operand) != 0)
1211 if (xtensa_operand_decode (isa, opc, 0,
1212 ®ister_operand) != 0)
1216 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1222 /* We have problems decoding the memory. */
1224 || strcasecmp (opcname, "ill") == 0
1225 || strcasecmp (opcname, "ill.n") == 0
1226 /* Hit planted breakpoint. */
1227 || strcasecmp (opcname, "break") == 0
1228 || strcasecmp (opcname, "break.n") == 0
1229 /* Flow control instructions finish prologue. */
1230 || xtensa_opcode_is_branch (isa, opc) > 0
1231 || xtensa_opcode_is_jump (isa, opc) > 0
1232 || xtensa_opcode_is_loop (isa, opc) > 0
1233 || xtensa_opcode_is_call (isa, opc) > 0
1234 || strcasecmp (opcname, "simcall") == 0
1235 || strcasecmp (opcname, "syscall") == 0)
1236 /* Can not continue analysis. */
1241 xtensa_insnbuf_free(isa, slot);
1242 xtensa_insnbuf_free(isa, ins);
1246 /* The key values to identify the frame using "cache" are
1248 cache->base = SP (or best guess about FP) of this frame;
1249 cache->pc = entry-PC (entry point of the frame function);
1250 cache->prev_sp = SP of the previous frame. */
1253 call0_frame_cache (struct frame_info *this_frame,
1254 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1257 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1258 xtensa_frame_cache_t *cache,
1261 static struct xtensa_frame_cache *
1262 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1264 xtensa_frame_cache_t *cache;
1265 CORE_ADDR ra, wb, ws, pc, sp, ps;
1266 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1268 unsigned int fp_regnum;
1269 int windowed, ps_regnum;
1272 return (struct xtensa_frame_cache *) *this_cache;
1274 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1275 ps_regnum = gdbarch_ps_regnum (gdbarch);
1276 ps = (ps_regnum >= 0
1277 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1279 windowed = windowing_enabled (gdbarch, ps);
1281 /* Get pristine xtensa-frame. */
1282 cache = xtensa_alloc_frame_cache (windowed);
1283 *this_cache = cache;
1289 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1290 wb = get_frame_register_unsigned (this_frame,
1291 gdbarch_tdep (gdbarch)->wb_regnum);
1292 ws = get_frame_register_unsigned (this_frame,
1293 gdbarch_tdep (gdbarch)->ws_regnum);
1295 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1296 && XTENSA_IS_ENTRY (gdbarch, op1))
1298 int callinc = CALLINC (ps);
1299 ra = get_frame_register_unsigned
1300 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1302 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1303 cache->wd.callsize = 0;
1306 cache->prev_sp = get_frame_register_unsigned
1307 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1309 /* This only can be the outermost frame since we are
1310 just about to execute ENTRY. SP hasn't been set yet.
1311 We can assume any frame size, because it does not
1312 matter, and, let's fake frame base in cache. */
1313 cache->base = cache->prev_sp - 16;
1316 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1317 cache->ps = (ps & ~PS_CALLINC_MASK)
1318 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1324 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1325 ra = get_frame_register_unsigned (this_frame,
1326 gdbarch_tdep (gdbarch)->a0_base);
1327 cache->wd.callsize = WINSIZE (ra);
1328 cache->wd.wb = (wb - cache->wd.callsize / 4)
1329 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1330 cache->wd.ws = ws & ~(1 << wb);
1332 cache->pc = get_frame_func (this_frame);
1333 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1334 cache->ps = (ps & ~PS_CALLINC_MASK)
1335 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1338 if (cache->wd.ws == 0)
1343 sp = get_frame_register_unsigned
1344 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1346 for (i = 0; i < 4; i++, sp += 4)
1348 cache->wd.aregs[i] = sp;
1351 if (cache->wd.callsize > 4)
1353 /* Set A4...A7/A11. */
1354 /* Get the SP of the frame previous to the previous one.
1355 To achieve this, we have to dereference SP twice. */
1356 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1357 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1358 sp -= cache->wd.callsize * 4;
1360 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1362 cache->wd.aregs[i] = sp;
1367 if ((cache->prev_sp == 0) && ( ra != 0 ))
1368 /* If RA is equal to 0 this frame is an outermost frame. Leave
1369 cache->prev_sp unchanged marking the boundary of the frame stack. */
1371 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1373 /* Register window overflow already happened.
1374 We can read caller's SP from the proper spill loction. */
1375 sp = get_frame_register_unsigned
1376 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1377 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1381 /* Read caller's frame SP directly from the previous window. */
1382 int regnum = arreg_number
1383 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1386 cache->prev_sp = xtensa_read_register (regnum);
1390 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1392 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1394 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1395 /* Everything was set already, including cache->base. */
1398 else /* Call0 framework. */
1400 call0_frame_cache (this_frame, cache, pc);
1401 fp_regnum = cache->c0.fp_regnum;
1404 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1409 static int xtensa_session_once_reported = 1;
1411 /* Report a problem with prologue analysis while doing backtracing.
1412 But, do it only once to avoid annoyng repeated messages. */
1417 if (xtensa_session_once_reported == 0)
1419 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1420 This message will not be repeated in this session.\n"));
1422 xtensa_session_once_reported = 1;
1427 xtensa_frame_this_id (struct frame_info *this_frame,
1429 struct frame_id *this_id)
1431 struct xtensa_frame_cache *cache =
1432 xtensa_frame_cache (this_frame, this_cache);
1434 if (cache->prev_sp == 0)
1437 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1440 static struct value *
1441 xtensa_frame_prev_register (struct frame_info *this_frame,
1445 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1446 struct xtensa_frame_cache *cache;
1447 ULONGEST saved_reg = 0;
1450 if (*this_cache == NULL)
1451 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1452 cache = (struct xtensa_frame_cache *) *this_cache;
1454 if (regnum ==gdbarch_pc_regnum (gdbarch))
1455 saved_reg = cache->ra;
1456 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1457 saved_reg = cache->prev_sp;
1458 else if (!cache->call0)
1460 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1461 saved_reg = cache->wd.ws;
1462 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1463 saved_reg = cache->wd.wb;
1464 else if (regnum == gdbarch_ps_regnum (gdbarch))
1465 saved_reg = cache->ps;
1473 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1475 if (!cache->call0) /* Windowed ABI. */
1477 /* Convert A-register numbers to AR-register numbers,
1478 if we deal with A-register. */
1479 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1480 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1481 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1483 /* Check, if we deal with AR-register saved on stack. */
1484 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1485 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1486 + gdbarch_tdep (gdbarch)->num_aregs))
1488 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1491 && areg < XTENSA_NUM_SAVED_AREGS
1492 && cache->wd.aregs[areg] != -1)
1493 return frame_unwind_got_memory (this_frame, regnum,
1494 cache->wd.aregs[areg]);
1497 else /* Call0 ABI. */
1499 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1500 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1502 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1509 /* If register was saved in the prologue, retrieve it. */
1510 stkofs = cache->c0.c0_rt[reg].to_stk;
1511 if (stkofs != C0_NOSTK)
1513 /* Determine SP on entry based on FP. */
1514 spe = cache->c0.c0_fp
1515 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1517 return frame_unwind_got_memory (this_frame, regnum,
1523 /* All other registers have been either saved to
1524 the stack or are still alive in the processor. */
1526 return frame_unwind_got_register (this_frame, regnum, regnum);
1530 static const struct frame_unwind
1534 default_frame_unwind_stop_reason,
1535 xtensa_frame_this_id,
1536 xtensa_frame_prev_register,
1538 default_frame_sniffer
1542 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1544 struct xtensa_frame_cache *cache =
1545 xtensa_frame_cache (this_frame, this_cache);
1550 static const struct frame_base
1554 xtensa_frame_base_address,
1555 xtensa_frame_base_address,
1556 xtensa_frame_base_address
1561 xtensa_extract_return_value (struct type *type,
1562 struct regcache *regcache,
1565 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1566 bfd_byte *valbuf = (bfd_byte *) dst;
1567 int len = TYPE_LENGTH (type);
1572 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1574 gdb_assert(len > 0);
1576 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1578 /* First, we have to find the caller window in the register file. */
1579 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1580 callsize = extract_call_winsize (gdbarch, pc);
1582 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1583 if (len > (callsize > 8 ? 8 : 16))
1584 internal_error (__FILE__, __LINE__,
1585 _("cannot extract return value of %d bytes long"),
1588 /* Get the register offset of the return
1589 register (A2) in the caller window. */
1590 regcache_raw_read_unsigned
1591 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1592 areg = arreg_number (gdbarch,
1593 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1597 /* No windowing hardware - Call0 ABI. */
1598 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1601 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1603 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1606 for (; len > 0; len -= 4, areg++, valbuf += 4)
1609 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1611 regcache_raw_read (regcache, areg, valbuf);
1617 xtensa_store_return_value (struct type *type,
1618 struct regcache *regcache,
1621 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1622 const bfd_byte *valbuf = (const bfd_byte *) dst;
1626 int len = TYPE_LENGTH (type);
1629 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1631 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1633 regcache_raw_read_unsigned
1634 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1635 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1636 callsize = extract_call_winsize (gdbarch, pc);
1638 if (len > (callsize > 8 ? 8 : 16))
1639 internal_error (__FILE__, __LINE__,
1640 _("unimplemented for this length: %d"),
1641 TYPE_LENGTH (type));
1642 areg = arreg_number (gdbarch,
1643 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1645 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1646 callsize, (int) wb);
1650 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1653 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1656 for (; len > 0; len -= 4, areg++, valbuf += 4)
1659 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1661 regcache_raw_write (regcache, areg, valbuf);
1666 static enum return_value_convention
1667 xtensa_return_value (struct gdbarch *gdbarch,
1668 struct value *function,
1669 struct type *valtype,
1670 struct regcache *regcache,
1672 const gdb_byte *writebuf)
1674 /* Structures up to 16 bytes are returned in registers. */
1676 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1677 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1678 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1679 && TYPE_LENGTH (valtype) > 16);
1682 return RETURN_VALUE_STRUCT_CONVENTION;
1684 DEBUGTRACE ("xtensa_return_value(...)\n");
1686 if (writebuf != NULL)
1688 xtensa_store_return_value (valtype, regcache, writebuf);
1691 if (readbuf != NULL)
1693 gdb_assert (!struct_return);
1694 xtensa_extract_return_value (valtype, regcache, readbuf);
1696 return RETURN_VALUE_REGISTER_CONVENTION;
1703 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1704 struct value *function,
1705 struct regcache *regcache,
1708 struct value **args,
1711 CORE_ADDR struct_addr)
1713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1715 int size, onstack_size;
1716 gdb_byte *buf = (gdb_byte *) alloca (16);
1718 struct argument_info
1720 const bfd_byte *contents;
1722 int onstack; /* onstack == 0 => in reg */
1723 int align; /* alignment */
1726 int offset; /* stack offset if on stack. */
1727 int regno; /* regno if in register. */
1731 struct argument_info *arg_info =
1732 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1736 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1738 if (xtensa_debug_level > 3)
1741 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1742 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1743 "struct_addr=0x%x\n",
1744 (int) sp, (int) struct_return, (int) struct_addr);
1746 for (i = 0; i < nargs; i++)
1748 struct value *arg = args[i];
1749 struct type *arg_type = check_typedef (value_type (arg));
1750 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1751 host_address_to_string (arg),
1752 TYPE_LENGTH (arg_type));
1753 switch (TYPE_CODE (arg_type))
1756 fprintf_unfiltered (gdb_stdlog, "int");
1758 case TYPE_CODE_STRUCT:
1759 fprintf_unfiltered (gdb_stdlog, "struct");
1762 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1765 fprintf_unfiltered (gdb_stdlog, " %s\n",
1766 host_address_to_string (value_contents (arg)));
1770 /* First loop: collect information.
1771 Cast into type_long. (This shouldn't happen often for C because
1772 GDB already does this earlier.) It's possible that GDB could
1773 do it all the time but it's harmless to leave this code here. */
1780 size = REGISTER_SIZE;
1782 for (i = 0; i < nargs; i++)
1784 struct argument_info *info = &arg_info[i];
1785 struct value *arg = args[i];
1786 struct type *arg_type = check_typedef (value_type (arg));
1788 switch (TYPE_CODE (arg_type))
1791 case TYPE_CODE_BOOL:
1792 case TYPE_CODE_CHAR:
1793 case TYPE_CODE_RANGE:
1794 case TYPE_CODE_ENUM:
1796 /* Cast argument to long if necessary as the mask does it too. */
1797 if (TYPE_LENGTH (arg_type)
1798 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1800 arg_type = builtin_type (gdbarch)->builtin_long;
1801 arg = value_cast (arg_type, arg);
1803 /* Aligment is equal to the type length for the basic types. */
1804 info->align = TYPE_LENGTH (arg_type);
1809 /* Align doubles correctly. */
1810 if (TYPE_LENGTH (arg_type)
1811 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1812 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1814 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1817 case TYPE_CODE_STRUCT:
1819 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1822 info->length = TYPE_LENGTH (arg_type);
1823 info->contents = value_contents (arg);
1825 /* Align size and onstack_size. */
1826 size = (size + info->align - 1) & ~(info->align - 1);
1827 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1829 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1832 info->u.offset = onstack_size;
1833 onstack_size += info->length;
1838 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1840 size += info->length;
1843 /* Adjust the stack pointer and align it. */
1844 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1846 /* Simulate MOVSP, if Windowed ABI. */
1847 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1850 read_memory (osp - 16, buf, 16);
1851 write_memory (sp - 16, buf, 16);
1854 /* Second Loop: Load arguments. */
1858 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1859 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1862 for (i = 0; i < nargs; i++)
1864 struct argument_info *info = &arg_info[i];
1868 int n = info->length;
1869 CORE_ADDR offset = sp + info->u.offset;
1871 /* Odd-sized structs are aligned to the lower side of a memory
1872 word in big-endian mode and require a shift. This only
1873 applies for structures smaller than one word. */
1875 if (n < REGISTER_SIZE
1876 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1877 offset += (REGISTER_SIZE - n);
1879 write_memory (offset, info->contents, info->length);
1884 int n = info->length;
1885 const bfd_byte *cp = info->contents;
1886 int r = info->u.regno;
1888 /* Odd-sized structs are aligned to the lower side of registers in
1889 big-endian mode and require a shift. The odd-sized leftover will
1890 be at the end. Note that this is only true for structures smaller
1891 than REGISTER_SIZE; for larger odd-sized structures the excess
1892 will be left-aligned in the register on both endiannesses. */
1894 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1897 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1898 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1900 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1901 regcache_cooked_write (regcache, r, buf);
1903 cp += REGISTER_SIZE;
1910 regcache_cooked_write (regcache, r, cp);
1912 cp += REGISTER_SIZE;
1919 /* Set the return address of dummy frame to the dummy address.
1920 The return address for the current function (in A0) is
1921 saved in the dummy frame, so we can savely overwrite A0 here. */
1923 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1927 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1928 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1929 ps = (unsigned long) val & ~0x00030000;
1930 regcache_cooked_write_unsigned
1931 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1932 regcache_cooked_write_unsigned (regcache,
1933 gdbarch_ps_regnum (gdbarch),
1936 /* All the registers have been saved. After executing
1937 dummy call, they all will be restored. So it's safe
1938 to modify WINDOWSTART register to make it look like there
1939 is only one register window corresponding to WINDOWEBASE. */
1941 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1942 regcache_cooked_write_unsigned
1943 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1944 1 << extract_unsigned_integer (buf, 4, byte_order));
1948 /* Simulate CALL0: write RA into A0 register. */
1949 regcache_cooked_write_unsigned
1950 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1953 /* Set new stack pointer and return it. */
1954 regcache_cooked_write_unsigned (regcache,
1955 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1956 /* Make dummy frame ID unique by adding a constant. */
1957 return sp + SP_ALIGNMENT;
1960 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1963 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1965 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1971 /* Return a breakpoint for the current location of PC. We always use
1972 the density version if we have density instructions (regardless of the
1973 current instruction at PC), and use regular instructions otherwise. */
1975 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1976 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1977 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1978 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1980 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1982 static const gdb_byte *
1983 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1989 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1990 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1992 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1993 return big_breakpoint;
1995 return little_breakpoint;
1999 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
2000 static unsigned char density_little_breakpoint[]
2001 = DENSITY_LITTLE_BREAKPOINT;
2003 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2004 return density_big_breakpoint;
2006 return density_little_breakpoint;
2010 /* Call0 ABI support routines. */
2012 /* Return true, if PC points to "ret" or "ret.n". */
2015 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2017 #define RETURN_RET goto done
2019 xtensa_insnbuf ins, slot;
2020 gdb_byte ibuf[XTENSA_ISA_BSZ];
2021 CORE_ADDR ia, bt, ba;
2023 int ilen, islots, is;
2025 const char *opcname;
2028 isa = xtensa_default_isa;
2029 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2030 ins = xtensa_insnbuf_alloc (isa);
2031 slot = xtensa_insnbuf_alloc (isa);
2034 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2036 if (ia + xtensa_isa_maxlength (isa) > bt)
2039 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2040 ? ba + XTENSA_ISA_BSZ : finish_pc;
2041 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2045 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2046 ifmt = xtensa_format_decode (isa, ins);
2047 if (ifmt == XTENSA_UNDEFINED)
2049 ilen = xtensa_format_length (isa, ifmt);
2050 if (ilen == XTENSA_UNDEFINED)
2052 islots = xtensa_format_num_slots (isa, ifmt);
2053 if (islots == XTENSA_UNDEFINED)
2056 for (is = 0; is < islots; ++is)
2058 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2061 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2062 if (opc == XTENSA_UNDEFINED)
2065 opcname = xtensa_opcode_name (isa, opc);
2067 if ((strcasecmp (opcname, "ret.n") == 0)
2068 || (strcasecmp (opcname, "ret") == 0))
2076 xtensa_insnbuf_free(isa, slot);
2077 xtensa_insnbuf_free(isa, ins);
2081 /* Call0 opcode class. Opcodes are preclassified according to what they
2082 mean for Call0 prologue analysis, and their number of significant operands.
2083 The purpose of this is to simplify prologue analysis by separating
2084 instruction decoding (libisa) from the semantics of prologue analysis. */
2088 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2089 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2090 c0opc_flow, /* Flow control insn. */
2091 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2092 c0opc_break, /* Debugger software breakpoints. */
2093 c0opc_add, /* Adding two registers. */
2094 c0opc_addi, /* Adding a register and an immediate. */
2095 c0opc_and, /* Bitwise "and"-ing two registers. */
2096 c0opc_sub, /* Subtracting a register from a register. */
2097 c0opc_mov, /* Moving a register to a register. */
2098 c0opc_movi, /* Moving an immediate to a register. */
2099 c0opc_l32r, /* Loading a literal. */
2100 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2101 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2102 c0opc_l32e, /* L32E instruction. */
2103 c0opc_s32e, /* S32E instruction. */
2104 c0opc_rfwo, /* RFWO instruction. */
2105 c0opc_rfwu, /* RFWU instruction. */
2106 c0opc_NrOf /* Number of opcode classifications. */
2109 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2112 rwx_special_register (const char *opcname)
2114 char ch = *opcname++;
2116 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2118 if (*opcname++ != 's')
2120 if (*opcname++ != 'r')
2122 if (*opcname++ != '.')
2128 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2130 static xtensa_insn_kind
2131 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2133 const char *opcname;
2134 xtensa_insn_kind opclass = c0opc_uninteresting;
2136 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2138 /* Get opcode name and handle special classifications. */
2140 opcname = xtensa_opcode_name (isa, opc);
2143 || strcasecmp (opcname, "ill") == 0
2144 || strcasecmp (opcname, "ill.n") == 0)
2145 opclass = c0opc_illegal;
2146 else if (strcasecmp (opcname, "break") == 0
2147 || strcasecmp (opcname, "break.n") == 0)
2148 opclass = c0opc_break;
2149 else if (strcasecmp (opcname, "entry") == 0)
2150 opclass = c0opc_entry;
2151 else if (strcasecmp (opcname, "rfwo") == 0)
2152 opclass = c0opc_rfwo;
2153 else if (strcasecmp (opcname, "rfwu") == 0)
2154 opclass = c0opc_rfwu;
2155 else if (xtensa_opcode_is_branch (isa, opc) > 0
2156 || xtensa_opcode_is_jump (isa, opc) > 0
2157 || xtensa_opcode_is_loop (isa, opc) > 0
2158 || xtensa_opcode_is_call (isa, opc) > 0
2159 || strcasecmp (opcname, "simcall") == 0
2160 || strcasecmp (opcname, "syscall") == 0)
2161 opclass = c0opc_flow;
2163 /* Also, classify specific opcodes that need to be tracked. */
2164 else if (strcasecmp (opcname, "add") == 0
2165 || strcasecmp (opcname, "add.n") == 0)
2166 opclass = c0opc_add;
2167 else if (strcasecmp (opcname, "and") == 0)
2168 opclass = c0opc_and;
2169 else if (strcasecmp (opcname, "addi") == 0
2170 || strcasecmp (opcname, "addi.n") == 0
2171 || strcasecmp (opcname, "addmi") == 0)
2172 opclass = c0opc_addi;
2173 else if (strcasecmp (opcname, "sub") == 0)
2174 opclass = c0opc_sub;
2175 else if (strcasecmp (opcname, "mov.n") == 0
2176 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2177 opclass = c0opc_mov;
2178 else if (strcasecmp (opcname, "movi") == 0
2179 || strcasecmp (opcname, "movi.n") == 0)
2180 opclass = c0opc_movi;
2181 else if (strcasecmp (opcname, "l32r") == 0)
2182 opclass = c0opc_l32r;
2183 else if (strcasecmp (opcname, "s32i") == 0
2184 || strcasecmp (opcname, "s32i.n") == 0)
2185 opclass = c0opc_s32i;
2186 else if (strcasecmp (opcname, "l32e") == 0)
2187 opclass = c0opc_l32e;
2188 else if (strcasecmp (opcname, "s32e") == 0)
2189 opclass = c0opc_s32e;
2190 else if (rwx_special_register (opcname))
2191 opclass = c0opc_rwxsr;
2196 /* Tracks register movement/mutation for a given operation, which may
2197 be within a bundle. Updates the destination register tracking info
2198 accordingly. The pc is needed only for pc-relative load instructions
2199 (eg. l32r). The SP register number is needed to identify stores to
2200 the stack frame. Returns 0, if analysis was succesfull, non-zero
2204 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2205 xtensa_insn_kind opclass, int nods, unsigned odv[],
2206 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2208 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2209 unsigned litbase, litaddr, litval;
2214 /* 3 operands: dst, src, imm. */
2215 gdb_assert (nods == 3);
2216 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2217 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2220 /* 3 operands: dst, src1, src2. */
2221 gdb_assert (nods == 3);
2222 if (src[odv[1]].fr_reg == C0_CONST)
2224 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2225 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2227 else if (src[odv[2]].fr_reg == C0_CONST)
2229 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2230 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2232 else dst[odv[0]].fr_reg = C0_INEXP;
2235 /* 3 operands: dst, src1, src2. */
2236 gdb_assert (nods == 3);
2237 if (cache->c0.c0_fpalign == 0)
2239 /* Handle dynamic stack alignment. */
2240 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2242 if (src[odv[2]].fr_reg == C0_CONST)
2243 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2246 else if ((src[odv[0]].fr_reg == spreg)
2247 && (src[odv[2]].fr_reg == spreg))
2249 if (src[odv[1]].fr_reg == C0_CONST)
2250 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2253 /* else fall through. */
2255 if (src[odv[1]].fr_reg == C0_CONST)
2257 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2258 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2260 else if (src[odv[2]].fr_reg == C0_CONST)
2262 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2263 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2265 else dst[odv[0]].fr_reg = C0_INEXP;
2268 /* 3 operands: dst, src1, src2. */
2269 gdb_assert (nods == 3);
2270 if (src[odv[2]].fr_reg == C0_CONST)
2272 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2273 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2275 else dst[odv[0]].fr_reg = C0_INEXP;
2278 /* 2 operands: dst, src [, src]. */
2279 gdb_assert (nods == 2);
2280 /* First, check if it's a special case of saving unaligned SP
2281 to a spare register in case of dynamic stack adjustment.
2282 But, only do it one time. The second time could be initializing
2283 frame pointer. We don't want to overwrite the first one. */
2284 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2285 cache->c0.c0_old_sp = odv[0];
2287 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2288 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2291 /* 2 operands: dst, imm. */
2292 gdb_assert (nods == 2);
2293 dst[odv[0]].fr_reg = C0_CONST;
2294 dst[odv[0]].fr_ofs = odv[1];
2297 /* 2 operands: dst, literal offset. */
2298 gdb_assert (nods == 2);
2299 /* litbase = xtensa_get_litbase (pc); can be also used. */
2300 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2301 ? 0 : xtensa_read_register
2302 (gdbarch_tdep (gdbarch)->litbase_regnum);
2303 litaddr = litbase & 1
2304 ? (litbase & ~1) + (signed)odv[1]
2305 : (pc + 3 + (signed)odv[1]) & ~3;
2306 litval = read_memory_integer (litaddr, 4, byte_order);
2307 dst[odv[0]].fr_reg = C0_CONST;
2308 dst[odv[0]].fr_ofs = litval;
2311 /* 3 operands: value, base, offset. */
2312 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2313 /* First, check if it's a spill for saved unaligned SP,
2314 when dynamic stack adjustment was applied to this frame. */
2315 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2316 && (odv[1] == spreg) /* SP usage indicates spill. */
2317 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2318 cache->c0.c0_sp_ofs = odv[2];
2320 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2321 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2322 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2323 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2324 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2326 /* ISA encoding guarantees alignment. But, check it anyway. */
2327 gdb_assert ((odv[2] & 3) == 0);
2328 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2331 /* If we end up inside Window Overflow / Underflow interrupt handler
2332 report an error because these handlers should have been handled
2333 already in a different way. */
2345 /* Analyze prologue of the function at start address to determine if it uses
2346 the Call0 ABI, and if so track register moves and linear modifications
2347 in the prologue up to the PC or just beyond the prologue, whichever is
2348 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2349 prologue. The prologue may overlap non-prologue instructions but is
2350 guaranteed to end by the first flow-control instruction (jump, branch,
2351 call or return). Since an optimized function may move information around
2352 and change the stack frame arbitrarily during the prologue, the information
2353 is guaranteed valid only at the point in the function indicated by the PC.
2354 May be used to skip the prologue or identify the ABI, w/o tracking.
2356 Returns: Address of first instruction after prologue, or PC (whichever
2357 is first), or 0, if decoding failed (in libisa).
2359 start Start address of function/prologue.
2360 pc Program counter to stop at. Use 0 to continue to end of prologue.
2361 If 0, avoids infinite run-on in corrupt code memory by bounding
2362 the scan to the end of the function if that can be determined.
2363 nregs Number of general registers to track.
2365 cache Xtensa frame cache.
2367 Note that these may produce useful results even if decoding fails
2368 because they begin with default assumptions that analysis may change. */
2371 call0_analyze_prologue (struct gdbarch *gdbarch,
2372 CORE_ADDR start, CORE_ADDR pc,
2373 int nregs, xtensa_frame_cache_t *cache)
2375 CORE_ADDR ia; /* Current insn address in prologue. */
2376 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2377 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2378 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2379 xtensa_isa isa; /* libisa ISA handle. */
2380 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2381 xtensa_format ifmt; /* libisa instruction format. */
2382 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2383 xtensa_opcode opc; /* Opcode in current slot. */
2384 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2385 int nods; /* Opcode number of operands. */
2386 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2387 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2388 int j; /* General loop counter. */
2389 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2390 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2391 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2393 struct symtab_and_line prologue_sal;
2395 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2396 (int)start, (int)pc);
2398 /* Try to limit the scan to the end of the function if a non-zero pc
2399 arg was not supplied to avoid probing beyond the end of valid memory.
2400 If memory is full of garbage that classifies as c0opc_uninteresting.
2401 If this fails (eg. if no symbols) pc ends up 0 as it was.
2402 Initialize the Call0 frame and register tracking info.
2403 Assume it's Call0 until an 'entry' instruction is encountered.
2404 Assume we may be in the prologue until we hit a flow control instr. */
2410 /* Find out, if we have an information about the prologue from DWARF. */
2411 prologue_sal = find_pc_line (start, 0);
2412 if (prologue_sal.line != 0) /* Found debug info. */
2413 body_pc = prologue_sal.end;
2415 /* If we are going to analyze the prologue in general without knowing about
2416 the current PC, make the best assumtion for the end of the prologue. */
2419 find_pc_partial_function (start, 0, NULL, &end_pc);
2420 body_pc = std::min (end_pc, body_pc);
2423 body_pc = std::min (pc, body_pc);
2426 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2428 isa = xtensa_default_isa;
2429 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2430 ins = xtensa_insnbuf_alloc (isa);
2431 slot = xtensa_insnbuf_alloc (isa);
2433 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2435 /* (Re)fill instruction buffer from memory if necessary, but do not
2436 read memory beyond PC to be sure we stay within text section
2437 (this protection only works if a non-zero pc is supplied). */
2439 if (ia + xtensa_isa_maxlength (isa) > bt)
2442 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2443 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2444 error (_("Unable to read target memory ..."));
2447 /* Decode format information. */
2449 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2450 ifmt = xtensa_format_decode (isa, ins);
2451 if (ifmt == XTENSA_UNDEFINED)
2456 ilen = xtensa_format_length (isa, ifmt);
2457 if (ilen == XTENSA_UNDEFINED)
2462 islots = xtensa_format_num_slots (isa, ifmt);
2463 if (islots == XTENSA_UNDEFINED)
2469 /* Analyze a bundle or a single instruction, using a snapshot of
2470 the register tracking info as input for the entire bundle so that
2471 register changes do not take effect within this bundle. */
2473 for (j = 0; j < nregs; ++j)
2474 rtmp[j] = cache->c0.c0_rt[j];
2476 for (is = 0; is < islots; ++is)
2478 /* Decode a slot and classify the opcode. */
2480 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2484 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2485 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2487 if (opc == XTENSA_UNDEFINED)
2488 opclass = c0opc_illegal;
2490 opclass = call0_classify_opcode (isa, opc);
2492 /* Decide whether to track this opcode, ignore it, or bail out. */
2501 case c0opc_uninteresting:
2504 case c0opc_flow: /* Flow control instructions stop analysis. */
2505 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2510 ia += ilen; /* Skip over 'entry' insn. */
2517 /* Only expected opcodes should get this far. */
2519 /* Extract and decode the operands. */
2520 nods = xtensa_opcode_num_operands (isa, opc);
2521 if (nods == XTENSA_UNDEFINED)
2527 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2529 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2534 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2539 /* Check operands to verify use of 'mov' assembler macro. */
2540 if (opclass == c0opc_mov && nods == 3)
2542 if (odv[2] == odv[1])
2545 if ((odv[0] == 1) && (odv[1] != 1))
2546 /* OR A1, An, An , where n != 1.
2547 This means we are inside epilogue already. */
2552 opclass = c0opc_uninteresting;
2557 /* Track register movement and modification for this operation. */
2558 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2559 opclass, nods, odv, ia, 1, cache);
2565 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2566 (unsigned)ia, fail ? "failed" : "succeeded");
2567 xtensa_insnbuf_free(isa, slot);
2568 xtensa_insnbuf_free(isa, ins);
2569 return fail ? XTENSA_ISA_BADPC : ia;
2572 /* Initialize frame cache for the current frame in CALL0 ABI. */
2575 call0_frame_cache (struct frame_info *this_frame,
2576 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2578 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2580 CORE_ADDR start_pc; /* The beginning of the function. */
2581 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2582 CORE_ADDR sp, fp, ra;
2583 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2585 sp = get_frame_register_unsigned
2586 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2587 fp = sp; /* Assume FP == SP until proven otherwise. */
2589 /* Find the beginning of the prologue of the function containing the PC
2590 and analyze it up to the PC or the end of the prologue. */
2592 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2594 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2596 if (body_pc == XTENSA_ISA_BADPC)
2600 goto finish_frame_analysis;
2604 /* Get the frame information and FP (if used) at the current PC.
2605 If PC is in the prologue, the prologue analysis is more reliable
2606 than DWARF info. We don't not know for sure, if PC is in the prologue,
2607 but we do know no calls have yet taken place, so we can almost
2608 certainly rely on the prologue analysis. */
2612 /* Prologue analysis was successful up to the PC.
2613 It includes the cases when PC == START_PC. */
2614 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2615 /* c0_hasfp == true means there is a frame pointer because
2616 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2617 was derived from SP. Otherwise, it would be C0_FP. */
2618 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2619 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2620 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2622 else /* No data from the prologue analysis. */
2625 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2630 if (cache->c0.c0_fpalign)
2632 /* This frame has a special prologue with a dynamic stack adjustment
2633 to force an alignment, which is bigger than standard 16 bytes. */
2635 CORE_ADDR unaligned_sp;
2637 if (cache->c0.c0_old_sp == C0_INEXP)
2638 /* This can't be. Prologue code should be consistent.
2639 Unaligned stack pointer should be saved in a spare register. */
2643 goto finish_frame_analysis;
2646 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2647 /* Saved unaligned value of SP is kept in a register. */
2648 unaligned_sp = get_frame_register_unsigned
2649 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2651 /* Get the value from stack. */
2652 unaligned_sp = (CORE_ADDR)
2653 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2655 prev_sp = unaligned_sp + c0_frmsz;
2658 prev_sp = fp + c0_frmsz;
2660 /* Frame size from debug info or prologue tracking does not account for
2661 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2664 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2666 /* Update the stack frame size. */
2667 c0_frmsz += fp - sp;
2670 /* Get the return address (RA) from the stack if saved,
2671 or try to get it from a register. */
2673 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2674 if (to_stk != C0_NOSTK)
2676 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2679 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2680 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2682 /* Special case for terminating backtrace at a function that wants to
2683 be seen as the outermost one. Such a function will clear it's RA (A0)
2684 register to 0 in the prologue instead of saving its original value. */
2689 /* RA was copied to another register or (before any function call) may
2690 still be in the original RA register. This is not always reliable:
2691 even in a leaf function, register tracking stops after prologue, and
2692 even in prologue, non-prologue instructions (not tracked) may overwrite
2693 RA or any register it was copied to. If likely in prologue or before
2694 any call, use retracking info and hope for the best (compiler should
2695 have saved RA in stack if not in a leaf function). If not in prologue,
2701 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2703 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2707 ra = get_frame_register_unsigned
2709 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2714 finish_frame_analysis:
2715 cache->pc = start_pc;
2717 /* RA == 0 marks the outermost frame. Do not go past it. */
2718 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2719 cache->c0.fp_regnum = fp_regnum;
2720 cache->c0.c0_frmsz = c0_frmsz;
2721 cache->c0.c0_hasfp = c0_hasfp;
2722 cache->c0.c0_fp = fp;
2725 static CORE_ADDR a0_saved;
2726 static CORE_ADDR a7_saved;
2727 static CORE_ADDR a11_saved;
2728 static int a0_was_saved;
2729 static int a7_was_saved;
2730 static int a11_was_saved;
2732 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2734 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2736 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2737 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2738 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2739 unsigned int spilled_value
2740 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2742 if ((at == 0) && !a0_was_saved)
2744 a0_saved = xtensa_read_register (atreg);
2747 else if ((at == 7) && !a7_was_saved)
2749 a7_saved = xtensa_read_register (atreg);
2752 else if ((at == 11) && !a11_was_saved)
2754 a11_saved = xtensa_read_register (atreg);
2758 xtensa_write_register (atreg, spilled_value);
2761 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2763 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2765 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2766 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2767 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2768 ULONGEST spilled_value = xtensa_read_register (atreg);
2770 write_memory_unsigned_integer (addr, 4,
2771 gdbarch_byte_order (gdbarch),
2775 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2781 xtNoExceptionHandler
2782 } xtensa_exception_handler_t;
2784 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2785 Return type of Xtensa Window Interrupt Handler on success. */
2786 static xtensa_exception_handler_t
2787 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2790 xtensa_insnbuf ins, slot;
2791 gdb_byte ibuf[XTENSA_ISA_BSZ];
2792 CORE_ADDR ia, bt, ba;
2794 int ilen, islots, is;
2797 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2799 uint32_t at, as, offset;
2801 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2802 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2804 isa = xtensa_default_isa;
2805 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2806 ins = xtensa_insnbuf_alloc (isa);
2807 slot = xtensa_insnbuf_alloc (isa);
2816 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2818 if (ia + xtensa_isa_maxlength (isa) > bt)
2821 bt = (ba + XTENSA_ISA_BSZ);
2822 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2823 return xtNoExceptionHandler;
2825 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2826 ifmt = xtensa_format_decode (isa, ins);
2827 if (ifmt == XTENSA_UNDEFINED)
2828 return xtNoExceptionHandler;
2829 ilen = xtensa_format_length (isa, ifmt);
2830 if (ilen == XTENSA_UNDEFINED)
2831 return xtNoExceptionHandler;
2832 islots = xtensa_format_num_slots (isa, ifmt);
2833 if (islots == XTENSA_UNDEFINED)
2834 return xtNoExceptionHandler;
2835 for (is = 0; is < islots; ++is)
2837 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2838 return xtNoExceptionHandler;
2839 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2840 if (opc == XTENSA_UNDEFINED)
2841 return xtNoExceptionHandler;
2842 switch (call0_classify_opcode (isa, opc))
2848 /* We expect none of them here. */
2849 return xtNoExceptionHandler;
2851 func = execute_l32e;
2854 func = execute_s32e;
2856 case c0opc_rfwo: /* RFWO. */
2857 /* Here, we return from WindowOverflow handler and,
2858 if we stopped at the very beginning, which means
2859 A0 was saved, we have to restore it now. */
2862 int arreg = arreg_number (gdbarch,
2863 gdbarch_tdep (gdbarch)->a0_base,
2865 xtensa_write_register (arreg, a0_saved);
2867 return xtWindowOverflow;
2868 case c0opc_rfwu: /* RFWU. */
2869 /* Here, we return from WindowUnderflow handler.
2870 Let's see if either A7 or A11 has to be restored. */
2871 if (WindowUnderflow12)
2875 int arreg = arreg_number (gdbarch,
2876 gdbarch_tdep (gdbarch)->a0_base + 11,
2878 xtensa_write_register (arreg, a11_saved);
2881 else if (a7_was_saved)
2883 int arreg = arreg_number (gdbarch,
2884 gdbarch_tdep (gdbarch)->a0_base + 7,
2886 xtensa_write_register (arreg, a7_saved);
2888 return xtWindowUnderflow;
2889 default: /* Simply skip this insns. */
2893 /* Decode arguments for L32E / S32E and simulate their execution. */
2894 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2895 return xtNoExceptionHandler;
2896 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2897 return xtNoExceptionHandler;
2898 if (xtensa_operand_decode (isa, opc, 0, &at))
2899 return xtNoExceptionHandler;
2900 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2901 return xtNoExceptionHandler;
2902 if (xtensa_operand_decode (isa, opc, 1, &as))
2903 return xtNoExceptionHandler;
2904 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2905 return xtNoExceptionHandler;
2906 if (xtensa_operand_decode (isa, opc, 2, &offset))
2907 return xtNoExceptionHandler;
2909 (*func) (gdbarch, at, as, offset, wb);
2914 return xtNoExceptionHandler;
2917 /* Handle Window Overflow / Underflow exception frames. */
2920 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2921 xtensa_frame_cache_t *cache,
2924 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2925 CORE_ADDR ps, wb, ws, ra;
2926 int epc1_regnum, i, regnum;
2927 xtensa_exception_handler_t eh_type;
2929 /* Read PS, WB, and WS from the hardware. Note that PS register
2930 must be present, if Windowed ABI is supported. */
2931 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2932 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2933 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2935 /* Execute all the remaining instructions from Window Interrupt Handler
2936 by simulating them on the remote protocol level. On return, set the
2937 type of Xtensa Window Interrupt Handler, or report an error. */
2938 eh_type = execute_code (gdbarch, pc, wb);
2939 if (eh_type == xtNoExceptionHandler)
2941 Unable to decode Xtensa Window Interrupt Handler's code."));
2943 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2944 cache->call0 = 0; /* It's Windowed ABI. */
2946 /* All registers for the cached frame will be alive. */
2947 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2948 cache->wd.aregs[i] = -1;
2950 if (eh_type == xtWindowOverflow)
2951 cache->wd.ws = ws ^ (1 << wb);
2952 else /* eh_type == xtWindowUnderflow. */
2953 cache->wd.ws = ws | (1 << wb);
2955 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2956 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2958 ra = xtensa_read_register (regnum);
2959 cache->wd.callsize = WINSIZE (ra);
2960 cache->prev_sp = xtensa_read_register (regnum + 1);
2961 /* Set regnum to a frame pointer of the frame being cached. */
2962 regnum = xtensa_scan_prologue (gdbarch, pc);
2963 regnum = arreg_number (gdbarch,
2964 gdbarch_tdep (gdbarch)->a0_base + regnum,
2966 cache->base = get_frame_register_unsigned (this_frame, regnum);
2968 /* Read PC of interrupted function from EPC1 register. */
2969 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2970 if (epc1_regnum < 0)
2971 error(_("Unable to read Xtensa register EPC1"));
2972 cache->ra = xtensa_read_register (epc1_regnum);
2973 cache->pc = get_frame_func (this_frame);
2977 /* Skip function prologue.
2979 Return the pc of the first instruction after prologue. GDB calls this to
2980 find the address of the first line of the function or (if there is no line
2981 number information) to skip the prologue for planting breakpoints on
2982 function entries. Use debug info (if present) or prologue analysis to skip
2983 the prologue to achieve reliable debugging behavior. For windowed ABI,
2984 only the 'entry' instruction is skipped. It is not strictly necessary to
2985 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2986 backtrace at any point in the prologue, however certain potential hazards
2987 are avoided and a more "normal" debugging experience is ensured by
2988 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2989 For example, if we don't skip the prologue:
2990 - Some args may not yet have been saved to the stack where the debug
2991 info expects to find them (true anyway when only 'entry' is skipped);
2992 - Software breakpoints ('break' instrs) may not have been unplanted
2993 when the prologue analysis is done on initializing the frame cache,
2994 and breaks in the prologue will throw off the analysis.
2996 If we have debug info ( line-number info, in particular ) we simply skip
2997 the code associated with the first function line effectively skipping
2998 the prologue code. It works even in cases like
3001 { int local_var = 1;
3005 because, for this source code, both Xtensa compilers will generate two
3006 separate entries ( with the same line number ) in dwarf line-number
3007 section to make sure there is a boundary between the prologue code and
3008 the rest of the function.
3010 If there is no debug info, we need to analyze the code. */
3012 /* #define DONT_SKIP_PROLOGUE */
3015 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3017 struct symtab_and_line prologue_sal;
3020 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3022 #if DONT_SKIP_PROLOGUE
3026 /* Try to find first body line from debug info. */
3028 prologue_sal = find_pc_line (start_pc, 0);
3029 if (prologue_sal.line != 0) /* Found debug info. */
3031 /* In Call0, it is possible to have a function with only one instruction
3032 ('ret') resulting from a one-line optimized function that does nothing.
3033 In that case, prologue_sal.end may actually point to the start of the
3034 next function in the text section, causing a breakpoint to be set at
3035 the wrong place. Check, if the end address is within a different
3036 function, and if so return the start PC. We know we have symbol
3041 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3042 && call0_ret (start_pc, prologue_sal.end))
3045 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3046 if (end_func != start_pc)
3049 return prologue_sal.end;
3052 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3053 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3054 xtensa_alloc_frame_cache (0));
3055 return body_pc != 0 ? body_pc : start_pc;
3058 /* Verify the current configuration. */
3060 xtensa_verify_config (struct gdbarch *gdbarch)
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3065 /* Verify that we got a reasonable number of AREGS. */
3066 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3068 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3071 /* Verify that certain registers exist. */
3073 if (tdep->pc_regnum == -1)
3074 log.printf (_("\n\tpc_regnum: No PC register"));
3075 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3076 log.printf (_("\n\tps_regnum: No PS register"));
3078 if (tdep->isa_use_windowed_registers)
3080 if (tdep->wb_regnum == -1)
3081 log.printf (_("\n\twb_regnum: No WB register"));
3082 if (tdep->ws_regnum == -1)
3083 log.printf (_("\n\tws_regnum: No WS register"));
3084 if (tdep->ar_base == -1)
3085 log.printf (_("\n\tar_base: No AR registers"));
3088 if (tdep->a0_base == -1)
3089 log.printf (_("\n\ta0_base: No Ax registers"));
3092 internal_error (__FILE__, __LINE__,
3093 _("the following are invalid: %s"), log.c_str ());
3097 /* Derive specific register numbers from the array of registers. */
3100 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3102 xtensa_register_t* rmap;
3103 int n, max_size = 4;
3106 tdep->num_nopriv_regs = 0;
3108 /* Special registers 0..255 (core). */
3109 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3111 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3113 if (rmap->target_number == 0x0020)
3114 tdep->pc_regnum = n;
3115 else if (rmap->target_number == 0x0100)
3117 else if (rmap->target_number == 0x0000)
3119 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3120 tdep->wb_regnum = n;
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3122 tdep->ws_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3124 tdep->debugcause_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3126 tdep->exccause_regnum = n;
3127 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3128 tdep->excvaddr_regnum = n;
3129 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3130 tdep->lbeg_regnum = n;
3131 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3132 tdep->lend_regnum = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3134 tdep->lcount_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3136 tdep->sar_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3138 tdep->litbase_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3140 tdep->ps_regnum = n;
3142 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3143 tdep->interrupt_regnum = n;
3144 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3145 tdep->interrupt2_regnum = n;
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3147 tdep->cpenable_regnum = n;
3150 if (rmap->byte_size > max_size)
3151 max_size = rmap->byte_size;
3152 if (rmap->mask != 0 && tdep->num_regs == 0)
3154 /* Find out out how to deal with priveleged registers.
3156 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3157 && tdep->num_nopriv_regs == 0)
3158 tdep->num_nopriv_regs = n;
3160 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3161 && tdep->num_regs == 0)
3165 /* Number of pseudo registers. */
3166 tdep->num_pseudo_regs = n - tdep->num_regs;
3168 /* Empirically determined maximum sizes. */
3169 tdep->max_register_raw_size = max_size;
3170 tdep->max_register_virtual_size = max_size;
3173 /* Module "constructor" function. */
3175 extern struct gdbarch_tdep xtensa_tdep;
3177 static struct gdbarch *
3178 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3180 struct gdbarch_tdep *tdep;
3181 struct gdbarch *gdbarch;
3183 DEBUGTRACE ("gdbarch_init()\n");
3185 if (!xtensa_default_isa)
3186 xtensa_default_isa = xtensa_isa_init (0, 0);
3188 /* We have to set the byte order before we call gdbarch_alloc. */
3189 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3191 tdep = &xtensa_tdep;
3192 gdbarch = gdbarch_alloc (&info, tdep);
3193 xtensa_derive_tdep (tdep);
3195 /* Verify our configuration. */
3196 xtensa_verify_config (gdbarch);
3197 xtensa_session_once_reported = 0;
3199 /* Pseudo-Register read/write. */
3200 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3201 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3203 /* Set target information. */
3204 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3205 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3206 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3207 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3208 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3210 /* Renumber registers for known formats (stabs and dwarf2). */
3211 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3212 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3214 /* We provide our own function to get register information. */
3215 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3216 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3218 /* To call functions from GDB using dummy frame. */
3219 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3221 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3223 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3225 /* Advance PC across any prologue instructions to reach "real" code. */
3226 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3228 /* Stack grows downward. */
3229 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3231 /* Set breakpoints. */
3232 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3233 xtensa_breakpoint_kind_from_pc);
3234 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3235 xtensa_sw_breakpoint_from_kind);
3237 /* After breakpoint instruction or illegal instruction, pc still
3238 points at break instruction, so don't decrement. */
3239 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3241 /* We don't skip args. */
3242 set_gdbarch_frame_args_skip (gdbarch, 0);
3244 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3246 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3248 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3250 /* Frame handling. */
3251 frame_base_set_default (gdbarch, &xtensa_frame_base);
3252 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3253 dwarf2_append_unwinders (gdbarch);
3255 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3257 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3259 xtensa_add_reggroups (gdbarch);
3260 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3262 set_gdbarch_iterate_over_regset_sections
3263 (gdbarch, xtensa_iterate_over_regset_sections);
3265 set_solib_svr4_fetch_link_map_offsets
3266 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3268 /* Hook in the ABI-specific overrides, if they have been registered. */
3269 gdbarch_init_osabi (info, gdbarch);
3275 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3277 error (_("xtensa_dump_tdep(): not implemented"));
3280 /* Provide a prototype to silence -Wmissing-prototypes. */
3281 extern initialize_file_ftype _initialize_xtensa_tdep;
3284 _initialize_xtensa_tdep (void)
3286 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3287 xtensa_init_reggroups ();
3289 add_setshow_zuinteger_cmd ("xtensa",
3291 &xtensa_debug_level,
3292 _("Set Xtensa debugging."),
3293 _("Show Xtensa debugging."), _("\
3294 When non-zero, Xtensa-specific debugging is enabled. \
3295 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3298 &setdebuglist, &showdebuglist);