1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "solib-svr4.h"
33 #include "reggroups.h"
36 #include "dummy-frame.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
43 #include "arch-utils.h"
51 #include "xtensa-isa.h"
52 #include "xtensa-tdep.h"
53 #include "xtensa-config.h"
57 static unsigned int xtensa_debug_level = 0;
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
113 #define XTENSA_ENTRY_LENGTH 3
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
122 /* Big enough to hold the size of the largest register in bytes. */
123 #define XTENSA_MAX_REGISTER_SIZE 64
126 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
135 /* Convert a live A-register number to the corresponding AR-register
138 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
147 return arreg + tdep->ar_base;
150 /* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
153 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
165 /* Read Xtensa register directly from the hardware. */
167 xtensa_read_register (int regnum)
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
175 /* Write Xtensa register directly to the hardware. */
177 xtensa_write_register (int regnum, ULONGEST value)
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
182 /* Return the window size of the previous call to the function from which we
185 This function is used to extract the return value after a called function
186 has returned to the caller. On Xtensa, the register that holds the return
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
194 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
205 insn = extract_unsigned_integer (buf, 3, byte_order);
207 /* Decode call instruction:
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
215 if (byte_order == BFD_ENDIAN_LITTLE)
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
229 /* REGISTER INFORMATION */
231 /* Find register by name. */
233 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
237 for (i = 0; i < gdbarch_num_regs (gdbarch)
238 + gdbarch_num_pseudo_regs (gdbarch);
241 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
247 /* Returns the name of a register. */
249 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
251 /* Return the name stored in the register map. */
252 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
253 + gdbarch_num_pseudo_regs (gdbarch))
254 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
256 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
260 /* Return the type of a register. Create a new type, if necessary. */
263 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 /* Return signed integer for ARx and Ax registers. */
268 if ((regnum >= tdep->ar_base
269 && regnum < tdep->ar_base + tdep->num_aregs)
270 || (regnum >= tdep->a0_base
271 && regnum < tdep->a0_base + 16))
272 return builtin_type (gdbarch)->builtin_int;
274 if (regnum == gdbarch_pc_regnum (gdbarch)
275 || regnum == tdep->a0_base + 1)
276 return builtin_type (gdbarch)->builtin_data_ptr;
278 /* Return the stored type for all other registers. */
279 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
280 + gdbarch_num_pseudo_regs (gdbarch))
282 xtensa_register_t* reg = &tdep->regmap[regnum];
284 /* Set ctype for this register (only the first time). */
288 struct ctype_cache *tp;
289 int size = reg->byte_size;
291 /* We always use the memory representation,
292 even if the register width is smaller. */
296 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
300 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
304 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
308 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
312 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
316 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
317 if (tp->size == size)
322 char *name = xstrprintf ("int%d", size * 8);
324 tp = XNEW (struct ctype_cache);
325 tp->next = tdep->type_entries;
326 tdep->type_entries = tp;
329 = arch_integer_type (gdbarch, size * 8, 1, name);
333 reg->ctype = tp->virtual_type;
339 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
344 /* Return the 'local' register number for stubs, dwarf2, etc.
345 The debugging information enumerates registers starting from 0 for A0
346 to n for An. So, we only have to add the base number for A0. */
349 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
353 if (regnum >= 0 && regnum < 16)
354 return gdbarch_tdep (gdbarch)->a0_base + regnum;
357 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
359 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
366 /* Write the bits of a masked register to the various registers.
367 Only the masked areas of these registers are modified; the other
368 fields are untouched. The size of masked registers is always less
369 than or equal to 32 bits. */
372 xtensa_register_write_masked (struct regcache *regcache,
373 xtensa_register_t *reg, const gdb_byte *buffer)
375 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
376 const xtensa_mask_t *mask = reg->mask;
378 int shift = 0; /* Shift for next mask (mod 32). */
379 int start, size; /* Start bit and size of current mask. */
381 unsigned int *ptr = value;
382 unsigned int regval, m, mem = 0;
384 int bytesize = reg->byte_size;
385 int bitsize = bytesize * 8;
388 DEBUGTRACE ("xtensa_register_write_masked ()\n");
390 /* Copy the masked register to host byte-order. */
391 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
392 for (i = 0; i < bytesize; i++)
395 mem |= (buffer[bytesize - i - 1] << 24);
400 for (i = 0; i < bytesize; i++)
403 mem |= (buffer[i] << 24);
408 /* We might have to shift the final value:
409 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
410 bytesize & 3 == x -> shift (4-x) * 8. */
412 *ptr = mem >> (((0 - bytesize) & 3) * 8);
416 /* Write the bits to the masked areas of the other registers. */
417 for (i = 0; i < mask->count; i++)
419 start = mask->mask[i].bit_start;
420 size = mask->mask[i].bit_size;
421 regval = mem >> shift;
423 if ((shift += size) > bitsize)
424 error (_("size of all masks is larger than the register"));
433 regval |= mem << (size - shift);
436 /* Make sure we have a valid register. */
437 r = mask->mask[i].reg_num;
438 if (r >= 0 && size > 0)
440 /* Don't overwrite the unmasked areas. */
442 regcache_cooked_read_unsigned (regcache, r, &old_val);
443 m = 0xffffffff >> (32 - size) << start;
445 regval = (regval & m) | (old_val & ~m);
446 regcache_cooked_write_unsigned (regcache, r, regval);
452 /* Read a tie state or mapped registers. Read the masked areas
453 of the registers and assemble them into a single value. */
455 static enum register_status
456 xtensa_register_read_masked (readable_regcache *regcache,
457 xtensa_register_t *reg, gdb_byte *buffer)
459 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
460 const xtensa_mask_t *mask = reg->mask;
465 unsigned int *ptr = value;
466 unsigned int regval, mem = 0;
468 int bytesize = reg->byte_size;
469 int bitsize = bytesize * 8;
472 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
473 reg->name == 0 ? "" : reg->name);
475 /* Assemble the register from the masked areas of other registers. */
476 for (i = 0; i < mask->count; i++)
478 int r = mask->mask[i].reg_num;
481 enum register_status status;
484 status = regcache->cooked_read (r, &val);
485 if (status != REG_VALID)
487 regval = (unsigned int) val;
492 start = mask->mask[i].bit_start;
493 size = mask->mask[i].bit_size;
498 regval &= (0xffffffff >> (32 - size));
500 mem |= regval << shift;
502 if ((shift += size) > bitsize)
503 error (_("size of all masks is larger than the register"));
514 mem = regval >> (size - shift);
521 /* Copy value to target byte order. */
525 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
526 for (i = 0; i < bytesize; i++)
530 buffer[bytesize - i - 1] = mem & 0xff;
534 for (i = 0; i < bytesize; i++)
538 buffer[i] = mem & 0xff;
546 /* Read pseudo registers. */
548 static enum register_status
549 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
550 readable_regcache *regcache,
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
563 enum register_status status;
565 status = regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum,
567 if (status != REG_VALID)
569 regnum = arreg_number (gdbarch, regnum, value);
572 /* We can always read non-pseudo registers. */
573 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
574 return regcache->raw_read (regnum, buffer);
576 /* We have to find out how to deal with priveleged registers.
577 Let's treat them as pseudo-registers, but we cannot read/write them. */
579 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
580 || regnum < gdbarch_tdep (gdbarch)->a0_base)
582 buffer[0] = (gdb_byte)0;
583 buffer[1] = (gdb_byte)0;
584 buffer[2] = (gdb_byte)0;
585 buffer[3] = (gdb_byte)0;
588 /* Pseudo registers. */
590 && regnum < gdbarch_num_regs (gdbarch)
591 + gdbarch_num_pseudo_regs (gdbarch))
593 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
594 xtensa_register_type_t type = reg->type;
595 int flags = gdbarch_tdep (gdbarch)->target_flags;
597 /* We cannot read Unknown or Unmapped registers. */
598 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
600 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
602 warning (_("cannot read register %s"),
603 xtensa_register_name (gdbarch, regnum));
608 /* Some targets cannot read TIE register files. */
609 else if (type == xtRegisterTypeTieRegfile)
611 /* Use 'fetch' to get register? */
612 if (flags & xtTargetFlagsUseFetchStore)
614 warning (_("cannot read register"));
618 /* On some targets (esp. simulators), we can always read the reg. */
619 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
621 warning (_("cannot read register"));
626 /* We can always read mapped registers. */
627 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
628 return xtensa_register_read_masked (regcache, reg, buffer);
630 /* Assume that we can read the register. */
631 return regcache->raw_read (regnum, buffer);
634 internal_error (__FILE__, __LINE__,
635 _("invalid register number %d"), regnum);
639 /* Write pseudo registers. */
642 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
643 struct regcache *regcache,
645 const gdb_byte *buffer)
647 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
648 regnum, xtensa_register_name (gdbarch, regnum));
650 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
651 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
652 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
653 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
656 regcache_raw_read_unsigned (regcache,
657 gdbarch_tdep (gdbarch)->wb_regnum, &value);
658 regnum = arreg_number (gdbarch, regnum, value);
661 /* We can always write 'core' registers.
662 Note: We might have converted Ax->ARy. */
663 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
664 regcache->raw_write (regnum, buffer);
666 /* We have to find out how to deal with priveleged registers.
667 Let's treat them as pseudo-registers, but we cannot read/write them. */
669 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
673 /* Pseudo registers. */
675 && regnum < gdbarch_num_regs (gdbarch)
676 + gdbarch_num_pseudo_regs (gdbarch))
678 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
679 xtensa_register_type_t type = reg->type;
680 int flags = gdbarch_tdep (gdbarch)->target_flags;
682 /* On most targets, we cannot write registers
683 of type "Unknown" or "Unmapped". */
684 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
686 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
688 warning (_("cannot write register %s"),
689 xtensa_register_name (gdbarch, regnum));
694 /* Some targets cannot read TIE register files. */
695 else if (type == xtRegisterTypeTieRegfile)
697 /* Use 'store' to get register? */
698 if (flags & xtTargetFlagsUseFetchStore)
700 warning (_("cannot write register"));
704 /* On some targets (esp. simulators), we can always write
706 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
708 warning (_("cannot write register"));
713 /* We can always write mapped registers. */
714 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
716 xtensa_register_write_masked (regcache, reg, buffer);
720 /* Assume that we can write the register. */
721 regcache->raw_write (regnum, buffer);
724 internal_error (__FILE__, __LINE__,
725 _("invalid register number %d"), regnum);
728 static struct reggroup *xtensa_ar_reggroup;
729 static struct reggroup *xtensa_user_reggroup;
730 static struct reggroup *xtensa_vectra_reggroup;
731 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
734 xtensa_init_reggroups (void)
738 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
739 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
740 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
742 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
743 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
747 xtensa_add_reggroups (struct gdbarch *gdbarch)
751 /* Predefined groups. */
752 reggroup_add (gdbarch, all_reggroup);
753 reggroup_add (gdbarch, save_reggroup);
754 reggroup_add (gdbarch, restore_reggroup);
755 reggroup_add (gdbarch, system_reggroup);
756 reggroup_add (gdbarch, vector_reggroup);
757 reggroup_add (gdbarch, general_reggroup);
758 reggroup_add (gdbarch, float_reggroup);
760 /* Xtensa-specific groups. */
761 reggroup_add (gdbarch, xtensa_ar_reggroup);
762 reggroup_add (gdbarch, xtensa_user_reggroup);
763 reggroup_add (gdbarch, xtensa_vectra_reggroup);
765 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
766 reggroup_add (gdbarch, xtensa_cp[i]);
770 xtensa_coprocessor_register_group (struct reggroup *group)
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 if (group == xtensa_cp[i])
781 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
782 | XTENSA_REGISTER_FLAGS_WRITABLE \
783 | XTENSA_REGISTER_FLAGS_VOLATILE)
785 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
786 | XTENSA_REGISTER_FLAGS_WRITABLE)
789 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
791 struct reggroup *group)
793 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
794 xtensa_register_type_t type = reg->type;
795 xtensa_register_group_t rg = reg->group;
798 if (group == save_reggroup)
799 /* Every single register should be included into the list of registers
800 to be watched for changes while using -data-list-changed-registers. */
803 /* First, skip registers that are not visible to this target
804 (unknown and unmapped registers when not using ISS). */
806 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
808 if (group == all_reggroup)
810 if (group == xtensa_ar_reggroup)
811 return rg & xtRegisterGroupAddrReg;
812 if (group == xtensa_user_reggroup)
813 return rg & xtRegisterGroupUser;
814 if (group == float_reggroup)
815 return rg & xtRegisterGroupFloat;
816 if (group == general_reggroup)
817 return rg & xtRegisterGroupGeneral;
818 if (group == system_reggroup)
819 return rg & xtRegisterGroupState;
820 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
821 return rg & xtRegisterGroupVectra;
822 if (group == restore_reggroup)
823 return (regnum < gdbarch_num_regs (gdbarch)
824 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
825 cp_number = xtensa_coprocessor_register_group (group);
827 return rg & (xtRegisterGroupCP0 << cp_number);
833 /* Supply register REGNUM from the buffer specified by GREGS and LEN
834 in the general-purpose register set REGSET to register cache
835 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
838 xtensa_supply_gregset (const struct regset *regset,
844 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
845 struct gdbarch *gdbarch = rc->arch ();
848 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
850 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
851 rc->raw_supply (gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
852 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
853 rc->raw_supply (gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
854 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
855 rc->raw_supply (gdbarch_tdep (gdbarch)->wb_regnum,
856 (char *) ®s->windowbase);
857 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
858 rc->raw_supply (gdbarch_tdep (gdbarch)->ws_regnum,
859 (char *) ®s->windowstart);
860 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
861 rc->raw_supply (gdbarch_tdep (gdbarch)->lbeg_regnum,
862 (char *) ®s->lbeg);
863 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
864 rc->raw_supply (gdbarch_tdep (gdbarch)->lend_regnum,
865 (char *) ®s->lend);
866 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
867 rc->raw_supply (gdbarch_tdep (gdbarch)->lcount_regnum,
868 (char *) ®s->lcount);
869 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
870 rc->raw_supply (gdbarch_tdep (gdbarch)->sar_regnum,
871 (char *) ®s->sar);
872 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
873 && regnum < gdbarch_tdep (gdbarch)->ar_base
874 + gdbarch_tdep (gdbarch)->num_aregs)
876 (regnum, (char *) ®s->ar[regnum - gdbarch_tdep (gdbarch)->ar_base]);
877 else if (regnum == -1)
879 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
880 rc->raw_supply (gdbarch_tdep (gdbarch)->ar_base + i,
881 (char *) ®s->ar[i]);
886 /* Xtensa register set. */
892 xtensa_supply_gregset
896 /* Iterate over supported core file register note sections. */
899 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
900 iterate_over_regset_sections_cb *cb,
902 const struct regcache *regcache)
904 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
906 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
911 /* Handling frames. */
913 /* Number of registers to save in case of Windowed ABI. */
914 #define XTENSA_NUM_SAVED_AREGS 12
916 /* Frame cache part for Windowed ABI. */
917 typedef struct xtensa_windowed_frame_cache
919 int wb; /* WINDOWBASE of the previous frame. */
920 int callsize; /* Call size of this frame. */
921 int ws; /* WINDOWSTART of the previous frame. It keeps track of
922 life windows only. If there is no bit set for the
923 window, that means it had been already spilled
924 because of window overflow. */
926 /* Addresses of spilled A-registers.
927 AREGS[i] == -1, if corresponding AR is alive. */
928 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
929 } xtensa_windowed_frame_cache_t;
931 /* Call0 ABI Definitions. */
933 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
935 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
936 #define C0_SP 1 /* Register used as SP. */
937 #define C0_FP 15 /* Register used as FP. */
938 #define C0_RA 0 /* Register used as return address. */
939 #define C0_ARGS 2 /* Register used as first arg/retval. */
940 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
942 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
943 A-register where the current content of the reg came from (in terms
944 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
945 mean that the orignal content of the register was saved to the stack.
946 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
947 know where SP will end up until the entire prologue has been analyzed. */
949 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
950 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
951 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
953 extern xtensa_isa xtensa_default_isa;
955 typedef struct xtensa_c0reg
957 int fr_reg; /* original register from which register content
958 is derived, or C0_CONST, or C0_INEXP. */
959 int fr_ofs; /* constant offset from reg, or immediate value. */
960 int to_stk; /* offset from original SP to register (4-byte aligned),
961 or C0_NOSTK if register has not been saved. */
964 /* Frame cache part for Call0 ABI. */
965 typedef struct xtensa_call0_frame_cache
967 int c0_frmsz; /* Stack frame size. */
968 int c0_hasfp; /* Current frame uses frame pointer. */
969 int fp_regnum; /* A-register used as FP. */
970 int c0_fp; /* Actual value of frame pointer. */
971 int c0_fpalign; /* Dinamic adjustment for the stack
972 pointer. It's an AND mask. Zero,
973 if alignment was not adjusted. */
974 int c0_old_sp; /* In case of dynamic adjustment, it is
975 a register holding unaligned sp.
976 C0_INEXP, when undefined. */
977 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
978 stack offset. C0_NOSTK otherwise. */
980 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
981 } xtensa_call0_frame_cache_t;
983 typedef struct xtensa_frame_cache
985 CORE_ADDR base; /* Stack pointer of this frame. */
986 CORE_ADDR pc; /* PC of this frame at the function entry point. */
987 CORE_ADDR ra; /* The raw return address of this frame. */
988 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
989 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
990 int call0; /* It's a call0 framework (else windowed). */
993 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
994 xtensa_call0_frame_cache_t c0; /* call0 == true. */
996 } xtensa_frame_cache_t;
999 static struct xtensa_frame_cache *
1000 xtensa_alloc_frame_cache (int windowed)
1002 xtensa_frame_cache_t *cache;
1005 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1007 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1014 cache->call0 = !windowed;
1017 cache->c0.c0_frmsz = -1;
1018 cache->c0.c0_hasfp = 0;
1019 cache->c0.fp_regnum = -1;
1020 cache->c0.c0_fp = -1;
1021 cache->c0.c0_fpalign = 0;
1022 cache->c0.c0_old_sp = C0_INEXP;
1023 cache->c0.c0_sp_ofs = C0_NOSTK;
1025 for (i = 0; i < C0_NREGS; i++)
1027 cache->c0.c0_rt[i].fr_reg = i;
1028 cache->c0.c0_rt[i].fr_ofs = 0;
1029 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1036 cache->wd.callsize = -1;
1038 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1039 cache->wd.aregs[i] = -1;
1046 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1048 return address & ~15;
1053 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1058 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1059 host_address_to_string (next_frame));
1061 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1062 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1064 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1070 static struct frame_id
1071 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1075 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1077 pc = get_frame_pc (this_frame);
1078 fp = get_frame_register_unsigned
1079 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1081 /* Make dummy frame ID unique by adding a constant. */
1082 return frame_id_build (fp + SP_ALIGNMENT, pc);
1085 /* Returns true, if instruction to execute next is unique to Xtensa Window
1086 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1089 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1091 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1092 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1095 if (byte_order == BFD_ENDIAN_BIG)
1097 /* Check, if this is L32E or S32E. */
1098 code = insn & 0xf000ff00;
1099 if ((code == 0x00009000) || (code == 0x00009400))
1101 /* Check, if this is RFWU or RFWO. */
1102 code = insn & 0xffffff00;
1103 return ((code == 0x00430000) || (code == 0x00530000));
1107 /* Check, if this is L32E or S32E. */
1108 code = insn & 0x00ff000f;
1109 if ((code == 0x090000) || (code == 0x490000))
1111 /* Check, if this is RFWU or RFWO. */
1112 code = insn & 0x00ffffff;
1113 return ((code == 0x00003400) || (code == 0x00003500));
1117 /* Returns the best guess about which register is a frame pointer
1118 for the function containing CURRENT_PC. */
1120 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1121 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1124 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1126 #define RETURN_FP goto done
1128 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1129 CORE_ADDR start_addr;
1131 xtensa_insnbuf ins, slot;
1132 gdb_byte ibuf[XTENSA_ISA_BSZ];
1133 CORE_ADDR ia, bt, ba;
1135 int ilen, islots, is;
1137 const char *opcname;
1139 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1140 if (start_addr == 0)
1143 isa = xtensa_default_isa;
1144 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1145 ins = xtensa_insnbuf_alloc (isa);
1146 slot = xtensa_insnbuf_alloc (isa);
1149 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1151 if (ia + xtensa_isa_maxlength (isa) > bt)
1154 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1155 ? ba + XTENSA_ISA_BSZ : current_pc;
1156 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1160 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1161 ifmt = xtensa_format_decode (isa, ins);
1162 if (ifmt == XTENSA_UNDEFINED)
1164 ilen = xtensa_format_length (isa, ifmt);
1165 if (ilen == XTENSA_UNDEFINED)
1167 islots = xtensa_format_num_slots (isa, ifmt);
1168 if (islots == XTENSA_UNDEFINED)
1171 for (is = 0; is < islots; ++is)
1173 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1176 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1177 if (opc == XTENSA_UNDEFINED)
1180 opcname = xtensa_opcode_name (isa, opc);
1182 if (strcasecmp (opcname, "mov.n") == 0
1183 || strcasecmp (opcname, "or") == 0)
1185 unsigned int register_operand;
1187 /* Possible candidate for setting frame pointer
1188 from A1. This is what we are looking for. */
1190 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1191 is, slot, ®ister_operand) != 0)
1193 if (xtensa_operand_decode (isa, opc, 1, ®ister_operand) != 0)
1195 if (register_operand == 1) /* Mov{.n} FP A1. */
1197 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1198 ®ister_operand) != 0)
1200 if (xtensa_operand_decode (isa, opc, 0,
1201 ®ister_operand) != 0)
1205 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1211 /* We have problems decoding the memory. */
1213 || strcasecmp (opcname, "ill") == 0
1214 || strcasecmp (opcname, "ill.n") == 0
1215 /* Hit planted breakpoint. */
1216 || strcasecmp (opcname, "break") == 0
1217 || strcasecmp (opcname, "break.n") == 0
1218 /* Flow control instructions finish prologue. */
1219 || xtensa_opcode_is_branch (isa, opc) > 0
1220 || xtensa_opcode_is_jump (isa, opc) > 0
1221 || xtensa_opcode_is_loop (isa, opc) > 0
1222 || xtensa_opcode_is_call (isa, opc) > 0
1223 || strcasecmp (opcname, "simcall") == 0
1224 || strcasecmp (opcname, "syscall") == 0)
1225 /* Can not continue analysis. */
1230 xtensa_insnbuf_free(isa, slot);
1231 xtensa_insnbuf_free(isa, ins);
1235 /* The key values to identify the frame using "cache" are
1237 cache->base = SP (or best guess about FP) of this frame;
1238 cache->pc = entry-PC (entry point of the frame function);
1239 cache->prev_sp = SP of the previous frame. */
1242 call0_frame_cache (struct frame_info *this_frame,
1243 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1246 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1247 xtensa_frame_cache_t *cache,
1250 static struct xtensa_frame_cache *
1251 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1253 xtensa_frame_cache_t *cache;
1254 CORE_ADDR ra, wb, ws, pc, sp, ps;
1255 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1257 unsigned int fp_regnum;
1258 int windowed, ps_regnum;
1261 return (struct xtensa_frame_cache *) *this_cache;
1263 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1264 ps_regnum = gdbarch_ps_regnum (gdbarch);
1265 ps = (ps_regnum >= 0
1266 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1268 windowed = windowing_enabled (gdbarch, ps);
1270 /* Get pristine xtensa-frame. */
1271 cache = xtensa_alloc_frame_cache (windowed);
1272 *this_cache = cache;
1278 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1279 wb = get_frame_register_unsigned (this_frame,
1280 gdbarch_tdep (gdbarch)->wb_regnum);
1281 ws = get_frame_register_unsigned (this_frame,
1282 gdbarch_tdep (gdbarch)->ws_regnum);
1284 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1285 && XTENSA_IS_ENTRY (gdbarch, op1))
1287 int callinc = CALLINC (ps);
1288 ra = get_frame_register_unsigned
1289 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1291 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1292 cache->wd.callsize = 0;
1295 cache->prev_sp = get_frame_register_unsigned
1296 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1298 /* This only can be the outermost frame since we are
1299 just about to execute ENTRY. SP hasn't been set yet.
1300 We can assume any frame size, because it does not
1301 matter, and, let's fake frame base in cache. */
1302 cache->base = cache->prev_sp - 16;
1305 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1306 cache->ps = (ps & ~PS_CALLINC_MASK)
1307 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1313 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1314 ra = get_frame_register_unsigned (this_frame,
1315 gdbarch_tdep (gdbarch)->a0_base);
1316 cache->wd.callsize = WINSIZE (ra);
1317 cache->wd.wb = (wb - cache->wd.callsize / 4)
1318 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1319 cache->wd.ws = ws & ~(1 << wb);
1321 cache->pc = get_frame_func (this_frame);
1322 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1323 cache->ps = (ps & ~PS_CALLINC_MASK)
1324 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1327 if (cache->wd.ws == 0)
1332 sp = get_frame_register_unsigned
1333 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1335 for (i = 0; i < 4; i++, sp += 4)
1337 cache->wd.aregs[i] = sp;
1340 if (cache->wd.callsize > 4)
1342 /* Set A4...A7/A11. */
1343 /* Get the SP of the frame previous to the previous one.
1344 To achieve this, we have to dereference SP twice. */
1345 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1346 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1347 sp -= cache->wd.callsize * 4;
1349 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1351 cache->wd.aregs[i] = sp;
1356 if ((cache->prev_sp == 0) && ( ra != 0 ))
1357 /* If RA is equal to 0 this frame is an outermost frame. Leave
1358 cache->prev_sp unchanged marking the boundary of the frame stack. */
1360 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1362 /* Register window overflow already happened.
1363 We can read caller's SP from the proper spill loction. */
1364 sp = get_frame_register_unsigned
1365 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1366 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1370 /* Read caller's frame SP directly from the previous window. */
1371 int regnum = arreg_number
1372 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1375 cache->prev_sp = xtensa_read_register (regnum);
1379 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1381 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1383 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1384 /* Everything was set already, including cache->base. */
1387 else /* Call0 framework. */
1389 call0_frame_cache (this_frame, cache, pc);
1390 fp_regnum = cache->c0.fp_regnum;
1393 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1398 static int xtensa_session_once_reported = 1;
1400 /* Report a problem with prologue analysis while doing backtracing.
1401 But, do it only once to avoid annoyng repeated messages. */
1406 if (xtensa_session_once_reported == 0)
1408 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1409 This message will not be repeated in this session.\n"));
1411 xtensa_session_once_reported = 1;
1416 xtensa_frame_this_id (struct frame_info *this_frame,
1418 struct frame_id *this_id)
1420 struct xtensa_frame_cache *cache =
1421 xtensa_frame_cache (this_frame, this_cache);
1423 if (cache->prev_sp == 0)
1426 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1429 static struct value *
1430 xtensa_frame_prev_register (struct frame_info *this_frame,
1434 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1435 struct xtensa_frame_cache *cache;
1436 ULONGEST saved_reg = 0;
1439 if (*this_cache == NULL)
1440 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1441 cache = (struct xtensa_frame_cache *) *this_cache;
1443 if (regnum ==gdbarch_pc_regnum (gdbarch))
1444 saved_reg = cache->ra;
1445 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1446 saved_reg = cache->prev_sp;
1447 else if (!cache->call0)
1449 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1450 saved_reg = cache->wd.ws;
1451 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1452 saved_reg = cache->wd.wb;
1453 else if (regnum == gdbarch_ps_regnum (gdbarch))
1454 saved_reg = cache->ps;
1462 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1464 if (!cache->call0) /* Windowed ABI. */
1466 /* Convert A-register numbers to AR-register numbers,
1467 if we deal with A-register. */
1468 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1469 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1470 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1472 /* Check, if we deal with AR-register saved on stack. */
1473 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1474 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1475 + gdbarch_tdep (gdbarch)->num_aregs))
1477 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1480 && areg < XTENSA_NUM_SAVED_AREGS
1481 && cache->wd.aregs[areg] != -1)
1482 return frame_unwind_got_memory (this_frame, regnum,
1483 cache->wd.aregs[areg]);
1486 else /* Call0 ABI. */
1488 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1489 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1491 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1498 /* If register was saved in the prologue, retrieve it. */
1499 stkofs = cache->c0.c0_rt[reg].to_stk;
1500 if (stkofs != C0_NOSTK)
1502 /* Determine SP on entry based on FP. */
1503 spe = cache->c0.c0_fp
1504 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1506 return frame_unwind_got_memory (this_frame, regnum,
1512 /* All other registers have been either saved to
1513 the stack or are still alive in the processor. */
1515 return frame_unwind_got_register (this_frame, regnum, regnum);
1519 static const struct frame_unwind
1523 default_frame_unwind_stop_reason,
1524 xtensa_frame_this_id,
1525 xtensa_frame_prev_register,
1527 default_frame_sniffer
1531 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1533 struct xtensa_frame_cache *cache =
1534 xtensa_frame_cache (this_frame, this_cache);
1539 static const struct frame_base
1543 xtensa_frame_base_address,
1544 xtensa_frame_base_address,
1545 xtensa_frame_base_address
1550 xtensa_extract_return_value (struct type *type,
1551 struct regcache *regcache,
1554 struct gdbarch *gdbarch = regcache->arch ();
1555 bfd_byte *valbuf = (bfd_byte *) dst;
1556 int len = TYPE_LENGTH (type);
1561 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1563 gdb_assert(len > 0);
1565 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1567 /* First, we have to find the caller window in the register file. */
1568 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1569 callsize = extract_call_winsize (gdbarch, pc);
1571 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1572 if (len > (callsize > 8 ? 8 : 16))
1573 internal_error (__FILE__, __LINE__,
1574 _("cannot extract return value of %d bytes long"),
1577 /* Get the register offset of the return
1578 register (A2) in the caller window. */
1579 regcache_raw_read_unsigned
1580 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1581 areg = arreg_number (gdbarch,
1582 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1586 /* No windowing hardware - Call0 ABI. */
1587 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1590 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1592 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1595 for (; len > 0; len -= 4, areg++, valbuf += 4)
1598 regcache->raw_read_part (areg, offset, len, valbuf);
1600 regcache->raw_read (areg, valbuf);
1606 xtensa_store_return_value (struct type *type,
1607 struct regcache *regcache,
1610 struct gdbarch *gdbarch = regcache->arch ();
1611 const bfd_byte *valbuf = (const bfd_byte *) dst;
1615 int len = TYPE_LENGTH (type);
1618 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1620 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1622 regcache_raw_read_unsigned
1623 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1624 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1625 callsize = extract_call_winsize (gdbarch, pc);
1627 if (len > (callsize > 8 ? 8 : 16))
1628 internal_error (__FILE__, __LINE__,
1629 _("unimplemented for this length: %d"),
1630 TYPE_LENGTH (type));
1631 areg = arreg_number (gdbarch,
1632 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1634 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1635 callsize, (int) wb);
1639 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1642 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1645 for (; len > 0; len -= 4, areg++, valbuf += 4)
1648 regcache->raw_write_part (areg, offset, len, valbuf);
1650 regcache->raw_write (areg, valbuf);
1655 static enum return_value_convention
1656 xtensa_return_value (struct gdbarch *gdbarch,
1657 struct value *function,
1658 struct type *valtype,
1659 struct regcache *regcache,
1661 const gdb_byte *writebuf)
1663 /* Structures up to 16 bytes are returned in registers. */
1665 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1666 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1667 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1668 && TYPE_LENGTH (valtype) > 16);
1671 return RETURN_VALUE_STRUCT_CONVENTION;
1673 DEBUGTRACE ("xtensa_return_value(...)\n");
1675 if (writebuf != NULL)
1677 xtensa_store_return_value (valtype, regcache, writebuf);
1680 if (readbuf != NULL)
1682 gdb_assert (!struct_return);
1683 xtensa_extract_return_value (valtype, regcache, readbuf);
1685 return RETURN_VALUE_REGISTER_CONVENTION;
1692 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1693 struct value *function,
1694 struct regcache *regcache,
1697 struct value **args,
1700 CORE_ADDR struct_addr)
1702 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1704 int size, onstack_size;
1705 gdb_byte *buf = (gdb_byte *) alloca (16);
1707 struct argument_info
1709 const bfd_byte *contents;
1711 int onstack; /* onstack == 0 => in reg */
1712 int align; /* alignment */
1715 int offset; /* stack offset if on stack. */
1716 int regno; /* regno if in register. */
1720 struct argument_info *arg_info =
1721 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1725 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1727 if (xtensa_debug_level > 3)
1730 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1731 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1732 "struct_addr=0x%x\n",
1733 (int) sp, (int) struct_return, (int) struct_addr);
1735 for (i = 0; i < nargs; i++)
1737 struct value *arg = args[i];
1738 struct type *arg_type = check_typedef (value_type (arg));
1739 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1740 host_address_to_string (arg),
1741 TYPE_LENGTH (arg_type));
1742 switch (TYPE_CODE (arg_type))
1745 fprintf_unfiltered (gdb_stdlog, "int");
1747 case TYPE_CODE_STRUCT:
1748 fprintf_unfiltered (gdb_stdlog, "struct");
1751 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1754 fprintf_unfiltered (gdb_stdlog, " %s\n",
1755 host_address_to_string (value_contents (arg)));
1759 /* First loop: collect information.
1760 Cast into type_long. (This shouldn't happen often for C because
1761 GDB already does this earlier.) It's possible that GDB could
1762 do it all the time but it's harmless to leave this code here. */
1769 size = REGISTER_SIZE;
1771 for (i = 0; i < nargs; i++)
1773 struct argument_info *info = &arg_info[i];
1774 struct value *arg = args[i];
1775 struct type *arg_type = check_typedef (value_type (arg));
1777 switch (TYPE_CODE (arg_type))
1780 case TYPE_CODE_BOOL:
1781 case TYPE_CODE_CHAR:
1782 case TYPE_CODE_RANGE:
1783 case TYPE_CODE_ENUM:
1785 /* Cast argument to long if necessary as the mask does it too. */
1786 if (TYPE_LENGTH (arg_type)
1787 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1789 arg_type = builtin_type (gdbarch)->builtin_long;
1790 arg = value_cast (arg_type, arg);
1792 /* Aligment is equal to the type length for the basic types. */
1793 info->align = TYPE_LENGTH (arg_type);
1798 /* Align doubles correctly. */
1799 if (TYPE_LENGTH (arg_type)
1800 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1801 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1803 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1806 case TYPE_CODE_STRUCT:
1808 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1811 info->length = TYPE_LENGTH (arg_type);
1812 info->contents = value_contents (arg);
1814 /* Align size and onstack_size. */
1815 size = (size + info->align - 1) & ~(info->align - 1);
1816 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1818 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1821 info->u.offset = onstack_size;
1822 onstack_size += info->length;
1827 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1829 size += info->length;
1832 /* Adjust the stack pointer and align it. */
1833 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1835 /* Simulate MOVSP, if Windowed ABI. */
1836 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1839 read_memory (osp - 16, buf, 16);
1840 write_memory (sp - 16, buf, 16);
1843 /* Second Loop: Load arguments. */
1847 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1848 regcache->cooked_write (ARG_1ST (gdbarch), buf);
1851 for (i = 0; i < nargs; i++)
1853 struct argument_info *info = &arg_info[i];
1857 int n = info->length;
1858 CORE_ADDR offset = sp + info->u.offset;
1860 /* Odd-sized structs are aligned to the lower side of a memory
1861 word in big-endian mode and require a shift. This only
1862 applies for structures smaller than one word. */
1864 if (n < REGISTER_SIZE
1865 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1866 offset += (REGISTER_SIZE - n);
1868 write_memory (offset, info->contents, info->length);
1873 int n = info->length;
1874 const bfd_byte *cp = info->contents;
1875 int r = info->u.regno;
1877 /* Odd-sized structs are aligned to the lower side of registers in
1878 big-endian mode and require a shift. The odd-sized leftover will
1879 be at the end. Note that this is only true for structures smaller
1880 than REGISTER_SIZE; for larger odd-sized structures the excess
1881 will be left-aligned in the register on both endiannesses. */
1883 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1886 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1887 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1889 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1890 regcache->cooked_write (r, buf);
1892 cp += REGISTER_SIZE;
1899 regcache->cooked_write (r, cp);
1901 cp += REGISTER_SIZE;
1908 /* Set the return address of dummy frame to the dummy address.
1909 The return address for the current function (in A0) is
1910 saved in the dummy frame, so we can savely overwrite A0 here. */
1912 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1916 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1917 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1918 ps = (unsigned long) val & ~0x00030000;
1919 regcache_cooked_write_unsigned
1920 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1921 regcache_cooked_write_unsigned (regcache,
1922 gdbarch_ps_regnum (gdbarch),
1925 /* All the registers have been saved. After executing
1926 dummy call, they all will be restored. So it's safe
1927 to modify WINDOWSTART register to make it look like there
1928 is only one register window corresponding to WINDOWEBASE. */
1930 regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum, buf);
1931 regcache_cooked_write_unsigned
1932 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1933 1 << extract_unsigned_integer (buf, 4, byte_order));
1937 /* Simulate CALL0: write RA into A0 register. */
1938 regcache_cooked_write_unsigned
1939 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1942 /* Set new stack pointer and return it. */
1943 regcache_cooked_write_unsigned (regcache,
1944 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1945 /* Make dummy frame ID unique by adding a constant. */
1946 return sp + SP_ALIGNMENT;
1949 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1952 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1954 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1960 /* Return a breakpoint for the current location of PC. We always use
1961 the density version if we have density instructions (regardless of the
1962 current instruction at PC), and use regular instructions otherwise. */
1964 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1965 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1966 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1967 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1969 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1971 static const gdb_byte *
1972 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1978 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1979 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1981 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1982 return big_breakpoint;
1984 return little_breakpoint;
1988 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1989 static unsigned char density_little_breakpoint[]
1990 = DENSITY_LITTLE_BREAKPOINT;
1992 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1993 return density_big_breakpoint;
1995 return density_little_breakpoint;
1999 /* Call0 ABI support routines. */
2001 /* Return true, if PC points to "ret" or "ret.n". */
2004 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2006 #define RETURN_RET goto done
2008 xtensa_insnbuf ins, slot;
2009 gdb_byte ibuf[XTENSA_ISA_BSZ];
2010 CORE_ADDR ia, bt, ba;
2012 int ilen, islots, is;
2014 const char *opcname;
2017 isa = xtensa_default_isa;
2018 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2019 ins = xtensa_insnbuf_alloc (isa);
2020 slot = xtensa_insnbuf_alloc (isa);
2023 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2025 if (ia + xtensa_isa_maxlength (isa) > bt)
2028 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2029 ? ba + XTENSA_ISA_BSZ : finish_pc;
2030 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2034 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2035 ifmt = xtensa_format_decode (isa, ins);
2036 if (ifmt == XTENSA_UNDEFINED)
2038 ilen = xtensa_format_length (isa, ifmt);
2039 if (ilen == XTENSA_UNDEFINED)
2041 islots = xtensa_format_num_slots (isa, ifmt);
2042 if (islots == XTENSA_UNDEFINED)
2045 for (is = 0; is < islots; ++is)
2047 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2050 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2051 if (opc == XTENSA_UNDEFINED)
2054 opcname = xtensa_opcode_name (isa, opc);
2056 if ((strcasecmp (opcname, "ret.n") == 0)
2057 || (strcasecmp (opcname, "ret") == 0))
2065 xtensa_insnbuf_free(isa, slot);
2066 xtensa_insnbuf_free(isa, ins);
2070 /* Call0 opcode class. Opcodes are preclassified according to what they
2071 mean for Call0 prologue analysis, and their number of significant operands.
2072 The purpose of this is to simplify prologue analysis by separating
2073 instruction decoding (libisa) from the semantics of prologue analysis. */
2077 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2078 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2079 c0opc_flow, /* Flow control insn. */
2080 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2081 c0opc_break, /* Debugger software breakpoints. */
2082 c0opc_add, /* Adding two registers. */
2083 c0opc_addi, /* Adding a register and an immediate. */
2084 c0opc_and, /* Bitwise "and"-ing two registers. */
2085 c0opc_sub, /* Subtracting a register from a register. */
2086 c0opc_mov, /* Moving a register to a register. */
2087 c0opc_movi, /* Moving an immediate to a register. */
2088 c0opc_l32r, /* Loading a literal. */
2089 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2090 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2091 c0opc_l32e, /* L32E instruction. */
2092 c0opc_s32e, /* S32E instruction. */
2093 c0opc_rfwo, /* RFWO instruction. */
2094 c0opc_rfwu, /* RFWU instruction. */
2095 c0opc_NrOf /* Number of opcode classifications. */
2098 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2101 rwx_special_register (const char *opcname)
2103 char ch = *opcname++;
2105 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2107 if (*opcname++ != 's')
2109 if (*opcname++ != 'r')
2111 if (*opcname++ != '.')
2117 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2119 static xtensa_insn_kind
2120 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2122 const char *opcname;
2123 xtensa_insn_kind opclass = c0opc_uninteresting;
2125 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2127 /* Get opcode name and handle special classifications. */
2129 opcname = xtensa_opcode_name (isa, opc);
2132 || strcasecmp (opcname, "ill") == 0
2133 || strcasecmp (opcname, "ill.n") == 0)
2134 opclass = c0opc_illegal;
2135 else if (strcasecmp (opcname, "break") == 0
2136 || strcasecmp (opcname, "break.n") == 0)
2137 opclass = c0opc_break;
2138 else if (strcasecmp (opcname, "entry") == 0)
2139 opclass = c0opc_entry;
2140 else if (strcasecmp (opcname, "rfwo") == 0)
2141 opclass = c0opc_rfwo;
2142 else if (strcasecmp (opcname, "rfwu") == 0)
2143 opclass = c0opc_rfwu;
2144 else if (xtensa_opcode_is_branch (isa, opc) > 0
2145 || xtensa_opcode_is_jump (isa, opc) > 0
2146 || xtensa_opcode_is_loop (isa, opc) > 0
2147 || xtensa_opcode_is_call (isa, opc) > 0
2148 || strcasecmp (opcname, "simcall") == 0
2149 || strcasecmp (opcname, "syscall") == 0)
2150 opclass = c0opc_flow;
2152 /* Also, classify specific opcodes that need to be tracked. */
2153 else if (strcasecmp (opcname, "add") == 0
2154 || strcasecmp (opcname, "add.n") == 0)
2155 opclass = c0opc_add;
2156 else if (strcasecmp (opcname, "and") == 0)
2157 opclass = c0opc_and;
2158 else if (strcasecmp (opcname, "addi") == 0
2159 || strcasecmp (opcname, "addi.n") == 0
2160 || strcasecmp (opcname, "addmi") == 0)
2161 opclass = c0opc_addi;
2162 else if (strcasecmp (opcname, "sub") == 0)
2163 opclass = c0opc_sub;
2164 else if (strcasecmp (opcname, "mov.n") == 0
2165 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2166 opclass = c0opc_mov;
2167 else if (strcasecmp (opcname, "movi") == 0
2168 || strcasecmp (opcname, "movi.n") == 0)
2169 opclass = c0opc_movi;
2170 else if (strcasecmp (opcname, "l32r") == 0)
2171 opclass = c0opc_l32r;
2172 else if (strcasecmp (opcname, "s32i") == 0
2173 || strcasecmp (opcname, "s32i.n") == 0)
2174 opclass = c0opc_s32i;
2175 else if (strcasecmp (opcname, "l32e") == 0)
2176 opclass = c0opc_l32e;
2177 else if (strcasecmp (opcname, "s32e") == 0)
2178 opclass = c0opc_s32e;
2179 else if (rwx_special_register (opcname))
2180 opclass = c0opc_rwxsr;
2185 /* Tracks register movement/mutation for a given operation, which may
2186 be within a bundle. Updates the destination register tracking info
2187 accordingly. The pc is needed only for pc-relative load instructions
2188 (eg. l32r). The SP register number is needed to identify stores to
2189 the stack frame. Returns 0, if analysis was succesfull, non-zero
2193 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2194 xtensa_insn_kind opclass, int nods, unsigned odv[],
2195 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2198 unsigned litbase, litaddr, litval;
2203 /* 3 operands: dst, src, imm. */
2204 gdb_assert (nods == 3);
2205 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2206 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2209 /* 3 operands: dst, src1, src2. */
2210 gdb_assert (nods == 3);
2211 if (src[odv[1]].fr_reg == C0_CONST)
2213 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2214 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2216 else if (src[odv[2]].fr_reg == C0_CONST)
2218 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2219 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2221 else dst[odv[0]].fr_reg = C0_INEXP;
2224 /* 3 operands: dst, src1, src2. */
2225 gdb_assert (nods == 3);
2226 if (cache->c0.c0_fpalign == 0)
2228 /* Handle dynamic stack alignment. */
2229 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2231 if (src[odv[2]].fr_reg == C0_CONST)
2232 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2235 else if ((src[odv[0]].fr_reg == spreg)
2236 && (src[odv[2]].fr_reg == spreg))
2238 if (src[odv[1]].fr_reg == C0_CONST)
2239 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2242 /* else fall through. */
2244 if (src[odv[1]].fr_reg == C0_CONST)
2246 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2247 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2249 else if (src[odv[2]].fr_reg == C0_CONST)
2251 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2252 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2254 else dst[odv[0]].fr_reg = C0_INEXP;
2257 /* 3 operands: dst, src1, src2. */
2258 gdb_assert (nods == 3);
2259 if (src[odv[2]].fr_reg == C0_CONST)
2261 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2262 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2264 else dst[odv[0]].fr_reg = C0_INEXP;
2267 /* 2 operands: dst, src [, src]. */
2268 gdb_assert (nods == 2);
2269 /* First, check if it's a special case of saving unaligned SP
2270 to a spare register in case of dynamic stack adjustment.
2271 But, only do it one time. The second time could be initializing
2272 frame pointer. We don't want to overwrite the first one. */
2273 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2274 cache->c0.c0_old_sp = odv[0];
2276 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2277 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2280 /* 2 operands: dst, imm. */
2281 gdb_assert (nods == 2);
2282 dst[odv[0]].fr_reg = C0_CONST;
2283 dst[odv[0]].fr_ofs = odv[1];
2286 /* 2 operands: dst, literal offset. */
2287 gdb_assert (nods == 2);
2288 /* litbase = xtensa_get_litbase (pc); can be also used. */
2289 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2290 ? 0 : xtensa_read_register
2291 (gdbarch_tdep (gdbarch)->litbase_regnum);
2292 litaddr = litbase & 1
2293 ? (litbase & ~1) + (signed)odv[1]
2294 : (pc + 3 + (signed)odv[1]) & ~3;
2295 litval = read_memory_integer (litaddr, 4, byte_order);
2296 dst[odv[0]].fr_reg = C0_CONST;
2297 dst[odv[0]].fr_ofs = litval;
2300 /* 3 operands: value, base, offset. */
2301 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2302 /* First, check if it's a spill for saved unaligned SP,
2303 when dynamic stack adjustment was applied to this frame. */
2304 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2305 && (odv[1] == spreg) /* SP usage indicates spill. */
2306 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2307 cache->c0.c0_sp_ofs = odv[2];
2309 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2310 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2311 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2312 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2313 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2315 /* ISA encoding guarantees alignment. But, check it anyway. */
2316 gdb_assert ((odv[2] & 3) == 0);
2317 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2320 /* If we end up inside Window Overflow / Underflow interrupt handler
2321 report an error because these handlers should have been handled
2322 already in a different way. */
2334 /* Analyze prologue of the function at start address to determine if it uses
2335 the Call0 ABI, and if so track register moves and linear modifications
2336 in the prologue up to the PC or just beyond the prologue, whichever is
2337 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2338 prologue. The prologue may overlap non-prologue instructions but is
2339 guaranteed to end by the first flow-control instruction (jump, branch,
2340 call or return). Since an optimized function may move information around
2341 and change the stack frame arbitrarily during the prologue, the information
2342 is guaranteed valid only at the point in the function indicated by the PC.
2343 May be used to skip the prologue or identify the ABI, w/o tracking.
2345 Returns: Address of first instruction after prologue, or PC (whichever
2346 is first), or 0, if decoding failed (in libisa).
2348 start Start address of function/prologue.
2349 pc Program counter to stop at. Use 0 to continue to end of prologue.
2350 If 0, avoids infinite run-on in corrupt code memory by bounding
2351 the scan to the end of the function if that can be determined.
2352 nregs Number of general registers to track.
2354 cache Xtensa frame cache.
2356 Note that these may produce useful results even if decoding fails
2357 because they begin with default assumptions that analysis may change. */
2360 call0_analyze_prologue (struct gdbarch *gdbarch,
2361 CORE_ADDR start, CORE_ADDR pc,
2362 int nregs, xtensa_frame_cache_t *cache)
2364 CORE_ADDR ia; /* Current insn address in prologue. */
2365 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2366 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2367 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2368 xtensa_isa isa; /* libisa ISA handle. */
2369 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2370 xtensa_format ifmt; /* libisa instruction format. */
2371 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2372 xtensa_opcode opc; /* Opcode in current slot. */
2373 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2374 int nods; /* Opcode number of operands. */
2375 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2376 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2377 int j; /* General loop counter. */
2378 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2379 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2380 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2382 struct symtab_and_line prologue_sal;
2384 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2385 (int)start, (int)pc);
2387 /* Try to limit the scan to the end of the function if a non-zero pc
2388 arg was not supplied to avoid probing beyond the end of valid memory.
2389 If memory is full of garbage that classifies as c0opc_uninteresting.
2390 If this fails (eg. if no symbols) pc ends up 0 as it was.
2391 Initialize the Call0 frame and register tracking info.
2392 Assume it's Call0 until an 'entry' instruction is encountered.
2393 Assume we may be in the prologue until we hit a flow control instr. */
2399 /* Find out, if we have an information about the prologue from DWARF. */
2400 prologue_sal = find_pc_line (start, 0);
2401 if (prologue_sal.line != 0) /* Found debug info. */
2402 body_pc = prologue_sal.end;
2404 /* If we are going to analyze the prologue in general without knowing about
2405 the current PC, make the best assumtion for the end of the prologue. */
2408 find_pc_partial_function (start, 0, NULL, &end_pc);
2409 body_pc = std::min (end_pc, body_pc);
2412 body_pc = std::min (pc, body_pc);
2415 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2417 isa = xtensa_default_isa;
2418 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2419 ins = xtensa_insnbuf_alloc (isa);
2420 slot = xtensa_insnbuf_alloc (isa);
2422 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2424 /* (Re)fill instruction buffer from memory if necessary, but do not
2425 read memory beyond PC to be sure we stay within text section
2426 (this protection only works if a non-zero pc is supplied). */
2428 if (ia + xtensa_isa_maxlength (isa) > bt)
2431 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2432 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2433 error (_("Unable to read target memory ..."));
2436 /* Decode format information. */
2438 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2439 ifmt = xtensa_format_decode (isa, ins);
2440 if (ifmt == XTENSA_UNDEFINED)
2445 ilen = xtensa_format_length (isa, ifmt);
2446 if (ilen == XTENSA_UNDEFINED)
2451 islots = xtensa_format_num_slots (isa, ifmt);
2452 if (islots == XTENSA_UNDEFINED)
2458 /* Analyze a bundle or a single instruction, using a snapshot of
2459 the register tracking info as input for the entire bundle so that
2460 register changes do not take effect within this bundle. */
2462 for (j = 0; j < nregs; ++j)
2463 rtmp[j] = cache->c0.c0_rt[j];
2465 for (is = 0; is < islots; ++is)
2467 /* Decode a slot and classify the opcode. */
2469 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2473 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2474 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2476 if (opc == XTENSA_UNDEFINED)
2477 opclass = c0opc_illegal;
2479 opclass = call0_classify_opcode (isa, opc);
2481 /* Decide whether to track this opcode, ignore it, or bail out. */
2490 case c0opc_uninteresting:
2493 case c0opc_flow: /* Flow control instructions stop analysis. */
2494 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2499 ia += ilen; /* Skip over 'entry' insn. */
2506 /* Only expected opcodes should get this far. */
2508 /* Extract and decode the operands. */
2509 nods = xtensa_opcode_num_operands (isa, opc);
2510 if (nods == XTENSA_UNDEFINED)
2516 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2518 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2523 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2528 /* Check operands to verify use of 'mov' assembler macro. */
2529 if (opclass == c0opc_mov && nods == 3)
2531 if (odv[2] == odv[1])
2534 if ((odv[0] == 1) && (odv[1] != 1))
2535 /* OR A1, An, An , where n != 1.
2536 This means we are inside epilogue already. */
2541 opclass = c0opc_uninteresting;
2546 /* Track register movement and modification for this operation. */
2547 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2548 opclass, nods, odv, ia, 1, cache);
2554 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2555 (unsigned)ia, fail ? "failed" : "succeeded");
2556 xtensa_insnbuf_free(isa, slot);
2557 xtensa_insnbuf_free(isa, ins);
2558 return fail ? XTENSA_ISA_BADPC : ia;
2561 /* Initialize frame cache for the current frame in CALL0 ABI. */
2564 call0_frame_cache (struct frame_info *this_frame,
2565 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2567 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2569 CORE_ADDR start_pc; /* The beginning of the function. */
2570 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2571 CORE_ADDR sp, fp, ra;
2572 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2574 sp = get_frame_register_unsigned
2575 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2576 fp = sp; /* Assume FP == SP until proven otherwise. */
2578 /* Find the beginning of the prologue of the function containing the PC
2579 and analyze it up to the PC or the end of the prologue. */
2581 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2583 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2585 if (body_pc == XTENSA_ISA_BADPC)
2589 goto finish_frame_analysis;
2593 /* Get the frame information and FP (if used) at the current PC.
2594 If PC is in the prologue, the prologue analysis is more reliable
2595 than DWARF info. We don't not know for sure, if PC is in the prologue,
2596 but we do know no calls have yet taken place, so we can almost
2597 certainly rely on the prologue analysis. */
2601 /* Prologue analysis was successful up to the PC.
2602 It includes the cases when PC == START_PC. */
2603 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2604 /* c0_hasfp == true means there is a frame pointer because
2605 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2606 was derived from SP. Otherwise, it would be C0_FP. */
2607 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2608 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2609 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2611 else /* No data from the prologue analysis. */
2614 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2619 if (cache->c0.c0_fpalign)
2621 /* This frame has a special prologue with a dynamic stack adjustment
2622 to force an alignment, which is bigger than standard 16 bytes. */
2624 CORE_ADDR unaligned_sp;
2626 if (cache->c0.c0_old_sp == C0_INEXP)
2627 /* This can't be. Prologue code should be consistent.
2628 Unaligned stack pointer should be saved in a spare register. */
2632 goto finish_frame_analysis;
2635 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2636 /* Saved unaligned value of SP is kept in a register. */
2637 unaligned_sp = get_frame_register_unsigned
2638 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2640 /* Get the value from stack. */
2641 unaligned_sp = (CORE_ADDR)
2642 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2644 prev_sp = unaligned_sp + c0_frmsz;
2647 prev_sp = fp + c0_frmsz;
2649 /* Frame size from debug info or prologue tracking does not account for
2650 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2653 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2655 /* Update the stack frame size. */
2656 c0_frmsz += fp - sp;
2659 /* Get the return address (RA) from the stack if saved,
2660 or try to get it from a register. */
2662 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2663 if (to_stk != C0_NOSTK)
2665 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2668 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2669 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2671 /* Special case for terminating backtrace at a function that wants to
2672 be seen as the outermost one. Such a function will clear it's RA (A0)
2673 register to 0 in the prologue instead of saving its original value. */
2678 /* RA was copied to another register or (before any function call) may
2679 still be in the original RA register. This is not always reliable:
2680 even in a leaf function, register tracking stops after prologue, and
2681 even in prologue, non-prologue instructions (not tracked) may overwrite
2682 RA or any register it was copied to. If likely in prologue or before
2683 any call, use retracking info and hope for the best (compiler should
2684 have saved RA in stack if not in a leaf function). If not in prologue,
2690 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2692 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2696 ra = get_frame_register_unsigned
2698 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2703 finish_frame_analysis:
2704 cache->pc = start_pc;
2706 /* RA == 0 marks the outermost frame. Do not go past it. */
2707 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2708 cache->c0.fp_regnum = fp_regnum;
2709 cache->c0.c0_frmsz = c0_frmsz;
2710 cache->c0.c0_hasfp = c0_hasfp;
2711 cache->c0.c0_fp = fp;
2714 static CORE_ADDR a0_saved;
2715 static CORE_ADDR a7_saved;
2716 static CORE_ADDR a11_saved;
2717 static int a0_was_saved;
2718 static int a7_was_saved;
2719 static int a11_was_saved;
2721 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2723 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2725 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2726 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2727 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2728 unsigned int spilled_value
2729 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2731 if ((at == 0) && !a0_was_saved)
2733 a0_saved = xtensa_read_register (atreg);
2736 else if ((at == 7) && !a7_was_saved)
2738 a7_saved = xtensa_read_register (atreg);
2741 else if ((at == 11) && !a11_was_saved)
2743 a11_saved = xtensa_read_register (atreg);
2747 xtensa_write_register (atreg, spilled_value);
2750 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2752 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2754 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2755 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2756 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2757 ULONGEST spilled_value = xtensa_read_register (atreg);
2759 write_memory_unsigned_integer (addr, 4,
2760 gdbarch_byte_order (gdbarch),
2764 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2770 xtNoExceptionHandler
2771 } xtensa_exception_handler_t;
2773 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2774 Return type of Xtensa Window Interrupt Handler on success. */
2775 static xtensa_exception_handler_t
2776 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2779 xtensa_insnbuf ins, slot;
2780 gdb_byte ibuf[XTENSA_ISA_BSZ];
2781 CORE_ADDR ia, bt, ba;
2783 int ilen, islots, is;
2786 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2788 uint32_t at, as, offset;
2790 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2791 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2793 isa = xtensa_default_isa;
2794 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2795 ins = xtensa_insnbuf_alloc (isa);
2796 slot = xtensa_insnbuf_alloc (isa);
2805 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2807 if (ia + xtensa_isa_maxlength (isa) > bt)
2810 bt = (ba + XTENSA_ISA_BSZ);
2811 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2812 return xtNoExceptionHandler;
2814 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2815 ifmt = xtensa_format_decode (isa, ins);
2816 if (ifmt == XTENSA_UNDEFINED)
2817 return xtNoExceptionHandler;
2818 ilen = xtensa_format_length (isa, ifmt);
2819 if (ilen == XTENSA_UNDEFINED)
2820 return xtNoExceptionHandler;
2821 islots = xtensa_format_num_slots (isa, ifmt);
2822 if (islots == XTENSA_UNDEFINED)
2823 return xtNoExceptionHandler;
2824 for (is = 0; is < islots; ++is)
2826 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2827 return xtNoExceptionHandler;
2828 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2829 if (opc == XTENSA_UNDEFINED)
2830 return xtNoExceptionHandler;
2831 switch (call0_classify_opcode (isa, opc))
2837 /* We expect none of them here. */
2838 return xtNoExceptionHandler;
2840 func = execute_l32e;
2843 func = execute_s32e;
2845 case c0opc_rfwo: /* RFWO. */
2846 /* Here, we return from WindowOverflow handler and,
2847 if we stopped at the very beginning, which means
2848 A0 was saved, we have to restore it now. */
2851 int arreg = arreg_number (gdbarch,
2852 gdbarch_tdep (gdbarch)->a0_base,
2854 xtensa_write_register (arreg, a0_saved);
2856 return xtWindowOverflow;
2857 case c0opc_rfwu: /* RFWU. */
2858 /* Here, we return from WindowUnderflow handler.
2859 Let's see if either A7 or A11 has to be restored. */
2860 if (WindowUnderflow12)
2864 int arreg = arreg_number (gdbarch,
2865 gdbarch_tdep (gdbarch)->a0_base + 11,
2867 xtensa_write_register (arreg, a11_saved);
2870 else if (a7_was_saved)
2872 int arreg = arreg_number (gdbarch,
2873 gdbarch_tdep (gdbarch)->a0_base + 7,
2875 xtensa_write_register (arreg, a7_saved);
2877 return xtWindowUnderflow;
2878 default: /* Simply skip this insns. */
2882 /* Decode arguments for L32E / S32E and simulate their execution. */
2883 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2884 return xtNoExceptionHandler;
2885 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2886 return xtNoExceptionHandler;
2887 if (xtensa_operand_decode (isa, opc, 0, &at))
2888 return xtNoExceptionHandler;
2889 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2890 return xtNoExceptionHandler;
2891 if (xtensa_operand_decode (isa, opc, 1, &as))
2892 return xtNoExceptionHandler;
2893 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_decode (isa, opc, 2, &offset))
2896 return xtNoExceptionHandler;
2898 (*func) (gdbarch, at, as, offset, wb);
2903 return xtNoExceptionHandler;
2906 /* Handle Window Overflow / Underflow exception frames. */
2909 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2910 xtensa_frame_cache_t *cache,
2913 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2914 CORE_ADDR ps, wb, ws, ra;
2915 int epc1_regnum, i, regnum;
2916 xtensa_exception_handler_t eh_type;
2918 /* Read PS, WB, and WS from the hardware. Note that PS register
2919 must be present, if Windowed ABI is supported. */
2920 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2921 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2922 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2924 /* Execute all the remaining instructions from Window Interrupt Handler
2925 by simulating them on the remote protocol level. On return, set the
2926 type of Xtensa Window Interrupt Handler, or report an error. */
2927 eh_type = execute_code (gdbarch, pc, wb);
2928 if (eh_type == xtNoExceptionHandler)
2930 Unable to decode Xtensa Window Interrupt Handler's code."));
2932 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2933 cache->call0 = 0; /* It's Windowed ABI. */
2935 /* All registers for the cached frame will be alive. */
2936 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2937 cache->wd.aregs[i] = -1;
2939 if (eh_type == xtWindowOverflow)
2940 cache->wd.ws = ws ^ (1 << wb);
2941 else /* eh_type == xtWindowUnderflow. */
2942 cache->wd.ws = ws | (1 << wb);
2944 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2945 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2947 ra = xtensa_read_register (regnum);
2948 cache->wd.callsize = WINSIZE (ra);
2949 cache->prev_sp = xtensa_read_register (regnum + 1);
2950 /* Set regnum to a frame pointer of the frame being cached. */
2951 regnum = xtensa_scan_prologue (gdbarch, pc);
2952 regnum = arreg_number (gdbarch,
2953 gdbarch_tdep (gdbarch)->a0_base + regnum,
2955 cache->base = get_frame_register_unsigned (this_frame, regnum);
2957 /* Read PC of interrupted function from EPC1 register. */
2958 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2959 if (epc1_regnum < 0)
2960 error(_("Unable to read Xtensa register EPC1"));
2961 cache->ra = xtensa_read_register (epc1_regnum);
2962 cache->pc = get_frame_func (this_frame);
2966 /* Skip function prologue.
2968 Return the pc of the first instruction after prologue. GDB calls this to
2969 find the address of the first line of the function or (if there is no line
2970 number information) to skip the prologue for planting breakpoints on
2971 function entries. Use debug info (if present) or prologue analysis to skip
2972 the prologue to achieve reliable debugging behavior. For windowed ABI,
2973 only the 'entry' instruction is skipped. It is not strictly necessary to
2974 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2975 backtrace at any point in the prologue, however certain potential hazards
2976 are avoided and a more "normal" debugging experience is ensured by
2977 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2978 For example, if we don't skip the prologue:
2979 - Some args may not yet have been saved to the stack where the debug
2980 info expects to find them (true anyway when only 'entry' is skipped);
2981 - Software breakpoints ('break' instrs) may not have been unplanted
2982 when the prologue analysis is done on initializing the frame cache,
2983 and breaks in the prologue will throw off the analysis.
2985 If we have debug info ( line-number info, in particular ) we simply skip
2986 the code associated with the first function line effectively skipping
2987 the prologue code. It works even in cases like
2990 { int local_var = 1;
2994 because, for this source code, both Xtensa compilers will generate two
2995 separate entries ( with the same line number ) in dwarf line-number
2996 section to make sure there is a boundary between the prologue code and
2997 the rest of the function.
2999 If there is no debug info, we need to analyze the code. */
3001 /* #define DONT_SKIP_PROLOGUE */
3004 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3006 struct symtab_and_line prologue_sal;
3009 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3011 #if DONT_SKIP_PROLOGUE
3015 /* Try to find first body line from debug info. */
3017 prologue_sal = find_pc_line (start_pc, 0);
3018 if (prologue_sal.line != 0) /* Found debug info. */
3020 /* In Call0, it is possible to have a function with only one instruction
3021 ('ret') resulting from a one-line optimized function that does nothing.
3022 In that case, prologue_sal.end may actually point to the start of the
3023 next function in the text section, causing a breakpoint to be set at
3024 the wrong place. Check, if the end address is within a different
3025 function, and if so return the start PC. We know we have symbol
3030 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3031 && call0_ret (start_pc, prologue_sal.end))
3034 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3035 if (end_func != start_pc)
3038 return prologue_sal.end;
3041 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3042 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3043 xtensa_alloc_frame_cache (0));
3044 return body_pc != 0 ? body_pc : start_pc;
3047 /* Verify the current configuration. */
3049 xtensa_verify_config (struct gdbarch *gdbarch)
3051 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3054 /* Verify that we got a reasonable number of AREGS. */
3055 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3057 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3060 /* Verify that certain registers exist. */
3062 if (tdep->pc_regnum == -1)
3063 log.printf (_("\n\tpc_regnum: No PC register"));
3064 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3065 log.printf (_("\n\tps_regnum: No PS register"));
3067 if (tdep->isa_use_windowed_registers)
3069 if (tdep->wb_regnum == -1)
3070 log.printf (_("\n\twb_regnum: No WB register"));
3071 if (tdep->ws_regnum == -1)
3072 log.printf (_("\n\tws_regnum: No WS register"));
3073 if (tdep->ar_base == -1)
3074 log.printf (_("\n\tar_base: No AR registers"));
3077 if (tdep->a0_base == -1)
3078 log.printf (_("\n\ta0_base: No Ax registers"));
3081 internal_error (__FILE__, __LINE__,
3082 _("the following are invalid: %s"), log.c_str ());
3086 /* Derive specific register numbers from the array of registers. */
3089 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3091 xtensa_register_t* rmap;
3092 int n, max_size = 4;
3095 tdep->num_nopriv_regs = 0;
3097 /* Special registers 0..255 (core). */
3098 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3099 /* User registers 0..255. */
3100 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3102 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3104 if (rmap->target_number == 0x0020)
3105 tdep->pc_regnum = n;
3106 else if (rmap->target_number == 0x0100)
3108 else if (rmap->target_number == 0x0000)
3110 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3111 tdep->wb_regnum = n;
3112 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3113 tdep->ws_regnum = n;
3114 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3115 tdep->debugcause_regnum = n;
3116 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3117 tdep->exccause_regnum = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3119 tdep->excvaddr_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3121 tdep->lbeg_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3123 tdep->lend_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3125 tdep->lcount_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3127 tdep->sar_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3129 tdep->litbase_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3131 tdep->ps_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3133 tdep->threadptr_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3136 tdep->interrupt_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3138 tdep->interrupt2_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3140 tdep->cpenable_regnum = n;
3143 if (rmap->byte_size > max_size)
3144 max_size = rmap->byte_size;
3145 if (rmap->mask != 0 && tdep->num_regs == 0)
3147 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3148 && tdep->num_nopriv_regs == 0)
3149 tdep->num_nopriv_regs = n;
3151 if (tdep->num_regs == 0)
3152 tdep->num_regs = tdep->num_nopriv_regs;
3154 /* Number of pseudo registers. */
3155 tdep->num_pseudo_regs = n - tdep->num_regs;
3157 /* Empirically determined maximum sizes. */
3158 tdep->max_register_raw_size = max_size;
3159 tdep->max_register_virtual_size = max_size;
3162 /* Module "constructor" function. */
3164 extern struct gdbarch_tdep xtensa_tdep;
3166 static struct gdbarch *
3167 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3169 struct gdbarch_tdep *tdep;
3170 struct gdbarch *gdbarch;
3172 DEBUGTRACE ("gdbarch_init()\n");
3174 if (!xtensa_default_isa)
3175 xtensa_default_isa = xtensa_isa_init (0, 0);
3177 /* We have to set the byte order before we call gdbarch_alloc. */
3178 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3180 tdep = &xtensa_tdep;
3181 gdbarch = gdbarch_alloc (&info, tdep);
3182 xtensa_derive_tdep (tdep);
3184 /* Verify our configuration. */
3185 xtensa_verify_config (gdbarch);
3186 xtensa_session_once_reported = 0;
3188 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3189 set_gdbarch_wchar_signed (gdbarch, 0);
3191 /* Pseudo-Register read/write. */
3192 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3193 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3195 /* Set target information. */
3196 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3197 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3198 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3199 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3200 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3202 /* Renumber registers for known formats (stabs and dwarf2). */
3203 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3204 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3206 /* We provide our own function to get register information. */
3207 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3208 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3210 /* To call functions from GDB using dummy frame. */
3211 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3213 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3215 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3217 /* Advance PC across any prologue instructions to reach "real" code. */
3218 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3220 /* Stack grows downward. */
3221 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3223 /* Set breakpoints. */
3224 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3225 xtensa_breakpoint_kind_from_pc);
3226 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3227 xtensa_sw_breakpoint_from_kind);
3229 /* After breakpoint instruction or illegal instruction, pc still
3230 points at break instruction, so don't decrement. */
3231 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3233 /* We don't skip args. */
3234 set_gdbarch_frame_args_skip (gdbarch, 0);
3236 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3238 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3240 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3242 /* Frame handling. */
3243 frame_base_set_default (gdbarch, &xtensa_frame_base);
3244 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3245 dwarf2_append_unwinders (gdbarch);
3247 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3249 xtensa_add_reggroups (gdbarch);
3250 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3252 set_gdbarch_iterate_over_regset_sections
3253 (gdbarch, xtensa_iterate_over_regset_sections);
3255 set_solib_svr4_fetch_link_map_offsets
3256 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3258 /* Hook in the ABI-specific overrides, if they have been registered. */
3259 gdbarch_init_osabi (info, gdbarch);
3265 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3267 error (_("xtensa_dump_tdep(): not implemented"));
3271 _initialize_xtensa_tdep (void)
3273 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3274 xtensa_init_reggroups ();
3276 add_setshow_zuinteger_cmd ("xtensa",
3278 &xtensa_debug_level,
3279 _("Set Xtensa debugging."),
3280 _("Show Xtensa debugging."), _("\
3281 When non-zero, Xtensa-specific debugging is enabled. \
3282 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3285 &setdebuglist, &showdebuglist);