1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "solib-svr4.h"
32 #include "floatformat.h"
34 #include "reggroups.h"
37 #include "dummy-frame.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
44 #include "arch-utils.h"
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
58 static unsigned int xtensa_debug_level = 0;
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
114 #define XTENSA_ENTRY_LENGTH 3
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
123 /* Big enough to hold the size of the largest register in bytes. */
124 #define XTENSA_MAX_REGISTER_SIZE 64
127 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
129 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
130 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
133 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
136 /* Convert a live A-register number to the corresponding AR-register
139 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
141 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 arreg = a_regnum - tdep->a0_base;
145 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
146 arreg &= tdep->num_aregs - 1;
148 return arreg + tdep->ar_base;
151 /* Convert a live AR-register number to the corresponding A-register order
152 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
154 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 areg = ar_regnum - tdep->ar_base;
160 if (areg < 0 || areg >= tdep->num_aregs)
162 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
163 return (areg > 15) ? -1 : areg;
166 /* Read Xtensa register directly from the hardware. */
168 xtensa_read_register (int regnum)
172 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
173 return (unsigned long) value;
176 /* Write Xtensa register directly to the hardware. */
178 xtensa_write_register (int regnum, ULONGEST value)
180 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
183 /* Return the window size of the previous call to the function from which we
186 This function is used to extract the return value after a called function
187 has returned to the caller. On Xtensa, the register that holds the return
188 value (from the perspective of the caller) depends on what call
189 instruction was used. For now, we are assuming that the call instruction
190 precedes the current address, so we simply analyze the call instruction.
191 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
192 method to call the inferior function. */
195 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
202 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
204 /* Read the previous instruction (should be a call[x]{4|8|12}. */
205 read_memory (pc-3, buf, 3);
206 insn = extract_unsigned_integer (buf, 3, byte_order);
208 /* Decode call instruction:
210 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
211 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
213 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
214 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
216 if (byte_order == BFD_ENDIAN_LITTLE)
218 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
219 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
223 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
224 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
230 /* REGISTER INFORMATION */
232 /* Find register by name. */
234 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
238 for (i = 0; i < gdbarch_num_regs (gdbarch)
239 + gdbarch_num_pseudo_regs (gdbarch);
242 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
248 /* Returns the name of a register. */
250 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
252 /* Return the name stored in the register map. */
253 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
254 + gdbarch_num_pseudo_regs (gdbarch))
255 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
257 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
261 /* Return the type of a register. Create a new type, if necessary. */
264 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
268 /* Return signed integer for ARx and Ax registers. */
269 if ((regnum >= tdep->ar_base
270 && regnum < tdep->ar_base + tdep->num_aregs)
271 || (regnum >= tdep->a0_base
272 && regnum < tdep->a0_base + 16))
273 return builtin_type (gdbarch)->builtin_int;
275 if (regnum == gdbarch_pc_regnum (gdbarch)
276 || regnum == tdep->a0_base + 1)
277 return builtin_type (gdbarch)->builtin_data_ptr;
279 /* Return the stored type for all other registers. */
280 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
281 + gdbarch_num_pseudo_regs (gdbarch))
283 xtensa_register_t* reg = &tdep->regmap[regnum];
285 /* Set ctype for this register (only the first time). */
289 struct ctype_cache *tp;
290 int size = reg->byte_size;
292 /* We always use the memory representation,
293 even if the register width is smaller. */
297 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
301 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
305 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
309 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
313 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
317 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
318 if (tp->size == size)
323 char *name = xstrprintf ("int%d", size * 8);
325 tp = XNEW (struct ctype_cache);
326 tp->next = tdep->type_entries;
327 tdep->type_entries = tp;
330 = arch_integer_type (gdbarch, size * 8, 1, name);
334 reg->ctype = tp->virtual_type;
340 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
345 /* Return the 'local' register number for stubs, dwarf2, etc.
346 The debugging information enumerates registers starting from 0 for A0
347 to n for An. So, we only have to add the base number for A0. */
350 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
354 if (regnum >= 0 && regnum < 16)
355 return gdbarch_tdep (gdbarch)->a0_base + regnum;
358 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
360 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
367 /* Write the bits of a masked register to the various registers.
368 Only the masked areas of these registers are modified; the other
369 fields are untouched. The size of masked registers is always less
370 than or equal to 32 bits. */
373 xtensa_register_write_masked (struct regcache *regcache,
374 xtensa_register_t *reg, const gdb_byte *buffer)
376 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
377 const xtensa_mask_t *mask = reg->mask;
379 int shift = 0; /* Shift for next mask (mod 32). */
380 int start, size; /* Start bit and size of current mask. */
382 unsigned int *ptr = value;
383 unsigned int regval, m, mem = 0;
385 int bytesize = reg->byte_size;
386 int bitsize = bytesize * 8;
389 DEBUGTRACE ("xtensa_register_write_masked ()\n");
391 /* Copy the masked register to host byte-order. */
392 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
393 for (i = 0; i < bytesize; i++)
396 mem |= (buffer[bytesize - i - 1] << 24);
401 for (i = 0; i < bytesize; i++)
404 mem |= (buffer[i] << 24);
409 /* We might have to shift the final value:
410 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
411 bytesize & 3 == x -> shift (4-x) * 8. */
413 *ptr = mem >> (((0 - bytesize) & 3) * 8);
417 /* Write the bits to the masked areas of the other registers. */
418 for (i = 0; i < mask->count; i++)
420 start = mask->mask[i].bit_start;
421 size = mask->mask[i].bit_size;
422 regval = mem >> shift;
424 if ((shift += size) > bitsize)
425 error (_("size of all masks is larger than the register"));
434 regval |= mem << (size - shift);
437 /* Make sure we have a valid register. */
438 r = mask->mask[i].reg_num;
439 if (r >= 0 && size > 0)
441 /* Don't overwrite the unmasked areas. */
443 regcache_cooked_read_unsigned (regcache, r, &old_val);
444 m = 0xffffffff >> (32 - size) << start;
446 regval = (regval & m) | (old_val & ~m);
447 regcache_cooked_write_unsigned (regcache, r, regval);
453 /* Read a tie state or mapped registers. Read the masked areas
454 of the registers and assemble them into a single value. */
456 static enum register_status
457 xtensa_register_read_masked (struct regcache *regcache,
458 xtensa_register_t *reg, gdb_byte *buffer)
460 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
461 const xtensa_mask_t *mask = reg->mask;
466 unsigned int *ptr = value;
467 unsigned int regval, mem = 0;
469 int bytesize = reg->byte_size;
470 int bitsize = bytesize * 8;
473 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
474 reg->name == 0 ? "" : reg->name);
476 /* Assemble the register from the masked areas of other registers. */
477 for (i = 0; i < mask->count; i++)
479 int r = mask->mask[i].reg_num;
482 enum register_status status;
485 status = regcache_cooked_read_unsigned (regcache, r, &val);
486 if (status != REG_VALID)
488 regval = (unsigned int) val;
493 start = mask->mask[i].bit_start;
494 size = mask->mask[i].bit_size;
499 regval &= (0xffffffff >> (32 - size));
501 mem |= regval << shift;
503 if ((shift += size) > bitsize)
504 error (_("size of all masks is larger than the register"));
515 mem = regval >> (size - shift);
522 /* Copy value to target byte order. */
526 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
527 for (i = 0; i < bytesize; i++)
531 buffer[bytesize - i - 1] = mem & 0xff;
535 for (i = 0; i < bytesize; i++)
539 buffer[i] = mem & 0xff;
547 /* Read pseudo registers. */
549 static enum register_status
550 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
551 struct regcache *regcache,
555 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
557 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
558 regnum, xtensa_register_name (gdbarch, regnum));
560 /* Read aliases a0..a15, if this is a Windowed ABI. */
561 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
562 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
563 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
566 enum register_status status;
568 status = regcache_raw_read_unsigned (regcache,
569 gdbarch_tdep (gdbarch)->wb_regnum,
571 if (status != REG_VALID)
573 regnum = arreg_number (gdbarch, regnum, value);
576 /* We can always read non-pseudo registers. */
577 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
578 return regcache_raw_read (regcache, regnum, buffer);
580 /* We have to find out how to deal with priveleged registers.
581 Let's treat them as pseudo-registers, but we cannot read/write them. */
583 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
584 || regnum < gdbarch_tdep (gdbarch)->a0_base)
586 buffer[0] = (gdb_byte)0;
587 buffer[1] = (gdb_byte)0;
588 buffer[2] = (gdb_byte)0;
589 buffer[3] = (gdb_byte)0;
592 /* Pseudo registers. */
594 && regnum < gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch))
597 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
598 xtensa_register_type_t type = reg->type;
599 int flags = gdbarch_tdep (gdbarch)->target_flags;
601 /* We cannot read Unknown or Unmapped registers. */
602 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
604 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
606 warning (_("cannot read register %s"),
607 xtensa_register_name (gdbarch, regnum));
612 /* Some targets cannot read TIE register files. */
613 else if (type == xtRegisterTypeTieRegfile)
615 /* Use 'fetch' to get register? */
616 if (flags & xtTargetFlagsUseFetchStore)
618 warning (_("cannot read register"));
622 /* On some targets (esp. simulators), we can always read the reg. */
623 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
625 warning (_("cannot read register"));
630 /* We can always read mapped registers. */
631 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
632 return xtensa_register_read_masked (regcache, reg, buffer);
634 /* Assume that we can read the register. */
635 return regcache_raw_read (regcache, regnum, buffer);
638 internal_error (__FILE__, __LINE__,
639 _("invalid register number %d"), regnum);
643 /* Write pseudo registers. */
646 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
647 struct regcache *regcache,
649 const gdb_byte *buffer)
651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
653 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
654 regnum, xtensa_register_name (gdbarch, regnum));
656 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
657 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
658 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
659 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
662 regcache_raw_read_unsigned (regcache,
663 gdbarch_tdep (gdbarch)->wb_regnum, &value);
664 regnum = arreg_number (gdbarch, regnum, value);
667 /* We can always write 'core' registers.
668 Note: We might have converted Ax->ARy. */
669 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
670 regcache_raw_write (regcache, regnum, buffer);
672 /* We have to find out how to deal with priveleged registers.
673 Let's treat them as pseudo-registers, but we cannot read/write them. */
675 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
679 /* Pseudo registers. */
681 && regnum < gdbarch_num_regs (gdbarch)
682 + gdbarch_num_pseudo_regs (gdbarch))
684 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
685 xtensa_register_type_t type = reg->type;
686 int flags = gdbarch_tdep (gdbarch)->target_flags;
688 /* On most targets, we cannot write registers
689 of type "Unknown" or "Unmapped". */
690 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
692 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
694 warning (_("cannot write register %s"),
695 xtensa_register_name (gdbarch, regnum));
700 /* Some targets cannot read TIE register files. */
701 else if (type == xtRegisterTypeTieRegfile)
703 /* Use 'store' to get register? */
704 if (flags & xtTargetFlagsUseFetchStore)
706 warning (_("cannot write register"));
710 /* On some targets (esp. simulators), we can always write
712 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
714 warning (_("cannot write register"));
719 /* We can always write mapped registers. */
720 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
722 xtensa_register_write_masked (regcache, reg, buffer);
726 /* Assume that we can write the register. */
727 regcache_raw_write (regcache, regnum, buffer);
730 internal_error (__FILE__, __LINE__,
731 _("invalid register number %d"), regnum);
734 static struct reggroup *xtensa_ar_reggroup;
735 static struct reggroup *xtensa_user_reggroup;
736 static struct reggroup *xtensa_vectra_reggroup;
737 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
740 xtensa_init_reggroups (void)
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
753 xtensa_add_reggroups (struct gdbarch *gdbarch)
757 /* Predefined groups. */
758 reggroup_add (gdbarch, all_reggroup);
759 reggroup_add (gdbarch, save_reggroup);
760 reggroup_add (gdbarch, restore_reggroup);
761 reggroup_add (gdbarch, system_reggroup);
762 reggroup_add (gdbarch, vector_reggroup);
763 reggroup_add (gdbarch, general_reggroup);
764 reggroup_add (gdbarch, float_reggroup);
766 /* Xtensa-specific groups. */
767 reggroup_add (gdbarch, xtensa_ar_reggroup);
768 reggroup_add (gdbarch, xtensa_user_reggroup);
769 reggroup_add (gdbarch, xtensa_vectra_reggroup);
771 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
772 reggroup_add (gdbarch, xtensa_cp[i]);
776 xtensa_coprocessor_register_group (struct reggroup *group)
780 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
781 if (group == xtensa_cp[i])
787 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
788 | XTENSA_REGISTER_FLAGS_WRITABLE \
789 | XTENSA_REGISTER_FLAGS_VOLATILE)
791 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
792 | XTENSA_REGISTER_FLAGS_WRITABLE)
795 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
797 struct reggroup *group)
799 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
800 xtensa_register_type_t type = reg->type;
801 xtensa_register_group_t rg = reg->group;
804 if (group == save_reggroup)
805 /* Every single register should be included into the list of registers
806 to be watched for changes while using -data-list-changed-registers. */
809 /* First, skip registers that are not visible to this target
810 (unknown and unmapped registers when not using ISS). */
812 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
814 if (group == all_reggroup)
816 if (group == xtensa_ar_reggroup)
817 return rg & xtRegisterGroupAddrReg;
818 if (group == xtensa_user_reggroup)
819 return rg & xtRegisterGroupUser;
820 if (group == float_reggroup)
821 return rg & xtRegisterGroupFloat;
822 if (group == general_reggroup)
823 return rg & xtRegisterGroupGeneral;
824 if (group == system_reggroup)
825 return rg & xtRegisterGroupState;
826 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
827 return rg & xtRegisterGroupVectra;
828 if (group == restore_reggroup)
829 return (regnum < gdbarch_num_regs (gdbarch)
830 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
831 cp_number = xtensa_coprocessor_register_group (group);
833 return rg & (xtRegisterGroupCP0 << cp_number);
839 /* Supply register REGNUM from the buffer specified by GREGS and LEN
840 in the general-purpose register set REGSET to register cache
841 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
844 xtensa_supply_gregset (const struct regset *regset,
850 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
851 struct gdbarch *gdbarch = get_regcache_arch (rc);
854 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
856 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
857 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
858 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
859 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
860 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
861 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
862 (char *) ®s->windowbase);
863 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
865 (char *) ®s->windowstart);
866 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
868 (char *) ®s->lbeg);
869 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
871 (char *) ®s->lend);
872 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
874 (char *) ®s->lcount);
875 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
877 (char *) ®s->sar);
878 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
879 && regnum < gdbarch_tdep (gdbarch)->ar_base
880 + gdbarch_tdep (gdbarch)->num_aregs)
881 regcache_raw_supply (rc, regnum,
882 (char *) ®s->ar[regnum - gdbarch_tdep
883 (gdbarch)->ar_base]);
884 else if (regnum == -1)
886 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
887 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
888 (char *) ®s->ar[i]);
893 /* Xtensa register set. */
899 xtensa_supply_gregset
903 /* Iterate over supported core file register note sections. */
906 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
907 iterate_over_regset_sections_cb *cb,
909 const struct regcache *regcache)
911 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
913 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
918 /* Handling frames. */
920 /* Number of registers to save in case of Windowed ABI. */
921 #define XTENSA_NUM_SAVED_AREGS 12
923 /* Frame cache part for Windowed ABI. */
924 typedef struct xtensa_windowed_frame_cache
926 int wb; /* WINDOWBASE of the previous frame. */
927 int callsize; /* Call size of this frame. */
928 int ws; /* WINDOWSTART of the previous frame. It keeps track of
929 life windows only. If there is no bit set for the
930 window, that means it had been already spilled
931 because of window overflow. */
933 /* Addresses of spilled A-registers.
934 AREGS[i] == -1, if corresponding AR is alive. */
935 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
936 } xtensa_windowed_frame_cache_t;
938 /* Call0 ABI Definitions. */
940 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
942 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
943 #define C0_SP 1 /* Register used as SP. */
944 #define C0_FP 15 /* Register used as FP. */
945 #define C0_RA 0 /* Register used as return address. */
946 #define C0_ARGS 2 /* Register used as first arg/retval. */
947 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
949 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
950 A-register where the current content of the reg came from (in terms
951 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
952 mean that the orignal content of the register was saved to the stack.
953 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
954 know where SP will end up until the entire prologue has been analyzed. */
956 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
957 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
958 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
960 extern xtensa_isa xtensa_default_isa;
962 typedef struct xtensa_c0reg
964 int fr_reg; /* original register from which register content
965 is derived, or C0_CONST, or C0_INEXP. */
966 int fr_ofs; /* constant offset from reg, or immediate value. */
967 int to_stk; /* offset from original SP to register (4-byte aligned),
968 or C0_NOSTK if register has not been saved. */
971 /* Frame cache part for Call0 ABI. */
972 typedef struct xtensa_call0_frame_cache
974 int c0_frmsz; /* Stack frame size. */
975 int c0_hasfp; /* Current frame uses frame pointer. */
976 int fp_regnum; /* A-register used as FP. */
977 int c0_fp; /* Actual value of frame pointer. */
978 int c0_fpalign; /* Dinamic adjustment for the stack
979 pointer. It's an AND mask. Zero,
980 if alignment was not adjusted. */
981 int c0_old_sp; /* In case of dynamic adjustment, it is
982 a register holding unaligned sp.
983 C0_INEXP, when undefined. */
984 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
985 stack offset. C0_NOSTK otherwise. */
987 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
988 } xtensa_call0_frame_cache_t;
990 typedef struct xtensa_frame_cache
992 CORE_ADDR base; /* Stack pointer of this frame. */
993 CORE_ADDR pc; /* PC of this frame at the function entry point. */
994 CORE_ADDR ra; /* The raw return address of this frame. */
995 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
996 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
997 int call0; /* It's a call0 framework (else windowed). */
1000 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1001 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1003 } xtensa_frame_cache_t;
1006 static struct xtensa_frame_cache *
1007 xtensa_alloc_frame_cache (int windowed)
1009 xtensa_frame_cache_t *cache;
1012 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1014 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1021 cache->call0 = !windowed;
1024 cache->c0.c0_frmsz = -1;
1025 cache->c0.c0_hasfp = 0;
1026 cache->c0.fp_regnum = -1;
1027 cache->c0.c0_fp = -1;
1028 cache->c0.c0_fpalign = 0;
1029 cache->c0.c0_old_sp = C0_INEXP;
1030 cache->c0.c0_sp_ofs = C0_NOSTK;
1032 for (i = 0; i < C0_NREGS; i++)
1034 cache->c0.c0_rt[i].fr_reg = i;
1035 cache->c0.c0_rt[i].fr_ofs = 0;
1036 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1043 cache->wd.callsize = -1;
1045 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1046 cache->wd.aregs[i] = -1;
1053 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1055 return address & ~15;
1060 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1065 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1066 host_address_to_string (next_frame));
1068 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1069 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1071 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1077 static struct frame_id
1078 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1082 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1084 pc = get_frame_pc (this_frame);
1085 fp = get_frame_register_unsigned
1086 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1088 /* Make dummy frame ID unique by adding a constant. */
1089 return frame_id_build (fp + SP_ALIGNMENT, pc);
1092 /* Returns true, if instruction to execute next is unique to Xtensa Window
1093 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1096 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1099 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1102 if (byte_order == BFD_ENDIAN_BIG)
1104 /* Check, if this is L32E or S32E. */
1105 code = insn & 0xf000ff00;
1106 if ((code == 0x00009000) || (code == 0x00009400))
1108 /* Check, if this is RFWU or RFWO. */
1109 code = insn & 0xffffff00;
1110 return ((code == 0x00430000) || (code == 0x00530000));
1114 /* Check, if this is L32E or S32E. */
1115 code = insn & 0x00ff000f;
1116 if ((code == 0x090000) || (code == 0x490000))
1118 /* Check, if this is RFWU or RFWO. */
1119 code = insn & 0x00ffffff;
1120 return ((code == 0x00003400) || (code == 0x00003500));
1124 /* Returns the best guess about which register is a frame pointer
1125 for the function containing CURRENT_PC. */
1127 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1128 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1131 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1133 #define RETURN_FP goto done
1135 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1136 CORE_ADDR start_addr;
1138 xtensa_insnbuf ins, slot;
1139 gdb_byte ibuf[XTENSA_ISA_BSZ];
1140 CORE_ADDR ia, bt, ba;
1142 int ilen, islots, is;
1144 const char *opcname;
1146 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1147 if (start_addr == 0)
1150 isa = xtensa_default_isa;
1151 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1152 ins = xtensa_insnbuf_alloc (isa);
1153 slot = xtensa_insnbuf_alloc (isa);
1156 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1158 if (ia + xtensa_isa_maxlength (isa) > bt)
1161 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1162 ? ba + XTENSA_ISA_BSZ : current_pc;
1163 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1167 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1168 ifmt = xtensa_format_decode (isa, ins);
1169 if (ifmt == XTENSA_UNDEFINED)
1171 ilen = xtensa_format_length (isa, ifmt);
1172 if (ilen == XTENSA_UNDEFINED)
1174 islots = xtensa_format_num_slots (isa, ifmt);
1175 if (islots == XTENSA_UNDEFINED)
1178 for (is = 0; is < islots; ++is)
1180 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1183 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1184 if (opc == XTENSA_UNDEFINED)
1187 opcname = xtensa_opcode_name (isa, opc);
1189 if (strcasecmp (opcname, "mov.n") == 0
1190 || strcasecmp (opcname, "or") == 0)
1192 unsigned int register_operand;
1194 /* Possible candidate for setting frame pointer
1195 from A1. This is what we are looking for. */
1197 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1198 is, slot, ®ister_operand) != 0)
1200 if (xtensa_operand_decode (isa, opc, 1, ®ister_operand) != 0)
1202 if (register_operand == 1) /* Mov{.n} FP A1. */
1204 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1205 ®ister_operand) != 0)
1207 if (xtensa_operand_decode (isa, opc, 0,
1208 ®ister_operand) != 0)
1212 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1218 /* We have problems decoding the memory. */
1220 || strcasecmp (opcname, "ill") == 0
1221 || strcasecmp (opcname, "ill.n") == 0
1222 /* Hit planted breakpoint. */
1223 || strcasecmp (opcname, "break") == 0
1224 || strcasecmp (opcname, "break.n") == 0
1225 /* Flow control instructions finish prologue. */
1226 || xtensa_opcode_is_branch (isa, opc) > 0
1227 || xtensa_opcode_is_jump (isa, opc) > 0
1228 || xtensa_opcode_is_loop (isa, opc) > 0
1229 || xtensa_opcode_is_call (isa, opc) > 0
1230 || strcasecmp (opcname, "simcall") == 0
1231 || strcasecmp (opcname, "syscall") == 0)
1232 /* Can not continue analysis. */
1237 xtensa_insnbuf_free(isa, slot);
1238 xtensa_insnbuf_free(isa, ins);
1242 /* The key values to identify the frame using "cache" are
1244 cache->base = SP (or best guess about FP) of this frame;
1245 cache->pc = entry-PC (entry point of the frame function);
1246 cache->prev_sp = SP of the previous frame. */
1249 call0_frame_cache (struct frame_info *this_frame,
1250 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1253 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1254 xtensa_frame_cache_t *cache,
1257 static struct xtensa_frame_cache *
1258 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1260 xtensa_frame_cache_t *cache;
1261 CORE_ADDR ra, wb, ws, pc, sp, ps;
1262 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1263 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1264 unsigned int fp_regnum;
1265 int windowed, ps_regnum;
1268 return (struct xtensa_frame_cache *) *this_cache;
1270 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1271 ps_regnum = gdbarch_ps_regnum (gdbarch);
1272 ps = (ps_regnum >= 0
1273 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1275 windowed = windowing_enabled (gdbarch, ps);
1277 /* Get pristine xtensa-frame. */
1278 cache = xtensa_alloc_frame_cache (windowed);
1279 *this_cache = cache;
1285 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1286 wb = get_frame_register_unsigned (this_frame,
1287 gdbarch_tdep (gdbarch)->wb_regnum);
1288 ws = get_frame_register_unsigned (this_frame,
1289 gdbarch_tdep (gdbarch)->ws_regnum);
1291 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1292 && XTENSA_IS_ENTRY (gdbarch, op1))
1294 int callinc = CALLINC (ps);
1295 ra = get_frame_register_unsigned
1296 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1298 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1299 cache->wd.callsize = 0;
1302 cache->prev_sp = get_frame_register_unsigned
1303 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1305 /* This only can be the outermost frame since we are
1306 just about to execute ENTRY. SP hasn't been set yet.
1307 We can assume any frame size, because it does not
1308 matter, and, let's fake frame base in cache. */
1309 cache->base = cache->prev_sp - 16;
1312 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1313 cache->ps = (ps & ~PS_CALLINC_MASK)
1314 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1320 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1321 ra = get_frame_register_unsigned (this_frame,
1322 gdbarch_tdep (gdbarch)->a0_base);
1323 cache->wd.callsize = WINSIZE (ra);
1324 cache->wd.wb = (wb - cache->wd.callsize / 4)
1325 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1326 cache->wd.ws = ws & ~(1 << wb);
1328 cache->pc = get_frame_func (this_frame);
1329 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1330 cache->ps = (ps & ~PS_CALLINC_MASK)
1331 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1334 if (cache->wd.ws == 0)
1339 sp = get_frame_register_unsigned
1340 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1342 for (i = 0; i < 4; i++, sp += 4)
1344 cache->wd.aregs[i] = sp;
1347 if (cache->wd.callsize > 4)
1349 /* Set A4...A7/A11. */
1350 /* Get the SP of the frame previous to the previous one.
1351 To achieve this, we have to dereference SP twice. */
1352 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1353 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1354 sp -= cache->wd.callsize * 4;
1356 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1358 cache->wd.aregs[i] = sp;
1363 if ((cache->prev_sp == 0) && ( ra != 0 ))
1364 /* If RA is equal to 0 this frame is an outermost frame. Leave
1365 cache->prev_sp unchanged marking the boundary of the frame stack. */
1367 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1369 /* Register window overflow already happened.
1370 We can read caller's SP from the proper spill loction. */
1371 sp = get_frame_register_unsigned
1372 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1373 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1377 /* Read caller's frame SP directly from the previous window. */
1378 int regnum = arreg_number
1379 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1382 cache->prev_sp = xtensa_read_register (regnum);
1386 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1388 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1390 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1391 /* Everything was set already, including cache->base. */
1394 else /* Call0 framework. */
1396 call0_frame_cache (this_frame, cache, pc);
1397 fp_regnum = cache->c0.fp_regnum;
1400 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1405 static int xtensa_session_once_reported = 1;
1407 /* Report a problem with prologue analysis while doing backtracing.
1408 But, do it only once to avoid annoyng repeated messages. */
1413 if (xtensa_session_once_reported == 0)
1415 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1416 This message will not be repeated in this session.\n"));
1418 xtensa_session_once_reported = 1;
1423 xtensa_frame_this_id (struct frame_info *this_frame,
1425 struct frame_id *this_id)
1427 struct xtensa_frame_cache *cache =
1428 xtensa_frame_cache (this_frame, this_cache);
1430 if (cache->prev_sp == 0)
1433 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1436 static struct value *
1437 xtensa_frame_prev_register (struct frame_info *this_frame,
1441 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1442 struct xtensa_frame_cache *cache;
1443 ULONGEST saved_reg = 0;
1446 if (*this_cache == NULL)
1447 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1448 cache = (struct xtensa_frame_cache *) *this_cache;
1450 if (regnum ==gdbarch_pc_regnum (gdbarch))
1451 saved_reg = cache->ra;
1452 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1453 saved_reg = cache->prev_sp;
1454 else if (!cache->call0)
1456 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1457 saved_reg = cache->wd.ws;
1458 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1459 saved_reg = cache->wd.wb;
1460 else if (regnum == gdbarch_ps_regnum (gdbarch))
1461 saved_reg = cache->ps;
1469 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1471 if (!cache->call0) /* Windowed ABI. */
1473 /* Convert A-register numbers to AR-register numbers,
1474 if we deal with A-register. */
1475 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1476 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1477 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1479 /* Check, if we deal with AR-register saved on stack. */
1480 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1481 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1482 + gdbarch_tdep (gdbarch)->num_aregs))
1484 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1487 && areg < XTENSA_NUM_SAVED_AREGS
1488 && cache->wd.aregs[areg] != -1)
1489 return frame_unwind_got_memory (this_frame, regnum,
1490 cache->wd.aregs[areg]);
1493 else /* Call0 ABI. */
1495 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1496 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1498 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1505 /* If register was saved in the prologue, retrieve it. */
1506 stkofs = cache->c0.c0_rt[reg].to_stk;
1507 if (stkofs != C0_NOSTK)
1509 /* Determine SP on entry based on FP. */
1510 spe = cache->c0.c0_fp
1511 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1513 return frame_unwind_got_memory (this_frame, regnum,
1519 /* All other registers have been either saved to
1520 the stack or are still alive in the processor. */
1522 return frame_unwind_got_register (this_frame, regnum, regnum);
1526 static const struct frame_unwind
1530 default_frame_unwind_stop_reason,
1531 xtensa_frame_this_id,
1532 xtensa_frame_prev_register,
1534 default_frame_sniffer
1538 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1540 struct xtensa_frame_cache *cache =
1541 xtensa_frame_cache (this_frame, this_cache);
1546 static const struct frame_base
1550 xtensa_frame_base_address,
1551 xtensa_frame_base_address,
1552 xtensa_frame_base_address
1557 xtensa_extract_return_value (struct type *type,
1558 struct regcache *regcache,
1561 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1562 bfd_byte *valbuf = (bfd_byte *) dst;
1563 int len = TYPE_LENGTH (type);
1568 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1570 gdb_assert(len > 0);
1572 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1574 /* First, we have to find the caller window in the register file. */
1575 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1576 callsize = extract_call_winsize (gdbarch, pc);
1578 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1579 if (len > (callsize > 8 ? 8 : 16))
1580 internal_error (__FILE__, __LINE__,
1581 _("cannot extract return value of %d bytes long"),
1584 /* Get the register offset of the return
1585 register (A2) in the caller window. */
1586 regcache_raw_read_unsigned
1587 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1588 areg = arreg_number (gdbarch,
1589 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1593 /* No windowing hardware - Call0 ABI. */
1594 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1597 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1599 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1602 for (; len > 0; len -= 4, areg++, valbuf += 4)
1605 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1607 regcache_raw_read (regcache, areg, valbuf);
1613 xtensa_store_return_value (struct type *type,
1614 struct regcache *regcache,
1617 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1618 const bfd_byte *valbuf = (const bfd_byte *) dst;
1622 int len = TYPE_LENGTH (type);
1625 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1627 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1629 regcache_raw_read_unsigned
1630 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1631 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1632 callsize = extract_call_winsize (gdbarch, pc);
1634 if (len > (callsize > 8 ? 8 : 16))
1635 internal_error (__FILE__, __LINE__,
1636 _("unimplemented for this length: %d"),
1637 TYPE_LENGTH (type));
1638 areg = arreg_number (gdbarch,
1639 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1641 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1642 callsize, (int) wb);
1646 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1649 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1652 for (; len > 0; len -= 4, areg++, valbuf += 4)
1655 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1657 regcache_raw_write (regcache, areg, valbuf);
1662 static enum return_value_convention
1663 xtensa_return_value (struct gdbarch *gdbarch,
1664 struct value *function,
1665 struct type *valtype,
1666 struct regcache *regcache,
1668 const gdb_byte *writebuf)
1670 /* Structures up to 16 bytes are returned in registers. */
1672 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1673 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1674 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1675 && TYPE_LENGTH (valtype) > 16);
1678 return RETURN_VALUE_STRUCT_CONVENTION;
1680 DEBUGTRACE ("xtensa_return_value(...)\n");
1682 if (writebuf != NULL)
1684 xtensa_store_return_value (valtype, regcache, writebuf);
1687 if (readbuf != NULL)
1689 gdb_assert (!struct_return);
1690 xtensa_extract_return_value (valtype, regcache, readbuf);
1692 return RETURN_VALUE_REGISTER_CONVENTION;
1699 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1700 struct value *function,
1701 struct regcache *regcache,
1704 struct value **args,
1707 CORE_ADDR struct_addr)
1709 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1711 int size, onstack_size;
1712 gdb_byte *buf = (gdb_byte *) alloca (16);
1714 struct argument_info
1716 const bfd_byte *contents;
1718 int onstack; /* onstack == 0 => in reg */
1719 int align; /* alignment */
1722 int offset; /* stack offset if on stack. */
1723 int regno; /* regno if in register. */
1727 struct argument_info *arg_info =
1728 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1732 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1734 if (xtensa_debug_level > 3)
1737 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1738 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1739 "struct_addr=0x%x\n",
1740 (int) sp, (int) struct_return, (int) struct_addr);
1742 for (i = 0; i < nargs; i++)
1744 struct value *arg = args[i];
1745 struct type *arg_type = check_typedef (value_type (arg));
1746 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1747 host_address_to_string (arg),
1748 TYPE_LENGTH (arg_type));
1749 switch (TYPE_CODE (arg_type))
1752 fprintf_unfiltered (gdb_stdlog, "int");
1754 case TYPE_CODE_STRUCT:
1755 fprintf_unfiltered (gdb_stdlog, "struct");
1758 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1761 fprintf_unfiltered (gdb_stdlog, " %s\n",
1762 host_address_to_string (value_contents (arg)));
1766 /* First loop: collect information.
1767 Cast into type_long. (This shouldn't happen often for C because
1768 GDB already does this earlier.) It's possible that GDB could
1769 do it all the time but it's harmless to leave this code here. */
1776 size = REGISTER_SIZE;
1778 for (i = 0; i < nargs; i++)
1780 struct argument_info *info = &arg_info[i];
1781 struct value *arg = args[i];
1782 struct type *arg_type = check_typedef (value_type (arg));
1784 switch (TYPE_CODE (arg_type))
1787 case TYPE_CODE_BOOL:
1788 case TYPE_CODE_CHAR:
1789 case TYPE_CODE_RANGE:
1790 case TYPE_CODE_ENUM:
1792 /* Cast argument to long if necessary as the mask does it too. */
1793 if (TYPE_LENGTH (arg_type)
1794 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1796 arg_type = builtin_type (gdbarch)->builtin_long;
1797 arg = value_cast (arg_type, arg);
1799 /* Aligment is equal to the type length for the basic types. */
1800 info->align = TYPE_LENGTH (arg_type);
1805 /* Align doubles correctly. */
1806 if (TYPE_LENGTH (arg_type)
1807 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1808 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1810 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1813 case TYPE_CODE_STRUCT:
1815 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1818 info->length = TYPE_LENGTH (arg_type);
1819 info->contents = value_contents (arg);
1821 /* Align size and onstack_size. */
1822 size = (size + info->align - 1) & ~(info->align - 1);
1823 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1825 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1828 info->u.offset = onstack_size;
1829 onstack_size += info->length;
1834 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1836 size += info->length;
1839 /* Adjust the stack pointer and align it. */
1840 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1842 /* Simulate MOVSP, if Windowed ABI. */
1843 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1846 read_memory (osp - 16, buf, 16);
1847 write_memory (sp - 16, buf, 16);
1850 /* Second Loop: Load arguments. */
1854 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1855 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1858 for (i = 0; i < nargs; i++)
1860 struct argument_info *info = &arg_info[i];
1864 int n = info->length;
1865 CORE_ADDR offset = sp + info->u.offset;
1867 /* Odd-sized structs are aligned to the lower side of a memory
1868 word in big-endian mode and require a shift. This only
1869 applies for structures smaller than one word. */
1871 if (n < REGISTER_SIZE
1872 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1873 offset += (REGISTER_SIZE - n);
1875 write_memory (offset, info->contents, info->length);
1880 int n = info->length;
1881 const bfd_byte *cp = info->contents;
1882 int r = info->u.regno;
1884 /* Odd-sized structs are aligned to the lower side of registers in
1885 big-endian mode and require a shift. The odd-sized leftover will
1886 be at the end. Note that this is only true for structures smaller
1887 than REGISTER_SIZE; for larger odd-sized structures the excess
1888 will be left-aligned in the register on both endiannesses. */
1890 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1893 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1894 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1896 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1897 regcache_cooked_write (regcache, r, buf);
1899 cp += REGISTER_SIZE;
1906 regcache_cooked_write (regcache, r, cp);
1908 cp += REGISTER_SIZE;
1915 /* Set the return address of dummy frame to the dummy address.
1916 The return address for the current function (in A0) is
1917 saved in the dummy frame, so we can savely overwrite A0 here. */
1919 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1923 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1924 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1925 ps = (unsigned long) val & ~0x00030000;
1926 regcache_cooked_write_unsigned
1927 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1928 regcache_cooked_write_unsigned (regcache,
1929 gdbarch_ps_regnum (gdbarch),
1932 /* All the registers have been saved. After executing
1933 dummy call, they all will be restored. So it's safe
1934 to modify WINDOWSTART register to make it look like there
1935 is only one register window corresponding to WINDOWEBASE. */
1937 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1938 regcache_cooked_write_unsigned
1939 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1940 1 << extract_unsigned_integer (buf, 4, byte_order));
1944 /* Simulate CALL0: write RA into A0 register. */
1945 regcache_cooked_write_unsigned
1946 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1949 /* Set new stack pointer and return it. */
1950 regcache_cooked_write_unsigned (regcache,
1951 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1952 /* Make dummy frame ID unique by adding a constant. */
1953 return sp + SP_ALIGNMENT;
1956 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1959 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1961 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1967 /* Return a breakpoint for the current location of PC. We always use
1968 the density version if we have density instructions (regardless of the
1969 current instruction at PC), and use regular instructions otherwise. */
1971 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1972 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1973 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1974 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1976 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1978 static const gdb_byte *
1979 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1985 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1986 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1988 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1989 return big_breakpoint;
1991 return little_breakpoint;
1995 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1996 static unsigned char density_little_breakpoint[]
1997 = DENSITY_LITTLE_BREAKPOINT;
1999 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2000 return density_big_breakpoint;
2002 return density_little_breakpoint;
2006 /* Call0 ABI support routines. */
2008 /* Return true, if PC points to "ret" or "ret.n". */
2011 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2013 #define RETURN_RET goto done
2015 xtensa_insnbuf ins, slot;
2016 gdb_byte ibuf[XTENSA_ISA_BSZ];
2017 CORE_ADDR ia, bt, ba;
2019 int ilen, islots, is;
2021 const char *opcname;
2024 isa = xtensa_default_isa;
2025 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2026 ins = xtensa_insnbuf_alloc (isa);
2027 slot = xtensa_insnbuf_alloc (isa);
2030 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2032 if (ia + xtensa_isa_maxlength (isa) > bt)
2035 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2036 ? ba + XTENSA_ISA_BSZ : finish_pc;
2037 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2041 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2042 ifmt = xtensa_format_decode (isa, ins);
2043 if (ifmt == XTENSA_UNDEFINED)
2045 ilen = xtensa_format_length (isa, ifmt);
2046 if (ilen == XTENSA_UNDEFINED)
2048 islots = xtensa_format_num_slots (isa, ifmt);
2049 if (islots == XTENSA_UNDEFINED)
2052 for (is = 0; is < islots; ++is)
2054 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2057 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2058 if (opc == XTENSA_UNDEFINED)
2061 opcname = xtensa_opcode_name (isa, opc);
2063 if ((strcasecmp (opcname, "ret.n") == 0)
2064 || (strcasecmp (opcname, "ret") == 0))
2072 xtensa_insnbuf_free(isa, slot);
2073 xtensa_insnbuf_free(isa, ins);
2077 /* Call0 opcode class. Opcodes are preclassified according to what they
2078 mean for Call0 prologue analysis, and their number of significant operands.
2079 The purpose of this is to simplify prologue analysis by separating
2080 instruction decoding (libisa) from the semantics of prologue analysis. */
2084 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2085 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2086 c0opc_flow, /* Flow control insn. */
2087 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2088 c0opc_break, /* Debugger software breakpoints. */
2089 c0opc_add, /* Adding two registers. */
2090 c0opc_addi, /* Adding a register and an immediate. */
2091 c0opc_and, /* Bitwise "and"-ing two registers. */
2092 c0opc_sub, /* Subtracting a register from a register. */
2093 c0opc_mov, /* Moving a register to a register. */
2094 c0opc_movi, /* Moving an immediate to a register. */
2095 c0opc_l32r, /* Loading a literal. */
2096 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2097 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2098 c0opc_l32e, /* L32E instruction. */
2099 c0opc_s32e, /* S32E instruction. */
2100 c0opc_rfwo, /* RFWO instruction. */
2101 c0opc_rfwu, /* RFWU instruction. */
2102 c0opc_NrOf /* Number of opcode classifications. */
2105 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2108 rwx_special_register (const char *opcname)
2110 char ch = *opcname++;
2112 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2114 if (*opcname++ != 's')
2116 if (*opcname++ != 'r')
2118 if (*opcname++ != '.')
2124 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2126 static xtensa_insn_kind
2127 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2129 const char *opcname;
2130 xtensa_insn_kind opclass = c0opc_uninteresting;
2132 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2134 /* Get opcode name and handle special classifications. */
2136 opcname = xtensa_opcode_name (isa, opc);
2139 || strcasecmp (opcname, "ill") == 0
2140 || strcasecmp (opcname, "ill.n") == 0)
2141 opclass = c0opc_illegal;
2142 else if (strcasecmp (opcname, "break") == 0
2143 || strcasecmp (opcname, "break.n") == 0)
2144 opclass = c0opc_break;
2145 else if (strcasecmp (opcname, "entry") == 0)
2146 opclass = c0opc_entry;
2147 else if (strcasecmp (opcname, "rfwo") == 0)
2148 opclass = c0opc_rfwo;
2149 else if (strcasecmp (opcname, "rfwu") == 0)
2150 opclass = c0opc_rfwu;
2151 else if (xtensa_opcode_is_branch (isa, opc) > 0
2152 || xtensa_opcode_is_jump (isa, opc) > 0
2153 || xtensa_opcode_is_loop (isa, opc) > 0
2154 || xtensa_opcode_is_call (isa, opc) > 0
2155 || strcasecmp (opcname, "simcall") == 0
2156 || strcasecmp (opcname, "syscall") == 0)
2157 opclass = c0opc_flow;
2159 /* Also, classify specific opcodes that need to be tracked. */
2160 else if (strcasecmp (opcname, "add") == 0
2161 || strcasecmp (opcname, "add.n") == 0)
2162 opclass = c0opc_add;
2163 else if (strcasecmp (opcname, "and") == 0)
2164 opclass = c0opc_and;
2165 else if (strcasecmp (opcname, "addi") == 0
2166 || strcasecmp (opcname, "addi.n") == 0
2167 || strcasecmp (opcname, "addmi") == 0)
2168 opclass = c0opc_addi;
2169 else if (strcasecmp (opcname, "sub") == 0)
2170 opclass = c0opc_sub;
2171 else if (strcasecmp (opcname, "mov.n") == 0
2172 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2173 opclass = c0opc_mov;
2174 else if (strcasecmp (opcname, "movi") == 0
2175 || strcasecmp (opcname, "movi.n") == 0)
2176 opclass = c0opc_movi;
2177 else if (strcasecmp (opcname, "l32r") == 0)
2178 opclass = c0opc_l32r;
2179 else if (strcasecmp (opcname, "s32i") == 0
2180 || strcasecmp (opcname, "s32i.n") == 0)
2181 opclass = c0opc_s32i;
2182 else if (strcasecmp (opcname, "l32e") == 0)
2183 opclass = c0opc_l32e;
2184 else if (strcasecmp (opcname, "s32e") == 0)
2185 opclass = c0opc_s32e;
2186 else if (rwx_special_register (opcname))
2187 opclass = c0opc_rwxsr;
2192 /* Tracks register movement/mutation for a given operation, which may
2193 be within a bundle. Updates the destination register tracking info
2194 accordingly. The pc is needed only for pc-relative load instructions
2195 (eg. l32r). The SP register number is needed to identify stores to
2196 the stack frame. Returns 0, if analysis was succesfull, non-zero
2200 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2201 xtensa_insn_kind opclass, int nods, unsigned odv[],
2202 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2204 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2205 unsigned litbase, litaddr, litval;
2210 /* 3 operands: dst, src, imm. */
2211 gdb_assert (nods == 3);
2212 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2213 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2216 /* 3 operands: dst, src1, src2. */
2217 gdb_assert (nods == 3);
2218 if (src[odv[1]].fr_reg == C0_CONST)
2220 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2221 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2223 else if (src[odv[2]].fr_reg == C0_CONST)
2225 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2226 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2228 else dst[odv[0]].fr_reg = C0_INEXP;
2231 /* 3 operands: dst, src1, src2. */
2232 gdb_assert (nods == 3);
2233 if (cache->c0.c0_fpalign == 0)
2235 /* Handle dynamic stack alignment. */
2236 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2238 if (src[odv[2]].fr_reg == C0_CONST)
2239 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2242 else if ((src[odv[0]].fr_reg == spreg)
2243 && (src[odv[2]].fr_reg == spreg))
2245 if (src[odv[1]].fr_reg == C0_CONST)
2246 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2249 /* else fall through. */
2251 if (src[odv[1]].fr_reg == C0_CONST)
2253 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2254 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2256 else if (src[odv[2]].fr_reg == C0_CONST)
2258 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2259 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2261 else dst[odv[0]].fr_reg = C0_INEXP;
2264 /* 3 operands: dst, src1, src2. */
2265 gdb_assert (nods == 3);
2266 if (src[odv[2]].fr_reg == C0_CONST)
2268 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2269 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2271 else dst[odv[0]].fr_reg = C0_INEXP;
2274 /* 2 operands: dst, src [, src]. */
2275 gdb_assert (nods == 2);
2276 /* First, check if it's a special case of saving unaligned SP
2277 to a spare register in case of dynamic stack adjustment.
2278 But, only do it one time. The second time could be initializing
2279 frame pointer. We don't want to overwrite the first one. */
2280 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2281 cache->c0.c0_old_sp = odv[0];
2283 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2284 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2287 /* 2 operands: dst, imm. */
2288 gdb_assert (nods == 2);
2289 dst[odv[0]].fr_reg = C0_CONST;
2290 dst[odv[0]].fr_ofs = odv[1];
2293 /* 2 operands: dst, literal offset. */
2294 gdb_assert (nods == 2);
2295 /* litbase = xtensa_get_litbase (pc); can be also used. */
2296 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2297 ? 0 : xtensa_read_register
2298 (gdbarch_tdep (gdbarch)->litbase_regnum);
2299 litaddr = litbase & 1
2300 ? (litbase & ~1) + (signed)odv[1]
2301 : (pc + 3 + (signed)odv[1]) & ~3;
2302 litval = read_memory_integer (litaddr, 4, byte_order);
2303 dst[odv[0]].fr_reg = C0_CONST;
2304 dst[odv[0]].fr_ofs = litval;
2307 /* 3 operands: value, base, offset. */
2308 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2309 /* First, check if it's a spill for saved unaligned SP,
2310 when dynamic stack adjustment was applied to this frame. */
2311 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2312 && (odv[1] == spreg) /* SP usage indicates spill. */
2313 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2314 cache->c0.c0_sp_ofs = odv[2];
2316 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2317 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2318 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2319 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2320 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2322 /* ISA encoding guarantees alignment. But, check it anyway. */
2323 gdb_assert ((odv[2] & 3) == 0);
2324 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2327 /* If we end up inside Window Overflow / Underflow interrupt handler
2328 report an error because these handlers should have been handled
2329 already in a different way. */
2341 /* Analyze prologue of the function at start address to determine if it uses
2342 the Call0 ABI, and if so track register moves and linear modifications
2343 in the prologue up to the PC or just beyond the prologue, whichever is
2344 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2345 prologue. The prologue may overlap non-prologue instructions but is
2346 guaranteed to end by the first flow-control instruction (jump, branch,
2347 call or return). Since an optimized function may move information around
2348 and change the stack frame arbitrarily during the prologue, the information
2349 is guaranteed valid only at the point in the function indicated by the PC.
2350 May be used to skip the prologue or identify the ABI, w/o tracking.
2352 Returns: Address of first instruction after prologue, or PC (whichever
2353 is first), or 0, if decoding failed (in libisa).
2355 start Start address of function/prologue.
2356 pc Program counter to stop at. Use 0 to continue to end of prologue.
2357 If 0, avoids infinite run-on in corrupt code memory by bounding
2358 the scan to the end of the function if that can be determined.
2359 nregs Number of general registers to track.
2361 cache Xtensa frame cache.
2363 Note that these may produce useful results even if decoding fails
2364 because they begin with default assumptions that analysis may change. */
2367 call0_analyze_prologue (struct gdbarch *gdbarch,
2368 CORE_ADDR start, CORE_ADDR pc,
2369 int nregs, xtensa_frame_cache_t *cache)
2371 CORE_ADDR ia; /* Current insn address in prologue. */
2372 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2373 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2374 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2375 xtensa_isa isa; /* libisa ISA handle. */
2376 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2377 xtensa_format ifmt; /* libisa instruction format. */
2378 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2379 xtensa_opcode opc; /* Opcode in current slot. */
2380 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2381 int nods; /* Opcode number of operands. */
2382 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2383 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2384 int j; /* General loop counter. */
2385 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2386 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2387 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2389 struct symtab_and_line prologue_sal;
2391 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2392 (int)start, (int)pc);
2394 /* Try to limit the scan to the end of the function if a non-zero pc
2395 arg was not supplied to avoid probing beyond the end of valid memory.
2396 If memory is full of garbage that classifies as c0opc_uninteresting.
2397 If this fails (eg. if no symbols) pc ends up 0 as it was.
2398 Initialize the Call0 frame and register tracking info.
2399 Assume it's Call0 until an 'entry' instruction is encountered.
2400 Assume we may be in the prologue until we hit a flow control instr. */
2406 /* Find out, if we have an information about the prologue from DWARF. */
2407 prologue_sal = find_pc_line (start, 0);
2408 if (prologue_sal.line != 0) /* Found debug info. */
2409 body_pc = prologue_sal.end;
2411 /* If we are going to analyze the prologue in general without knowing about
2412 the current PC, make the best assumtion for the end of the prologue. */
2415 find_pc_partial_function (start, 0, NULL, &end_pc);
2416 body_pc = std::min (end_pc, body_pc);
2419 body_pc = std::min (pc, body_pc);
2422 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2424 isa = xtensa_default_isa;
2425 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2426 ins = xtensa_insnbuf_alloc (isa);
2427 slot = xtensa_insnbuf_alloc (isa);
2429 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2431 /* (Re)fill instruction buffer from memory if necessary, but do not
2432 read memory beyond PC to be sure we stay within text section
2433 (this protection only works if a non-zero pc is supplied). */
2435 if (ia + xtensa_isa_maxlength (isa) > bt)
2438 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2439 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2440 error (_("Unable to read target memory ..."));
2443 /* Decode format information. */
2445 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2446 ifmt = xtensa_format_decode (isa, ins);
2447 if (ifmt == XTENSA_UNDEFINED)
2452 ilen = xtensa_format_length (isa, ifmt);
2453 if (ilen == XTENSA_UNDEFINED)
2458 islots = xtensa_format_num_slots (isa, ifmt);
2459 if (islots == XTENSA_UNDEFINED)
2465 /* Analyze a bundle or a single instruction, using a snapshot of
2466 the register tracking info as input for the entire bundle so that
2467 register changes do not take effect within this bundle. */
2469 for (j = 0; j < nregs; ++j)
2470 rtmp[j] = cache->c0.c0_rt[j];
2472 for (is = 0; is < islots; ++is)
2474 /* Decode a slot and classify the opcode. */
2476 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2480 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2481 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2483 if (opc == XTENSA_UNDEFINED)
2484 opclass = c0opc_illegal;
2486 opclass = call0_classify_opcode (isa, opc);
2488 /* Decide whether to track this opcode, ignore it, or bail out. */
2497 case c0opc_uninteresting:
2500 case c0opc_flow: /* Flow control instructions stop analysis. */
2501 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2506 ia += ilen; /* Skip over 'entry' insn. */
2513 /* Only expected opcodes should get this far. */
2515 /* Extract and decode the operands. */
2516 nods = xtensa_opcode_num_operands (isa, opc);
2517 if (nods == XTENSA_UNDEFINED)
2523 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2525 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2530 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2535 /* Check operands to verify use of 'mov' assembler macro. */
2536 if (opclass == c0opc_mov && nods == 3)
2538 if (odv[2] == odv[1])
2541 if ((odv[0] == 1) && (odv[1] != 1))
2542 /* OR A1, An, An , where n != 1.
2543 This means we are inside epilogue already. */
2548 opclass = c0opc_uninteresting;
2553 /* Track register movement and modification for this operation. */
2554 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2555 opclass, nods, odv, ia, 1, cache);
2561 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2562 (unsigned)ia, fail ? "failed" : "succeeded");
2563 xtensa_insnbuf_free(isa, slot);
2564 xtensa_insnbuf_free(isa, ins);
2565 return fail ? XTENSA_ISA_BADPC : ia;
2568 /* Initialize frame cache for the current frame in CALL0 ABI. */
2571 call0_frame_cache (struct frame_info *this_frame,
2572 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2574 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2576 CORE_ADDR start_pc; /* The beginning of the function. */
2577 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2578 CORE_ADDR sp, fp, ra;
2579 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2581 sp = get_frame_register_unsigned
2582 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2583 fp = sp; /* Assume FP == SP until proven otherwise. */
2585 /* Find the beginning of the prologue of the function containing the PC
2586 and analyze it up to the PC or the end of the prologue. */
2588 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2590 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2592 if (body_pc == XTENSA_ISA_BADPC)
2596 goto finish_frame_analysis;
2600 /* Get the frame information and FP (if used) at the current PC.
2601 If PC is in the prologue, the prologue analysis is more reliable
2602 than DWARF info. We don't not know for sure, if PC is in the prologue,
2603 but we do know no calls have yet taken place, so we can almost
2604 certainly rely on the prologue analysis. */
2608 /* Prologue analysis was successful up to the PC.
2609 It includes the cases when PC == START_PC. */
2610 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2611 /* c0_hasfp == true means there is a frame pointer because
2612 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2613 was derived from SP. Otherwise, it would be C0_FP. */
2614 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2615 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2616 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2618 else /* No data from the prologue analysis. */
2621 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2626 if (cache->c0.c0_fpalign)
2628 /* This frame has a special prologue with a dynamic stack adjustment
2629 to force an alignment, which is bigger than standard 16 bytes. */
2631 CORE_ADDR unaligned_sp;
2633 if (cache->c0.c0_old_sp == C0_INEXP)
2634 /* This can't be. Prologue code should be consistent.
2635 Unaligned stack pointer should be saved in a spare register. */
2639 goto finish_frame_analysis;
2642 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2643 /* Saved unaligned value of SP is kept in a register. */
2644 unaligned_sp = get_frame_register_unsigned
2645 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2647 /* Get the value from stack. */
2648 unaligned_sp = (CORE_ADDR)
2649 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2651 prev_sp = unaligned_sp + c0_frmsz;
2654 prev_sp = fp + c0_frmsz;
2656 /* Frame size from debug info or prologue tracking does not account for
2657 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2660 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2662 /* Update the stack frame size. */
2663 c0_frmsz += fp - sp;
2666 /* Get the return address (RA) from the stack if saved,
2667 or try to get it from a register. */
2669 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2670 if (to_stk != C0_NOSTK)
2672 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2675 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2676 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2678 /* Special case for terminating backtrace at a function that wants to
2679 be seen as the outermost one. Such a function will clear it's RA (A0)
2680 register to 0 in the prologue instead of saving its original value. */
2685 /* RA was copied to another register or (before any function call) may
2686 still be in the original RA register. This is not always reliable:
2687 even in a leaf function, register tracking stops after prologue, and
2688 even in prologue, non-prologue instructions (not tracked) may overwrite
2689 RA or any register it was copied to. If likely in prologue or before
2690 any call, use retracking info and hope for the best (compiler should
2691 have saved RA in stack if not in a leaf function). If not in prologue,
2697 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2699 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2703 ra = get_frame_register_unsigned
2705 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2710 finish_frame_analysis:
2711 cache->pc = start_pc;
2713 /* RA == 0 marks the outermost frame. Do not go past it. */
2714 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2715 cache->c0.fp_regnum = fp_regnum;
2716 cache->c0.c0_frmsz = c0_frmsz;
2717 cache->c0.c0_hasfp = c0_hasfp;
2718 cache->c0.c0_fp = fp;
2721 static CORE_ADDR a0_saved;
2722 static CORE_ADDR a7_saved;
2723 static CORE_ADDR a11_saved;
2724 static int a0_was_saved;
2725 static int a7_was_saved;
2726 static int a11_was_saved;
2728 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2730 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2732 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2733 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2734 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2735 unsigned int spilled_value
2736 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2738 if ((at == 0) && !a0_was_saved)
2740 a0_saved = xtensa_read_register (atreg);
2743 else if ((at == 7) && !a7_was_saved)
2745 a7_saved = xtensa_read_register (atreg);
2748 else if ((at == 11) && !a11_was_saved)
2750 a11_saved = xtensa_read_register (atreg);
2754 xtensa_write_register (atreg, spilled_value);
2757 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2759 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2761 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2762 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2763 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2764 ULONGEST spilled_value = xtensa_read_register (atreg);
2766 write_memory_unsigned_integer (addr, 4,
2767 gdbarch_byte_order (gdbarch),
2771 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2777 xtNoExceptionHandler
2778 } xtensa_exception_handler_t;
2780 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2781 Return type of Xtensa Window Interrupt Handler on success. */
2782 static xtensa_exception_handler_t
2783 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2786 xtensa_insnbuf ins, slot;
2787 gdb_byte ibuf[XTENSA_ISA_BSZ];
2788 CORE_ADDR ia, bt, ba;
2790 int ilen, islots, is;
2793 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2795 uint32_t at, as, offset;
2797 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2798 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2800 isa = xtensa_default_isa;
2801 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2802 ins = xtensa_insnbuf_alloc (isa);
2803 slot = xtensa_insnbuf_alloc (isa);
2812 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2814 if (ia + xtensa_isa_maxlength (isa) > bt)
2817 bt = (ba + XTENSA_ISA_BSZ);
2818 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2819 return xtNoExceptionHandler;
2821 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2822 ifmt = xtensa_format_decode (isa, ins);
2823 if (ifmt == XTENSA_UNDEFINED)
2824 return xtNoExceptionHandler;
2825 ilen = xtensa_format_length (isa, ifmt);
2826 if (ilen == XTENSA_UNDEFINED)
2827 return xtNoExceptionHandler;
2828 islots = xtensa_format_num_slots (isa, ifmt);
2829 if (islots == XTENSA_UNDEFINED)
2830 return xtNoExceptionHandler;
2831 for (is = 0; is < islots; ++is)
2833 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2834 return xtNoExceptionHandler;
2835 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2836 if (opc == XTENSA_UNDEFINED)
2837 return xtNoExceptionHandler;
2838 switch (call0_classify_opcode (isa, opc))
2844 /* We expect none of them here. */
2845 return xtNoExceptionHandler;
2847 func = execute_l32e;
2850 func = execute_s32e;
2852 case c0opc_rfwo: /* RFWO. */
2853 /* Here, we return from WindowOverflow handler and,
2854 if we stopped at the very beginning, which means
2855 A0 was saved, we have to restore it now. */
2858 int arreg = arreg_number (gdbarch,
2859 gdbarch_tdep (gdbarch)->a0_base,
2861 xtensa_write_register (arreg, a0_saved);
2863 return xtWindowOverflow;
2864 case c0opc_rfwu: /* RFWU. */
2865 /* Here, we return from WindowUnderflow handler.
2866 Let's see if either A7 or A11 has to be restored. */
2867 if (WindowUnderflow12)
2871 int arreg = arreg_number (gdbarch,
2872 gdbarch_tdep (gdbarch)->a0_base + 11,
2874 xtensa_write_register (arreg, a11_saved);
2877 else if (a7_was_saved)
2879 int arreg = arreg_number (gdbarch,
2880 gdbarch_tdep (gdbarch)->a0_base + 7,
2882 xtensa_write_register (arreg, a7_saved);
2884 return xtWindowUnderflow;
2885 default: /* Simply skip this insns. */
2889 /* Decode arguments for L32E / S32E and simulate their execution. */
2890 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2891 return xtNoExceptionHandler;
2892 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2893 return xtNoExceptionHandler;
2894 if (xtensa_operand_decode (isa, opc, 0, &at))
2895 return xtNoExceptionHandler;
2896 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2897 return xtNoExceptionHandler;
2898 if (xtensa_operand_decode (isa, opc, 1, &as))
2899 return xtNoExceptionHandler;
2900 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2901 return xtNoExceptionHandler;
2902 if (xtensa_operand_decode (isa, opc, 2, &offset))
2903 return xtNoExceptionHandler;
2905 (*func) (gdbarch, at, as, offset, wb);
2910 return xtNoExceptionHandler;
2913 /* Handle Window Overflow / Underflow exception frames. */
2916 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2917 xtensa_frame_cache_t *cache,
2920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2921 CORE_ADDR ps, wb, ws, ra;
2922 int epc1_regnum, i, regnum;
2923 xtensa_exception_handler_t eh_type;
2925 /* Read PS, WB, and WS from the hardware. Note that PS register
2926 must be present, if Windowed ABI is supported. */
2927 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2928 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2929 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2931 /* Execute all the remaining instructions from Window Interrupt Handler
2932 by simulating them on the remote protocol level. On return, set the
2933 type of Xtensa Window Interrupt Handler, or report an error. */
2934 eh_type = execute_code (gdbarch, pc, wb);
2935 if (eh_type == xtNoExceptionHandler)
2937 Unable to decode Xtensa Window Interrupt Handler's code."));
2939 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2940 cache->call0 = 0; /* It's Windowed ABI. */
2942 /* All registers for the cached frame will be alive. */
2943 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2944 cache->wd.aregs[i] = -1;
2946 if (eh_type == xtWindowOverflow)
2947 cache->wd.ws = ws ^ (1 << wb);
2948 else /* eh_type == xtWindowUnderflow. */
2949 cache->wd.ws = ws | (1 << wb);
2951 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2952 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2954 ra = xtensa_read_register (regnum);
2955 cache->wd.callsize = WINSIZE (ra);
2956 cache->prev_sp = xtensa_read_register (regnum + 1);
2957 /* Set regnum to a frame pointer of the frame being cached. */
2958 regnum = xtensa_scan_prologue (gdbarch, pc);
2959 regnum = arreg_number (gdbarch,
2960 gdbarch_tdep (gdbarch)->a0_base + regnum,
2962 cache->base = get_frame_register_unsigned (this_frame, regnum);
2964 /* Read PC of interrupted function from EPC1 register. */
2965 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2966 if (epc1_regnum < 0)
2967 error(_("Unable to read Xtensa register EPC1"));
2968 cache->ra = xtensa_read_register (epc1_regnum);
2969 cache->pc = get_frame_func (this_frame);
2973 /* Skip function prologue.
2975 Return the pc of the first instruction after prologue. GDB calls this to
2976 find the address of the first line of the function or (if there is no line
2977 number information) to skip the prologue for planting breakpoints on
2978 function entries. Use debug info (if present) or prologue analysis to skip
2979 the prologue to achieve reliable debugging behavior. For windowed ABI,
2980 only the 'entry' instruction is skipped. It is not strictly necessary to
2981 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2982 backtrace at any point in the prologue, however certain potential hazards
2983 are avoided and a more "normal" debugging experience is ensured by
2984 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2985 For example, if we don't skip the prologue:
2986 - Some args may not yet have been saved to the stack where the debug
2987 info expects to find them (true anyway when only 'entry' is skipped);
2988 - Software breakpoints ('break' instrs) may not have been unplanted
2989 when the prologue analysis is done on initializing the frame cache,
2990 and breaks in the prologue will throw off the analysis.
2992 If we have debug info ( line-number info, in particular ) we simply skip
2993 the code associated with the first function line effectively skipping
2994 the prologue code. It works even in cases like
2997 { int local_var = 1;
3001 because, for this source code, both Xtensa compilers will generate two
3002 separate entries ( with the same line number ) in dwarf line-number
3003 section to make sure there is a boundary between the prologue code and
3004 the rest of the function.
3006 If there is no debug info, we need to analyze the code. */
3008 /* #define DONT_SKIP_PROLOGUE */
3011 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3013 struct symtab_and_line prologue_sal;
3016 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3018 #if DONT_SKIP_PROLOGUE
3022 /* Try to find first body line from debug info. */
3024 prologue_sal = find_pc_line (start_pc, 0);
3025 if (prologue_sal.line != 0) /* Found debug info. */
3027 /* In Call0, it is possible to have a function with only one instruction
3028 ('ret') resulting from a one-line optimized function that does nothing.
3029 In that case, prologue_sal.end may actually point to the start of the
3030 next function in the text section, causing a breakpoint to be set at
3031 the wrong place. Check, if the end address is within a different
3032 function, and if so return the start PC. We know we have symbol
3037 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3038 && call0_ret (start_pc, prologue_sal.end))
3041 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3042 if (end_func != start_pc)
3045 return prologue_sal.end;
3048 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3049 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3050 xtensa_alloc_frame_cache (0));
3051 return body_pc != 0 ? body_pc : start_pc;
3054 /* Verify the current configuration. */
3056 xtensa_verify_config (struct gdbarch *gdbarch)
3058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3061 /* Verify that we got a reasonable number of AREGS. */
3062 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3064 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3067 /* Verify that certain registers exist. */
3069 if (tdep->pc_regnum == -1)
3070 log.printf (_("\n\tpc_regnum: No PC register"));
3071 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3072 log.printf (_("\n\tps_regnum: No PS register"));
3074 if (tdep->isa_use_windowed_registers)
3076 if (tdep->wb_regnum == -1)
3077 log.printf (_("\n\twb_regnum: No WB register"));
3078 if (tdep->ws_regnum == -1)
3079 log.printf (_("\n\tws_regnum: No WS register"));
3080 if (tdep->ar_base == -1)
3081 log.printf (_("\n\tar_base: No AR registers"));
3084 if (tdep->a0_base == -1)
3085 log.printf (_("\n\ta0_base: No Ax registers"));
3088 internal_error (__FILE__, __LINE__,
3089 _("the following are invalid: %s"), log.c_str ());
3093 /* Derive specific register numbers from the array of registers. */
3096 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3098 xtensa_register_t* rmap;
3099 int n, max_size = 4;
3102 tdep->num_nopriv_regs = 0;
3104 /* Special registers 0..255 (core). */
3105 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3106 /* User registers 0..255. */
3107 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3109 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3111 if (rmap->target_number == 0x0020)
3112 tdep->pc_regnum = n;
3113 else if (rmap->target_number == 0x0100)
3115 else if (rmap->target_number == 0x0000)
3117 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3118 tdep->wb_regnum = n;
3119 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3120 tdep->ws_regnum = n;
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3122 tdep->debugcause_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3124 tdep->exccause_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3126 tdep->excvaddr_regnum = n;
3127 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3128 tdep->lbeg_regnum = n;
3129 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3130 tdep->lend_regnum = n;
3131 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3132 tdep->lcount_regnum = n;
3133 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3134 tdep->sar_regnum = n;
3135 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3136 tdep->litbase_regnum = n;
3137 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3138 tdep->ps_regnum = n;
3139 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3140 tdep->threadptr_regnum = n;
3142 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3143 tdep->interrupt_regnum = n;
3144 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3145 tdep->interrupt2_regnum = n;
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3147 tdep->cpenable_regnum = n;
3150 if (rmap->byte_size > max_size)
3151 max_size = rmap->byte_size;
3152 if (rmap->mask != 0 && tdep->num_regs == 0)
3154 /* Find out out how to deal with priveleged registers.
3156 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3157 && tdep->num_nopriv_regs == 0)
3158 tdep->num_nopriv_regs = n;
3160 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3161 && tdep->num_regs == 0)
3165 /* Number of pseudo registers. */
3166 tdep->num_pseudo_regs = n - tdep->num_regs;
3168 /* Empirically determined maximum sizes. */
3169 tdep->max_register_raw_size = max_size;
3170 tdep->max_register_virtual_size = max_size;
3173 /* Module "constructor" function. */
3175 extern struct gdbarch_tdep xtensa_tdep;
3177 static struct gdbarch *
3178 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3180 struct gdbarch_tdep *tdep;
3181 struct gdbarch *gdbarch;
3183 DEBUGTRACE ("gdbarch_init()\n");
3185 if (!xtensa_default_isa)
3186 xtensa_default_isa = xtensa_isa_init (0, 0);
3188 /* We have to set the byte order before we call gdbarch_alloc. */
3189 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3191 tdep = &xtensa_tdep;
3192 gdbarch = gdbarch_alloc (&info, tdep);
3193 xtensa_derive_tdep (tdep);
3195 /* Verify our configuration. */
3196 xtensa_verify_config (gdbarch);
3197 xtensa_session_once_reported = 0;
3199 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3200 set_gdbarch_wchar_signed (gdbarch, 0);
3202 /* Pseudo-Register read/write. */
3203 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3204 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3206 /* Set target information. */
3207 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3208 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3209 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3210 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3211 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3213 /* Renumber registers for known formats (stabs and dwarf2). */
3214 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3215 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3217 /* We provide our own function to get register information. */
3218 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3219 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3221 /* To call functions from GDB using dummy frame. */
3222 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3224 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3226 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3228 /* Advance PC across any prologue instructions to reach "real" code. */
3229 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3231 /* Stack grows downward. */
3232 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3234 /* Set breakpoints. */
3235 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3236 xtensa_breakpoint_kind_from_pc);
3237 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3238 xtensa_sw_breakpoint_from_kind);
3240 /* After breakpoint instruction or illegal instruction, pc still
3241 points at break instruction, so don't decrement. */
3242 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3244 /* We don't skip args. */
3245 set_gdbarch_frame_args_skip (gdbarch, 0);
3247 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3249 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3251 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3253 /* Frame handling. */
3254 frame_base_set_default (gdbarch, &xtensa_frame_base);
3255 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3256 dwarf2_append_unwinders (gdbarch);
3258 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3260 xtensa_add_reggroups (gdbarch);
3261 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3263 set_gdbarch_iterate_over_regset_sections
3264 (gdbarch, xtensa_iterate_over_regset_sections);
3266 set_solib_svr4_fetch_link_map_offsets
3267 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3269 /* Hook in the ABI-specific overrides, if they have been registered. */
3270 gdbarch_init_osabi (info, gdbarch);
3276 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3278 error (_("xtensa_dump_tdep(): not implemented"));
3282 _initialize_xtensa_tdep (void)
3284 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3285 xtensa_init_reggroups ();
3287 add_setshow_zuinteger_cmd ("xtensa",
3289 &xtensa_debug_level,
3290 _("Set Xtensa debugging."),
3291 _("Show Xtensa debugging."), _("\
3292 When non-zero, Xtensa-specific debugging is enabled. \
3293 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3296 &setdebuglist, &showdebuglist);