1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "solib-svr4.h"
32 #include "floatformat.h"
34 #include "reggroups.h"
37 #include "dummy-frame.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
44 #include "arch-utils.h"
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
58 static unsigned int xtensa_debug_level = 0;
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
114 #define XTENSA_ENTRY_LENGTH 3
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
124 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133 /* Convert a live A-register number to the corresponding AR-register
136 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
145 return arreg + tdep->ar_base;
148 /* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
151 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
163 /* Read Xtensa register directly from the hardware. */
165 xtensa_read_register (int regnum)
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
173 /* Write Xtensa register directly to the hardware. */
175 xtensa_write_register (int regnum, ULONGEST value)
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180 /* Return the window size of the previous call to the function from which we
183 This function is used to extract the return value after a called function
184 has returned to the caller. On Xtensa, the register that holds the return
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
192 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
203 insn = extract_unsigned_integer (buf, 3, byte_order);
205 /* Decode call instruction:
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
213 if (byte_order == BFD_ENDIAN_LITTLE)
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
227 /* REGISTER INFORMATION */
229 /* Find register by name. */
231 xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
245 /* Returns the name of a register. */
247 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
249 /* Return the name stored in the register map. */
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
258 /* Return the type of a register. Create a new type, if necessary. */
261 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265 /* Return signed integer for ARx and Ax registers. */
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
270 return builtin_type (gdbarch)->builtin_int;
272 if (regnum == gdbarch_pc_regnum (gdbarch)
273 || regnum == tdep->a0_base + 1)
274 return builtin_type (gdbarch)->builtin_data_ptr;
276 /* Return the stored type for all other registers. */
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
280 xtensa_register_t* reg = &tdep->regmap[regnum];
282 /* Set ctype for this register (only the first time). */
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
289 /* We always use the memory representation,
290 even if the register width is smaller. */
294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
315 if (tp->size == size)
320 char *name = xstrprintf ("int%d", size * 8);
322 tp = XNEW (struct ctype_cache);
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
327 = arch_integer_type (gdbarch, size * 8, 1, name);
331 reg->ctype = tp->virtual_type;
337 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
342 /* Return the 'local' register number for stubs, dwarf2, etc.
343 The debugging information enumerates registers starting from 0 for A0
344 to n for An. So, we only have to add the base number for A0. */
347 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
351 if (regnum >= 0 && regnum < 16)
352 return gdbarch_tdep (gdbarch)->a0_base + regnum;
355 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
357 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
393 mem |= (buffer[bytesize - i - 1] << 24);
398 for (i = 0; i < bytesize; i++)
401 mem |= (buffer[i] << 24);
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
431 regval |= mem << (size - shift);
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
438 /* Don't overwrite the unmasked areas. */
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
476 int r = mask->mask[i].reg_num;
479 enum register_status status;
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
485 regval = (unsigned int) val;
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
496 regval &= (0xffffffff >> (32 - size));
498 mem |= regval << shift;
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
512 mem = regval >> (size - shift);
519 /* Copy value to target byte order. */
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
528 buffer[bytesize - i - 1] = mem & 0xff;
532 for (i = 0; i < bytesize; i++)
536 buffer[i] = mem & 0xff;
544 /* Read pseudo registers. */
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
563 enum register_status status;
565 status = regcache_raw_read_unsigned (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
568 if (status != REG_VALID)
570 regnum = arreg_number (gdbarch, regnum, value);
573 /* We can always read non-pseudo registers. */
574 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
575 return regcache_raw_read (regcache, regnum, buffer);
577 /* We have to find out how to deal with priveleged registers.
578 Let's treat them as pseudo-registers, but we cannot read/write them. */
580 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
581 || regnum < gdbarch_tdep (gdbarch)->a0_base)
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
589 /* Pseudo registers. */
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
595 xtensa_register_type_t type = reg->type;
596 int flags = gdbarch_tdep (gdbarch)->target_flags;
598 /* We cannot read Unknown or Unmapped registers. */
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
603 warning (_("cannot read register %s"),
604 xtensa_register_name (gdbarch, regnum));
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
615 warning (_("cannot read register"));
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
622 warning (_("cannot read register"));
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
629 return xtensa_register_read_masked (regcache, reg, buffer);
631 /* Assume that we can read the register. */
632 return regcache_raw_read (regcache, regnum, buffer);
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
640 /* Write pseudo registers. */
643 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
646 const gdb_byte *buffer)
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
651 regnum, xtensa_register_name (gdbarch, regnum));
653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
659 regcache_raw_read_unsigned (regcache,
660 gdbarch_tdep (gdbarch)->wb_regnum, &value);
661 regnum = arreg_number (gdbarch, regnum, value);
664 /* We can always write 'core' registers.
665 Note: We might have converted Ax->ARy. */
666 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
667 regcache_raw_write (regcache, regnum, buffer);
669 /* We have to find out how to deal with priveleged registers.
670 Let's treat them as pseudo-registers, but we cannot read/write them. */
672 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
676 /* Pseudo registers. */
678 && regnum < gdbarch_num_regs (gdbarch)
679 + gdbarch_num_pseudo_regs (gdbarch))
681 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
682 xtensa_register_type_t type = reg->type;
683 int flags = gdbarch_tdep (gdbarch)->target_flags;
685 /* On most targets, we cannot write registers
686 of type "Unknown" or "Unmapped". */
687 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
689 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
691 warning (_("cannot write register %s"),
692 xtensa_register_name (gdbarch, regnum));
697 /* Some targets cannot read TIE register files. */
698 else if (type == xtRegisterTypeTieRegfile)
700 /* Use 'store' to get register? */
701 if (flags & xtTargetFlagsUseFetchStore)
703 warning (_("cannot write register"));
707 /* On some targets (esp. simulators), we can always write
709 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
711 warning (_("cannot write register"));
716 /* We can always write mapped registers. */
717 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
719 xtensa_register_write_masked (regcache, reg, buffer);
723 /* Assume that we can write the register. */
724 regcache_raw_write (regcache, regnum, buffer);
727 internal_error (__FILE__, __LINE__,
728 _("invalid register number %d"), regnum);
731 static struct reggroup *xtensa_ar_reggroup;
732 static struct reggroup *xtensa_user_reggroup;
733 static struct reggroup *xtensa_vectra_reggroup;
734 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
737 xtensa_init_reggroups (void)
740 char cpname[] = "cp0";
742 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
743 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
744 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
746 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
754 xtensa_add_reggroups (struct gdbarch *gdbarch)
758 /* Predefined groups. */
759 reggroup_add (gdbarch, all_reggroup);
760 reggroup_add (gdbarch, save_reggroup);
761 reggroup_add (gdbarch, restore_reggroup);
762 reggroup_add (gdbarch, system_reggroup);
763 reggroup_add (gdbarch, vector_reggroup);
764 reggroup_add (gdbarch, general_reggroup);
765 reggroup_add (gdbarch, float_reggroup);
767 /* Xtensa-specific groups. */
768 reggroup_add (gdbarch, xtensa_ar_reggroup);
769 reggroup_add (gdbarch, xtensa_user_reggroup);
770 reggroup_add (gdbarch, xtensa_vectra_reggroup);
772 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
773 reggroup_add (gdbarch, xtensa_cp[i]);
777 xtensa_coprocessor_register_group (struct reggroup *group)
781 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
782 if (group == xtensa_cp[i])
788 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
789 | XTENSA_REGISTER_FLAGS_WRITABLE \
790 | XTENSA_REGISTER_FLAGS_VOLATILE)
792 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
793 | XTENSA_REGISTER_FLAGS_WRITABLE)
796 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
798 struct reggroup *group)
800 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
801 xtensa_register_type_t type = reg->type;
802 xtensa_register_group_t rg = reg->group;
805 if (group == save_reggroup)
806 /* Every single register should be included into the list of registers
807 to be watched for changes while using -data-list-changed-registers. */
810 /* First, skip registers that are not visible to this target
811 (unknown and unmapped registers when not using ISS). */
813 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
815 if (group == all_reggroup)
817 if (group == xtensa_ar_reggroup)
818 return rg & xtRegisterGroupAddrReg;
819 if (group == xtensa_user_reggroup)
820 return rg & xtRegisterGroupUser;
821 if (group == float_reggroup)
822 return rg & xtRegisterGroupFloat;
823 if (group == general_reggroup)
824 return rg & xtRegisterGroupGeneral;
825 if (group == system_reggroup)
826 return rg & xtRegisterGroupState;
827 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
828 return rg & xtRegisterGroupVectra;
829 if (group == restore_reggroup)
830 return (regnum < gdbarch_num_regs (gdbarch)
831 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
832 cp_number = xtensa_coprocessor_register_group (group);
834 return rg & (xtRegisterGroupCP0 << cp_number);
840 /* Supply register REGNUM from the buffer specified by GREGS and LEN
841 in the general-purpose register set REGSET to register cache
842 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
845 xtensa_supply_gregset (const struct regset *regset,
851 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
852 struct gdbarch *gdbarch = get_regcache_arch (rc);
855 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
857 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
858 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
859 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
861 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
863 (char *) ®s->windowbase);
864 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
865 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
866 (char *) ®s->windowstart);
867 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
868 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
869 (char *) ®s->lbeg);
870 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
871 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
872 (char *) ®s->lend);
873 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
874 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
875 (char *) ®s->lcount);
876 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
877 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
878 (char *) ®s->sar);
879 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
880 && regnum < gdbarch_tdep (gdbarch)->ar_base
881 + gdbarch_tdep (gdbarch)->num_aregs)
882 regcache_raw_supply (rc, regnum,
883 (char *) ®s->ar[regnum - gdbarch_tdep
884 (gdbarch)->ar_base]);
885 else if (regnum == -1)
887 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
888 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
889 (char *) ®s->ar[i]);
894 /* Xtensa register set. */
900 xtensa_supply_gregset
904 /* Iterate over supported core file register note sections. */
907 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
908 iterate_over_regset_sections_cb *cb,
910 const struct regcache *regcache)
912 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
914 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
919 /* Handling frames. */
921 /* Number of registers to save in case of Windowed ABI. */
922 #define XTENSA_NUM_SAVED_AREGS 12
924 /* Frame cache part for Windowed ABI. */
925 typedef struct xtensa_windowed_frame_cache
927 int wb; /* WINDOWBASE of the previous frame. */
928 int callsize; /* Call size of this frame. */
929 int ws; /* WINDOWSTART of the previous frame. It keeps track of
930 life windows only. If there is no bit set for the
931 window, that means it had been already spilled
932 because of window overflow. */
934 /* Addresses of spilled A-registers.
935 AREGS[i] == -1, if corresponding AR is alive. */
936 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
937 } xtensa_windowed_frame_cache_t;
939 /* Call0 ABI Definitions. */
941 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
943 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
944 #define C0_SP 1 /* Register used as SP. */
945 #define C0_FP 15 /* Register used as FP. */
946 #define C0_RA 0 /* Register used as return address. */
947 #define C0_ARGS 2 /* Register used as first arg/retval. */
948 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
950 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
951 A-register where the current content of the reg came from (in terms
952 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
953 mean that the orignal content of the register was saved to the stack.
954 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
955 know where SP will end up until the entire prologue has been analyzed. */
957 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
958 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
959 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
961 extern xtensa_isa xtensa_default_isa;
963 typedef struct xtensa_c0reg
965 int fr_reg; /* original register from which register content
966 is derived, or C0_CONST, or C0_INEXP. */
967 int fr_ofs; /* constant offset from reg, or immediate value. */
968 int to_stk; /* offset from original SP to register (4-byte aligned),
969 or C0_NOSTK if register has not been saved. */
972 /* Frame cache part for Call0 ABI. */
973 typedef struct xtensa_call0_frame_cache
975 int c0_frmsz; /* Stack frame size. */
976 int c0_hasfp; /* Current frame uses frame pointer. */
977 int fp_regnum; /* A-register used as FP. */
978 int c0_fp; /* Actual value of frame pointer. */
979 int c0_fpalign; /* Dinamic adjustment for the stack
980 pointer. It's an AND mask. Zero,
981 if alignment was not adjusted. */
982 int c0_old_sp; /* In case of dynamic adjustment, it is
983 a register holding unaligned sp.
984 C0_INEXP, when undefined. */
985 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
986 stack offset. C0_NOSTK otherwise. */
988 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
989 } xtensa_call0_frame_cache_t;
991 typedef struct xtensa_frame_cache
993 CORE_ADDR base; /* Stack pointer of this frame. */
994 CORE_ADDR pc; /* PC of this frame at the function entry point. */
995 CORE_ADDR ra; /* The raw return address of this frame. */
996 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
997 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
998 int call0; /* It's a call0 framework (else windowed). */
1001 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1002 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1004 } xtensa_frame_cache_t;
1007 static struct xtensa_frame_cache *
1008 xtensa_alloc_frame_cache (int windowed)
1010 xtensa_frame_cache_t *cache;
1013 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1015 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1022 cache->call0 = !windowed;
1025 cache->c0.c0_frmsz = -1;
1026 cache->c0.c0_hasfp = 0;
1027 cache->c0.fp_regnum = -1;
1028 cache->c0.c0_fp = -1;
1029 cache->c0.c0_fpalign = 0;
1030 cache->c0.c0_old_sp = C0_INEXP;
1031 cache->c0.c0_sp_ofs = C0_NOSTK;
1033 for (i = 0; i < C0_NREGS; i++)
1035 cache->c0.c0_rt[i].fr_reg = i;
1036 cache->c0.c0_rt[i].fr_ofs = 0;
1037 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1044 cache->wd.callsize = -1;
1046 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1047 cache->wd.aregs[i] = -1;
1054 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1056 return address & ~15;
1061 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1066 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1067 host_address_to_string (next_frame));
1069 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1070 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1072 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1078 static struct frame_id
1079 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1083 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1085 pc = get_frame_pc (this_frame);
1086 fp = get_frame_register_unsigned
1087 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1089 /* Make dummy frame ID unique by adding a constant. */
1090 return frame_id_build (fp + SP_ALIGNMENT, pc);
1093 /* Returns true, if instruction to execute next is unique to Xtensa Window
1094 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1097 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1099 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1100 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1103 if (byte_order == BFD_ENDIAN_BIG)
1105 /* Check, if this is L32E or S32E. */
1106 code = insn & 0xf000ff00;
1107 if ((code == 0x00009000) || (code == 0x00009400))
1109 /* Check, if this is RFWU or RFWO. */
1110 code = insn & 0xffffff00;
1111 return ((code == 0x00430000) || (code == 0x00530000));
1115 /* Check, if this is L32E or S32E. */
1116 code = insn & 0x00ff000f;
1117 if ((code == 0x090000) || (code == 0x490000))
1119 /* Check, if this is RFWU or RFWO. */
1120 code = insn & 0x00ffffff;
1121 return ((code == 0x00003400) || (code == 0x00003500));
1125 /* Returns the best guess about which register is a frame pointer
1126 for the function containing CURRENT_PC. */
1128 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1129 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1132 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1134 #define RETURN_FP goto done
1136 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1137 CORE_ADDR start_addr;
1139 xtensa_insnbuf ins, slot;
1140 gdb_byte ibuf[XTENSA_ISA_BSZ];
1141 CORE_ADDR ia, bt, ba;
1143 int ilen, islots, is;
1145 const char *opcname;
1147 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1148 if (start_addr == 0)
1151 isa = xtensa_default_isa;
1152 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1153 ins = xtensa_insnbuf_alloc (isa);
1154 slot = xtensa_insnbuf_alloc (isa);
1157 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1159 if (ia + xtensa_isa_maxlength (isa) > bt)
1162 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1163 ? ba + XTENSA_ISA_BSZ : current_pc;
1164 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1168 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1169 ifmt = xtensa_format_decode (isa, ins);
1170 if (ifmt == XTENSA_UNDEFINED)
1172 ilen = xtensa_format_length (isa, ifmt);
1173 if (ilen == XTENSA_UNDEFINED)
1175 islots = xtensa_format_num_slots (isa, ifmt);
1176 if (islots == XTENSA_UNDEFINED)
1179 for (is = 0; is < islots; ++is)
1181 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1184 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1185 if (opc == XTENSA_UNDEFINED)
1188 opcname = xtensa_opcode_name (isa, opc);
1190 if (strcasecmp (opcname, "mov.n") == 0
1191 || strcasecmp (opcname, "or") == 0)
1193 unsigned int register_operand;
1195 /* Possible candidate for setting frame pointer
1196 from A1. This is what we are looking for. */
1198 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1199 is, slot, ®ister_operand) != 0)
1201 if (xtensa_operand_decode (isa, opc, 1, ®ister_operand) != 0)
1203 if (register_operand == 1) /* Mov{.n} FP A1. */
1205 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1206 ®ister_operand) != 0)
1208 if (xtensa_operand_decode (isa, opc, 0,
1209 ®ister_operand) != 0)
1213 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1219 /* We have problems decoding the memory. */
1221 || strcasecmp (opcname, "ill") == 0
1222 || strcasecmp (opcname, "ill.n") == 0
1223 /* Hit planted breakpoint. */
1224 || strcasecmp (opcname, "break") == 0
1225 || strcasecmp (opcname, "break.n") == 0
1226 /* Flow control instructions finish prologue. */
1227 || xtensa_opcode_is_branch (isa, opc) > 0
1228 || xtensa_opcode_is_jump (isa, opc) > 0
1229 || xtensa_opcode_is_loop (isa, opc) > 0
1230 || xtensa_opcode_is_call (isa, opc) > 0
1231 || strcasecmp (opcname, "simcall") == 0
1232 || strcasecmp (opcname, "syscall") == 0)
1233 /* Can not continue analysis. */
1238 xtensa_insnbuf_free(isa, slot);
1239 xtensa_insnbuf_free(isa, ins);
1243 /* The key values to identify the frame using "cache" are
1245 cache->base = SP (or best guess about FP) of this frame;
1246 cache->pc = entry-PC (entry point of the frame function);
1247 cache->prev_sp = SP of the previous frame. */
1250 call0_frame_cache (struct frame_info *this_frame,
1251 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1254 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1255 xtensa_frame_cache_t *cache,
1258 static struct xtensa_frame_cache *
1259 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1261 xtensa_frame_cache_t *cache;
1262 CORE_ADDR ra, wb, ws, pc, sp, ps;
1263 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1265 unsigned int fp_regnum;
1266 int windowed, ps_regnum;
1269 return (struct xtensa_frame_cache *) *this_cache;
1271 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1272 ps_regnum = gdbarch_ps_regnum (gdbarch);
1273 ps = (ps_regnum >= 0
1274 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1276 windowed = windowing_enabled (gdbarch, ps);
1278 /* Get pristine xtensa-frame. */
1279 cache = xtensa_alloc_frame_cache (windowed);
1280 *this_cache = cache;
1286 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1287 wb = get_frame_register_unsigned (this_frame,
1288 gdbarch_tdep (gdbarch)->wb_regnum);
1289 ws = get_frame_register_unsigned (this_frame,
1290 gdbarch_tdep (gdbarch)->ws_regnum);
1292 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1293 && XTENSA_IS_ENTRY (gdbarch, op1))
1295 int callinc = CALLINC (ps);
1296 ra = get_frame_register_unsigned
1297 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1299 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1300 cache->wd.callsize = 0;
1303 cache->prev_sp = get_frame_register_unsigned
1304 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1306 /* This only can be the outermost frame since we are
1307 just about to execute ENTRY. SP hasn't been set yet.
1308 We can assume any frame size, because it does not
1309 matter, and, let's fake frame base in cache. */
1310 cache->base = cache->prev_sp - 16;
1313 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1314 cache->ps = (ps & ~PS_CALLINC_MASK)
1315 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1321 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1322 ra = get_frame_register_unsigned (this_frame,
1323 gdbarch_tdep (gdbarch)->a0_base);
1324 cache->wd.callsize = WINSIZE (ra);
1325 cache->wd.wb = (wb - cache->wd.callsize / 4)
1326 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1327 cache->wd.ws = ws & ~(1 << wb);
1329 cache->pc = get_frame_func (this_frame);
1330 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1331 cache->ps = (ps & ~PS_CALLINC_MASK)
1332 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1335 if (cache->wd.ws == 0)
1340 sp = get_frame_register_unsigned
1341 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1343 for (i = 0; i < 4; i++, sp += 4)
1345 cache->wd.aregs[i] = sp;
1348 if (cache->wd.callsize > 4)
1350 /* Set A4...A7/A11. */
1351 /* Get the SP of the frame previous to the previous one.
1352 To achieve this, we have to dereference SP twice. */
1353 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1354 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1355 sp -= cache->wd.callsize * 4;
1357 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1359 cache->wd.aregs[i] = sp;
1364 if ((cache->prev_sp == 0) && ( ra != 0 ))
1365 /* If RA is equal to 0 this frame is an outermost frame. Leave
1366 cache->prev_sp unchanged marking the boundary of the frame stack. */
1368 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1370 /* Register window overflow already happened.
1371 We can read caller's SP from the proper spill loction. */
1372 sp = get_frame_register_unsigned
1373 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1374 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1378 /* Read caller's frame SP directly from the previous window. */
1379 int regnum = arreg_number
1380 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1383 cache->prev_sp = xtensa_read_register (regnum);
1387 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1389 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1391 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1392 /* Everything was set already, including cache->base. */
1395 else /* Call0 framework. */
1397 call0_frame_cache (this_frame, cache, pc);
1398 fp_regnum = cache->c0.fp_regnum;
1401 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1406 static int xtensa_session_once_reported = 1;
1408 /* Report a problem with prologue analysis while doing backtracing.
1409 But, do it only once to avoid annoyng repeated messages. */
1414 if (xtensa_session_once_reported == 0)
1416 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1417 This message will not be repeated in this session.\n"));
1419 xtensa_session_once_reported = 1;
1424 xtensa_frame_this_id (struct frame_info *this_frame,
1426 struct frame_id *this_id)
1428 struct xtensa_frame_cache *cache =
1429 xtensa_frame_cache (this_frame, this_cache);
1431 if (cache->prev_sp == 0)
1434 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1437 static struct value *
1438 xtensa_frame_prev_register (struct frame_info *this_frame,
1442 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1443 struct xtensa_frame_cache *cache;
1444 ULONGEST saved_reg = 0;
1447 if (*this_cache == NULL)
1448 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1449 cache = (struct xtensa_frame_cache *) *this_cache;
1451 if (regnum ==gdbarch_pc_regnum (gdbarch))
1452 saved_reg = cache->ra;
1453 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1454 saved_reg = cache->prev_sp;
1455 else if (!cache->call0)
1457 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1458 saved_reg = cache->wd.ws;
1459 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1460 saved_reg = cache->wd.wb;
1461 else if (regnum == gdbarch_ps_regnum (gdbarch))
1462 saved_reg = cache->ps;
1470 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1472 if (!cache->call0) /* Windowed ABI. */
1474 /* Convert A-register numbers to AR-register numbers,
1475 if we deal with A-register. */
1476 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1477 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1478 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1480 /* Check, if we deal with AR-register saved on stack. */
1481 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1482 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1483 + gdbarch_tdep (gdbarch)->num_aregs))
1485 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1488 && areg < XTENSA_NUM_SAVED_AREGS
1489 && cache->wd.aregs[areg] != -1)
1490 return frame_unwind_got_memory (this_frame, regnum,
1491 cache->wd.aregs[areg]);
1494 else /* Call0 ABI. */
1496 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1497 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1499 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1506 /* If register was saved in the prologue, retrieve it. */
1507 stkofs = cache->c0.c0_rt[reg].to_stk;
1508 if (stkofs != C0_NOSTK)
1510 /* Determine SP on entry based on FP. */
1511 spe = cache->c0.c0_fp
1512 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1514 return frame_unwind_got_memory (this_frame, regnum,
1520 /* All other registers have been either saved to
1521 the stack or are still alive in the processor. */
1523 return frame_unwind_got_register (this_frame, regnum, regnum);
1527 static const struct frame_unwind
1531 default_frame_unwind_stop_reason,
1532 xtensa_frame_this_id,
1533 xtensa_frame_prev_register,
1535 default_frame_sniffer
1539 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1541 struct xtensa_frame_cache *cache =
1542 xtensa_frame_cache (this_frame, this_cache);
1547 static const struct frame_base
1551 xtensa_frame_base_address,
1552 xtensa_frame_base_address,
1553 xtensa_frame_base_address
1558 xtensa_extract_return_value (struct type *type,
1559 struct regcache *regcache,
1562 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1563 bfd_byte *valbuf = (bfd_byte *) dst;
1564 int len = TYPE_LENGTH (type);
1569 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1571 gdb_assert(len > 0);
1573 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1575 /* First, we have to find the caller window in the register file. */
1576 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1577 callsize = extract_call_winsize (gdbarch, pc);
1579 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1580 if (len > (callsize > 8 ? 8 : 16))
1581 internal_error (__FILE__, __LINE__,
1582 _("cannot extract return value of %d bytes long"),
1585 /* Get the register offset of the return
1586 register (A2) in the caller window. */
1587 regcache_raw_read_unsigned
1588 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1589 areg = arreg_number (gdbarch,
1590 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1594 /* No windowing hardware - Call0 ABI. */
1595 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1598 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1600 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1603 for (; len > 0; len -= 4, areg++, valbuf += 4)
1606 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1608 regcache_raw_read (regcache, areg, valbuf);
1614 xtensa_store_return_value (struct type *type,
1615 struct regcache *regcache,
1618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1619 const bfd_byte *valbuf = (const bfd_byte *) dst;
1623 int len = TYPE_LENGTH (type);
1626 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1628 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1630 regcache_raw_read_unsigned
1631 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1632 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1633 callsize = extract_call_winsize (gdbarch, pc);
1635 if (len > (callsize > 8 ? 8 : 16))
1636 internal_error (__FILE__, __LINE__,
1637 _("unimplemented for this length: %d"),
1638 TYPE_LENGTH (type));
1639 areg = arreg_number (gdbarch,
1640 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1642 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1643 callsize, (int) wb);
1647 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1650 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1653 for (; len > 0; len -= 4, areg++, valbuf += 4)
1656 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1658 regcache_raw_write (regcache, areg, valbuf);
1663 static enum return_value_convention
1664 xtensa_return_value (struct gdbarch *gdbarch,
1665 struct value *function,
1666 struct type *valtype,
1667 struct regcache *regcache,
1669 const gdb_byte *writebuf)
1671 /* Structures up to 16 bytes are returned in registers. */
1673 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1674 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1675 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1676 && TYPE_LENGTH (valtype) > 16);
1679 return RETURN_VALUE_STRUCT_CONVENTION;
1681 DEBUGTRACE ("xtensa_return_value(...)\n");
1683 if (writebuf != NULL)
1685 xtensa_store_return_value (valtype, regcache, writebuf);
1688 if (readbuf != NULL)
1690 gdb_assert (!struct_return);
1691 xtensa_extract_return_value (valtype, regcache, readbuf);
1693 return RETURN_VALUE_REGISTER_CONVENTION;
1700 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1701 struct value *function,
1702 struct regcache *regcache,
1705 struct value **args,
1708 CORE_ADDR struct_addr)
1710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1712 int size, onstack_size;
1713 gdb_byte *buf = (gdb_byte *) alloca (16);
1715 struct argument_info
1717 const bfd_byte *contents;
1719 int onstack; /* onstack == 0 => in reg */
1720 int align; /* alignment */
1723 int offset; /* stack offset if on stack. */
1724 int regno; /* regno if in register. */
1728 struct argument_info *arg_info =
1729 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1733 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1735 if (xtensa_debug_level > 3)
1738 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1739 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1740 "struct_addr=0x%x\n",
1741 (int) sp, (int) struct_return, (int) struct_addr);
1743 for (i = 0; i < nargs; i++)
1745 struct value *arg = args[i];
1746 struct type *arg_type = check_typedef (value_type (arg));
1747 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1748 host_address_to_string (arg),
1749 TYPE_LENGTH (arg_type));
1750 switch (TYPE_CODE (arg_type))
1753 fprintf_unfiltered (gdb_stdlog, "int");
1755 case TYPE_CODE_STRUCT:
1756 fprintf_unfiltered (gdb_stdlog, "struct");
1759 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1762 fprintf_unfiltered (gdb_stdlog, " %s\n",
1763 host_address_to_string (value_contents (arg)));
1767 /* First loop: collect information.
1768 Cast into type_long. (This shouldn't happen often for C because
1769 GDB already does this earlier.) It's possible that GDB could
1770 do it all the time but it's harmless to leave this code here. */
1777 size = REGISTER_SIZE;
1779 for (i = 0; i < nargs; i++)
1781 struct argument_info *info = &arg_info[i];
1782 struct value *arg = args[i];
1783 struct type *arg_type = check_typedef (value_type (arg));
1785 switch (TYPE_CODE (arg_type))
1788 case TYPE_CODE_BOOL:
1789 case TYPE_CODE_CHAR:
1790 case TYPE_CODE_RANGE:
1791 case TYPE_CODE_ENUM:
1793 /* Cast argument to long if necessary as the mask does it too. */
1794 if (TYPE_LENGTH (arg_type)
1795 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1797 arg_type = builtin_type (gdbarch)->builtin_long;
1798 arg = value_cast (arg_type, arg);
1800 /* Aligment is equal to the type length for the basic types. */
1801 info->align = TYPE_LENGTH (arg_type);
1806 /* Align doubles correctly. */
1807 if (TYPE_LENGTH (arg_type)
1808 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1809 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1811 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1814 case TYPE_CODE_STRUCT:
1816 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1819 info->length = TYPE_LENGTH (arg_type);
1820 info->contents = value_contents (arg);
1822 /* Align size and onstack_size. */
1823 size = (size + info->align - 1) & ~(info->align - 1);
1824 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1826 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1829 info->u.offset = onstack_size;
1830 onstack_size += info->length;
1835 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1837 size += info->length;
1840 /* Adjust the stack pointer and align it. */
1841 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1843 /* Simulate MOVSP, if Windowed ABI. */
1844 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1847 read_memory (osp - 16, buf, 16);
1848 write_memory (sp - 16, buf, 16);
1851 /* Second Loop: Load arguments. */
1855 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1856 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1859 for (i = 0; i < nargs; i++)
1861 struct argument_info *info = &arg_info[i];
1865 int n = info->length;
1866 CORE_ADDR offset = sp + info->u.offset;
1868 /* Odd-sized structs are aligned to the lower side of a memory
1869 word in big-endian mode and require a shift. This only
1870 applies for structures smaller than one word. */
1872 if (n < REGISTER_SIZE
1873 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1874 offset += (REGISTER_SIZE - n);
1876 write_memory (offset, info->contents, info->length);
1881 int n = info->length;
1882 const bfd_byte *cp = info->contents;
1883 int r = info->u.regno;
1885 /* Odd-sized structs are aligned to the lower side of registers in
1886 big-endian mode and require a shift. The odd-sized leftover will
1887 be at the end. Note that this is only true for structures smaller
1888 than REGISTER_SIZE; for larger odd-sized structures the excess
1889 will be left-aligned in the register on both endiannesses. */
1891 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1894 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1895 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1897 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1898 regcache_cooked_write (regcache, r, buf);
1900 cp += REGISTER_SIZE;
1907 regcache_cooked_write (regcache, r, cp);
1909 cp += REGISTER_SIZE;
1916 /* Set the return address of dummy frame to the dummy address.
1917 The return address for the current function (in A0) is
1918 saved in the dummy frame, so we can savely overwrite A0 here. */
1920 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1924 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1925 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1926 ps = (unsigned long) val & ~0x00030000;
1927 regcache_cooked_write_unsigned
1928 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1929 regcache_cooked_write_unsigned (regcache,
1930 gdbarch_ps_regnum (gdbarch),
1933 /* All the registers have been saved. After executing
1934 dummy call, they all will be restored. So it's safe
1935 to modify WINDOWSTART register to make it look like there
1936 is only one register window corresponding to WINDOWEBASE. */
1938 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1939 regcache_cooked_write_unsigned
1940 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1941 1 << extract_unsigned_integer (buf, 4, byte_order));
1945 /* Simulate CALL0: write RA into A0 register. */
1946 regcache_cooked_write_unsigned
1947 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1950 /* Set new stack pointer and return it. */
1951 regcache_cooked_write_unsigned (regcache,
1952 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1953 /* Make dummy frame ID unique by adding a constant. */
1954 return sp + SP_ALIGNMENT;
1957 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1960 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1962 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1968 /* Return a breakpoint for the current location of PC. We always use
1969 the density version if we have density instructions (regardless of the
1970 current instruction at PC), and use regular instructions otherwise. */
1972 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1973 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1974 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1975 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1977 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1979 static const gdb_byte *
1980 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1986 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1987 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1989 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1990 return big_breakpoint;
1992 return little_breakpoint;
1996 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1997 static unsigned char density_little_breakpoint[]
1998 = DENSITY_LITTLE_BREAKPOINT;
2000 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2001 return density_big_breakpoint;
2003 return density_little_breakpoint;
2007 /* Call0 ABI support routines. */
2009 /* Return true, if PC points to "ret" or "ret.n". */
2012 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2014 #define RETURN_RET goto done
2016 xtensa_insnbuf ins, slot;
2017 gdb_byte ibuf[XTENSA_ISA_BSZ];
2018 CORE_ADDR ia, bt, ba;
2020 int ilen, islots, is;
2022 const char *opcname;
2025 isa = xtensa_default_isa;
2026 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2027 ins = xtensa_insnbuf_alloc (isa);
2028 slot = xtensa_insnbuf_alloc (isa);
2031 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2033 if (ia + xtensa_isa_maxlength (isa) > bt)
2036 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2037 ? ba + XTENSA_ISA_BSZ : finish_pc;
2038 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2042 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2043 ifmt = xtensa_format_decode (isa, ins);
2044 if (ifmt == XTENSA_UNDEFINED)
2046 ilen = xtensa_format_length (isa, ifmt);
2047 if (ilen == XTENSA_UNDEFINED)
2049 islots = xtensa_format_num_slots (isa, ifmt);
2050 if (islots == XTENSA_UNDEFINED)
2053 for (is = 0; is < islots; ++is)
2055 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2058 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2059 if (opc == XTENSA_UNDEFINED)
2062 opcname = xtensa_opcode_name (isa, opc);
2064 if ((strcasecmp (opcname, "ret.n") == 0)
2065 || (strcasecmp (opcname, "ret") == 0))
2073 xtensa_insnbuf_free(isa, slot);
2074 xtensa_insnbuf_free(isa, ins);
2078 /* Call0 opcode class. Opcodes are preclassified according to what they
2079 mean for Call0 prologue analysis, and their number of significant operands.
2080 The purpose of this is to simplify prologue analysis by separating
2081 instruction decoding (libisa) from the semantics of prologue analysis. */
2085 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2086 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2087 c0opc_flow, /* Flow control insn. */
2088 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2089 c0opc_break, /* Debugger software breakpoints. */
2090 c0opc_add, /* Adding two registers. */
2091 c0opc_addi, /* Adding a register and an immediate. */
2092 c0opc_and, /* Bitwise "and"-ing two registers. */
2093 c0opc_sub, /* Subtracting a register from a register. */
2094 c0opc_mov, /* Moving a register to a register. */
2095 c0opc_movi, /* Moving an immediate to a register. */
2096 c0opc_l32r, /* Loading a literal. */
2097 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2098 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2099 c0opc_l32e, /* L32E instruction. */
2100 c0opc_s32e, /* S32E instruction. */
2101 c0opc_rfwo, /* RFWO instruction. */
2102 c0opc_rfwu, /* RFWU instruction. */
2103 c0opc_NrOf /* Number of opcode classifications. */
2106 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2109 rwx_special_register (const char *opcname)
2111 char ch = *opcname++;
2113 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2115 if (*opcname++ != 's')
2117 if (*opcname++ != 'r')
2119 if (*opcname++ != '.')
2125 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2127 static xtensa_insn_kind
2128 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2130 const char *opcname;
2131 xtensa_insn_kind opclass = c0opc_uninteresting;
2133 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2135 /* Get opcode name and handle special classifications. */
2137 opcname = xtensa_opcode_name (isa, opc);
2140 || strcasecmp (opcname, "ill") == 0
2141 || strcasecmp (opcname, "ill.n") == 0)
2142 opclass = c0opc_illegal;
2143 else if (strcasecmp (opcname, "break") == 0
2144 || strcasecmp (opcname, "break.n") == 0)
2145 opclass = c0opc_break;
2146 else if (strcasecmp (opcname, "entry") == 0)
2147 opclass = c0opc_entry;
2148 else if (strcasecmp (opcname, "rfwo") == 0)
2149 opclass = c0opc_rfwo;
2150 else if (strcasecmp (opcname, "rfwu") == 0)
2151 opclass = c0opc_rfwu;
2152 else if (xtensa_opcode_is_branch (isa, opc) > 0
2153 || xtensa_opcode_is_jump (isa, opc) > 0
2154 || xtensa_opcode_is_loop (isa, opc) > 0
2155 || xtensa_opcode_is_call (isa, opc) > 0
2156 || strcasecmp (opcname, "simcall") == 0
2157 || strcasecmp (opcname, "syscall") == 0)
2158 opclass = c0opc_flow;
2160 /* Also, classify specific opcodes that need to be tracked. */
2161 else if (strcasecmp (opcname, "add") == 0
2162 || strcasecmp (opcname, "add.n") == 0)
2163 opclass = c0opc_add;
2164 else if (strcasecmp (opcname, "and") == 0)
2165 opclass = c0opc_and;
2166 else if (strcasecmp (opcname, "addi") == 0
2167 || strcasecmp (opcname, "addi.n") == 0
2168 || strcasecmp (opcname, "addmi") == 0)
2169 opclass = c0opc_addi;
2170 else if (strcasecmp (opcname, "sub") == 0)
2171 opclass = c0opc_sub;
2172 else if (strcasecmp (opcname, "mov.n") == 0
2173 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2174 opclass = c0opc_mov;
2175 else if (strcasecmp (opcname, "movi") == 0
2176 || strcasecmp (opcname, "movi.n") == 0)
2177 opclass = c0opc_movi;
2178 else if (strcasecmp (opcname, "l32r") == 0)
2179 opclass = c0opc_l32r;
2180 else if (strcasecmp (opcname, "s32i") == 0
2181 || strcasecmp (opcname, "s32i.n") == 0)
2182 opclass = c0opc_s32i;
2183 else if (strcasecmp (opcname, "l32e") == 0)
2184 opclass = c0opc_l32e;
2185 else if (strcasecmp (opcname, "s32e") == 0)
2186 opclass = c0opc_s32e;
2187 else if (rwx_special_register (opcname))
2188 opclass = c0opc_rwxsr;
2193 /* Tracks register movement/mutation for a given operation, which may
2194 be within a bundle. Updates the destination register tracking info
2195 accordingly. The pc is needed only for pc-relative load instructions
2196 (eg. l32r). The SP register number is needed to identify stores to
2197 the stack frame. Returns 0, if analysis was succesfull, non-zero
2201 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2202 xtensa_insn_kind opclass, int nods, unsigned odv[],
2203 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2206 unsigned litbase, litaddr, litval;
2211 /* 3 operands: dst, src, imm. */
2212 gdb_assert (nods == 3);
2213 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2214 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2217 /* 3 operands: dst, src1, src2. */
2218 gdb_assert (nods == 3);
2219 if (src[odv[1]].fr_reg == C0_CONST)
2221 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2222 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2224 else if (src[odv[2]].fr_reg == C0_CONST)
2226 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2227 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2229 else dst[odv[0]].fr_reg = C0_INEXP;
2232 /* 3 operands: dst, src1, src2. */
2233 gdb_assert (nods == 3);
2234 if (cache->c0.c0_fpalign == 0)
2236 /* Handle dynamic stack alignment. */
2237 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2239 if (src[odv[2]].fr_reg == C0_CONST)
2240 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2243 else if ((src[odv[0]].fr_reg == spreg)
2244 && (src[odv[2]].fr_reg == spreg))
2246 if (src[odv[1]].fr_reg == C0_CONST)
2247 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2250 /* else fall through. */
2252 if (src[odv[1]].fr_reg == C0_CONST)
2254 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2255 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2257 else if (src[odv[2]].fr_reg == C0_CONST)
2259 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2260 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2262 else dst[odv[0]].fr_reg = C0_INEXP;
2265 /* 3 operands: dst, src1, src2. */
2266 gdb_assert (nods == 3);
2267 if (src[odv[2]].fr_reg == C0_CONST)
2269 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2270 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2272 else dst[odv[0]].fr_reg = C0_INEXP;
2275 /* 2 operands: dst, src [, src]. */
2276 gdb_assert (nods == 2);
2277 /* First, check if it's a special case of saving unaligned SP
2278 to a spare register in case of dynamic stack adjustment.
2279 But, only do it one time. The second time could be initializing
2280 frame pointer. We don't want to overwrite the first one. */
2281 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2282 cache->c0.c0_old_sp = odv[0];
2284 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2285 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2288 /* 2 operands: dst, imm. */
2289 gdb_assert (nods == 2);
2290 dst[odv[0]].fr_reg = C0_CONST;
2291 dst[odv[0]].fr_ofs = odv[1];
2294 /* 2 operands: dst, literal offset. */
2295 gdb_assert (nods == 2);
2296 /* litbase = xtensa_get_litbase (pc); can be also used. */
2297 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2298 ? 0 : xtensa_read_register
2299 (gdbarch_tdep (gdbarch)->litbase_regnum);
2300 litaddr = litbase & 1
2301 ? (litbase & ~1) + (signed)odv[1]
2302 : (pc + 3 + (signed)odv[1]) & ~3;
2303 litval = read_memory_integer (litaddr, 4, byte_order);
2304 dst[odv[0]].fr_reg = C0_CONST;
2305 dst[odv[0]].fr_ofs = litval;
2308 /* 3 operands: value, base, offset. */
2309 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2310 /* First, check if it's a spill for saved unaligned SP,
2311 when dynamic stack adjustment was applied to this frame. */
2312 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2313 && (odv[1] == spreg) /* SP usage indicates spill. */
2314 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2315 cache->c0.c0_sp_ofs = odv[2];
2317 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2318 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2319 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2320 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2321 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2323 /* ISA encoding guarantees alignment. But, check it anyway. */
2324 gdb_assert ((odv[2] & 3) == 0);
2325 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2328 /* If we end up inside Window Overflow / Underflow interrupt handler
2329 report an error because these handlers should have been handled
2330 already in a different way. */
2342 /* Analyze prologue of the function at start address to determine if it uses
2343 the Call0 ABI, and if so track register moves and linear modifications
2344 in the prologue up to the PC or just beyond the prologue, whichever is
2345 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2346 prologue. The prologue may overlap non-prologue instructions but is
2347 guaranteed to end by the first flow-control instruction (jump, branch,
2348 call or return). Since an optimized function may move information around
2349 and change the stack frame arbitrarily during the prologue, the information
2350 is guaranteed valid only at the point in the function indicated by the PC.
2351 May be used to skip the prologue or identify the ABI, w/o tracking.
2353 Returns: Address of first instruction after prologue, or PC (whichever
2354 is first), or 0, if decoding failed (in libisa).
2356 start Start address of function/prologue.
2357 pc Program counter to stop at. Use 0 to continue to end of prologue.
2358 If 0, avoids infinite run-on in corrupt code memory by bounding
2359 the scan to the end of the function if that can be determined.
2360 nregs Number of general registers to track.
2362 cache Xtensa frame cache.
2364 Note that these may produce useful results even if decoding fails
2365 because they begin with default assumptions that analysis may change. */
2368 call0_analyze_prologue (struct gdbarch *gdbarch,
2369 CORE_ADDR start, CORE_ADDR pc,
2370 int nregs, xtensa_frame_cache_t *cache)
2372 CORE_ADDR ia; /* Current insn address in prologue. */
2373 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2374 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2375 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2376 xtensa_isa isa; /* libisa ISA handle. */
2377 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2378 xtensa_format ifmt; /* libisa instruction format. */
2379 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2380 xtensa_opcode opc; /* Opcode in current slot. */
2381 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2382 int nods; /* Opcode number of operands. */
2383 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2384 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2385 int j; /* General loop counter. */
2386 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2387 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2388 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2390 struct symtab_and_line prologue_sal;
2392 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2393 (int)start, (int)pc);
2395 /* Try to limit the scan to the end of the function if a non-zero pc
2396 arg was not supplied to avoid probing beyond the end of valid memory.
2397 If memory is full of garbage that classifies as c0opc_uninteresting.
2398 If this fails (eg. if no symbols) pc ends up 0 as it was.
2399 Initialize the Call0 frame and register tracking info.
2400 Assume it's Call0 until an 'entry' instruction is encountered.
2401 Assume we may be in the prologue until we hit a flow control instr. */
2407 /* Find out, if we have an information about the prologue from DWARF. */
2408 prologue_sal = find_pc_line (start, 0);
2409 if (prologue_sal.line != 0) /* Found debug info. */
2410 body_pc = prologue_sal.end;
2412 /* If we are going to analyze the prologue in general without knowing about
2413 the current PC, make the best assumtion for the end of the prologue. */
2416 find_pc_partial_function (start, 0, NULL, &end_pc);
2417 body_pc = std::min (end_pc, body_pc);
2420 body_pc = std::min (pc, body_pc);
2423 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2425 isa = xtensa_default_isa;
2426 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2427 ins = xtensa_insnbuf_alloc (isa);
2428 slot = xtensa_insnbuf_alloc (isa);
2430 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2432 /* (Re)fill instruction buffer from memory if necessary, but do not
2433 read memory beyond PC to be sure we stay within text section
2434 (this protection only works if a non-zero pc is supplied). */
2436 if (ia + xtensa_isa_maxlength (isa) > bt)
2439 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2440 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2441 error (_("Unable to read target memory ..."));
2444 /* Decode format information. */
2446 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2447 ifmt = xtensa_format_decode (isa, ins);
2448 if (ifmt == XTENSA_UNDEFINED)
2453 ilen = xtensa_format_length (isa, ifmt);
2454 if (ilen == XTENSA_UNDEFINED)
2459 islots = xtensa_format_num_slots (isa, ifmt);
2460 if (islots == XTENSA_UNDEFINED)
2466 /* Analyze a bundle or a single instruction, using a snapshot of
2467 the register tracking info as input for the entire bundle so that
2468 register changes do not take effect within this bundle. */
2470 for (j = 0; j < nregs; ++j)
2471 rtmp[j] = cache->c0.c0_rt[j];
2473 for (is = 0; is < islots; ++is)
2475 /* Decode a slot and classify the opcode. */
2477 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2481 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2482 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2484 if (opc == XTENSA_UNDEFINED)
2485 opclass = c0opc_illegal;
2487 opclass = call0_classify_opcode (isa, opc);
2489 /* Decide whether to track this opcode, ignore it, or bail out. */
2498 case c0opc_uninteresting:
2501 case c0opc_flow: /* Flow control instructions stop analysis. */
2502 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2507 ia += ilen; /* Skip over 'entry' insn. */
2514 /* Only expected opcodes should get this far. */
2516 /* Extract and decode the operands. */
2517 nods = xtensa_opcode_num_operands (isa, opc);
2518 if (nods == XTENSA_UNDEFINED)
2524 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2526 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2531 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2536 /* Check operands to verify use of 'mov' assembler macro. */
2537 if (opclass == c0opc_mov && nods == 3)
2539 if (odv[2] == odv[1])
2542 if ((odv[0] == 1) && (odv[1] != 1))
2543 /* OR A1, An, An , where n != 1.
2544 This means we are inside epilogue already. */
2549 opclass = c0opc_uninteresting;
2554 /* Track register movement and modification for this operation. */
2555 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2556 opclass, nods, odv, ia, 1, cache);
2562 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2563 (unsigned)ia, fail ? "failed" : "succeeded");
2564 xtensa_insnbuf_free(isa, slot);
2565 xtensa_insnbuf_free(isa, ins);
2566 return fail ? XTENSA_ISA_BADPC : ia;
2569 /* Initialize frame cache for the current frame in CALL0 ABI. */
2572 call0_frame_cache (struct frame_info *this_frame,
2573 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2575 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2577 CORE_ADDR start_pc; /* The beginning of the function. */
2578 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2579 CORE_ADDR sp, fp, ra;
2580 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2582 sp = get_frame_register_unsigned
2583 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2584 fp = sp; /* Assume FP == SP until proven otherwise. */
2586 /* Find the beginning of the prologue of the function containing the PC
2587 and analyze it up to the PC or the end of the prologue. */
2589 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2591 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2593 if (body_pc == XTENSA_ISA_BADPC)
2597 goto finish_frame_analysis;
2601 /* Get the frame information and FP (if used) at the current PC.
2602 If PC is in the prologue, the prologue analysis is more reliable
2603 than DWARF info. We don't not know for sure, if PC is in the prologue,
2604 but we do know no calls have yet taken place, so we can almost
2605 certainly rely on the prologue analysis. */
2609 /* Prologue analysis was successful up to the PC.
2610 It includes the cases when PC == START_PC. */
2611 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2612 /* c0_hasfp == true means there is a frame pointer because
2613 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2614 was derived from SP. Otherwise, it would be C0_FP. */
2615 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2616 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2617 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2619 else /* No data from the prologue analysis. */
2622 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2627 if (cache->c0.c0_fpalign)
2629 /* This frame has a special prologue with a dynamic stack adjustment
2630 to force an alignment, which is bigger than standard 16 bytes. */
2632 CORE_ADDR unaligned_sp;
2634 if (cache->c0.c0_old_sp == C0_INEXP)
2635 /* This can't be. Prologue code should be consistent.
2636 Unaligned stack pointer should be saved in a spare register. */
2640 goto finish_frame_analysis;
2643 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2644 /* Saved unaligned value of SP is kept in a register. */
2645 unaligned_sp = get_frame_register_unsigned
2646 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2648 /* Get the value from stack. */
2649 unaligned_sp = (CORE_ADDR)
2650 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2652 prev_sp = unaligned_sp + c0_frmsz;
2655 prev_sp = fp + c0_frmsz;
2657 /* Frame size from debug info or prologue tracking does not account for
2658 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2661 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2663 /* Update the stack frame size. */
2664 c0_frmsz += fp - sp;
2667 /* Get the return address (RA) from the stack if saved,
2668 or try to get it from a register. */
2670 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2671 if (to_stk != C0_NOSTK)
2673 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2676 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2677 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2679 /* Special case for terminating backtrace at a function that wants to
2680 be seen as the outermost one. Such a function will clear it's RA (A0)
2681 register to 0 in the prologue instead of saving its original value. */
2686 /* RA was copied to another register or (before any function call) may
2687 still be in the original RA register. This is not always reliable:
2688 even in a leaf function, register tracking stops after prologue, and
2689 even in prologue, non-prologue instructions (not tracked) may overwrite
2690 RA or any register it was copied to. If likely in prologue or before
2691 any call, use retracking info and hope for the best (compiler should
2692 have saved RA in stack if not in a leaf function). If not in prologue,
2698 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2700 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2704 ra = get_frame_register_unsigned
2706 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2711 finish_frame_analysis:
2712 cache->pc = start_pc;
2714 /* RA == 0 marks the outermost frame. Do not go past it. */
2715 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2716 cache->c0.fp_regnum = fp_regnum;
2717 cache->c0.c0_frmsz = c0_frmsz;
2718 cache->c0.c0_hasfp = c0_hasfp;
2719 cache->c0.c0_fp = fp;
2722 static CORE_ADDR a0_saved;
2723 static CORE_ADDR a7_saved;
2724 static CORE_ADDR a11_saved;
2725 static int a0_was_saved;
2726 static int a7_was_saved;
2727 static int a11_was_saved;
2729 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2731 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2733 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2734 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2735 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2736 unsigned int spilled_value
2737 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2739 if ((at == 0) && !a0_was_saved)
2741 a0_saved = xtensa_read_register (atreg);
2744 else if ((at == 7) && !a7_was_saved)
2746 a7_saved = xtensa_read_register (atreg);
2749 else if ((at == 11) && !a11_was_saved)
2751 a11_saved = xtensa_read_register (atreg);
2755 xtensa_write_register (atreg, spilled_value);
2758 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2760 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2762 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2763 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2764 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2765 ULONGEST spilled_value = xtensa_read_register (atreg);
2767 write_memory_unsigned_integer (addr, 4,
2768 gdbarch_byte_order (gdbarch),
2772 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2778 xtNoExceptionHandler
2779 } xtensa_exception_handler_t;
2781 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2782 Return type of Xtensa Window Interrupt Handler on success. */
2783 static xtensa_exception_handler_t
2784 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2787 xtensa_insnbuf ins, slot;
2788 gdb_byte ibuf[XTENSA_ISA_BSZ];
2789 CORE_ADDR ia, bt, ba;
2791 int ilen, islots, is;
2794 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2796 uint32_t at, as, offset;
2798 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2799 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2801 isa = xtensa_default_isa;
2802 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2803 ins = xtensa_insnbuf_alloc (isa);
2804 slot = xtensa_insnbuf_alloc (isa);
2813 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2815 if (ia + xtensa_isa_maxlength (isa) > bt)
2818 bt = (ba + XTENSA_ISA_BSZ);
2819 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2820 return xtNoExceptionHandler;
2822 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2823 ifmt = xtensa_format_decode (isa, ins);
2824 if (ifmt == XTENSA_UNDEFINED)
2825 return xtNoExceptionHandler;
2826 ilen = xtensa_format_length (isa, ifmt);
2827 if (ilen == XTENSA_UNDEFINED)
2828 return xtNoExceptionHandler;
2829 islots = xtensa_format_num_slots (isa, ifmt);
2830 if (islots == XTENSA_UNDEFINED)
2831 return xtNoExceptionHandler;
2832 for (is = 0; is < islots; ++is)
2834 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2835 return xtNoExceptionHandler;
2836 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2837 if (opc == XTENSA_UNDEFINED)
2838 return xtNoExceptionHandler;
2839 switch (call0_classify_opcode (isa, opc))
2845 /* We expect none of them here. */
2846 return xtNoExceptionHandler;
2848 func = execute_l32e;
2851 func = execute_s32e;
2853 case c0opc_rfwo: /* RFWO. */
2854 /* Here, we return from WindowOverflow handler and,
2855 if we stopped at the very beginning, which means
2856 A0 was saved, we have to restore it now. */
2859 int arreg = arreg_number (gdbarch,
2860 gdbarch_tdep (gdbarch)->a0_base,
2862 xtensa_write_register (arreg, a0_saved);
2864 return xtWindowOverflow;
2865 case c0opc_rfwu: /* RFWU. */
2866 /* Here, we return from WindowUnderflow handler.
2867 Let's see if either A7 or A11 has to be restored. */
2868 if (WindowUnderflow12)
2872 int arreg = arreg_number (gdbarch,
2873 gdbarch_tdep (gdbarch)->a0_base + 11,
2875 xtensa_write_register (arreg, a11_saved);
2878 else if (a7_was_saved)
2880 int arreg = arreg_number (gdbarch,
2881 gdbarch_tdep (gdbarch)->a0_base + 7,
2883 xtensa_write_register (arreg, a7_saved);
2885 return xtWindowUnderflow;
2886 default: /* Simply skip this insns. */
2890 /* Decode arguments for L32E / S32E and simulate their execution. */
2891 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2892 return xtNoExceptionHandler;
2893 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_decode (isa, opc, 0, &at))
2896 return xtNoExceptionHandler;
2897 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2898 return xtNoExceptionHandler;
2899 if (xtensa_operand_decode (isa, opc, 1, &as))
2900 return xtNoExceptionHandler;
2901 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2902 return xtNoExceptionHandler;
2903 if (xtensa_operand_decode (isa, opc, 2, &offset))
2904 return xtNoExceptionHandler;
2906 (*func) (gdbarch, at, as, offset, wb);
2911 return xtNoExceptionHandler;
2914 /* Handle Window Overflow / Underflow exception frames. */
2917 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2918 xtensa_frame_cache_t *cache,
2921 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2922 CORE_ADDR ps, wb, ws, ra;
2923 int epc1_regnum, i, regnum;
2924 xtensa_exception_handler_t eh_type;
2926 /* Read PS, WB, and WS from the hardware. Note that PS register
2927 must be present, if Windowed ABI is supported. */
2928 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2929 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2930 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2932 /* Execute all the remaining instructions from Window Interrupt Handler
2933 by simulating them on the remote protocol level. On return, set the
2934 type of Xtensa Window Interrupt Handler, or report an error. */
2935 eh_type = execute_code (gdbarch, pc, wb);
2936 if (eh_type == xtNoExceptionHandler)
2938 Unable to decode Xtensa Window Interrupt Handler's code."));
2940 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2941 cache->call0 = 0; /* It's Windowed ABI. */
2943 /* All registers for the cached frame will be alive. */
2944 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2945 cache->wd.aregs[i] = -1;
2947 if (eh_type == xtWindowOverflow)
2948 cache->wd.ws = ws ^ (1 << wb);
2949 else /* eh_type == xtWindowUnderflow. */
2950 cache->wd.ws = ws | (1 << wb);
2952 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2953 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2955 ra = xtensa_read_register (regnum);
2956 cache->wd.callsize = WINSIZE (ra);
2957 cache->prev_sp = xtensa_read_register (regnum + 1);
2958 /* Set regnum to a frame pointer of the frame being cached. */
2959 regnum = xtensa_scan_prologue (gdbarch, pc);
2960 regnum = arreg_number (gdbarch,
2961 gdbarch_tdep (gdbarch)->a0_base + regnum,
2963 cache->base = get_frame_register_unsigned (this_frame, regnum);
2965 /* Read PC of interrupted function from EPC1 register. */
2966 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2967 if (epc1_regnum < 0)
2968 error(_("Unable to read Xtensa register EPC1"));
2969 cache->ra = xtensa_read_register (epc1_regnum);
2970 cache->pc = get_frame_func (this_frame);
2974 /* Skip function prologue.
2976 Return the pc of the first instruction after prologue. GDB calls this to
2977 find the address of the first line of the function or (if there is no line
2978 number information) to skip the prologue for planting breakpoints on
2979 function entries. Use debug info (if present) or prologue analysis to skip
2980 the prologue to achieve reliable debugging behavior. For windowed ABI,
2981 only the 'entry' instruction is skipped. It is not strictly necessary to
2982 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2983 backtrace at any point in the prologue, however certain potential hazards
2984 are avoided and a more "normal" debugging experience is ensured by
2985 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2986 For example, if we don't skip the prologue:
2987 - Some args may not yet have been saved to the stack where the debug
2988 info expects to find them (true anyway when only 'entry' is skipped);
2989 - Software breakpoints ('break' instrs) may not have been unplanted
2990 when the prologue analysis is done on initializing the frame cache,
2991 and breaks in the prologue will throw off the analysis.
2993 If we have debug info ( line-number info, in particular ) we simply skip
2994 the code associated with the first function line effectively skipping
2995 the prologue code. It works even in cases like
2998 { int local_var = 1;
3002 because, for this source code, both Xtensa compilers will generate two
3003 separate entries ( with the same line number ) in dwarf line-number
3004 section to make sure there is a boundary between the prologue code and
3005 the rest of the function.
3007 If there is no debug info, we need to analyze the code. */
3009 /* #define DONT_SKIP_PROLOGUE */
3012 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3014 struct symtab_and_line prologue_sal;
3017 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3019 #if DONT_SKIP_PROLOGUE
3023 /* Try to find first body line from debug info. */
3025 prologue_sal = find_pc_line (start_pc, 0);
3026 if (prologue_sal.line != 0) /* Found debug info. */
3028 /* In Call0, it is possible to have a function with only one instruction
3029 ('ret') resulting from a one-line optimized function that does nothing.
3030 In that case, prologue_sal.end may actually point to the start of the
3031 next function in the text section, causing a breakpoint to be set at
3032 the wrong place. Check, if the end address is within a different
3033 function, and if so return the start PC. We know we have symbol
3038 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3039 && call0_ret (start_pc, prologue_sal.end))
3042 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3043 if (end_func != start_pc)
3046 return prologue_sal.end;
3049 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3050 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3051 xtensa_alloc_frame_cache (0));
3052 return body_pc != 0 ? body_pc : start_pc;
3055 /* Verify the current configuration. */
3057 xtensa_verify_config (struct gdbarch *gdbarch)
3059 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062 /* Verify that we got a reasonable number of AREGS. */
3063 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3065 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3068 /* Verify that certain registers exist. */
3070 if (tdep->pc_regnum == -1)
3071 log.printf (_("\n\tpc_regnum: No PC register"));
3072 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3073 log.printf (_("\n\tps_regnum: No PS register"));
3075 if (tdep->isa_use_windowed_registers)
3077 if (tdep->wb_regnum == -1)
3078 log.printf (_("\n\twb_regnum: No WB register"));
3079 if (tdep->ws_regnum == -1)
3080 log.printf (_("\n\tws_regnum: No WS register"));
3081 if (tdep->ar_base == -1)
3082 log.printf (_("\n\tar_base: No AR registers"));
3085 if (tdep->a0_base == -1)
3086 log.printf (_("\n\ta0_base: No Ax registers"));
3089 internal_error (__FILE__, __LINE__,
3090 _("the following are invalid: %s"), log.c_str ());
3094 /* Derive specific register numbers from the array of registers. */
3097 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3099 xtensa_register_t* rmap;
3100 int n, max_size = 4;
3103 tdep->num_nopriv_regs = 0;
3105 /* Special registers 0..255 (core). */
3106 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3107 /* User registers 0..255. */
3108 #define XTENSA_DBREGN_UREG(n) (0x0300+(n))
3110 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3112 if (rmap->target_number == 0x0020)
3113 tdep->pc_regnum = n;
3114 else if (rmap->target_number == 0x0100)
3116 else if (rmap->target_number == 0x0000)
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3119 tdep->wb_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3121 tdep->ws_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3123 tdep->debugcause_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3125 tdep->exccause_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3127 tdep->excvaddr_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3129 tdep->lbeg_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3131 tdep->lend_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3133 tdep->lcount_regnum = n;
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3135 tdep->sar_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3137 tdep->litbase_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3139 tdep->ps_regnum = n;
3140 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3141 tdep->threadptr_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3144 tdep->interrupt_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3146 tdep->interrupt2_regnum = n;
3147 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3148 tdep->cpenable_regnum = n;
3151 if (rmap->byte_size > max_size)
3152 max_size = rmap->byte_size;
3153 if (rmap->mask != 0 && tdep->num_regs == 0)
3155 /* Find out out how to deal with priveleged registers.
3157 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3158 && tdep->num_nopriv_regs == 0)
3159 tdep->num_nopriv_regs = n;
3161 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3162 && tdep->num_regs == 0)
3166 /* Number of pseudo registers. */
3167 tdep->num_pseudo_regs = n - tdep->num_regs;
3169 /* Empirically determined maximum sizes. */
3170 tdep->max_register_raw_size = max_size;
3171 tdep->max_register_virtual_size = max_size;
3174 /* Module "constructor" function. */
3176 extern struct gdbarch_tdep xtensa_tdep;
3178 static struct gdbarch *
3179 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3181 struct gdbarch_tdep *tdep;
3182 struct gdbarch *gdbarch;
3184 DEBUGTRACE ("gdbarch_init()\n");
3186 if (!xtensa_default_isa)
3187 xtensa_default_isa = xtensa_isa_init (0, 0);
3189 /* We have to set the byte order before we call gdbarch_alloc. */
3190 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3192 tdep = &xtensa_tdep;
3193 gdbarch = gdbarch_alloc (&info, tdep);
3194 xtensa_derive_tdep (tdep);
3196 /* Verify our configuration. */
3197 xtensa_verify_config (gdbarch);
3198 xtensa_session_once_reported = 0;
3200 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3201 set_gdbarch_wchar_signed (gdbarch, 0);
3203 /* Pseudo-Register read/write. */
3204 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3205 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3207 /* Set target information. */
3208 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3209 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3210 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3211 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3212 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3214 /* Renumber registers for known formats (stabs and dwarf2). */
3215 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3216 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3218 /* We provide our own function to get register information. */
3219 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3220 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3222 /* To call functions from GDB using dummy frame. */
3223 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3225 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3227 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3229 /* Advance PC across any prologue instructions to reach "real" code. */
3230 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3232 /* Stack grows downward. */
3233 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3235 /* Set breakpoints. */
3236 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3237 xtensa_breakpoint_kind_from_pc);
3238 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3239 xtensa_sw_breakpoint_from_kind);
3241 /* After breakpoint instruction or illegal instruction, pc still
3242 points at break instruction, so don't decrement. */
3243 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3245 /* We don't skip args. */
3246 set_gdbarch_frame_args_skip (gdbarch, 0);
3248 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3250 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3252 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3254 /* Frame handling. */
3255 frame_base_set_default (gdbarch, &xtensa_frame_base);
3256 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3257 dwarf2_append_unwinders (gdbarch);
3259 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3261 xtensa_add_reggroups (gdbarch);
3262 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3264 set_gdbarch_iterate_over_regset_sections
3265 (gdbarch, xtensa_iterate_over_regset_sections);
3267 set_solib_svr4_fetch_link_map_offsets
3268 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3270 /* Hook in the ABI-specific overrides, if they have been registered. */
3271 gdbarch_init_osabi (info, gdbarch);
3277 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3279 error (_("xtensa_dump_tdep(): not implemented"));
3282 /* Provide a prototype to silence -Wmissing-prototypes. */
3283 extern initialize_file_ftype _initialize_xtensa_tdep;
3286 _initialize_xtensa_tdep (void)
3288 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3289 xtensa_init_reggroups ();
3291 add_setshow_zuinteger_cmd ("xtensa",
3293 &xtensa_debug_level,
3294 _("Set Xtensa debugging."),
3295 _("Show Xtensa debugging."), _("\
3296 When non-zero, Xtensa-specific debugging is enabled. \
3297 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3300 &setdebuglist, &showdebuglist);