1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
3 Copyright (C) 2003, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "solib-svr4.h"
32 #include "floatformat.h"
34 #include "reggroups.h"
37 #include "dummy-frame.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
42 #include "frame-base.h"
43 #include "frame-unwind.h"
45 #include "arch-utils.h"
52 #include "gdb_assert.h"
54 #include "xtensa-isa.h"
55 #include "xtensa-tdep.h"
56 #include "xtensa-config.h"
59 static int xtensa_debug_level = 0;
61 #define DEBUGWARN(args...) \
62 if (xtensa_debug_level > 0) \
63 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
65 #define DEBUGINFO(args...) \
66 if (xtensa_debug_level > 1) \
67 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
69 #define DEBUGTRACE(args...) \
70 if (xtensa_debug_level > 2) \
71 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
73 #define DEBUGVERB(args...) \
74 if (xtensa_debug_level > 3) \
75 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
78 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
79 #define SP_ALIGNMENT 16
82 /* On Windowed ABI, we use a6 through a11 for passing arguments
83 to a function called by GDB because CALL4 is used. */
84 #define ARGS_NUM_REGS 6
85 #define REGISTER_SIZE 4
88 /* Extract the call size from the return address or PS register. */
89 #define PS_CALLINC_SHIFT 16
90 #define PS_CALLINC_MASK 0x00030000
91 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
92 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
94 /* ABI-independent macros. */
95 #define ARG_NOF(gdbarch) \
96 (gdbarch_tdep (gdbarch)->call_abi \
97 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
98 #define ARG_1ST(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
100 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
101 : (gdbarch_tdep (gdbarch)->a0_base + 6))
103 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
104 indicates that the instruction is an ENTRY instruction. */
106 #define XTENSA_IS_ENTRY(gdbarch, op1) \
107 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
108 ? ((op1) == 0x6c) : ((op1) == 0x36))
110 #define XTENSA_ENTRY_LENGTH 3
112 /* windowing_enabled() returns true, if windowing is enabled.
113 WOE must be set to 1; EXCM to 0.
114 Note: We assume that EXCM is always 0 for XEA1. */
116 #define PS_WOE (1<<18)
117 #define PS_EXC (1<<4)
119 /* Convert a live A-register number to the corresponding AR-register number. */
121 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
126 arreg = a_regnum - tdep->a0_base;
127 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
128 arreg &= tdep->num_aregs - 1;
130 return arreg + tdep->ar_base;
133 /* Convert a live AR-register number to the corresponding A-register order
134 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
136 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
141 areg = ar_regnum - tdep->ar_base;
142 if (areg < 0 || areg >= tdep->num_aregs)
144 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
145 return (areg > 15) ? -1 : areg;
149 windowing_enabled (CORE_ADDR ps)
151 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
154 /* Return the window size of the previous call to the function from which we
157 This function is used to extract the return value after a called function
158 has returned to the caller. On Xtensa, the register that holds the return
159 value (from the perspective of the caller) depends on what call
160 instruction was used. For now, we are assuming that the call instruction
161 precedes the current address, so we simply analyze the call instruction.
162 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
163 method to call the inferior function. */
166 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
168 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
173 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
175 /* Read the previous instruction (should be a call[x]{4|8|12}. */
176 read_memory (pc-3, buf, 3);
177 insn = extract_unsigned_integer (buf, 3, byte_order);
179 /* Decode call instruction:
181 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
182 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
184 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
185 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
187 if (byte_order == BFD_ENDIAN_LITTLE)
189 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
190 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
194 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
195 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
201 /* REGISTER INFORMATION */
203 /* Returns the name of a register. */
205 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
207 /* Return the name stored in the register map. */
208 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
209 + gdbarch_num_pseudo_regs (gdbarch))
210 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
212 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
216 /* Return the type of a register. Create a new type, if necessary. */
219 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223 /* Return signed integer for ARx and Ax registers. */
224 if ((regnum >= tdep->ar_base
225 && regnum < tdep->ar_base + tdep->num_aregs)
226 || (regnum >= tdep->a0_base
227 && regnum < tdep->a0_base + 16))
228 return builtin_type (gdbarch)->builtin_int;
230 if (regnum == gdbarch_pc_regnum (gdbarch)
231 || regnum == tdep->a0_base + 1)
232 return builtin_type (gdbarch)->builtin_data_ptr;
234 /* Return the stored type for all other registers. */
235 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch))
238 xtensa_register_t* reg = &tdep->regmap[regnum];
240 /* Set ctype for this register (only the first time). */
244 struct ctype_cache *tp;
245 int size = reg->byte_size;
247 /* We always use the memory representation,
248 even if the register width is smaller. */
252 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
256 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
260 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
264 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
268 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
272 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
273 if (tp->size == size)
278 char *name = xmalloc (16);
279 tp = xmalloc (sizeof (struct ctype_cache));
280 tp->next = tdep->type_entries;
281 tdep->type_entries = tp;
284 sprintf (name, "int%d", size * 8);
286 = arch_integer_type (gdbarch, size * 8, 1, xstrdup (name));
289 reg->ctype = tp->virtual_type;
295 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
300 /* Return the 'local' register number for stubs, dwarf2, etc.
301 The debugging information enumerates registers starting from 0 for A0
302 to n for An. So, we only have to add the base number for A0. */
305 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
309 if (regnum >= 0 && regnum < 16)
310 return gdbarch_tdep (gdbarch)->a0_base + regnum;
313 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
315 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
318 internal_error (__FILE__, __LINE__,
319 _("invalid dwarf/stabs register number %d"), regnum);
324 /* Write the bits of a masked register to the various registers.
325 Only the masked areas of these registers are modified; the other
326 fields are untouched. The size of masked registers is always less
327 than or equal to 32 bits. */
330 xtensa_register_write_masked (struct regcache *regcache,
331 xtensa_register_t *reg, const gdb_byte *buffer)
333 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
334 const xtensa_mask_t *mask = reg->mask;
336 int shift = 0; /* Shift for next mask (mod 32). */
337 int start, size; /* Start bit and size of current mask. */
339 unsigned int *ptr = value;
340 unsigned int regval, m, mem = 0;
342 int bytesize = reg->byte_size;
343 int bitsize = bytesize * 8;
346 DEBUGTRACE ("xtensa_register_write_masked ()\n");
348 /* Copy the masked register to host byte-order. */
349 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
350 for (i = 0; i < bytesize; i++)
353 mem |= (buffer[bytesize - i - 1] << 24);
358 for (i = 0; i < bytesize; i++)
361 mem |= (buffer[i] << 24);
366 /* We might have to shift the final value:
367 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
368 bytesize & 3 == x -> shift (4-x) * 8. */
370 *ptr = mem >> (((0 - bytesize) & 3) * 8);
374 /* Write the bits to the masked areas of the other registers. */
375 for (i = 0; i < mask->count; i++)
377 start = mask->mask[i].bit_start;
378 size = mask->mask[i].bit_size;
379 regval = mem >> shift;
381 if ((shift += size) > bitsize)
382 error (_("size of all masks is larger than the register"));
391 regval |= mem << (size - shift);
394 /* Make sure we have a valid register. */
395 r = mask->mask[i].reg_num;
396 if (r >= 0 && size > 0)
398 /* Don't overwrite the unmasked areas. */
400 regcache_cooked_read_unsigned (regcache, r, &old_val);
401 m = 0xffffffff >> (32 - size) << start;
403 regval = (regval & m) | (old_val & ~m);
404 regcache_cooked_write_unsigned (regcache, r, regval);
410 /* Read a tie state or mapped registers. Read the masked areas
411 of the registers and assemble them into a single value. */
414 xtensa_register_read_masked (struct regcache *regcache,
415 xtensa_register_t *reg, gdb_byte *buffer)
417 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
418 const xtensa_mask_t *mask = reg->mask;
423 unsigned int *ptr = value;
424 unsigned int regval, mem = 0;
426 int bytesize = reg->byte_size;
427 int bitsize = bytesize * 8;
430 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
431 reg->name == 0 ? "" : reg->name);
433 /* Assemble the register from the masked areas of other registers. */
434 for (i = 0; i < mask->count; i++)
436 int r = mask->mask[i].reg_num;
440 regcache_cooked_read_unsigned (regcache, r, &val);
441 regval = (unsigned int) val;
446 start = mask->mask[i].bit_start;
447 size = mask->mask[i].bit_size;
452 regval &= (0xffffffff >> (32 - size));
454 mem |= regval << shift;
456 if ((shift += size) > bitsize)
457 error (_("size of all masks is larger than the register"));
468 mem = regval >> (size - shift);
475 /* Copy value to target byte order. */
479 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
480 for (i = 0; i < bytesize; i++)
484 buffer[bytesize - i - 1] = mem & 0xff;
488 for (i = 0; i < bytesize; i++)
492 buffer[i] = mem & 0xff;
498 /* Read pseudo registers. */
501 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
502 struct regcache *regcache,
506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
508 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
509 regnum, xtensa_register_name (gdbarch, regnum));
511 if (regnum == gdbarch_num_regs (gdbarch)
512 + gdbarch_num_pseudo_regs (gdbarch) - 1)
513 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
515 /* Read aliases a0..a15, if this is a Windowed ABI. */
516 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
517 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
518 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
520 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
522 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
523 regnum = arreg_number (gdbarch, regnum,
524 extract_unsigned_integer (buf, 4, byte_order));
527 /* We can always read non-pseudo registers. */
528 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
529 regcache_raw_read (regcache, regnum, buffer);
532 /* We have to find out how to deal with priveleged registers.
533 Let's treat them as pseudo-registers, but we cannot read/write them. */
535 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
537 buffer[0] = (gdb_byte)0;
538 buffer[1] = (gdb_byte)0;
539 buffer[2] = (gdb_byte)0;
540 buffer[3] = (gdb_byte)0;
542 /* Pseudo registers. */
544 && regnum < gdbarch_num_regs (gdbarch)
545 + gdbarch_num_pseudo_regs (gdbarch))
547 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
548 xtensa_register_type_t type = reg->type;
549 int flags = gdbarch_tdep (gdbarch)->target_flags;
551 /* We cannot read Unknown or Unmapped registers. */
552 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
554 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
556 warning (_("cannot read register %s"),
557 xtensa_register_name (gdbarch, regnum));
562 /* Some targets cannot read TIE register files. */
563 else if (type == xtRegisterTypeTieRegfile)
565 /* Use 'fetch' to get register? */
566 if (flags & xtTargetFlagsUseFetchStore)
568 warning (_("cannot read register"));
572 /* On some targets (esp. simulators), we can always read the reg. */
573 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
575 warning (_("cannot read register"));
580 /* We can always read mapped registers. */
581 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
583 xtensa_register_read_masked (regcache, reg, buffer);
587 /* Assume that we can read the register. */
588 regcache_raw_read (regcache, regnum, buffer);
591 internal_error (__FILE__, __LINE__,
592 _("invalid register number %d"), regnum);
596 /* Write pseudo registers. */
599 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
600 struct regcache *regcache,
602 const gdb_byte *buffer)
604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
606 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
607 regnum, xtensa_register_name (gdbarch, regnum));
609 if (regnum == gdbarch_num_regs (gdbarch)
610 + gdbarch_num_pseudo_regs (gdbarch) -1)
611 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
613 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
614 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
615 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
616 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
618 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
621 regcache_raw_read (regcache,
622 gdbarch_tdep (gdbarch)->wb_regnum, buf);
623 regnum = arreg_number (gdbarch, regnum,
624 extract_unsigned_integer (buf, 4, byte_order));
627 /* We can always write 'core' registers.
628 Note: We might have converted Ax->ARy. */
629 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
630 regcache_raw_write (regcache, regnum, buffer);
632 /* We have to find out how to deal with priveleged registers.
633 Let's treat them as pseudo-registers, but we cannot read/write them. */
635 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
639 /* Pseudo registers. */
641 && regnum < gdbarch_num_regs (gdbarch)
642 + gdbarch_num_pseudo_regs (gdbarch))
644 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
645 xtensa_register_type_t type = reg->type;
646 int flags = gdbarch_tdep (gdbarch)->target_flags;
648 /* On most targets, we cannot write registers
649 of type "Unknown" or "Unmapped". */
650 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
652 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
654 warning (_("cannot write register %s"),
655 xtensa_register_name (gdbarch, regnum));
660 /* Some targets cannot read TIE register files. */
661 else if (type == xtRegisterTypeTieRegfile)
663 /* Use 'store' to get register? */
664 if (flags & xtTargetFlagsUseFetchStore)
666 warning (_("cannot write register"));
670 /* On some targets (esp. simulators), we can always write
672 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
674 warning (_("cannot write register"));
679 /* We can always write mapped registers. */
680 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
682 xtensa_register_write_masked (regcache, reg, buffer);
686 /* Assume that we can write the register. */
687 regcache_raw_write (regcache, regnum, buffer);
690 internal_error (__FILE__, __LINE__,
691 _("invalid register number %d"), regnum);
694 static struct reggroup *xtensa_ar_reggroup;
695 static struct reggroup *xtensa_user_reggroup;
696 static struct reggroup *xtensa_vectra_reggroup;
697 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
700 xtensa_init_reggroups (void)
702 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
703 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
704 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
706 xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
707 xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
708 xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
709 xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
710 xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
711 xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
712 xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
713 xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
717 xtensa_add_reggroups (struct gdbarch *gdbarch)
721 /* Predefined groups. */
722 reggroup_add (gdbarch, all_reggroup);
723 reggroup_add (gdbarch, save_reggroup);
724 reggroup_add (gdbarch, restore_reggroup);
725 reggroup_add (gdbarch, system_reggroup);
726 reggroup_add (gdbarch, vector_reggroup);
727 reggroup_add (gdbarch, general_reggroup);
728 reggroup_add (gdbarch, float_reggroup);
730 /* Xtensa-specific groups. */
731 reggroup_add (gdbarch, xtensa_ar_reggroup);
732 reggroup_add (gdbarch, xtensa_user_reggroup);
733 reggroup_add (gdbarch, xtensa_vectra_reggroup);
735 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
736 reggroup_add (gdbarch, xtensa_cp[i]);
740 xtensa_coprocessor_register_group (struct reggroup *group)
744 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
745 if (group == xtensa_cp[i])
751 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
752 | XTENSA_REGISTER_FLAGS_WRITABLE \
753 | XTENSA_REGISTER_FLAGS_VOLATILE)
755 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
756 | XTENSA_REGISTER_FLAGS_WRITABLE)
759 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
761 struct reggroup *group)
763 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
764 xtensa_register_type_t type = reg->type;
765 xtensa_register_group_t rg = reg->group;
768 /* First, skip registers that are not visible to this target
769 (unknown and unmapped registers when not using ISS). */
771 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
773 if (group == all_reggroup)
775 if (group == xtensa_ar_reggroup)
776 return rg & xtRegisterGroupAddrReg;
777 if (group == xtensa_user_reggroup)
778 return rg & xtRegisterGroupUser;
779 if (group == float_reggroup)
780 return rg & xtRegisterGroupFloat;
781 if (group == general_reggroup)
782 return rg & xtRegisterGroupGeneral;
783 if (group == float_reggroup)
784 return rg & xtRegisterGroupFloat;
785 if (group == system_reggroup)
786 return rg & xtRegisterGroupState;
787 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
788 return rg & xtRegisterGroupVectra;
789 if (group == save_reggroup || group == restore_reggroup)
790 return (regnum < gdbarch_num_regs (gdbarch)
791 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
792 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
793 return rg & (xtRegisterGroupCP0 << cp_number);
799 /* Supply register REGNUM from the buffer specified by GREGS and LEN
800 in the general-purpose register set REGSET to register cache
801 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
804 xtensa_supply_gregset (const struct regset *regset,
810 const xtensa_elf_gregset_t *regs = gregs;
811 struct gdbarch *gdbarch = get_regcache_arch (rc);
814 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
816 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
817 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
818 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
819 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
820 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
821 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
822 (char *) ®s->windowbase);
823 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
824 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
825 (char *) ®s->windowstart);
826 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
827 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
828 (char *) ®s->lbeg);
829 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
830 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
831 (char *) ®s->lend);
832 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
833 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
834 (char *) ®s->lcount);
835 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
836 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
837 (char *) ®s->sar);
838 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
839 && regnum < gdbarch_tdep (gdbarch)->ar_base
840 + gdbarch_tdep (gdbarch)->num_aregs)
841 regcache_raw_supply (rc, regnum,
842 (char *) ®s->ar[regnum - gdbarch_tdep
843 (gdbarch)->ar_base]);
844 else if (regnum == -1)
846 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
847 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
848 (char *) ®s->ar[i]);
853 /* Xtensa register set. */
859 xtensa_supply_gregset
863 /* Return the appropriate register set for the core
864 section identified by SECT_NAME and SECT_SIZE. */
866 static const struct regset *
867 xtensa_regset_from_core_section (struct gdbarch *core_arch,
868 const char *sect_name,
871 DEBUGTRACE ("xtensa_regset_from_core_section "
872 "(..., sect_name==\"%s\", sect_size==%x) \n",
873 sect_name, (unsigned int) sect_size);
875 if (strcmp (sect_name, ".reg") == 0
876 && sect_size >= sizeof(xtensa_elf_gregset_t))
877 return &xtensa_gregset;
883 /* Handling frames. */
885 /* Number of registers to save in case of Windowed ABI. */
886 #define XTENSA_NUM_SAVED_AREGS 12
888 /* Frame cache part for Windowed ABI. */
889 typedef struct xtensa_windowed_frame_cache
891 int wb; /* WINDOWBASE of the previous frame. */
892 int callsize; /* Call size of this frame. */
893 int ws; /* WINDOWSTART of the previous frame. It keeps track of
894 life windows only. If there is no bit set for the
895 window, that means it had been already spilled
896 because of window overflow. */
898 /* Spilled A-registers from the previous frame.
899 AREGS[i] == -1, if corresponding AR is alive. */
900 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
901 } xtensa_windowed_frame_cache_t;
903 /* Call0 ABI Definitions. */
905 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
906 #define C0_NREGS 16 /* Number of A-registers to track. */
907 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
908 #define C0_SP 1 /* Register used as SP. */
909 #define C0_FP 15 /* Register used as FP. */
910 #define C0_RA 0 /* Register used as return address. */
911 #define C0_ARGS 2 /* Register used as first arg/retval. */
912 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
914 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
915 A-register where the current content of the reg came from (in terms
916 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
917 mean that the orignal content of the register was saved to the stack.
918 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
919 know where SP will end up until the entire prologue has been analyzed. */
921 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
922 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
923 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
925 extern xtensa_isa xtensa_default_isa;
927 typedef struct xtensa_c0reg
929 int fr_reg; /* original register from which register content
930 is derived, or C0_CONST, or C0_INEXP. */
931 int fr_ofs; /* constant offset from reg, or immediate value. */
932 int to_stk; /* offset from original SP to register (4-byte aligned),
933 or C0_NOSTK if register has not been saved. */
937 /* Frame cache part for Call0 ABI. */
938 typedef struct xtensa_call0_frame_cache
940 int c0_frmsz; /* Stack frame size. */
941 int c0_hasfp; /* Current frame uses frame pointer. */
942 int fp_regnum; /* A-register used as FP. */
943 int c0_fp; /* Actual value of frame pointer. */
944 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
945 } xtensa_call0_frame_cache_t;
947 typedef struct xtensa_frame_cache
949 CORE_ADDR base; /* Stack pointer of this frame. */
950 CORE_ADDR pc; /* PC at the entry point to the function. */
951 CORE_ADDR ra; /* The raw return address (without CALLINC). */
952 CORE_ADDR ps; /* The PS register of this frame. */
953 CORE_ADDR prev_sp; /* Stack Pointer of the previous frame. */
954 int call0; /* It's a call0 framework (else windowed). */
957 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
958 xtensa_call0_frame_cache_t c0; /* call0 == true. */
960 } xtensa_frame_cache_t;
963 static struct xtensa_frame_cache *
964 xtensa_alloc_frame_cache (int windowed)
966 xtensa_frame_cache_t *cache;
969 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
971 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
978 cache->call0 = !windowed;
981 cache->c0.c0_frmsz = -1;
982 cache->c0.c0_hasfp = 0;
983 cache->c0.fp_regnum = -1;
984 cache->c0.c0_fp = -1;
986 for (i = 0; i < C0_NREGS; i++)
988 cache->c0.c0_rt[i].fr_reg = i;
989 cache->c0.c0_rt[i].fr_ofs = 0;
990 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
997 cache->wd.callsize = -1;
999 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1000 cache->wd.aregs[i] = -1;
1007 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1009 return address & ~15;
1014 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1019 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1020 host_address_to_string (next_frame));
1022 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1023 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1025 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1031 static struct frame_id
1032 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1036 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1038 pc = get_frame_pc (this_frame);
1039 fp = get_frame_register_unsigned
1040 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1042 /* Make dummy frame ID unique by adding a constant. */
1043 return frame_id_build (fp + SP_ALIGNMENT, pc);
1046 /* Returns the best guess about which register is a frame pointer
1047 for the function containing CURRENT_PC. */
1049 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1052 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1054 #define RETURN_FP goto done
1056 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1057 CORE_ADDR start_addr;
1059 xtensa_insnbuf ins, slot;
1060 char ibuf[XTENSA_ISA_BSZ];
1061 CORE_ADDR ia, bt, ba;
1063 int ilen, islots, is;
1065 const char *opcname;
1067 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1068 if (start_addr == 0)
1071 if (!xtensa_default_isa)
1072 xtensa_default_isa = xtensa_isa_init (0, 0);
1073 isa = xtensa_default_isa;
1074 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1075 ins = xtensa_insnbuf_alloc (isa);
1076 slot = xtensa_insnbuf_alloc (isa);
1079 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1081 if (ia + xtensa_isa_maxlength (isa) > bt)
1084 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1085 ? ba + XTENSA_ISA_BSZ : current_pc;
1086 read_memory (ba, ibuf, bt - ba);
1089 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1090 ifmt = xtensa_format_decode (isa, ins);
1091 if (ifmt == XTENSA_UNDEFINED)
1093 ilen = xtensa_format_length (isa, ifmt);
1094 if (ilen == XTENSA_UNDEFINED)
1096 islots = xtensa_format_num_slots (isa, ifmt);
1097 if (islots == XTENSA_UNDEFINED)
1100 for (is = 0; is < islots; ++is)
1102 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1105 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1106 if (opc == XTENSA_UNDEFINED)
1109 opcname = xtensa_opcode_name (isa, opc);
1111 if (strcasecmp (opcname, "mov.n") == 0
1112 || strcasecmp (opcname, "or") == 0)
1114 unsigned int register_operand;
1116 /* Possible candidate for setting frame pointer
1117 from A1. This is what we are looking for. */
1119 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1120 is, slot, ®ister_operand) != 0)
1122 if (xtensa_operand_decode (isa, opc, 1, ®ister_operand) != 0)
1124 if (register_operand == 1) /* Mov{.n} FP A1. */
1126 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1127 ®ister_operand) != 0)
1129 if (xtensa_operand_decode (isa, opc, 0,
1130 ®ister_operand) != 0)
1133 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1139 /* We have problems decoding the memory. */
1141 || strcasecmp (opcname, "ill") == 0
1142 || strcasecmp (opcname, "ill.n") == 0
1143 /* Hit planted breakpoint. */
1144 || strcasecmp (opcname, "break") == 0
1145 || strcasecmp (opcname, "break.n") == 0
1146 /* Flow control instructions finish prologue. */
1147 || xtensa_opcode_is_branch (isa, opc) > 0
1148 || xtensa_opcode_is_jump (isa, opc) > 0
1149 || xtensa_opcode_is_loop (isa, opc) > 0
1150 || xtensa_opcode_is_call (isa, opc) > 0
1151 || strcasecmp (opcname, "simcall") == 0
1152 || strcasecmp (opcname, "syscall") == 0)
1153 /* Can not continue analysis. */
1158 xtensa_insnbuf_free(isa, slot);
1159 xtensa_insnbuf_free(isa, ins);
1163 /* The key values to identify the frame using "cache" are
1165 cache->base = SP (or best guess about FP) of this frame;
1166 cache->pc = entry-PC (entry point of the frame function);
1167 cache->prev_sp = SP of the previous frame.
1171 call0_frame_cache (struct frame_info *this_frame,
1172 xtensa_frame_cache_t *cache,
1173 CORE_ADDR pc, CORE_ADDR litbase);
1175 static struct xtensa_frame_cache *
1176 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1178 xtensa_frame_cache_t *cache;
1179 CORE_ADDR ra, wb, ws, pc, sp, ps;
1180 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1181 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1182 unsigned int fp_regnum;
1189 ps = get_frame_register_unsigned (this_frame, gdbarch_ps_regnum (gdbarch));
1190 windowed = windowing_enabled (ps);
1192 /* Get pristine xtensa-frame. */
1193 cache = xtensa_alloc_frame_cache (windowed);
1194 *this_cache = cache;
1196 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1200 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1201 wb = get_frame_register_unsigned (this_frame,
1202 gdbarch_tdep (gdbarch)->wb_regnum);
1203 ws = get_frame_register_unsigned (this_frame,
1204 gdbarch_tdep (gdbarch)->ws_regnum);
1206 op1 = read_memory_integer (pc, 1, byte_order);
1207 if (XTENSA_IS_ENTRY (gdbarch, op1))
1209 int callinc = CALLINC (ps);
1210 ra = get_frame_register_unsigned
1211 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1213 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1214 cache->wd.callsize = 0;
1217 cache->prev_sp = get_frame_register_unsigned
1218 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1220 /* This only can be the outermost frame since we are
1221 just about to execute ENTRY. SP hasn't been set yet.
1222 We can assume any frame size, because it does not
1223 matter, and, let's fake frame base in cache. */
1224 cache->base = cache->prev_sp + 16;
1227 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1228 cache->ps = (ps & ~PS_CALLINC_MASK)
1229 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1235 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1236 ra = get_frame_register_unsigned (this_frame,
1237 gdbarch_tdep (gdbarch)->a0_base);
1238 cache->wd.callsize = WINSIZE (ra);
1239 cache->wd.wb = (wb - cache->wd.callsize / 4)
1240 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1241 cache->wd.ws = ws & ~(1 << wb);
1243 cache->pc = get_frame_func (this_frame);
1244 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1245 cache->ps = (ps & ~PS_CALLINC_MASK)
1246 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1249 if (cache->wd.ws == 0)
1254 sp = get_frame_register_unsigned
1255 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1257 for (i = 0; i < 4; i++, sp += 4)
1259 cache->wd.aregs[i] = sp;
1262 if (cache->wd.callsize > 4)
1264 /* Set A4...A7/A11. */
1265 /* Get the SP of the frame previous to the previous one.
1266 To achieve this, we have to dereference SP twice. */
1267 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1268 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1269 sp -= cache->wd.callsize * 4;
1271 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1273 cache->wd.aregs[i] = sp;
1278 if ((cache->prev_sp == 0) && ( ra != 0 ))
1279 /* If RA is equal to 0 this frame is an outermost frame. Leave
1280 cache->prev_sp unchanged marking the boundary of the frame stack. */
1282 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1284 /* Register window overflow already happened.
1285 We can read caller's SP from the proper spill loction. */
1286 sp = get_frame_register_unsigned
1287 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1288 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1292 /* Read caller's frame SP directly from the previous window. */
1293 int regnum = arreg_number
1294 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1297 cache->prev_sp = get_frame_register_unsigned (this_frame, regnum);
1301 else /* Call0 framework. */
1303 unsigned int litbase_regnum = gdbarch_tdep (gdbarch)->litbase_regnum;
1304 CORE_ADDR litbase = (litbase_regnum == -1)
1305 ? 0 : get_frame_register_unsigned (this_frame, litbase_regnum);
1307 call0_frame_cache (this_frame, cache, pc, litbase);
1308 fp_regnum = cache->c0.fp_regnum;
1311 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1317 xtensa_frame_this_id (struct frame_info *this_frame,
1319 struct frame_id *this_id)
1321 struct xtensa_frame_cache *cache =
1322 xtensa_frame_cache (this_frame, this_cache);
1324 if (cache->prev_sp == 0)
1327 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1330 static struct value *
1331 xtensa_frame_prev_register (struct frame_info *this_frame,
1335 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1336 struct xtensa_frame_cache *cache;
1337 ULONGEST saved_reg = 0;
1340 if (*this_cache == NULL)
1341 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1342 cache = *this_cache;
1344 if (regnum ==gdbarch_pc_regnum (gdbarch))
1345 saved_reg = cache->ra;
1346 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1347 saved_reg = cache->prev_sp;
1348 else if (!cache->call0)
1350 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1351 saved_reg = cache->wd.ws;
1352 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1353 saved_reg = cache->wd.wb;
1354 else if (regnum == gdbarch_ps_regnum (gdbarch))
1355 saved_reg = cache->ps;
1363 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1365 if (!cache->call0) /* Windowed ABI. */
1367 /* Convert A-register numbers to AR-register numbers,
1368 if we deal with A-register. */
1369 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1370 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1371 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1373 /* Check, if we deal with AR-register saved on stack. */
1374 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1375 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1376 + gdbarch_tdep (gdbarch)->num_aregs))
1378 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1381 && areg < XTENSA_NUM_SAVED_AREGS
1382 && cache->wd.aregs[areg] != -1)
1383 return frame_unwind_got_memory (this_frame, regnum,
1384 cache->wd.aregs[areg]);
1387 else /* Call0 ABI. */
1389 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1390 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1392 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1399 /* If register was saved in the prologue, retrieve it. */
1400 stkofs = cache->c0.c0_rt[reg].to_stk;
1401 if (stkofs != C0_NOSTK)
1403 /* Determine SP on entry based on FP. */
1404 spe = cache->c0.c0_fp
1405 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1407 return frame_unwind_got_memory (this_frame, regnum, spe + stkofs);
1412 /* All other registers have been either saved to
1413 the stack or are still alive in the processor. */
1415 return frame_unwind_got_register (this_frame, regnum, regnum);
1419 static const struct frame_unwind
1423 xtensa_frame_this_id,
1424 xtensa_frame_prev_register,
1426 default_frame_sniffer
1430 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1432 struct xtensa_frame_cache *cache =
1433 xtensa_frame_cache (this_frame, this_cache);
1438 static const struct frame_base
1442 xtensa_frame_base_address,
1443 xtensa_frame_base_address,
1444 xtensa_frame_base_address
1449 xtensa_extract_return_value (struct type *type,
1450 struct regcache *regcache,
1453 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1454 bfd_byte *valbuf = dst;
1455 int len = TYPE_LENGTH (type);
1460 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1462 gdb_assert(len > 0);
1464 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1466 /* First, we have to find the caller window in the register file. */
1467 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1468 callsize = extract_call_winsize (gdbarch, pc);
1470 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1471 if (len > (callsize > 8 ? 8 : 16))
1472 internal_error (__FILE__, __LINE__,
1473 _("cannot extract return value of %d bytes long"), len);
1475 /* Get the register offset of the return
1476 register (A2) in the caller window. */
1477 regcache_raw_read_unsigned
1478 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1479 areg = arreg_number (gdbarch,
1480 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1484 /* No windowing hardware - Call0 ABI. */
1485 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1488 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1490 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1493 for (; len > 0; len -= 4, areg++, valbuf += 4)
1496 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1498 regcache_raw_read (regcache, areg, valbuf);
1504 xtensa_store_return_value (struct type *type,
1505 struct regcache *regcache,
1508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1509 const bfd_byte *valbuf = dst;
1513 int len = TYPE_LENGTH (type);
1516 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1518 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1520 regcache_raw_read_unsigned
1521 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1522 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1523 callsize = extract_call_winsize (gdbarch, pc);
1525 if (len > (callsize > 8 ? 8 : 16))
1526 internal_error (__FILE__, __LINE__,
1527 _("unimplemented for this length: %d"),
1528 TYPE_LENGTH (type));
1529 areg = arreg_number (gdbarch,
1530 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1532 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1533 callsize, (int) wb);
1537 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1540 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1543 for (; len > 0; len -= 4, areg++, valbuf += 4)
1546 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1548 regcache_raw_write (regcache, areg, valbuf);
1553 static enum return_value_convention
1554 xtensa_return_value (struct gdbarch *gdbarch,
1555 struct type *func_type,
1556 struct type *valtype,
1557 struct regcache *regcache,
1559 const gdb_byte *writebuf)
1561 /* Structures up to 16 bytes are returned in registers. */
1563 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1564 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1565 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1566 && TYPE_LENGTH (valtype) > 16);
1569 return RETURN_VALUE_STRUCT_CONVENTION;
1571 DEBUGTRACE ("xtensa_return_value(...)\n");
1573 if (writebuf != NULL)
1575 xtensa_store_return_value (valtype, regcache, writebuf);
1578 if (readbuf != NULL)
1580 gdb_assert (!struct_return);
1581 xtensa_extract_return_value (valtype, regcache, readbuf);
1583 return RETURN_VALUE_REGISTER_CONVENTION;
1590 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1591 struct value *function,
1592 struct regcache *regcache,
1595 struct value **args,
1598 CORE_ADDR struct_addr)
1600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 int size, onstack_size;
1603 gdb_byte *buf = (gdb_byte *) alloca (16);
1605 struct argument_info
1607 const bfd_byte *contents;
1609 int onstack; /* onstack == 0 => in reg */
1610 int align; /* alignment */
1613 int offset; /* stack offset if on stack */
1614 int regno; /* regno if in register */
1618 struct argument_info *arg_info =
1619 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1623 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1625 if (xtensa_debug_level > 3)
1628 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1629 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1630 "struct_addr=0x%x\n",
1631 (int) sp, (int) struct_return, (int) struct_addr);
1633 for (i = 0; i < nargs; i++)
1635 struct value *arg = args[i];
1636 struct type *arg_type = check_typedef (value_type (arg));
1637 fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
1638 i, (unsigned long) arg, TYPE_LENGTH (arg_type));
1639 switch (TYPE_CODE (arg_type))
1642 fprintf_unfiltered (gdb_stdlog, "int");
1644 case TYPE_CODE_STRUCT:
1645 fprintf_unfiltered (gdb_stdlog, "struct");
1648 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1651 fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
1652 (unsigned long) value_contents (arg));
1656 /* First loop: collect information.
1657 Cast into type_long. (This shouldn't happen often for C because
1658 GDB already does this earlier.) It's possible that GDB could
1659 do it all the time but it's harmless to leave this code here. */
1666 size = REGISTER_SIZE;
1668 for (i = 0; i < nargs; i++)
1670 struct argument_info *info = &arg_info[i];
1671 struct value *arg = args[i];
1672 struct type *arg_type = check_typedef (value_type (arg));
1674 switch (TYPE_CODE (arg_type))
1677 case TYPE_CODE_BOOL:
1678 case TYPE_CODE_CHAR:
1679 case TYPE_CODE_RANGE:
1680 case TYPE_CODE_ENUM:
1682 /* Cast argument to long if necessary as the mask does it too. */
1683 if (TYPE_LENGTH (arg_type)
1684 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1686 arg_type = builtin_type (gdbarch)->builtin_long;
1687 arg = value_cast (arg_type, arg);
1689 /* Aligment is equal to the type length for the basic types. */
1690 info->align = TYPE_LENGTH (arg_type);
1695 /* Align doubles correctly. */
1696 if (TYPE_LENGTH (arg_type)
1697 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1698 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1700 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1703 case TYPE_CODE_STRUCT:
1705 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1708 info->length = TYPE_LENGTH (arg_type);
1709 info->contents = value_contents (arg);
1711 /* Align size and onstack_size. */
1712 size = (size + info->align - 1) & ~(info->align - 1);
1713 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1715 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1718 info->u.offset = onstack_size;
1719 onstack_size += info->length;
1724 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1726 size += info->length;
1729 /* Adjust the stack pointer and align it. */
1730 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1732 /* Simulate MOVSP, if Windowed ABI. */
1733 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1736 read_memory (osp - 16, buf, 16);
1737 write_memory (sp - 16, buf, 16);
1740 /* Second Loop: Load arguments. */
1744 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1745 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1748 for (i = 0; i < nargs; i++)
1750 struct argument_info *info = &arg_info[i];
1754 int n = info->length;
1755 CORE_ADDR offset = sp + info->u.offset;
1757 /* Odd-sized structs are aligned to the lower side of a memory
1758 word in big-endian mode and require a shift. This only
1759 applies for structures smaller than one word. */
1761 if (n < REGISTER_SIZE
1762 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1763 offset += (REGISTER_SIZE - n);
1765 write_memory (offset, info->contents, info->length);
1770 int n = info->length;
1771 const bfd_byte *cp = info->contents;
1772 int r = info->u.regno;
1774 /* Odd-sized structs are aligned to the lower side of registers in
1775 big-endian mode and require a shift. The odd-sized leftover will
1776 be at the end. Note that this is only true for structures smaller
1777 than REGISTER_SIZE; for larger odd-sized structures the excess
1778 will be left-aligned in the register on both endiannesses. */
1780 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1783 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1784 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1786 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1787 regcache_cooked_write (regcache, r, buf);
1789 cp += REGISTER_SIZE;
1796 regcache_cooked_write (regcache, r, cp);
1798 cp += REGISTER_SIZE;
1805 /* Set the return address of dummy frame to the dummy address.
1806 The return address for the current function (in A0) is
1807 saved in the dummy frame, so we can savely overwrite A0 here. */
1809 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1811 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1812 regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
1813 ps = extract_unsigned_integer (buf, 4, byte_order) & ~0x00030000;
1814 regcache_cooked_write_unsigned
1815 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1816 regcache_cooked_write_unsigned (regcache,
1817 gdbarch_ps_regnum (gdbarch),
1820 /* All the registers have been saved. After executing
1821 dummy call, they all will be restored. So it's safe
1822 to modify WINDOWSTART register to make it look like there
1823 is only one register window corresponding to WINDOWEBASE. */
1825 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1826 regcache_cooked_write_unsigned
1827 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1828 1 << extract_unsigned_integer (buf, 4, byte_order));
1832 /* Simulate CALL0: write RA into A0 register. */
1833 regcache_cooked_write_unsigned
1834 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1837 /* Set new stack pointer and return it. */
1838 regcache_cooked_write_unsigned (regcache,
1839 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1840 /* Make dummy frame ID unique by adding a constant. */
1841 return sp + SP_ALIGNMENT;
1845 /* Return a breakpoint for the current location of PC. We always use
1846 the density version if we have density instructions (regardless of the
1847 current instruction at PC), and use regular instructions otherwise. */
1849 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1850 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1851 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1852 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1854 static const unsigned char *
1855 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1858 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1859 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1860 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1861 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1863 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1865 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1867 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1869 *lenptr = sizeof (density_big_breakpoint);
1870 return density_big_breakpoint;
1874 *lenptr = sizeof (density_little_breakpoint);
1875 return density_little_breakpoint;
1880 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1882 *lenptr = sizeof (big_breakpoint);
1883 return big_breakpoint;
1887 *lenptr = sizeof (little_breakpoint);
1888 return little_breakpoint;
1893 /* Call0 ABI support routines. */
1895 /* Call0 opcode class. Opcodes are preclassified according to what they
1896 mean for Call0 prologue analysis, and their number of significant operands.
1897 The purpose of this is to simplify prologue analysis by separating
1898 instruction decoding (libisa) from the semantics of prologue analysis. */
1901 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
1902 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
1903 c0opc_flow, /* Flow control insn. */
1904 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
1905 c0opc_break, /* Debugger software breakpoints. */
1906 c0opc_add, /* Adding two registers. */
1907 c0opc_addi, /* Adding a register and an immediate. */
1908 c0opc_sub, /* Subtracting a register from a register. */
1909 c0opc_mov, /* Moving a register to a register. */
1910 c0opc_movi, /* Moving an immediate to a register. */
1911 c0opc_l32r, /* Loading a literal. */
1912 c0opc_s32i, /* Storing word at fixed offset from a base register. */
1913 c0opc_NrOf /* Number of opcode classifications. */
1917 /* Classify an opcode based on what it means for Call0 prologue analysis. */
1919 static xtensa_insn_kind
1920 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
1922 const char *opcname;
1923 xtensa_insn_kind opclass = c0opc_uninteresting;
1925 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
1927 /* Get opcode name and handle special classifications. */
1929 opcname = xtensa_opcode_name (isa, opc);
1932 || strcasecmp (opcname, "ill") == 0
1933 || strcasecmp (opcname, "ill.n") == 0)
1934 opclass = c0opc_illegal;
1935 else if (strcasecmp (opcname, "break") == 0
1936 || strcasecmp (opcname, "break.n") == 0)
1937 opclass = c0opc_break;
1938 else if (strcasecmp (opcname, "entry") == 0)
1939 opclass = c0opc_entry;
1940 else if (xtensa_opcode_is_branch (isa, opc) > 0
1941 || xtensa_opcode_is_jump (isa, opc) > 0
1942 || xtensa_opcode_is_loop (isa, opc) > 0
1943 || xtensa_opcode_is_call (isa, opc) > 0
1944 || strcasecmp (opcname, "simcall") == 0
1945 || strcasecmp (opcname, "syscall") == 0)
1946 opclass = c0opc_flow;
1948 /* Also, classify specific opcodes that need to be tracked. */
1949 else if (strcasecmp (opcname, "add") == 0
1950 || strcasecmp (opcname, "add.n") == 0)
1951 opclass = c0opc_add;
1952 else if (strcasecmp (opcname, "addi") == 0
1953 || strcasecmp (opcname, "addi.n") == 0
1954 || strcasecmp (opcname, "addmi") == 0)
1955 opclass = c0opc_addi;
1956 else if (strcasecmp (opcname, "sub") == 0)
1957 opclass = c0opc_sub;
1958 else if (strcasecmp (opcname, "mov.n") == 0
1959 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
1960 opclass = c0opc_mov;
1961 else if (strcasecmp (opcname, "movi") == 0
1962 || strcasecmp (opcname, "movi.n") == 0)
1963 opclass = c0opc_movi;
1964 else if (strcasecmp (opcname, "l32r") == 0)
1965 opclass = c0opc_l32r;
1966 else if (strcasecmp (opcname, "s32i") == 0
1967 || strcasecmp (opcname, "s32i.n") == 0)
1968 opclass = c0opc_s32i;
1973 /* Tracks register movement/mutation for a given operation, which may
1974 be within a bundle. Updates the destination register tracking info
1975 accordingly. The pc is needed only for pc-relative load instructions
1976 (eg. l32r). The SP register number is needed to identify stores to
1980 call0_track_op (struct gdbarch *gdbarch,
1981 xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
1982 xtensa_insn_kind opclass, int nods, unsigned odv[],
1983 CORE_ADDR pc, CORE_ADDR litbase, int spreg)
1985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1986 unsigned litaddr, litval;
1991 /* 3 operands: dst, src, imm. */
1992 gdb_assert (nods == 3);
1993 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1994 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
1997 /* 3 operands: dst, src1, src2. */
1998 gdb_assert (nods == 3);
1999 if (src[odv[1]].fr_reg == C0_CONST)
2001 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2002 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2004 else if (src[odv[2]].fr_reg == C0_CONST)
2006 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2007 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2009 else dst[odv[0]].fr_reg = C0_INEXP;
2012 /* 3 operands: dst, src1, src2. */
2013 gdb_assert (nods == 3);
2014 if (src[odv[2]].fr_reg == C0_CONST)
2016 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2017 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2019 else dst[odv[0]].fr_reg = C0_INEXP;
2022 /* 2 operands: dst, src [, src]. */
2023 gdb_assert (nods == 2);
2024 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2025 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2028 /* 2 operands: dst, imm. */
2029 gdb_assert (nods == 2);
2030 dst[odv[0]].fr_reg = C0_CONST;
2031 dst[odv[0]].fr_ofs = odv[1];
2034 /* 2 operands: dst, literal offset. */
2035 gdb_assert (nods == 2);
2036 litaddr = litbase & 1
2037 ? (litbase & ~1) + (signed)odv[1]
2038 : (pc + 3 + (signed)odv[1]) & ~3;
2039 litval = read_memory_integer (litaddr, 4, byte_order);
2040 dst[odv[0]].fr_reg = C0_CONST;
2041 dst[odv[0]].fr_ofs = litval;
2044 /* 3 operands: value, base, offset. */
2045 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2046 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2047 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2048 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2049 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2050 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2052 /* ISA encoding guarantees alignment. But, check it anyway. */
2053 gdb_assert ((odv[2] & 3) == 0);
2054 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2062 /* Analyze prologue of the function at start address to determine if it uses
2063 the Call0 ABI, and if so track register moves and linear modifications
2064 in the prologue up to the PC or just beyond the prologue, whichever is first.
2065 An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
2066 The prologue may overlap non-prologue instructions but is guaranteed to end
2067 by the first flow-control instruction (jump, branch, call or return).
2068 Since an optimized function may move information around and change the
2069 stack frame arbitrarily during the prologue, the information is guaranteed
2070 valid only at the point in the function indicated by the PC.
2071 May be used to skip the prologue or identify the ABI, w/o tracking.
2073 Returns: Address of first instruction after prologue, or PC (whichever
2074 is first), or 0, if decoding failed (in libisa).
2076 start Start address of function/prologue.
2077 pc Program counter to stop at. Use 0 to continue to end of prologue.
2078 If 0, avoids infinite run-on in corrupt code memory by bounding
2079 the scan to the end of the function if that can be determined.
2080 nregs Number of general registers to track (size of rt[] array).
2082 rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
2083 If NULL, registers are not tracked.
2085 call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
2086 (more accurately, non-zero until 'entry' insn is encountered).
2088 Note that these may produce useful results even if decoding fails
2089 because they begin with default assumptions that analysis may change. */
2092 call0_analyze_prologue (struct gdbarch *gdbarch,
2093 CORE_ADDR start, CORE_ADDR pc, CORE_ADDR litbase,
2094 int nregs, xtensa_c0reg_t rt[], int *call0)
2096 CORE_ADDR ia; /* Current insn address in prologue. */
2097 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2098 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2099 char ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2100 xtensa_isa isa; /* libisa ISA handle. */
2101 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2102 xtensa_format ifmt; /* libisa instruction format. */
2103 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2104 xtensa_opcode opc; /* Opcode in current slot. */
2105 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2106 int nods; /* Opcode number of operands. */
2107 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2108 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2109 int j; /* General loop counter. */
2110 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2111 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2112 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2114 struct symtab_and_line prologue_sal;
2116 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2117 (int)start, (int)pc);
2119 /* Try to limit the scan to the end of the function if a non-zero pc
2120 arg was not supplied to avoid probing beyond the end of valid memory.
2121 If memory is full of garbage that classifies as c0opc_uninteresting.
2122 If this fails (eg. if no symbols) pc ends up 0 as it was.
2123 Intialize the Call0 frame and register tracking info.
2124 Assume it's Call0 until an 'entry' instruction is encountered.
2125 Assume we may be in the prologue until we hit a flow control instr. */
2131 /* Find out, if we have an information about the prologue from DWARF. */
2132 prologue_sal = find_pc_line (start, 0);
2133 if (prologue_sal.line != 0) /* Found debug info. */
2134 body_pc = prologue_sal.end;
2136 /* If we are going to analyze the prologue in general without knowing about
2137 the current PC, make the best assumtion for the end of the prologue. */
2140 find_pc_partial_function (start, 0, NULL, &end_pc);
2141 body_pc = min (end_pc, body_pc);
2144 body_pc = min (pc, body_pc);
2151 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2152 /* rt is already initialized in xtensa_alloc_frame_cache(). */
2156 if (!xtensa_default_isa)
2157 xtensa_default_isa = xtensa_isa_init (0, 0);
2158 isa = xtensa_default_isa;
2159 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2160 ins = xtensa_insnbuf_alloc (isa);
2161 slot = xtensa_insnbuf_alloc (isa);
2163 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2165 /* (Re)fill instruction buffer from memory if necessary, but do not
2166 read memory beyond PC to be sure we stay within text section
2167 (this protection only works if a non-zero pc is supplied). */
2169 if (ia + xtensa_isa_maxlength (isa) > bt)
2172 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2173 read_memory (ba, ibuf, bt - ba);
2176 /* Decode format information. */
2178 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2179 ifmt = xtensa_format_decode (isa, ins);
2180 if (ifmt == XTENSA_UNDEFINED)
2185 ilen = xtensa_format_length (isa, ifmt);
2186 if (ilen == XTENSA_UNDEFINED)
2191 islots = xtensa_format_num_slots (isa, ifmt);
2192 if (islots == XTENSA_UNDEFINED)
2198 /* Analyze a bundle or a single instruction, using a snapshot of
2199 the register tracking info as input for the entire bundle so that
2200 register changes do not take effect within this bundle. */
2202 for (j = 0; j < nregs; ++j)
2205 for (is = 0; is < islots; ++is)
2207 /* Decode a slot and classify the opcode. */
2209 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2213 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2214 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2216 if (opc == XTENSA_UNDEFINED)
2217 opclass = c0opc_illegal;
2219 opclass = call0_classify_opcode (isa, opc);
2221 /* Decide whether to track this opcode, ignore it, or bail out. */
2230 case c0opc_uninteresting:
2239 ia += ilen; /* Skip over 'entry' insn. */
2247 /* Only expected opcodes should get this far. */
2251 /* Extract and decode the operands. */
2252 nods = xtensa_opcode_num_operands (isa, opc);
2253 if (nods == XTENSA_UNDEFINED)
2259 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2261 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2266 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2271 /* Check operands to verify use of 'mov' assembler macro. */
2272 if (opclass == c0opc_mov && nods == 3)
2274 if (odv[2] == odv[1])
2278 opclass = c0opc_uninteresting;
2283 /* Track register movement and modification for this operation. */
2284 call0_track_op (gdbarch, rt, rtmp, opclass,
2285 nods, odv, ia, litbase, 1);
2289 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2290 (unsigned)ia, fail ? "failed" : "succeeded");
2291 xtensa_insnbuf_free(isa, slot);
2292 xtensa_insnbuf_free(isa, ins);
2293 return fail ? 0 : ia;
2296 /* Initialize frame cache for the current frame in CALL0 ABI. */
2299 call0_frame_cache (struct frame_info *this_frame,
2300 xtensa_frame_cache_t *cache, CORE_ADDR pc, CORE_ADDR litbase)
2302 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2303 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2304 CORE_ADDR start_pc; /* The beginning of the function. */
2305 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2306 CORE_ADDR sp, fp, ra;
2307 int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
2309 /* Find the beginning of the prologue of the function containing the PC
2310 and analyze it up to the PC or the end of the prologue. */
2312 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2314 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, litbase,
2316 &cache->c0.c0_rt[0],
2320 sp = get_frame_register_unsigned
2321 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2322 fp = sp; /* Assume FP == SP until proven otherwise. */
2324 /* Get the frame information and FP (if used) at the current PC.
2325 If PC is in the prologue, the prologue analysis is more reliable
2326 than DWARF info. We don't not know for sure if PC is in the prologue,
2327 but we know no calls have yet taken place, so we can almost
2328 certainly rely on the prologue analysis. */
2332 /* Prologue analysis was successful up to the PC.
2333 It includes the cases when PC == START_PC. */
2334 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2335 /* c0_hasfp == true means there is a frame pointer because
2336 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2337 was derived from SP. Otherwise, it would be C0_FP. */
2338 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2339 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2340 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2342 else /* No data from the prologue analysis. */
2345 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2350 prev_sp = fp + c0_frmsz;
2352 /* Frame size from debug info or prologue tracking does not account for
2353 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2356 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2358 /* Recalculate previous SP. */
2359 prev_sp = fp + c0_frmsz;
2360 /* Update the stack frame size. */
2361 c0_frmsz += fp - sp;
2364 /* Get the return address (RA) from the stack if saved,
2365 or try to get it from a register. */
2367 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2368 if (to_stk != C0_NOSTK)
2370 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2373 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2374 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2376 /* Special case for terminating backtrace at a function that wants to
2377 be seen as the outermost. Such a function will clear it's RA (A0)
2378 register to 0 in the prologue instead of saving its original value. */
2383 /* RA was copied to another register or (before any function call) may
2384 still be in the original RA register. This is not always reliable:
2385 even in a leaf function, register tracking stops after prologue, and
2386 even in prologue, non-prologue instructions (not tracked) may overwrite
2387 RA or any register it was copied to. If likely in prologue or before
2388 any call, use retracking info and hope for the best (compiler should
2389 have saved RA in stack if not in a leaf function). If not in prologue,
2395 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2397 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2401 ra = get_frame_register_unsigned
2403 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2408 cache->pc = start_pc;
2410 /* RA == 0 marks the outermost frame. Do not go past it. */
2411 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2412 cache->c0.fp_regnum = fp_regnum;
2413 cache->c0.c0_frmsz = c0_frmsz;
2414 cache->c0.c0_hasfp = c0_hasfp;
2415 cache->c0.c0_fp = fp;
2419 /* Skip function prologue.
2421 Return the pc of the first instruction after prologue. GDB calls this to
2422 find the address of the first line of the function or (if there is no line
2423 number information) to skip the prologue for planting breakpoints on
2424 function entries. Use debug info (if present) or prologue analysis to skip
2425 the prologue to achieve reliable debugging behavior. For windowed ABI,
2426 only the 'entry' instruction is skipped. It is not strictly necessary to
2427 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2428 backtrace at any point in the prologue, however certain potential hazards
2429 are avoided and a more "normal" debugging experience is ensured by
2430 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2431 For example, if we don't skip the prologue:
2432 - Some args may not yet have been saved to the stack where the debug
2433 info expects to find them (true anyway when only 'entry' is skipped);
2434 - Software breakpoints ('break' instrs) may not have been unplanted
2435 when the prologue analysis is done on initializing the frame cache,
2436 and breaks in the prologue will throw off the analysis.
2438 If we have debug info ( line-number info, in particular ) we simply skip
2439 the code associated with the first function line effectively skipping
2440 the prologue code. It works even in cases like
2443 { int local_var = 1;
2447 because, for this source code, both Xtensa compilers will generate two
2448 separate entries ( with the same line number ) in dwarf line-number
2449 section to make sure there is a boundary between the prologue code and
2450 the rest of the function.
2452 If there is no debug info, we need to analyze the code. */
2454 /* #define DONT_SKIP_PROLOGUE */
2457 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2459 struct symtab_and_line prologue_sal;
2462 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2464 #if DONT_SKIP_PROLOGUE
2468 /* Try to find first body line from debug info. */
2470 prologue_sal = find_pc_line (start_pc, 0);
2471 if (prologue_sal.line != 0) /* Found debug info. */
2473 /* In Call0, it is possible to have a function with only one instruction
2474 ('ret') resulting from a 1-line optimized function that does nothing.
2475 In that case, prologue_sal.end may actually point to the start of the
2476 next function in the text section, causing a breakpoint to be set at
2477 the wrong place. Check if the end address is in a different function,
2478 and if so return the start PC. We know we have symbol info. */
2482 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
2483 if (end_func != start_pc)
2486 return prologue_sal.end;
2489 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
2490 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0, 0, NULL, NULL);
2491 return body_pc != 0 ? body_pc : start_pc;
2494 /* Verify the current configuration. */
2496 xtensa_verify_config (struct gdbarch *gdbarch)
2498 struct ui_file *log;
2499 struct cleanup *cleanups;
2500 struct gdbarch_tdep *tdep;
2504 tdep = gdbarch_tdep (gdbarch);
2505 log = mem_fileopen ();
2506 cleanups = make_cleanup_ui_file_delete (log);
2508 /* Verify that we got a reasonable number of AREGS. */
2509 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
2510 fprintf_unfiltered (log, _("\
2511 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
2514 /* Verify that certain registers exist. */
2516 if (tdep->pc_regnum == -1)
2517 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
2518 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
2519 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
2521 if (tdep->isa_use_windowed_registers)
2523 if (tdep->wb_regnum == -1)
2524 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
2525 if (tdep->ws_regnum == -1)
2526 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
2527 if (tdep->ar_base == -1)
2528 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
2531 if (tdep->a0_base == -1)
2532 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
2534 buf = ui_file_xstrdup (log, &dummy);
2535 make_cleanup (xfree, buf);
2536 if (strlen (buf) > 0)
2537 internal_error (__FILE__, __LINE__,
2538 _("the following are invalid: %s"), buf);
2539 do_cleanups (cleanups);
2543 /* Derive specific register numbers from the array of registers. */
2546 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
2548 xtensa_register_t* rmap;
2549 int n, max_size = 4;
2552 tdep->num_nopriv_regs = 0;
2554 /* Special registers 0..255 (core). */
2555 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
2557 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
2559 if (rmap->target_number == 0x0020)
2560 tdep->pc_regnum = n;
2561 else if (rmap->target_number == 0x0100)
2563 else if (rmap->target_number == 0x0000)
2565 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
2566 tdep->wb_regnum = n;
2567 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
2568 tdep->ws_regnum = n;
2569 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
2570 tdep->debugcause_regnum = n;
2571 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
2572 tdep->exccause_regnum = n;
2573 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
2574 tdep->excvaddr_regnum = n;
2575 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
2576 tdep->lbeg_regnum = n;
2577 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
2578 tdep->lend_regnum = n;
2579 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
2580 tdep->lcount_regnum = n;
2581 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
2582 tdep->sar_regnum = n;
2583 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
2584 tdep->litbase_regnum = n;
2585 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
2586 tdep->ps_regnum = n;
2588 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
2589 tdep->interrupt_regnum = n;
2590 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
2591 tdep->interrupt2_regnum = n;
2592 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
2593 tdep->cpenable_regnum = n;
2596 if (rmap->byte_size > max_size)
2597 max_size = rmap->byte_size;
2598 if (rmap->mask != 0 && tdep->num_regs == 0)
2600 /* Find out out how to deal with priveleged registers.
2602 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2603 && tdep->num_nopriv_regs == 0)
2604 tdep->num_nopriv_regs = n;
2606 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
2607 && tdep->num_regs == 0)
2611 /* Number of pseudo registers. */
2612 tdep->num_pseudo_regs = n - tdep->num_regs;
2614 /* Empirically determined maximum sizes. */
2615 tdep->max_register_raw_size = max_size;
2616 tdep->max_register_virtual_size = max_size;
2619 /* Module "constructor" function. */
2621 extern struct gdbarch_tdep xtensa_tdep;
2623 static struct gdbarch *
2624 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2626 struct gdbarch_tdep *tdep;
2627 struct gdbarch *gdbarch;
2628 struct xtensa_abi_handler *abi_handler;
2630 DEBUGTRACE ("gdbarch_init()\n");
2632 /* We have to set the byte order before we call gdbarch_alloc. */
2633 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
2635 tdep = &xtensa_tdep;
2636 gdbarch = gdbarch_alloc (&info, tdep);
2637 xtensa_derive_tdep (tdep);
2639 /* Verify our configuration. */
2640 xtensa_verify_config (gdbarch);
2642 /* Pseudo-Register read/write. */
2643 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
2644 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
2646 /* Set target information. */
2647 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
2648 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
2649 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
2650 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2651 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
2653 /* Renumber registers for known formats (stabs and dwarf2). */
2654 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2655 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2657 /* We provide our own function to get register information. */
2658 set_gdbarch_register_name (gdbarch, xtensa_register_name);
2659 set_gdbarch_register_type (gdbarch, xtensa_register_type);
2661 /* To call functions from GDB using dummy frame */
2662 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
2664 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2666 set_gdbarch_return_value (gdbarch, xtensa_return_value);
2668 /* Advance PC across any prologue instructions to reach "real" code. */
2669 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
2671 /* Stack grows downward. */
2672 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2674 /* Set breakpoints. */
2675 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
2677 /* After breakpoint instruction or illegal instruction, pc still
2678 points at break instruction, so don't decrement. */
2679 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2681 /* We don't skip args. */
2682 set_gdbarch_frame_args_skip (gdbarch, 0);
2684 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
2686 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
2688 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
2690 /* Frame handling. */
2691 frame_base_set_default (gdbarch, &xtensa_frame_base);
2692 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
2693 dwarf2_append_unwinders (gdbarch);
2695 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
2697 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2699 xtensa_add_reggroups (gdbarch);
2700 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
2702 set_gdbarch_regset_from_core_section (gdbarch,
2703 xtensa_regset_from_core_section);
2705 set_solib_svr4_fetch_link_map_offsets
2706 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2712 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2714 error (_("xtensa_dump_tdep(): not implemented"));
2717 /* Provide a prototype to silence -Wmissing-prototypes. */
2718 extern initialize_file_ftype _initialize_xtensa_tdep;
2721 _initialize_xtensa_tdep (void)
2723 struct cmd_list_element *c;
2725 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
2726 xtensa_init_reggroups ();
2728 add_setshow_zinteger_cmd ("xtensa",
2730 &xtensa_debug_level, _("\
2731 Set Xtensa debugging."), _("\
2732 Show Xtensa debugging."), _("\
2733 When non-zero, Xtensa-specific debugging is enabled. \
2734 Can be 1, 2, 3, or 4 indicating the level of debugging."),
2737 &setdebuglist, &showdebuglist);