1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
3 Copyright (C) 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "floatformat.h"
32 #include "reggroups.h"
35 #include "dummy-frame.h"
36 #include "elf/dwarf2.h"
37 #include "dwarf2-frame.h"
38 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
43 #include "arch-utils.h"
50 #include "gdb_assert.h"
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
56 static int xtensa_debug_level = 0;
58 #define DEBUGWARN(args...) \
59 if (xtensa_debug_level > 0) \
60 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62 #define DEBUGINFO(args...) \
63 if (xtensa_debug_level > 1) \
64 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66 #define DEBUGTRACE(args...) \
67 if (xtensa_debug_level > 2) \
68 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70 #define DEBUGVERB(args...) \
71 if (xtensa_debug_level > 3) \
72 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
76 #define SP_ALIGNMENT 16
79 /* On Windowed ABI, we use a6 through a11 for passing arguments
80 to a function called by GDB because CALL4 is used. */
81 #define ARGS_NUM_REGS 6
82 #define REGISTER_SIZE 4
85 /* Extract the call size from the return address or PS register. */
86 #define PS_CALLINC_SHIFT 16
87 #define PS_CALLINC_MASK 0x00030000
88 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
89 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
91 /* ABI-independent macros. */
92 #define ARG_NOF(gdbarch) \
93 (gdbarch_tdep (gdbarch)->call_abi \
94 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
95 #define ARG_1ST(gdbarch) \
96 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
97 ? (gdbarch_tdep (gdbarch)->a0_base + 0) + C0_ARGS \
98 : (gdbarch_tdep (gdbarch)->a0_base + 6))
100 extern struct gdbarch_tdep *xtensa_config_tdep (struct gdbarch_info *);
101 extern int xtensa_config_byte_order (struct gdbarch_info *);
104 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
105 indicates that the instruction is an ENTRY instruction. */
107 #define XTENSA_IS_ENTRY(gdbarch, op1) \
108 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
109 ? ((op1) == 0x6c) : ((op1) == 0x36))
111 #define XTENSA_ENTRY_LENGTH 3
113 /* windowing_enabled() returns true, if windowing is enabled.
114 WOE must be set to 1; EXCM to 0.
115 Note: We assume that EXCM is always 0 for XEA1. */
117 #define PS_WOE (1<<18)
118 #define PS_EXC (1<<4)
120 /* Convert a live Ax register number to the corresponding Areg number. */
122 areg_number (struct gdbarch *gdbarch, int regnum, ULONGEST wb)
124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127 areg = regnum - tdep->a0_base;
128 areg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
129 areg &= tdep->num_aregs - 1;
131 return areg + tdep->ar_base;
135 windowing_enabled (CORE_ADDR ps)
137 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
140 /* Return the window size of the previous call to the function from which we
143 This function is used to extract the return value after a called function
144 has returned to the caller. On Xtensa, the register that holds the return
145 value (from the perspective of the caller) depends on what call
146 instruction was used. For now, we are assuming that the call instruction
147 precedes the current address, so we simply analyze the call instruction.
148 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
149 method to call the inferior function. */
152 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
158 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
160 /* Read the previous instruction (should be a call[x]{4|8|12}. */
161 read_memory (pc-3, buf, 3);
162 insn = extract_unsigned_integer (buf, 3);
164 /* Decode call instruction:
166 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
167 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
169 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
170 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
172 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
174 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
175 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
179 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
180 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
186 /* REGISTER INFORMATION */
188 /* Returns the name of a register. */
190 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
192 /* Return the name stored in the register map. */
193 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
194 + gdbarch_num_pseudo_regs (gdbarch))
195 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
197 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
202 xtensa_read_register (int regnum)
206 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
207 return (unsigned long) value;
210 /* Return the type of a register. Create a new type, if necessary. */
212 static struct ctype_cache
214 struct ctype_cache *next;
216 struct type *virtual_type;
217 } *type_entries = NULL;
220 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
222 /* Return signed integer for ARx and Ax registers. */
223 if ((regnum >= gdbarch_tdep (gdbarch)->ar_base
224 && regnum < gdbarch_tdep (gdbarch)->ar_base
225 + gdbarch_tdep (gdbarch)->num_aregs)
226 || (regnum >= gdbarch_tdep (gdbarch)->a0_base
227 && regnum < gdbarch_tdep (gdbarch)->a0_base + 16))
228 return builtin_type_int;
230 if (regnum == gdbarch_pc_regnum (gdbarch)
231 || regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
232 return lookup_pointer_type (builtin_type_void);
234 /* Return the stored type for all other registers. */
235 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch))
238 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
240 /* Set ctype for this register (only the first time). */
244 struct ctype_cache *tp;
245 int size = reg->byte_size;
247 /* We always use the memory representation,
248 even if the register width is smaller. */
252 reg->ctype = builtin_type_uint8;
256 reg->ctype = builtin_type_uint16;
260 reg->ctype = builtin_type_uint32;
264 reg->ctype = builtin_type_uint64;
268 reg->ctype = builtin_type_uint128;
272 for (tp = type_entries; tp != NULL; tp = tp->next)
273 if (tp->size == size)
278 char *name = xmalloc (16);
279 tp = xmalloc (sizeof (struct ctype_cache));
280 tp->next = type_entries;
284 sprintf (name, "int%d", size * 8);
285 tp->virtual_type = init_type (TYPE_CODE_INT, size,
286 TYPE_FLAG_UNSIGNED, name,
290 reg->ctype = tp->virtual_type;
296 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
301 /* Return the 'local' register number for stubs, dwarf2, etc.
302 The debugging information enumerates registers starting from 0 for A0
303 to n for An. So, we only have to add the base number for A0. */
306 xtensa_reg_to_regnum (int regnum)
310 if (regnum >= 0 && regnum < 16)
311 return gdbarch_tdep (current_gdbarch)->a0_base + regnum;
314 i < gdbarch_num_regs (current_gdbarch)
315 + gdbarch_num_pseudo_regs (current_gdbarch);
317 if (regnum == gdbarch_tdep (current_gdbarch)->regmap[i].target_number)
320 internal_error (__FILE__, __LINE__,
321 _("invalid dwarf/stabs register number %d"), regnum);
326 /* Write the bits of a masked register to the various registers.
327 Only the masked areas of these registers are modified; the other
328 fields are untouched. The size of masked registers is always less
329 than or equal to 32 bits. */
332 xtensa_register_write_masked (struct regcache *regcache,
333 xtensa_register_t *reg, const gdb_byte *buffer)
335 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
336 const xtensa_mask_t *mask = reg->mask;
338 int shift = 0; /* Shift for next mask (mod 32). */
339 int start, size; /* Start bit and size of current mask. */
341 unsigned int *ptr = value;
342 unsigned int regval, m, mem = 0;
344 int bytesize = reg->byte_size;
345 int bitsize = bytesize * 8;
348 DEBUGTRACE ("xtensa_register_write_masked ()\n");
350 /* Copy the masked register to host byte-order. */
351 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
352 for (i = 0; i < bytesize; i++)
355 mem |= (buffer[bytesize - i - 1] << 24);
360 for (i = 0; i < bytesize; i++)
363 mem |= (buffer[i] << 24);
368 /* We might have to shift the final value:
369 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
370 bytesize & 3 == x -> shift (4-x) * 8. */
372 *ptr = mem >> (((0 - bytesize) & 3) * 8);
376 /* Write the bits to the masked areas of the other registers. */
377 for (i = 0; i < mask->count; i++)
379 start = mask->mask[i].bit_start;
380 size = mask->mask[i].bit_size;
381 regval = mem >> shift;
383 if ((shift += size) > bitsize)
384 error (_("size of all masks is larger than the register"));
393 regval |= mem << (size - shift);
396 /* Make sure we have a valid register. */
397 r = mask->mask[i].reg_num;
398 if (r >= 0 && size > 0)
400 /* Don't overwrite the unmasked areas. */
402 regcache_cooked_read_unsigned (regcache, r, &old_val);
403 m = 0xffffffff >> (32 - size) << start;
405 regval = (regval & m) | (old_val & ~m);
406 regcache_cooked_write_unsigned (regcache, r, regval);
412 /* Read a tie state or mapped registers. Read the masked areas
413 of the registers and assemble them into a single value. */
416 xtensa_register_read_masked (struct regcache *regcache,
417 xtensa_register_t *reg, gdb_byte *buffer)
419 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
420 const xtensa_mask_t *mask = reg->mask;
425 unsigned int *ptr = value;
426 unsigned int regval, mem = 0;
428 int bytesize = reg->byte_size;
429 int bitsize = bytesize * 8;
432 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
433 reg->name == 0 ? "" : reg->name);
435 /* Assemble the register from the masked areas of other registers. */
436 for (i = 0; i < mask->count; i++)
438 int r = mask->mask[i].reg_num;
442 regcache_cooked_read_unsigned (regcache, r, &val);
443 regval = (unsigned int) val;
448 start = mask->mask[i].bit_start;
449 size = mask->mask[i].bit_size;
454 regval &= (0xffffffff >> (32 - size));
456 mem |= regval << shift;
458 if ((shift += size) > bitsize)
459 error (_("size of all masks is larger than the register"));
470 mem = regval >> (size - shift);
477 /* Copy value to target byte order. */
481 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
482 for (i = 0; i < bytesize; i++)
486 buffer[bytesize - i - 1] = mem & 0xff;
490 for (i = 0; i < bytesize; i++)
494 buffer[i] = mem & 0xff;
500 /* Read pseudo registers. */
503 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
504 struct regcache *regcache,
508 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
509 regnum, xtensa_register_name (gdbarch, regnum));
511 if (regnum == gdbarch_num_regs (gdbarch)
512 + gdbarch_num_pseudo_regs (gdbarch))
513 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
515 /* Read aliases a0..a15, if this is a Windowed ABI. */
516 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
517 && (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0)
518 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
520 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
522 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
523 regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
526 /* We can always read non-pseudo registers. */
527 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
528 regcache_raw_read (regcache, regnum, buffer);
530 /* Pseudo registers. */
532 && regnum < gdbarch_num_regs (gdbarch)
533 + gdbarch_num_pseudo_regs (gdbarch))
535 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
536 xtensa_register_type_t type = reg->type;
537 int flags = gdbarch_tdep (gdbarch)->target_flags;
539 /* We cannot read Unknown or Unmapped registers. */
540 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
542 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
544 warning (_("cannot read register %s"),
545 xtensa_register_name (gdbarch, regnum));
550 /* Some targets cannot read TIE register files. */
551 else if (type == xtRegisterTypeTieRegfile)
553 /* Use 'fetch' to get register? */
554 if (flags & xtTargetFlagsUseFetchStore)
556 warning (_("cannot read register"));
560 /* On some targets (esp. simulators), we can always read the reg. */
561 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
563 warning (_("cannot read register"));
568 /* We can always read mapped registers. */
569 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
571 xtensa_register_read_masked (regcache, reg, buffer);
575 /* Assume that we can read the register. */
576 regcache_raw_read (regcache, regnum, buffer);
579 internal_error (__FILE__, __LINE__,
580 _("invalid register number %d"), regnum);
584 /* Write pseudo registers. */
587 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
588 struct regcache *regcache,
590 const gdb_byte *buffer)
592 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
593 regnum, xtensa_register_name (gdbarch, regnum));
595 if (regnum == gdbarch_num_regs (gdbarch)
596 + gdbarch_num_pseudo_regs (gdbarch))
597 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
599 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
600 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
601 && (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0)
602 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
604 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
607 regcache_raw_read (regcache,
608 gdbarch_tdep (gdbarch)->wb_regnum, buf);
609 regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
612 /* We can always write 'core' registers.
613 Note: We might have converted Ax->ARy. */
614 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
615 regcache_raw_write (regcache, regnum, buffer);
617 /* Pseudo registers. */
619 && regnum < gdbarch_num_regs (gdbarch)
620 + gdbarch_num_pseudo_regs (gdbarch))
622 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
623 xtensa_register_type_t type = reg->type;
624 int flags = gdbarch_tdep (gdbarch)->target_flags;
626 /* On most targets, we cannot write registers
627 of type "Unknown" or "Unmapped". */
628 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
630 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
632 warning (_("cannot write register %s"),
633 xtensa_register_name (gdbarch, regnum));
638 /* Some targets cannot read TIE register files. */
639 else if (type == xtRegisterTypeTieRegfile)
641 /* Use 'store' to get register? */
642 if (flags & xtTargetFlagsUseFetchStore)
644 warning (_("cannot write register"));
648 /* On some targets (esp. simulators), we can always write
650 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
652 warning (_("cannot write register"));
657 /* We can always write mapped registers. */
658 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
660 xtensa_register_write_masked (regcache, reg, buffer);
664 /* Assume that we can write the register. */
665 regcache_raw_write (regcache, regnum, buffer);
668 internal_error (__FILE__, __LINE__,
669 _("invalid register number %d"), regnum);
672 static struct reggroup *xtensa_ar_reggroup;
673 static struct reggroup *xtensa_user_reggroup;
674 static struct reggroup *xtensa_vectra_reggroup;
675 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
678 xtensa_init_reggroups (void)
680 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
681 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
682 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
684 xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
685 xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
686 xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
687 xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
688 xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
689 xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
690 xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
691 xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
695 xtensa_add_reggroups (struct gdbarch *gdbarch)
699 /* Predefined groups. */
700 reggroup_add (gdbarch, all_reggroup);
701 reggroup_add (gdbarch, save_reggroup);
702 reggroup_add (gdbarch, restore_reggroup);
703 reggroup_add (gdbarch, system_reggroup);
704 reggroup_add (gdbarch, vector_reggroup);
705 reggroup_add (gdbarch, general_reggroup);
706 reggroup_add (gdbarch, float_reggroup);
708 /* Xtensa-specific groups. */
709 reggroup_add (gdbarch, xtensa_ar_reggroup);
710 reggroup_add (gdbarch, xtensa_user_reggroup);
711 reggroup_add (gdbarch, xtensa_vectra_reggroup);
713 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
714 reggroup_add (gdbarch, xtensa_cp[i]);
718 xtensa_coprocessor_register_group (struct reggroup *group)
722 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
723 if (group == xtensa_cp[i])
729 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
730 | XTENSA_REGISTER_FLAGS_WRITABLE \
731 | XTENSA_REGISTER_FLAGS_VOLATILE)
733 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
734 | XTENSA_REGISTER_FLAGS_WRITABLE)
737 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
739 struct reggroup *group)
741 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
742 xtensa_register_type_t type = reg->type;
743 xtensa_register_group_t rg = reg->group;
746 /* First, skip registers that are not visible to this target
747 (unknown and unmapped registers when not using ISS). */
749 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
751 if (group == all_reggroup)
753 if (group == xtensa_ar_reggroup)
754 return rg & xtRegisterGroupAddrReg;
755 if (group == xtensa_user_reggroup)
756 return rg & xtRegisterGroupUser;
757 if (group == float_reggroup)
758 return rg & xtRegisterGroupFloat;
759 if (group == general_reggroup)
760 return rg & xtRegisterGroupGeneral;
761 if (group == float_reggroup)
762 return rg & xtRegisterGroupFloat;
763 if (group == system_reggroup)
764 return rg & xtRegisterGroupState;
765 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
766 return rg & xtRegisterGroupVectra;
767 if (group == save_reggroup || group == restore_reggroup)
768 return (regnum < gdbarch_num_regs (gdbarch)
769 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
770 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
771 return rg & (xtRegisterGroupCP0 << cp_number);
777 /* Supply register REGNUM from the buffer specified by GREGS and LEN
778 in the general-purpose register set REGSET to register cache
779 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
782 xtensa_supply_gregset (const struct regset *regset,
788 const xtensa_elf_gregset_t *regs = gregs;
789 struct gdbarch *gdbarch = get_regcache_arch (rc);
792 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
794 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
795 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
796 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
797 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
798 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
799 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
800 (char *) ®s->windowbase);
801 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
802 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
803 (char *) ®s->windowstart);
804 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
805 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
806 (char *) ®s->lbeg);
807 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
808 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
809 (char *) ®s->lend);
810 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
811 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
812 (char *) ®s->lcount);
813 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
814 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
815 (char *) ®s->sar);
816 if (regnum == gdbarch_tdep (gdbarch)->exccause_regnum || regnum == -1)
817 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->exccause_regnum,
818 (char *) ®s->exccause);
819 if (regnum == gdbarch_tdep (gdbarch)->excvaddr_regnum || regnum == -1)
820 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->excvaddr_regnum,
821 (char *) ®s->excvaddr);
822 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
823 && regnum < gdbarch_tdep (gdbarch)->ar_base
824 + gdbarch_tdep (gdbarch)->num_aregs)
825 regcache_raw_supply (rc, regnum,
826 (char *) ®s->ar[regnum - gdbarch_tdep
827 (gdbarch)->ar_base]);
828 else if (regnum == -1)
830 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
831 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
832 (char *) ®s->ar[i]);
837 /* Xtensa register set. */
843 xtensa_supply_gregset
847 /* Return the appropriate register set for the core
848 section identified by SECT_NAME and SECT_SIZE. */
850 static const struct regset *
851 xtensa_regset_from_core_section (struct gdbarch *core_arch,
852 const char *sect_name,
855 DEBUGTRACE ("xtensa_regset_from_core_section "
856 "(..., sect_name==\"%s\", sect_size==%x) \n",
857 sect_name, (unsigned int) sect_size);
859 if (strcmp (sect_name, ".reg") == 0
860 && sect_size >= sizeof(xtensa_elf_gregset_t))
861 return &xtensa_gregset;
867 /* Handling frames. */
869 /* Number of registers to save in case of Windowed ABI. */
870 #define XTENSA_NUM_SAVED_AREGS 12
872 /* Frame cache part for Windowed ABI. */
873 typedef struct xtensa_windowed_frame_cache
875 int wb; /* Base for this frame; -1 if not in regfile. */
876 int callsize; /* Call size to next frame. */
878 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
879 } xtensa_windowed_frame_cache_t;
881 /* Call0 ABI Definitions. */
883 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
884 #define C0_NREGS 16 /* Number of A-registers to track. */
885 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
886 #define C0_SP 1 /* Register used as SP. */
887 #define C0_FP 15 /* Register used as FP. */
888 #define C0_RA 0 /* Register used as return address. */
889 #define C0_ARGS 2 /* Register used as first arg/retval. */
890 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
892 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
893 A-register where the current content of the reg came from (in terms
894 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
895 mean that the orignal content of the register was saved to the stack.
896 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
897 know where SP will end up until the entire prologue has been analyzed. */
899 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
900 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
901 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
903 extern xtensa_isa xtensa_default_isa;
905 typedef struct xtensa_c0reg
907 int fr_reg; /* original register from which register content
908 is derived, or C0_CONST, or C0_INEXP. */
909 int fr_ofs; /* constant offset from reg, or immediate value. */
910 int to_stk; /* offset from original SP to register (4-byte aligned),
911 or C0_NOSTK if register has not been saved. */
915 /* Frame cache part for Call0 ABI. */
916 typedef struct xtensa_call0_frame_cache
918 int c0_frmsz; /* Stack frame size. */
919 int c0_hasfp; /* Current frame uses frame pointer. */
920 int fp_regnum; /* A-register used as FP. */
921 int c0_fp; /* Actual value of frame pointer. */
922 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
923 } xtensa_call0_frame_cache_t;
925 typedef struct xtensa_frame_cache
927 CORE_ADDR base; /* Stack pointer of the next frame. */
928 CORE_ADDR pc; /* PC at the entry point to the function. */
929 CORE_ADDR ra; /* The raw return address. */
930 CORE_ADDR ps; /* The PS register of the frame. */
931 CORE_ADDR prev_sp; /* Stack Pointer of the frame. */
932 int call0; /* It's a call0 framework (else windowed). */
935 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
936 xtensa_call0_frame_cache_t c0; /* call0 == true. */
938 } xtensa_frame_cache_t;
941 static struct xtensa_frame_cache *
942 xtensa_alloc_frame_cache (int windowed)
944 xtensa_frame_cache_t *cache;
947 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
949 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
956 cache->call0 = !windowed;
959 cache->c0.c0_frmsz = -1;
960 cache->c0.c0_hasfp = 0;
961 cache->c0.fp_regnum = -1;
962 cache->c0.c0_fp = -1;
964 for (i = 0; i < C0_NREGS; i++)
966 cache->c0.c0_rt[i].fr_reg = i;
967 cache->c0.c0_rt[i].fr_ofs = 0;
968 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
974 cache->wd.callsize = -1;
976 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
977 cache->wd.aregs[i] = -1;
984 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
986 return address & ~15;
991 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
995 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
997 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
999 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int)
1000 extract_typed_address (buf, builtin_type_void_func_ptr));
1002 return extract_typed_address (buf, builtin_type_void_func_ptr);
1006 static struct frame_id
1007 xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1011 /* next_frame->prev is a dummy frame. Return a frame ID of that frame. */
1013 DEBUGTRACE ("xtensa_unwind_dummy_id ()\n");
1015 pc = frame_pc_unwind (next_frame);
1016 fp = frame_unwind_register_unsigned
1017 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1019 /* Make dummy frame ID unique by adding a constant. */
1020 return frame_id_build (fp + SP_ALIGNMENT, pc);
1023 /* The key values to identify the frame using "cache" are
1025 cache->base = SP of this frame;
1026 cache->pc = entry-PC (entry point of the frame function);
1027 cache->prev_sp = SP of the previous frame.
1031 call0_frame_cache (struct frame_info *next_frame,
1032 xtensa_frame_cache_t *cache,
1035 static struct xtensa_frame_cache *
1036 xtensa_frame_cache (struct frame_info *next_frame, void **this_cache)
1038 xtensa_frame_cache_t *cache;
1039 CORE_ADDR ra, wb, ws, pc, sp, ps;
1040 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1041 unsigned int ps_regnum = gdbarch_ps_regnum (gdbarch);
1045 DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n",
1046 next_frame, this_cache ? *this_cache : (void*)0xdeadbeef);
1051 windowed = windowing_enabled (xtensa_read_register (ps_regnum));
1053 /* Get pristine xtensa-frame. */
1054 cache = xtensa_alloc_frame_cache (windowed);
1055 *this_cache = cache;
1057 pc = frame_unwind_register_unsigned (next_frame,
1058 gdbarch_pc_regnum (gdbarch));
1062 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1063 wb = frame_unwind_register_unsigned
1064 (next_frame, gdbarch_tdep (gdbarch)->wb_regnum);
1065 ws = frame_unwind_register_unsigned
1066 (next_frame, gdbarch_tdep (gdbarch)->ws_regnum);
1067 ps = frame_unwind_register_unsigned (next_frame, ps_regnum);
1069 op1 = read_memory_integer (pc, 1);
1070 if (XTENSA_IS_ENTRY (gdbarch, op1))
1072 int callinc = CALLINC (ps);
1073 ra = frame_unwind_register_unsigned
1074 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 0 + callinc * 4);
1076 DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)",
1079 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1080 cache->wd.callsize = 0;
1083 cache->prev_sp = frame_unwind_register_unsigned
1084 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1088 ra = frame_unwind_register_unsigned
1089 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 0);
1090 cache->wd.callsize = WINSIZE (ra);
1091 cache->wd.wb = (wb - cache->wd.callsize / 4)
1092 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1093 cache->wd.ws = ws & ~(1 << wb);
1096 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1097 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1098 cache->ps = (ps & ~PS_CALLINC_MASK)
1099 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1101 if (cache->wd.ws == 0)
1106 sp = frame_unwind_register_unsigned
1107 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1109 for (i = 0; i < 4; i++, sp += 4)
1111 cache->wd.aregs[i] = sp;
1114 if (cache->wd.callsize > 4)
1116 /* Set A4...A7/A11. */
1117 /* Read an SP of the previous frame. */
1118 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
1119 sp -= cache->wd.callsize * 4;
1121 for ( /* i=4 */ ; i < cache->wd.callsize; i++, sp += 4)
1123 cache->wd.aregs[i] = sp;
1128 if ((cache->prev_sp == 0) && ( ra != 0 ))
1129 /* If RA is equal to 0 this frame is an outermost frame. Leave
1130 cache->prev_sp unchanged marking the boundary of the frame stack. */
1132 if (cache->wd.ws == 0)
1134 /* Register window overflow already happened.
1135 We can read caller's SP from the proper spill loction. */
1137 read_memory_integer (cache->wd.aregs[1],
1138 register_size (gdbarch,
1139 gdbarch_tdep (gdbarch)->a0_base + 1));
1143 /* Read caller's frame SP directly from the previous window. */
1144 int regnum = areg_number
1145 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1148 cache->prev_sp = xtensa_read_register (regnum);
1152 else /* Call0 framework. */
1154 call0_frame_cache (next_frame, cache, pc);
1157 cache->base = frame_unwind_register_unsigned
1158 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1164 xtensa_frame_this_id (struct frame_info *next_frame,
1166 struct frame_id *this_id)
1168 struct xtensa_frame_cache *cache =
1169 xtensa_frame_cache (next_frame, this_cache);
1172 DEBUGTRACE ("xtensa_frame_this_id (next 0x%lx, *this 0x%lx)\n",
1173 (unsigned long) next_frame, (unsigned long) *this_cache);
1175 if (cache->prev_sp == 0)
1178 id = frame_id_build (cache->prev_sp, cache->pc);
1179 if (frame_id_eq (id, get_frame_id(next_frame)))
1182 Frame stack is corrupted. That could happen because of \
1183 setting register(s) from GDB or stopping execution \
1184 inside exception handler. Frame backtracing has stopped. \
1185 It can make some GDB commands work inappropriately.\n"));
1193 call0_frame_get_reg_at_entry (struct frame_info *next_frame,
1194 struct xtensa_frame_cache *cache,
1197 enum lval_type *lval,
1202 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1203 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1204 && regnum <= (gdbarch_tdep (gdbarch)->ar_base + C0_NREGS))
1205 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1207 /* Determine stack pointer on entry to this function, based on FP. */
1208 spe = cache->c0.c0_fp - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1210 /* If register was saved to the stack frame in the prologue, retrieve it. */
1211 stkofs = cache->c0.c0_rt[reg].to_stk;
1212 if (stkofs != C0_NOSTK)
1214 *lval = lval_memory;
1215 *addrp = spe + stkofs;
1218 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1223 /* If not callee-saved or if known to have been overwritten, give up. */
1225 || cache->c0.c0_rt[reg].fr_reg != reg
1226 || cache->c0.c0_rt[reg].fr_ofs != 0)
1229 if (get_frame_type (next_frame) != NORMAL_FRAME)
1230 /* TODO: Do we need a special case for DUMMY_FRAME here? */
1233 return call0_frame_get_reg_at_entry (get_next_frame(next_frame),
1234 cache, regnum, addrp, lval, valuep);
1238 xtensa_frame_prev_register (struct frame_info *next_frame,
1242 enum lval_type *lvalp,
1247 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1248 struct xtensa_frame_cache *cache =
1249 xtensa_frame_cache (next_frame, this_cache);
1250 CORE_ADDR saved_reg = 0;
1253 DEBUGTRACE ("xtensa_frame_prev_register (next 0x%lx, "
1254 "*this 0x%lx, regnum %d (%s), ...)\n",
1255 (unsigned long) next_frame,
1256 *this_cache ? (unsigned long) *this_cache : 0, regnum,
1257 xtensa_register_name (gdbarch, regnum));
1259 if (regnum ==gdbarch_pc_regnum (gdbarch))
1260 saved_reg = cache->ra;
1261 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1262 saved_reg = cache->prev_sp;
1263 else if (!cache->call0)
1265 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1267 if (cache->wd.ws != 0)
1268 saved_reg = cache->wd.ws;
1270 saved_reg = 1 << cache->wd.wb;
1272 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1273 saved_reg = cache->wd.wb;
1274 else if (regnum == gdbarch_ps_regnum (gdbarch))
1275 saved_reg = cache->ps;
1289 store_unsigned_integer (valuep, 4, saved_reg);
1294 if (!cache->call0) /* Windowed ABI. */
1296 /* Convert A-register numbers to AR-register numbers. */
1297 if (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0
1298 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1299 regnum = areg_number (gdbarch, regnum, cache->wd.wb);
1301 /* Check if AR-register has been saved to stack. */
1302 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1303 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1304 + gdbarch_tdep (gdbarch)->num_aregs))
1306 int areg = regnum - gdbarch_tdep (gdbarch)->ar_base
1307 - (cache->wd.wb * 4);
1310 && areg < XTENSA_NUM_SAVED_AREGS
1311 && cache->wd.aregs[areg] != -1)
1314 *lvalp = lval_memory;
1315 *addrp = cache->wd.aregs[areg];
1319 read_memory (*addrp, valuep,
1320 register_size (gdbarch, regnum));
1322 DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
1327 else /* Call0 ABI. */
1329 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1330 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1332 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1339 /* If register was saved in the prologue, retrieve it. */
1340 stkofs = cache->c0.c0_rt[reg].to_stk;
1341 if (stkofs != C0_NOSTK)
1343 /* Determine SP on entry based on FP. */
1344 spe = cache->c0.c0_fp
1345 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1347 *lvalp = lval_memory;
1348 *addrp = spe + stkofs;
1352 read_memory (*addrp, valuep,
1353 register_size (gdbarch, regnum));
1355 DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
1361 /* All other registers have been either saved to
1362 the stack or are still alive in the processor. */
1365 *lvalp = lval_register;
1369 frame_unwind_register (next_frame, (*realnump), valuep);
1373 static const struct frame_unwind
1374 xtensa_frame_unwind =
1377 xtensa_frame_this_id,
1378 xtensa_frame_prev_register
1381 static const struct frame_unwind *
1382 xtensa_frame_sniffer (struct frame_info *next_frame)
1384 return &xtensa_frame_unwind;
1388 xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache)
1390 struct xtensa_frame_cache *cache =
1391 xtensa_frame_cache (next_frame, this_cache);
1396 static const struct frame_base
1399 &xtensa_frame_unwind,
1400 xtensa_frame_base_address,
1401 xtensa_frame_base_address,
1402 xtensa_frame_base_address
1407 xtensa_extract_return_value (struct type *type,
1408 struct regcache *regcache,
1411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1412 bfd_byte *valbuf = dst;
1413 int len = TYPE_LENGTH (type);
1418 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1420 gdb_assert(len > 0);
1422 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1424 /* First, we have to find the caller window in the register file. */
1425 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1426 callsize = extract_call_winsize (gdbarch, pc);
1428 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1429 if (len > (callsize > 8 ? 8 : 16))
1430 internal_error (__FILE__, __LINE__,
1431 _("cannot extract return value of %d bytes long"), len);
1433 /* Get the register offset of the return
1434 register (A2) in the caller window. */
1435 regcache_raw_read_unsigned
1436 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1437 areg = areg_number (gdbarch,
1438 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1442 /* No windowing hardware - Call0 ABI. */
1443 areg = gdbarch_tdep (gdbarch)->a0_base + 0 + C0_ARGS;
1446 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1448 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1451 for (; len > 0; len -= 4, areg++, valbuf += 4)
1454 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1456 regcache_raw_read (regcache, areg, valbuf);
1462 xtensa_store_return_value (struct type *type,
1463 struct regcache *regcache,
1466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1467 const bfd_byte *valbuf = dst;
1471 int len = TYPE_LENGTH (type);
1474 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1476 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1478 regcache_raw_read_unsigned
1479 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1480 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1481 callsize = extract_call_winsize (gdbarch, pc);
1483 if (len > (callsize > 8 ? 8 : 16))
1484 internal_error (__FILE__, __LINE__,
1485 _("unimplemented for this length: %d"),
1486 TYPE_LENGTH (type));
1487 areg = areg_number (gdbarch,
1488 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1490 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1491 callsize, (int) wb);
1495 areg = gdbarch_tdep (gdbarch)->a0_base + 0 + C0_ARGS;
1498 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1501 for (; len > 0; len -= 4, areg++, valbuf += 4)
1504 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1506 regcache_raw_write (regcache, areg, valbuf);
1511 static enum return_value_convention
1512 xtensa_return_value (struct gdbarch *gdbarch,
1513 struct type *valtype,
1514 struct regcache *regcache,
1516 const gdb_byte *writebuf)
1518 /* Structures up to 16 bytes are returned in registers. */
1520 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1521 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1522 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1523 && TYPE_LENGTH (valtype) > 16);
1526 return RETURN_VALUE_STRUCT_CONVENTION;
1528 DEBUGTRACE ("xtensa_return_value(...)\n");
1530 if (writebuf != NULL)
1532 xtensa_store_return_value (valtype, regcache, writebuf);
1535 if (readbuf != NULL)
1537 gdb_assert (!struct_return);
1538 xtensa_extract_return_value (valtype, regcache, readbuf);
1540 return RETURN_VALUE_REGISTER_CONVENTION;
1547 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1548 struct value *function,
1549 struct regcache *regcache,
1552 struct value **args,
1555 CORE_ADDR struct_addr)
1558 int size, onstack_size;
1559 gdb_byte *buf = (gdb_byte *) alloca (16);
1561 struct argument_info
1563 const bfd_byte *contents;
1565 int onstack; /* onstack == 0 => in reg */
1566 int align; /* alignment */
1569 int offset; /* stack offset if on stack */
1570 int regno; /* regno if in register */
1574 struct argument_info *arg_info =
1575 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1579 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1581 if (xtensa_debug_level > 3)
1584 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1585 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1586 "struct_addr=0x%x\n",
1587 (int) sp, (int) struct_return, (int) struct_addr);
1589 for (i = 0; i < nargs; i++)
1591 struct value *arg = args[i];
1592 struct type *arg_type = check_typedef (value_type (arg));
1593 fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
1594 i, (unsigned long) arg, TYPE_LENGTH (arg_type));
1595 switch (TYPE_CODE (arg_type))
1598 fprintf_unfiltered (gdb_stdlog, "int");
1600 case TYPE_CODE_STRUCT:
1601 fprintf_unfiltered (gdb_stdlog, "struct");
1604 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1607 fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
1608 (unsigned long) value_contents (arg));
1612 /* First loop: collect information.
1613 Cast into type_long. (This shouldn't happen often for C because
1614 GDB already does this earlier.) It's possible that GDB could
1615 do it all the time but it's harmless to leave this code here. */
1622 size = REGISTER_SIZE;
1624 for (i = 0; i < nargs; i++)
1626 struct argument_info *info = &arg_info[i];
1627 struct value *arg = args[i];
1628 struct type *arg_type = check_typedef (value_type (arg));
1630 switch (TYPE_CODE (arg_type))
1633 case TYPE_CODE_BOOL:
1634 case TYPE_CODE_CHAR:
1635 case TYPE_CODE_RANGE:
1636 case TYPE_CODE_ENUM:
1638 /* Cast argument to long if necessary as the mask does it too. */
1639 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1641 arg_type = builtin_type_long;
1642 arg = value_cast (arg_type, arg);
1644 /* Aligment is equal to the type length for the basic types. */
1645 info->align = TYPE_LENGTH (arg_type);
1650 /* Align doubles correctly. */
1651 if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double))
1652 info->align = TYPE_LENGTH (builtin_type_double);
1654 info->align = TYPE_LENGTH (builtin_type_long);
1657 case TYPE_CODE_STRUCT:
1659 info->align = TYPE_LENGTH (builtin_type_long);
1662 info->length = TYPE_LENGTH (arg_type);
1663 info->contents = value_contents (arg);
1665 /* Align size and onstack_size. */
1666 size = (size + info->align - 1) & ~(info->align - 1);
1667 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1669 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1672 info->u.offset = onstack_size;
1673 onstack_size += info->length;
1678 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1680 size += info->length;
1683 /* Adjust the stack pointer and align it. */
1684 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1686 /* Simulate MOVSP, if Windowed ABI. */
1687 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1690 read_memory (osp - 16, buf, 16);
1691 write_memory (sp - 16, buf, 16);
1694 /* Second Loop: Load arguments. */
1698 store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
1699 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1702 for (i = 0; i < nargs; i++)
1704 struct argument_info *info = &arg_info[i];
1708 int n = info->length;
1709 CORE_ADDR offset = sp + info->u.offset;
1711 /* Odd-sized structs are aligned to the lower side of a memory
1712 word in big-endian mode and require a shift. This only
1713 applies for structures smaller than one word. */
1715 if (n < REGISTER_SIZE
1716 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1717 offset += (REGISTER_SIZE - n);
1719 write_memory (offset, info->contents, info->length);
1724 int n = info->length;
1725 const bfd_byte *cp = info->contents;
1726 int r = info->u.regno;
1728 /* Odd-sized structs are aligned to the lower side of registers in
1729 big-endian mode and require a shift. The odd-sized leftover will
1730 be at the end. Note that this is only true for structures smaller
1731 than REGISTER_SIZE; for larger odd-sized structures the excess
1732 will be left-aligned in the register on both endiannesses. */
1734 if (n < REGISTER_SIZE
1735 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1737 ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
1738 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1740 store_unsigned_integer (buf, REGISTER_SIZE, v);
1741 regcache_cooked_write (regcache, r, buf);
1743 cp += REGISTER_SIZE;
1750 regcache_cooked_write (regcache, r, cp);
1752 cp += REGISTER_SIZE;
1759 /* Set the return address of dummy frame to the dummy address.
1760 The return address for the current function (in A0) is
1761 saved in the dummy frame, so we can savely overwrite A0 here. */
1763 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1765 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1766 regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
1767 ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
1768 regcache_cooked_write_unsigned
1769 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1770 regcache_cooked_write_unsigned (regcache,
1771 gdbarch_ps_regnum (gdbarch),
1776 /* Simulate CALL0: write RA into A0 register. */
1777 regcache_cooked_write_unsigned
1778 (regcache, gdbarch_tdep (gdbarch)->a0_base + 0, bp_addr);
1781 /* Set new stack pointer and return it. */
1782 regcache_cooked_write_unsigned (regcache,
1783 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1784 /* Make dummy frame ID unique by adding a constant. */
1785 return sp + SP_ALIGNMENT;
1789 /* Return a breakpoint for the current location of PC. We always use
1790 the density version if we have density instructions (regardless of the
1791 current instruction at PC), and use regular instructions otherwise. */
1793 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1794 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1795 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1796 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1798 static const unsigned char *
1799 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1802 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1803 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1804 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1805 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1807 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1809 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1811 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1813 *lenptr = sizeof (density_big_breakpoint);
1814 return density_big_breakpoint;
1818 *lenptr = sizeof (density_little_breakpoint);
1819 return density_little_breakpoint;
1824 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1826 *lenptr = sizeof (big_breakpoint);
1827 return big_breakpoint;
1831 *lenptr = sizeof (little_breakpoint);
1832 return little_breakpoint;
1837 /* Call0 ABI support routines. */
1839 /* Call0 opcode class. Opcodes are preclassified according to what they
1840 mean for Call0 prologue analysis, and their number of significant operands.
1841 The purpose of this is to simplify prologue analysis by separating
1842 instruction decoding (libisa) from the semantics of prologue analysis. */
1845 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
1846 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
1847 c0opc_flow, /* Flow control insn. */
1848 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
1849 c0opc_break, /* Debugger software breakpoints. */
1850 c0opc_add, /* Adding two registers. */
1851 c0opc_addi, /* Adding a register and an immediate. */
1852 c0opc_sub, /* Subtracting a register from a register. */
1853 c0opc_mov, /* Moving a register to a register. */
1854 c0opc_movi, /* Moving an immediate to a register. */
1855 c0opc_l32r, /* Loading a literal. */
1856 c0opc_s32i, /* Storing word at fixed offset from a base register. */
1857 c0opc_NrOf /* Number of opcode classifications. */
1861 /* Classify an opcode based on what it means for Call0 prologue analysis. */
1863 static xtensa_insn_kind
1864 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
1866 const char *opcname;
1867 xtensa_insn_kind opclass = c0opc_uninteresting;
1869 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
1871 /* Get opcode name and handle special classifications. */
1873 opcname = xtensa_opcode_name (isa, opc);
1876 || strcasecmp (opcname, "ill") == 0
1877 || strcasecmp (opcname, "ill.n") == 0)
1878 opclass = c0opc_illegal;
1879 else if (strcasecmp (opcname, "break") == 0
1880 || strcasecmp (opcname, "break.n") == 0)
1881 opclass = c0opc_break;
1882 else if (strcasecmp (opcname, "entry") == 0)
1883 opclass = c0opc_entry;
1884 else if (xtensa_opcode_is_branch (isa, opc) > 0
1885 || xtensa_opcode_is_jump (isa, opc) > 0
1886 || xtensa_opcode_is_loop (isa, opc) > 0
1887 || xtensa_opcode_is_call (isa, opc) > 0
1888 || strcasecmp (opcname, "simcall") == 0
1889 || strcasecmp (opcname, "syscall") == 0)
1890 opclass = c0opc_flow;
1892 /* Also, classify specific opcodes that need to be tracked. */
1893 else if (strcasecmp (opcname, "add") == 0
1894 || strcasecmp (opcname, "add.n") == 0)
1895 opclass = c0opc_add;
1896 else if (strcasecmp (opcname, "addi") == 0
1897 || strcasecmp (opcname, "addi.n") == 0
1898 || strcasecmp (opcname, "addmi") == 0)
1899 opclass = c0opc_addi;
1900 else if (strcasecmp (opcname, "sub") == 0)
1901 opclass = c0opc_sub;
1902 else if (strcasecmp (opcname, "mov.n") == 0
1903 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
1904 opclass = c0opc_mov;
1905 else if (strcasecmp (opcname, "movi") == 0
1906 || strcasecmp (opcname, "movi.n") == 0)
1907 opclass = c0opc_movi;
1908 else if (strcasecmp (opcname, "l32r") == 0)
1909 opclass = c0opc_l32r;
1910 else if (strcasecmp (opcname, "s32i") == 0
1911 || strcasecmp (opcname, "s32i.n") == 0)
1912 opclass = c0opc_s32i;
1917 /* Tracks register movement/mutation for a given operation, which may
1918 be within a bundle. Updates the destination register tracking info
1919 accordingly. The pc is needed only for pc-relative load instructions
1920 (eg. l32r). The SP register number is needed to identify stores to
1924 call0_track_op (xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
1925 xtensa_insn_kind opclass, int nods, unsigned odv[],
1926 CORE_ADDR pc, int spreg)
1928 unsigned litbase, litaddr, litval;
1933 /* 3 operands: dst, src, imm. */
1934 gdb_assert (nods == 3);
1935 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1936 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
1939 /* 3 operands: dst, src1, src2. */
1940 gdb_assert (nods == 3);
1941 if (src[odv[1]].fr_reg == C0_CONST)
1943 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
1944 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
1946 else if (src[odv[2]].fr_reg == C0_CONST)
1948 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1949 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
1951 else dst[odv[0]].fr_reg = C0_INEXP;
1954 /* 3 operands: dst, src1, src2. */
1955 gdb_assert (nods == 3);
1956 if (src[odv[2]].fr_reg == C0_CONST)
1958 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1959 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
1961 else dst[odv[0]].fr_reg = C0_INEXP;
1964 /* 2 operands: dst, src [, src]. */
1965 gdb_assert (nods == 2);
1966 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1967 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
1970 /* 2 operands: dst, imm. */
1971 gdb_assert (nods == 2);
1972 dst[odv[0]].fr_reg = C0_CONST;
1973 dst[odv[0]].fr_ofs = odv[1];
1976 /* 2 operands: dst, literal offset. */
1977 gdb_assert (nods == 2);
1978 /* litbase = xtensa_get_litbase (pc); can be also used. */
1979 litbase = (gdbarch_tdep (current_gdbarch)->litbase_regnum == -1)
1980 ? 0 : xtensa_read_register
1981 (gdbarch_tdep (current_gdbarch)->litbase_regnum);
1982 litaddr = litbase & 1
1983 ? (litbase & ~1) + (signed)odv[1]
1984 : (pc + 3 + (signed)odv[1]) & ~3;
1985 litval = read_memory_integer(litaddr, 4);
1986 dst[odv[0]].fr_reg = C0_CONST;
1987 dst[odv[0]].fr_ofs = litval;
1990 /* 3 operands: value, base, offset. */
1991 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
1992 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
1993 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
1994 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
1995 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
1996 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
1998 /* ISA encoding guarantees alignment. But, check it anyway. */
1999 gdb_assert ((odv[2] & 3) == 0);
2000 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2008 /* Analyze prologue of the function at start address to determine if it uses
2009 the Call0 ABI, and if so track register moves and linear modifications
2010 in the prologue up to the PC or just beyond the prologue, whichever is first.
2011 An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
2012 The prologue may overlap non-prologue instructions but is guaranteed to end
2013 by the first flow-control instruction (jump, branch, call or return).
2014 Since an optimized function may move information around and change the
2015 stack frame arbitrarily during the prologue, the information is guaranteed
2016 valid only at the point in the function indicated by the PC.
2017 May be used to skip the prologue or identify the ABI, w/o tracking.
2019 Returns: Address of first instruction after prologue, or PC (whichever
2020 is first), or 0, if decoding failed (in libisa).
2022 start Start address of function/prologue.
2023 pc Program counter to stop at. Use 0 to continue to end of prologue.
2024 If 0, avoids infinite run-on in corrupt code memory by bounding
2025 the scan to the end of the function if that can be determined.
2026 nregs Number of general registers to track (size of rt[] array).
2028 rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
2029 If NULL, registers are not tracked.
2031 call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
2032 (more accurately, non-zero until 'entry' insn is encountered).
2034 Note that these may produce useful results even if decoding fails
2035 because they begin with default assumptions that analysis may change. */
2038 call0_analyze_prologue (CORE_ADDR start, CORE_ADDR pc,
2039 int nregs, xtensa_c0reg_t rt[], int *call0)
2041 CORE_ADDR ia; /* Current insn address in prologue. */
2042 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2043 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2044 #define BSZ 32 /* Instruction buffer size. */
2045 char ibuf[BSZ]; /* Instruction buffer for decoding prologue. */
2046 xtensa_isa isa; /* libisa ISA handle. */
2047 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2048 xtensa_format ifmt; /* libisa instruction format. */
2049 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2050 xtensa_opcode opc; /* Opcode in current slot. */
2051 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2052 int nods; /* Opcode number of operands. */
2053 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2054 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2055 int j; /* General loop counter. */
2056 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2057 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2058 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2060 struct symtab_and_line prologue_sal;
2062 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2063 (int)start, (int)pc);
2065 /* Try to limit the scan to the end of the function if a non-zero pc
2066 arg was not supplied to avoid probing beyond the end of valid memory.
2067 If memory is full of garbage that classifies as c0opc_uninteresting.
2068 If this fails (eg. if no symbols) pc ends up 0 as it was.
2069 Intialize the Call0 frame and register tracking info.
2070 Assume it's Call0 until an 'entry' instruction is encountered.
2071 Assume we may be in the prologue until we hit a flow control instr. */
2077 /* Find out, if we have an information about the prologue from DWARF. */
2078 prologue_sal = find_pc_line (start, 0);
2079 if (prologue_sal.line != 0) /* Found debug info. */
2080 body_pc = prologue_sal.end;
2082 /* If we are going to analyze the prologue in general without knowing about
2083 the current PC, make the best assumtion for the end of the prologue. */
2086 find_pc_partial_function (start, 0, NULL, &end_pc);
2087 body_pc = min (end_pc, body_pc);
2090 body_pc = min (pc, body_pc);
2097 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2098 /* rt is already initialized in xtensa_alloc_frame_cache(). */
2102 isa = xtensa_default_isa;
2103 gdb_assert (BSZ >= xtensa_isa_maxlength (isa));
2104 ins = xtensa_insnbuf_alloc (isa);
2105 slot = xtensa_insnbuf_alloc (isa);
2107 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2109 /* (Re)fill instruction buffer from memory if necessary, but do not
2110 read memory beyond PC to be sure we stay within text section
2111 (this protection only works if a non-zero pc is supplied). */
2113 if (ia + xtensa_isa_maxlength (isa) > bt)
2116 bt = (ba + BSZ) < body_pc ? ba + BSZ : body_pc;
2117 read_memory (ba, ibuf, bt - ba);
2120 /* Decode format information. */
2122 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2123 ifmt = xtensa_format_decode (isa, ins);
2124 if (ifmt == XTENSA_UNDEFINED)
2129 ilen = xtensa_format_length (isa, ifmt);
2130 if (ilen == XTENSA_UNDEFINED)
2135 islots = xtensa_format_num_slots (isa, ifmt);
2136 if (islots == XTENSA_UNDEFINED)
2142 /* Analyze a bundle or a single instruction, using a snapshot of
2143 the register tracking info as input for the entire bundle so that
2144 register changes do not take effect within this bundle. */
2146 for (j = 0; j < nregs; ++j)
2149 for (is = 0; is < islots; ++is)
2151 /* Decode a slot and classify the opcode. */
2153 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2157 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2158 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2160 if (opc == XTENSA_UNDEFINED)
2161 opclass = c0opc_illegal;
2163 opclass = call0_classify_opcode (isa, opc);
2165 /* Decide whether to track this opcode, ignore it, or bail out. */
2174 case c0opc_uninteresting:
2183 ia += ilen; /* Skip over 'entry' insn. */
2191 /* Only expected opcodes should get this far. */
2195 /* Extract and decode the operands. */
2196 nods = xtensa_opcode_num_operands (isa, opc);
2197 if (nods == XTENSA_UNDEFINED)
2203 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2205 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2210 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2215 /* Check operands to verify use of 'mov' assembler macro. */
2216 if (opclass == c0opc_mov && nods == 3)
2218 if (odv[2] == odv[1])
2222 opclass = c0opc_uninteresting;
2227 /* Track register movement and modification for this operation. */
2228 call0_track_op (rt, rtmp, opclass, nods, odv, ia, 1);
2232 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2233 (unsigned)ia, fail ? "failed" : "succeeded");
2234 xtensa_insnbuf_free(isa, slot);
2235 xtensa_insnbuf_free(isa, ins);
2236 return fail ? 0 : ia;
2239 /* Initialize frame cache for the current frame. The "next_frame" is the next
2240 one relative to current frame. "cache" is the pointer to the data structure
2241 we have to initialize. "pc" is curretnt PC. */
2244 call0_frame_cache (struct frame_info *next_frame,
2245 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2247 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2248 CORE_ADDR start_pc; /* The beginning of the function. */
2249 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2250 CORE_ADDR sp, fp, ra;
2251 int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
2253 /* Find the beginning of the prologue of the function containing the PC
2254 and analyze it up to the PC or the end of the prologue. */
2256 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2258 body_pc = call0_analyze_prologue (start_pc, pc, C0_NREGS,
2259 &cache->c0.c0_rt[0],
2263 sp = frame_unwind_register_unsigned
2264 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2265 fp = sp; /* Assume FP == SP until proven otherwise. */
2267 /* Get the frame information and FP (if used) at the current PC.
2268 If PC is in the prologue, the prologue analysis is more reliable
2269 than DWARF info. We don't not know for sure if PC is in the prologue,
2270 but we know no calls have yet taken place, so we can almost
2271 certainly rely on the prologue analysis. */
2275 /* Prologue analysis was successful up to the PC.
2276 It includes the cases when PC == START_PC. */
2277 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2278 /* c0_hasfp == true means there is a frame pointer because
2279 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2280 was derived from SP. Otherwise, it would be C0_FP. */
2281 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2282 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2283 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2285 else /* No data from the prologue analysis. */
2288 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2293 prev_sp = fp + c0_frmsz;
2295 /* Frame size from debug info or prologue tracking does not account for
2296 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2299 fp = frame_unwind_register_unsigned (next_frame, fp_regnum);
2301 /* Recalculate previous SP. */
2302 prev_sp = fp + c0_frmsz;
2303 /* Update the stack frame size. */
2304 c0_frmsz += fp - sp;
2307 /* Get the return address (RA) from the stack if saved,
2308 or try to get it from a register. */
2310 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2311 if (to_stk != C0_NOSTK)
2313 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk, 4);
2315 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2316 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2318 /* Special case for terminating backtrace at a function that wants to
2319 be seen as the outermost. Such a function will clear it's RA (A0)
2320 register to 0 in the prologue instead of saving its original value. */
2325 /* RA was copied to another register or (before any function call) may
2326 still be in the original RA register. This is not always reliable:
2327 even in a leaf function, register tracking stops after prologue, and
2328 even in prologue, non-prologue instructions (not tracked) may overwrite
2329 RA or any register it was copied to. If likely in prologue or before
2330 any call, use retracking info and hope for the best (compiler should
2331 have saved RA in stack if not in a leaf function). If not in prologue,
2337 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2339 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2341 if (i < C0_NREGS) /* Read from the next_frame. */
2343 ra = frame_unwind_register_unsigned
2345 gdbarch_tdep (gdbarch)->a0_base + 0
2346 + cache->c0.c0_rt[i].fr_reg);
2351 cache->pc = start_pc;
2353 /* RA == 0 marks the outermost frame. Do not go past it. */
2354 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2355 cache->c0.fp_regnum = fp_regnum;
2356 cache->c0.c0_frmsz = c0_frmsz;
2357 cache->c0.c0_hasfp = c0_hasfp;
2358 cache->c0.c0_fp = fp;
2362 /* Skip function prologue.
2364 Return the pc of the first instruction after prologue. GDB calls this to
2365 find the address of the first line of the function or (if there is no line
2366 number information) to skip the prologue for planting breakpoints on
2367 function entries. Use debug info (if present) or prologue analysis to skip
2368 the prologue to achieve reliable debugging behavior. For windowed ABI,
2369 only the 'entry' instruction is skipped. It is not strictly necessary to
2370 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2371 backtrace at any point in the prologue, however certain potential hazards
2372 are avoided and a more "normal" debugging experience is ensured by
2373 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2374 For example, if we don't skip the prologue:
2375 - Some args may not yet have been saved to the stack where the debug
2376 info expects to find them (true anyway when only 'entry' is skipped);
2377 - Software breakpoints ('break' instrs) may not have been unplanted
2378 when the prologue analysis is done on initializing the frame cache,
2379 and breaks in the prologue will throw off the analysis.
2381 If we have debug info ( line-number info, in particular ) we simply skip
2382 the code associated with the first function line effectively skipping
2383 the prologue code. It works even in cases like
2386 { int local_var = 1;
2390 because, for this source code, both Xtensa compilers will generate two
2391 separate entries ( with the same line number ) in dwarf line-number
2392 section to make sure there is a boundary between the prologue code and
2393 the rest of the function.
2395 If there is no debug info, we need to analyze the code. */
2397 /* #define DONT_SKIP_PROLOGUE */
2400 xtensa_skip_prologue (CORE_ADDR start_pc)
2402 struct symtab_and_line prologue_sal;
2405 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2407 #if DONT_SKIP_PROLOGUE
2411 /* Try to find first body line from debug info. */
2413 prologue_sal = find_pc_line (start_pc, 0);
2414 if (prologue_sal.line != 0) /* Found debug info. */
2416 /* In Call0, it is possible to have a function with only one instruction
2417 ('ret') resulting from a 1-line optimized function that does nothing.
2418 In that case, prologue_sal.end may actually point to the start of the
2419 next function in the text section, causing a breakpoint to be set at
2420 the wrong place. Check if the end address is in a different function,
2421 and if so return the start PC. We know we have symbol info. */
2425 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
2426 if (end_func != start_pc)
2429 return prologue_sal.end;
2432 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
2433 body_pc = call0_analyze_prologue(start_pc, 0, 0, NULL, NULL);
2434 return body_pc != 0 ? body_pc : start_pc;
2437 /* Verify the current configuration. */
2439 xtensa_verify_config (struct gdbarch *gdbarch)
2441 struct ui_file *log;
2442 struct cleanup *cleanups;
2443 struct gdbarch_tdep *tdep;
2447 tdep = gdbarch_tdep (gdbarch);
2448 log = mem_fileopen ();
2449 cleanups = make_cleanup_ui_file_delete (log);
2451 /* Verify that we got a reasonable number of AREGS. */
2452 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
2453 fprintf_unfiltered (log, _("\
2454 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
2457 /* Verify that certain registers exist. */
2459 if (tdep->pc_regnum == -1)
2460 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
2461 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
2462 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
2464 if (tdep->isa_use_windowed_registers)
2466 if (tdep->wb_regnum == -1)
2467 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
2468 if (tdep->ws_regnum == -1)
2469 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
2470 if (tdep->ar_base == -1)
2471 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
2474 if (tdep->a0_base == -1)
2475 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
2477 buf = ui_file_xstrdup (log, &dummy);
2478 make_cleanup (xfree, buf);
2479 if (strlen (buf) > 0)
2480 internal_error (__FILE__, __LINE__,
2481 _("the following are invalid: %s"), buf);
2482 do_cleanups (cleanups);
2485 /* Module "constructor" function. */
2487 static struct gdbarch *
2488 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2490 struct gdbarch_tdep *tdep;
2491 struct gdbarch *gdbarch;
2492 struct xtensa_abi_handler *abi_handler;
2494 DEBUGTRACE ("gdbarch_init()\n");
2496 /* We have to set the byte order before we call gdbarch_alloc. */
2497 info.byte_order = xtensa_config_byte_order (&info);
2499 tdep = xtensa_config_tdep (&info);
2500 gdbarch = gdbarch_alloc (&info, tdep);
2502 /* Verify our configuration. */
2503 xtensa_verify_config (gdbarch);
2505 /* Pseudo-Register read/write. */
2506 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
2507 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
2509 /* Set target information. */
2510 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
2511 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
2512 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
2513 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2514 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
2516 /* Renumber registers for known formats (stab, dwarf, and dwarf2). */
2517 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2518 set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2519 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2521 /* We provide our own function to get register information. */
2522 set_gdbarch_register_name (gdbarch, xtensa_register_name);
2523 set_gdbarch_register_type (gdbarch, xtensa_register_type);
2525 /* To call functions from GDB using dummy frame */
2526 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
2528 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2530 set_gdbarch_return_value (gdbarch, xtensa_return_value);
2532 /* Advance PC across any prologue instructions to reach "real" code. */
2533 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
2535 /* Stack grows downward. */
2536 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2538 /* Set breakpoints. */
2539 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
2541 /* After breakpoint instruction or illegal instruction, pc still
2542 points at break instruction, so don't decrement. */
2543 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2545 /* We don't skip args. */
2546 set_gdbarch_frame_args_skip (gdbarch, 0);
2548 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
2550 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
2552 set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id);
2554 /* Frame handling. */
2555 frame_base_set_default (gdbarch, &xtensa_frame_base);
2556 frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer);
2558 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
2560 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2562 xtensa_add_reggroups (gdbarch);
2563 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
2565 set_gdbarch_regset_from_core_section (gdbarch,
2566 xtensa_regset_from_core_section);
2572 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2574 error (_("xtensa_dump_tdep(): not implemented"));
2578 _initialize_xtensa_tdep (void)
2580 struct cmd_list_element *c;
2582 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
2583 xtensa_init_reggroups ();
2585 add_setshow_zinteger_cmd ("xtensa",
2587 &xtensa_debug_level, _("\
2588 Set Xtensa debugging."), _("\
2589 Show Xtensa debugging."), _("\
2590 When non-zero, Xtensa-specific debugging is enabled. \
2591 Can be 1, 2, 3, or 4 indicating the level of debugging."),
2594 &setdebuglist, &showdebuglist);