1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "solib-svr4.h"
31 #include "floatformat.h"
33 #include "reggroups.h"
36 #include "dummy-frame.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame-base.h"
41 #include "frame-unwind.h"
43 #include "arch-utils.h"
50 #include "gdb_assert.h"
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
57 static unsigned int xtensa_debug_level = 0;
59 #define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63 #define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67 #define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71 #define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
76 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
77 #define SP_ALIGNMENT 16
80 /* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
82 #define ARGS_NUM_REGS 6
83 #define REGISTER_SIZE 4
86 /* Extract the call size from the return address or PS register. */
87 #define PS_CALLINC_SHIFT 16
88 #define PS_CALLINC_MASK 0x00030000
89 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
92 /* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
97 /* ABI-independent macros. */
98 #define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101 #define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
106 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
109 #define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
111 ? ((op1) == 0x6c) : ((op1) == 0x36))
113 #define XTENSA_ENTRY_LENGTH 3
115 /* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
119 #define PS_WOE (1<<18)
120 #define PS_EXC (1<<4)
123 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
125 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
126 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
129 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
132 /* Convert a live A-register number to the corresponding AR-register
135 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
140 arreg = a_regnum - tdep->a0_base;
141 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
142 arreg &= tdep->num_aregs - 1;
144 return arreg + tdep->ar_base;
147 /* Convert a live AR-register number to the corresponding A-register order
148 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
150 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
155 areg = ar_regnum - tdep->ar_base;
156 if (areg < 0 || areg >= tdep->num_aregs)
158 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
159 return (areg > 15) ? -1 : areg;
162 /* Read Xtensa register directly from the hardware. */
164 xtensa_read_register (int regnum)
168 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
169 return (unsigned long) value;
172 /* Write Xtensa register directly to the hardware. */
174 xtensa_write_register (int regnum, ULONGEST value)
176 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
179 /* Return the window size of the previous call to the function from which we
182 This function is used to extract the return value after a called function
183 has returned to the caller. On Xtensa, the register that holds the return
184 value (from the perspective of the caller) depends on what call
185 instruction was used. For now, we are assuming that the call instruction
186 precedes the current address, so we simply analyze the call instruction.
187 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
188 method to call the inferior function. */
191 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
193 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
198 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
200 /* Read the previous instruction (should be a call[x]{4|8|12}. */
201 read_memory (pc-3, buf, 3);
202 insn = extract_unsigned_integer (buf, 3, byte_order);
204 /* Decode call instruction:
206 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
207 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
209 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
210 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
212 if (byte_order == BFD_ENDIAN_LITTLE)
214 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
215 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
219 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
220 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
226 /* REGISTER INFORMATION */
228 /* Find register by name. */
230 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
234 for (i = 0; i < gdbarch_num_regs (gdbarch)
235 + gdbarch_num_pseudo_regs (gdbarch);
238 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
244 /* Returns the name of a register. */
246 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
248 /* Return the name stored in the register map. */
249 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
250 + gdbarch_num_pseudo_regs (gdbarch))
251 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
253 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
257 /* Return the type of a register. Create a new type, if necessary. */
260 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264 /* Return signed integer for ARx and Ax registers. */
265 if ((regnum >= tdep->ar_base
266 && regnum < tdep->ar_base + tdep->num_aregs)
267 || (regnum >= tdep->a0_base
268 && regnum < tdep->a0_base + 16))
269 return builtin_type (gdbarch)->builtin_int;
271 if (regnum == gdbarch_pc_regnum (gdbarch)
272 || regnum == tdep->a0_base + 1)
273 return builtin_type (gdbarch)->builtin_data_ptr;
275 /* Return the stored type for all other registers. */
276 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
277 + gdbarch_num_pseudo_regs (gdbarch))
279 xtensa_register_t* reg = &tdep->regmap[regnum];
281 /* Set ctype for this register (only the first time). */
285 struct ctype_cache *tp;
286 int size = reg->byte_size;
288 /* We always use the memory representation,
289 even if the register width is smaller. */
293 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
297 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
301 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
305 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
309 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
313 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
314 if (tp->size == size)
319 char *name = xstrprintf ("int%d", size * 8);
320 tp = xmalloc (sizeof (struct ctype_cache));
321 tp->next = tdep->type_entries;
322 tdep->type_entries = tp;
325 = arch_integer_type (gdbarch, size * 8, 1, name);
329 reg->ctype = tp->virtual_type;
335 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
340 /* Return the 'local' register number for stubs, dwarf2, etc.
341 The debugging information enumerates registers starting from 0 for A0
342 to n for An. So, we only have to add the base number for A0. */
345 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
349 if (regnum >= 0 && regnum < 16)
350 return gdbarch_tdep (gdbarch)->a0_base + regnum;
353 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
355 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
358 internal_error (__FILE__, __LINE__,
359 _("invalid dwarf/stabs register number %d"), regnum);
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
393 mem |= (buffer[bytesize - i - 1] << 24);
398 for (i = 0; i < bytesize; i++)
401 mem |= (buffer[i] << 24);
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
431 regval |= mem << (size - shift);
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
438 /* Don't overwrite the unmasked areas. */
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
476 int r = mask->mask[i].reg_num;
479 enum register_status status;
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
485 regval = (unsigned int) val;
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
496 regval &= (0xffffffff >> (32 - size));
498 mem |= regval << shift;
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
512 mem = regval >> (size - shift);
519 /* Copy value to target byte order. */
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
528 buffer[bytesize - i - 1] = mem & 0xff;
532 for (i = 0; i < bytesize; i++)
536 buffer[i] = mem & 0xff;
544 /* Read pseudo registers. */
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
557 if (regnum == gdbarch_num_regs (gdbarch)
558 + gdbarch_num_pseudo_regs (gdbarch) - 1)
559 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
561 /* Read aliases a0..a15, if this is a Windowed ABI. */
562 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
563 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
564 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
566 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
567 enum register_status status;
569 status = regcache_raw_read (regcache,
570 gdbarch_tdep (gdbarch)->wb_regnum,
572 if (status != REG_VALID)
574 regnum = arreg_number (gdbarch, regnum,
575 extract_unsigned_integer (buf, 4, byte_order));
578 /* We can always read non-pseudo registers. */
579 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
580 return regcache_raw_read (regcache, regnum, buffer);
582 /* We have to find out how to deal with priveleged registers.
583 Let's treat them as pseudo-registers, but we cannot read/write them. */
585 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
587 buffer[0] = (gdb_byte)0;
588 buffer[1] = (gdb_byte)0;
589 buffer[2] = (gdb_byte)0;
590 buffer[3] = (gdb_byte)0;
593 /* Pseudo registers. */
595 && regnum < gdbarch_num_regs (gdbarch)
596 + gdbarch_num_pseudo_regs (gdbarch))
598 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
599 xtensa_register_type_t type = reg->type;
600 int flags = gdbarch_tdep (gdbarch)->target_flags;
602 /* We cannot read Unknown or Unmapped registers. */
603 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
605 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
607 warning (_("cannot read register %s"),
608 xtensa_register_name (gdbarch, regnum));
613 /* Some targets cannot read TIE register files. */
614 else if (type == xtRegisterTypeTieRegfile)
616 /* Use 'fetch' to get register? */
617 if (flags & xtTargetFlagsUseFetchStore)
619 warning (_("cannot read register"));
623 /* On some targets (esp. simulators), we can always read the reg. */
624 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
626 warning (_("cannot read register"));
631 /* We can always read mapped registers. */
632 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
633 return xtensa_register_read_masked (regcache, reg, buffer);
635 /* Assume that we can read the register. */
636 return regcache_raw_read (regcache, regnum, buffer);
639 internal_error (__FILE__, __LINE__,
640 _("invalid register number %d"), regnum);
644 /* Write pseudo registers. */
647 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
648 struct regcache *regcache,
650 const gdb_byte *buffer)
652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
654 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
655 regnum, xtensa_register_name (gdbarch, regnum));
657 if (regnum == gdbarch_num_regs (gdbarch)
658 + gdbarch_num_pseudo_regs (gdbarch) -1)
659 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
661 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
662 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
663 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
664 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
666 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
668 regcache_raw_read (regcache,
669 gdbarch_tdep (gdbarch)->wb_regnum, buf);
670 regnum = arreg_number (gdbarch, regnum,
671 extract_unsigned_integer (buf, 4, byte_order));
674 /* We can always write 'core' registers.
675 Note: We might have converted Ax->ARy. */
676 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
677 regcache_raw_write (regcache, regnum, buffer);
679 /* We have to find out how to deal with priveleged registers.
680 Let's treat them as pseudo-registers, but we cannot read/write them. */
682 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
686 /* Pseudo registers. */
688 && regnum < gdbarch_num_regs (gdbarch)
689 + gdbarch_num_pseudo_regs (gdbarch))
691 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
692 xtensa_register_type_t type = reg->type;
693 int flags = gdbarch_tdep (gdbarch)->target_flags;
695 /* On most targets, we cannot write registers
696 of type "Unknown" or "Unmapped". */
697 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
699 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
701 warning (_("cannot write register %s"),
702 xtensa_register_name (gdbarch, regnum));
707 /* Some targets cannot read TIE register files. */
708 else if (type == xtRegisterTypeTieRegfile)
710 /* Use 'store' to get register? */
711 if (flags & xtTargetFlagsUseFetchStore)
713 warning (_("cannot write register"));
717 /* On some targets (esp. simulators), we can always write
719 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
721 warning (_("cannot write register"));
726 /* We can always write mapped registers. */
727 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
729 xtensa_register_write_masked (regcache, reg, buffer);
733 /* Assume that we can write the register. */
734 regcache_raw_write (regcache, regnum, buffer);
737 internal_error (__FILE__, __LINE__,
738 _("invalid register number %d"), regnum);
741 static struct reggroup *xtensa_ar_reggroup;
742 static struct reggroup *xtensa_user_reggroup;
743 static struct reggroup *xtensa_vectra_reggroup;
744 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
747 xtensa_init_reggroups (void)
750 char cpname[] = "cp0";
752 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
753 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
754 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
756 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
759 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
764 xtensa_add_reggroups (struct gdbarch *gdbarch)
768 /* Predefined groups. */
769 reggroup_add (gdbarch, all_reggroup);
770 reggroup_add (gdbarch, save_reggroup);
771 reggroup_add (gdbarch, restore_reggroup);
772 reggroup_add (gdbarch, system_reggroup);
773 reggroup_add (gdbarch, vector_reggroup);
774 reggroup_add (gdbarch, general_reggroup);
775 reggroup_add (gdbarch, float_reggroup);
777 /* Xtensa-specific groups. */
778 reggroup_add (gdbarch, xtensa_ar_reggroup);
779 reggroup_add (gdbarch, xtensa_user_reggroup);
780 reggroup_add (gdbarch, xtensa_vectra_reggroup);
782 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
783 reggroup_add (gdbarch, xtensa_cp[i]);
787 xtensa_coprocessor_register_group (struct reggroup *group)
791 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
792 if (group == xtensa_cp[i])
798 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
799 | XTENSA_REGISTER_FLAGS_WRITABLE \
800 | XTENSA_REGISTER_FLAGS_VOLATILE)
802 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
803 | XTENSA_REGISTER_FLAGS_WRITABLE)
806 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
808 struct reggroup *group)
810 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
811 xtensa_register_type_t type = reg->type;
812 xtensa_register_group_t rg = reg->group;
815 if (group == save_reggroup)
816 /* Every single register should be included into the list of registers
817 to be watched for changes while using -data-list-changed-registers. */
820 /* First, skip registers that are not visible to this target
821 (unknown and unmapped registers when not using ISS). */
823 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
825 if (group == all_reggroup)
827 if (group == xtensa_ar_reggroup)
828 return rg & xtRegisterGroupAddrReg;
829 if (group == xtensa_user_reggroup)
830 return rg & xtRegisterGroupUser;
831 if (group == float_reggroup)
832 return rg & xtRegisterGroupFloat;
833 if (group == general_reggroup)
834 return rg & xtRegisterGroupGeneral;
835 if (group == system_reggroup)
836 return rg & xtRegisterGroupState;
837 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
838 return rg & xtRegisterGroupVectra;
839 if (group == restore_reggroup)
840 return (regnum < gdbarch_num_regs (gdbarch)
841 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
842 cp_number = xtensa_coprocessor_register_group (group);
844 return rg & (xtRegisterGroupCP0 << cp_number);
850 /* Supply register REGNUM from the buffer specified by GREGS and LEN
851 in the general-purpose register set REGSET to register cache
852 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
855 xtensa_supply_gregset (const struct regset *regset,
861 const xtensa_elf_gregset_t *regs = gregs;
862 struct gdbarch *gdbarch = get_regcache_arch (rc);
865 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
867 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
868 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) ®s->pc);
869 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) ®s->ps);
871 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
872 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
873 (char *) ®s->windowbase);
874 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
875 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
876 (char *) ®s->windowstart);
877 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
878 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
879 (char *) ®s->lbeg);
880 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
881 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
882 (char *) ®s->lend);
883 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
884 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
885 (char *) ®s->lcount);
886 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
887 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
888 (char *) ®s->sar);
889 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
890 && regnum < gdbarch_tdep (gdbarch)->ar_base
891 + gdbarch_tdep (gdbarch)->num_aregs)
892 regcache_raw_supply (rc, regnum,
893 (char *) ®s->ar[regnum - gdbarch_tdep
894 (gdbarch)->ar_base]);
895 else if (regnum == -1)
897 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
898 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
899 (char *) ®s->ar[i]);
904 /* Xtensa register set. */
910 xtensa_supply_gregset
914 /* Return the appropriate register set for the core
915 section identified by SECT_NAME and SECT_SIZE. */
917 static const struct regset *
918 xtensa_regset_from_core_section (struct gdbarch *core_arch,
919 const char *sect_name,
922 DEBUGTRACE ("xtensa_regset_from_core_section "
923 "(..., sect_name==\"%s\", sect_size==%x)\n",
924 sect_name, (unsigned int) sect_size);
926 if (strcmp (sect_name, ".reg") == 0
927 && sect_size >= sizeof(xtensa_elf_gregset_t))
928 return &xtensa_gregset;
934 /* Handling frames. */
936 /* Number of registers to save in case of Windowed ABI. */
937 #define XTENSA_NUM_SAVED_AREGS 12
939 /* Frame cache part for Windowed ABI. */
940 typedef struct xtensa_windowed_frame_cache
942 int wb; /* WINDOWBASE of the previous frame. */
943 int callsize; /* Call size of this frame. */
944 int ws; /* WINDOWSTART of the previous frame. It keeps track of
945 life windows only. If there is no bit set for the
946 window, that means it had been already spilled
947 because of window overflow. */
949 /* Addresses of spilled A-registers.
950 AREGS[i] == -1, if corresponding AR is alive. */
951 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
952 } xtensa_windowed_frame_cache_t;
954 /* Call0 ABI Definitions. */
956 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
958 #define C0_NREGS 16 /* Number of A-registers to track. */
959 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
960 #define C0_SP 1 /* Register used as SP. */
961 #define C0_FP 15 /* Register used as FP. */
962 #define C0_RA 0 /* Register used as return address. */
963 #define C0_ARGS 2 /* Register used as first arg/retval. */
964 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
966 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
967 A-register where the current content of the reg came from (in terms
968 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
969 mean that the orignal content of the register was saved to the stack.
970 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
971 know where SP will end up until the entire prologue has been analyzed. */
973 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
974 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
975 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
977 extern xtensa_isa xtensa_default_isa;
979 typedef struct xtensa_c0reg
981 int fr_reg; /* original register from which register content
982 is derived, or C0_CONST, or C0_INEXP. */
983 int fr_ofs; /* constant offset from reg, or immediate value. */
984 int to_stk; /* offset from original SP to register (4-byte aligned),
985 or C0_NOSTK if register has not been saved. */
988 /* Frame cache part for Call0 ABI. */
989 typedef struct xtensa_call0_frame_cache
991 int c0_frmsz; /* Stack frame size. */
992 int c0_hasfp; /* Current frame uses frame pointer. */
993 int fp_regnum; /* A-register used as FP. */
994 int c0_fp; /* Actual value of frame pointer. */
995 int c0_fpalign; /* Dinamic adjustment for the stack
996 pointer. It's an AND mask. Zero,
997 if alignment was not adjusted. */
998 int c0_old_sp; /* In case of dynamic adjustment, it is
999 a register holding unaligned sp.
1000 C0_INEXP, when undefined. */
1001 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
1002 stack offset. C0_NOSTK otherwise. */
1004 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
1005 } xtensa_call0_frame_cache_t;
1007 typedef struct xtensa_frame_cache
1009 CORE_ADDR base; /* Stack pointer of this frame. */
1010 CORE_ADDR pc; /* PC of this frame at the function entry point. */
1011 CORE_ADDR ra; /* The raw return address of this frame. */
1012 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1013 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1014 int call0; /* It's a call0 framework (else windowed). */
1017 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1018 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1020 } xtensa_frame_cache_t;
1023 static struct xtensa_frame_cache *
1024 xtensa_alloc_frame_cache (int windowed)
1026 xtensa_frame_cache_t *cache;
1029 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1031 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1038 cache->call0 = !windowed;
1041 cache->c0.c0_frmsz = -1;
1042 cache->c0.c0_hasfp = 0;
1043 cache->c0.fp_regnum = -1;
1044 cache->c0.c0_fp = -1;
1045 cache->c0.c0_fpalign = 0;
1046 cache->c0.c0_old_sp = C0_INEXP;
1047 cache->c0.c0_sp_ofs = C0_NOSTK;
1049 for (i = 0; i < C0_NREGS; i++)
1051 cache->c0.c0_rt[i].fr_reg = i;
1052 cache->c0.c0_rt[i].fr_ofs = 0;
1053 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1060 cache->wd.callsize = -1;
1062 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1063 cache->wd.aregs[i] = -1;
1070 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1072 return address & ~15;
1077 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1082 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1083 host_address_to_string (next_frame));
1085 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1086 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1088 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1094 static struct frame_id
1095 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1099 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1101 pc = get_frame_pc (this_frame);
1102 fp = get_frame_register_unsigned
1103 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1105 /* Make dummy frame ID unique by adding a constant. */
1106 return frame_id_build (fp + SP_ALIGNMENT, pc);
1109 /* Returns true, if instruction to execute next is unique to Xtensa Window
1110 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1113 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1115 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1116 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1119 if (byte_order == BFD_ENDIAN_BIG)
1121 /* Check, if this is L32E or S32E. */
1122 code = insn & 0xf000ff00;
1123 if ((code == 0x00009000) || (code == 0x00009400))
1125 /* Check, if this is RFWU or RFWO. */
1126 code = insn & 0xffffff00;
1127 return ((code == 0x00430000) || (code == 0x00530000));
1131 /* Check, if this is L32E or S32E. */
1132 code = insn & 0x00ff000f;
1133 if ((code == 0x090000) || (code == 0x490000))
1135 /* Check, if this is RFWU or RFWO. */
1136 code = insn & 0x00ffffff;
1137 return ((code == 0x00003400) || (code == 0x00003500));
1141 /* Returns the best guess about which register is a frame pointer
1142 for the function containing CURRENT_PC. */
1144 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1145 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1148 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1150 #define RETURN_FP goto done
1152 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1153 CORE_ADDR start_addr;
1155 xtensa_insnbuf ins, slot;
1156 gdb_byte ibuf[XTENSA_ISA_BSZ];
1157 CORE_ADDR ia, bt, ba;
1159 int ilen, islots, is;
1161 const char *opcname;
1163 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1164 if (start_addr == 0)
1167 if (!xtensa_default_isa)
1168 xtensa_default_isa = xtensa_isa_init (0, 0);
1169 isa = xtensa_default_isa;
1170 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1171 ins = xtensa_insnbuf_alloc (isa);
1172 slot = xtensa_insnbuf_alloc (isa);
1175 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1177 if (ia + xtensa_isa_maxlength (isa) > bt)
1180 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1181 ? ba + XTENSA_ISA_BSZ : current_pc;
1182 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1186 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1187 ifmt = xtensa_format_decode (isa, ins);
1188 if (ifmt == XTENSA_UNDEFINED)
1190 ilen = xtensa_format_length (isa, ifmt);
1191 if (ilen == XTENSA_UNDEFINED)
1193 islots = xtensa_format_num_slots (isa, ifmt);
1194 if (islots == XTENSA_UNDEFINED)
1197 for (is = 0; is < islots; ++is)
1199 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1202 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1203 if (opc == XTENSA_UNDEFINED)
1206 opcname = xtensa_opcode_name (isa, opc);
1208 if (strcasecmp (opcname, "mov.n") == 0
1209 || strcasecmp (opcname, "or") == 0)
1211 unsigned int register_operand;
1213 /* Possible candidate for setting frame pointer
1214 from A1. This is what we are looking for. */
1216 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1217 is, slot, ®ister_operand) != 0)
1219 if (xtensa_operand_decode (isa, opc, 1, ®ister_operand) != 0)
1221 if (register_operand == 1) /* Mov{.n} FP A1. */
1223 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1224 ®ister_operand) != 0)
1226 if (xtensa_operand_decode (isa, opc, 0,
1227 ®ister_operand) != 0)
1231 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1237 /* We have problems decoding the memory. */
1239 || strcasecmp (opcname, "ill") == 0
1240 || strcasecmp (opcname, "ill.n") == 0
1241 /* Hit planted breakpoint. */
1242 || strcasecmp (opcname, "break") == 0
1243 || strcasecmp (opcname, "break.n") == 0
1244 /* Flow control instructions finish prologue. */
1245 || xtensa_opcode_is_branch (isa, opc) > 0
1246 || xtensa_opcode_is_jump (isa, opc) > 0
1247 || xtensa_opcode_is_loop (isa, opc) > 0
1248 || xtensa_opcode_is_call (isa, opc) > 0
1249 || strcasecmp (opcname, "simcall") == 0
1250 || strcasecmp (opcname, "syscall") == 0)
1251 /* Can not continue analysis. */
1256 xtensa_insnbuf_free(isa, slot);
1257 xtensa_insnbuf_free(isa, ins);
1261 /* The key values to identify the frame using "cache" are
1263 cache->base = SP (or best guess about FP) of this frame;
1264 cache->pc = entry-PC (entry point of the frame function);
1265 cache->prev_sp = SP of the previous frame. */
1268 call0_frame_cache (struct frame_info *this_frame,
1269 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1272 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1273 xtensa_frame_cache_t *cache,
1276 static struct xtensa_frame_cache *
1277 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1279 xtensa_frame_cache_t *cache;
1280 CORE_ADDR ra, wb, ws, pc, sp, ps;
1281 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1282 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1283 unsigned int fp_regnum;
1284 int windowed, ps_regnum;
1289 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1290 ps_regnum = gdbarch_ps_regnum (gdbarch);
1291 ps = (ps_regnum >= 0
1292 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1294 windowed = windowing_enabled (gdbarch, ps);
1296 /* Get pristine xtensa-frame. */
1297 cache = xtensa_alloc_frame_cache (windowed);
1298 *this_cache = cache;
1304 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1305 wb = get_frame_register_unsigned (this_frame,
1306 gdbarch_tdep (gdbarch)->wb_regnum);
1307 ws = get_frame_register_unsigned (this_frame,
1308 gdbarch_tdep (gdbarch)->ws_regnum);
1310 op1 = read_memory_integer (pc, 1, byte_order);
1311 if (XTENSA_IS_ENTRY (gdbarch, op1))
1313 int callinc = CALLINC (ps);
1314 ra = get_frame_register_unsigned
1315 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1317 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1318 cache->wd.callsize = 0;
1321 cache->prev_sp = get_frame_register_unsigned
1322 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1324 /* This only can be the outermost frame since we are
1325 just about to execute ENTRY. SP hasn't been set yet.
1326 We can assume any frame size, because it does not
1327 matter, and, let's fake frame base in cache. */
1328 cache->base = cache->prev_sp - 16;
1331 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1332 cache->ps = (ps & ~PS_CALLINC_MASK)
1333 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1339 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1340 ra = get_frame_register_unsigned (this_frame,
1341 gdbarch_tdep (gdbarch)->a0_base);
1342 cache->wd.callsize = WINSIZE (ra);
1343 cache->wd.wb = (wb - cache->wd.callsize / 4)
1344 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1345 cache->wd.ws = ws & ~(1 << wb);
1347 cache->pc = get_frame_func (this_frame);
1348 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1349 cache->ps = (ps & ~PS_CALLINC_MASK)
1350 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1353 if (cache->wd.ws == 0)
1358 sp = get_frame_register_unsigned
1359 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1361 for (i = 0; i < 4; i++, sp += 4)
1363 cache->wd.aregs[i] = sp;
1366 if (cache->wd.callsize > 4)
1368 /* Set A4...A7/A11. */
1369 /* Get the SP of the frame previous to the previous one.
1370 To achieve this, we have to dereference SP twice. */
1371 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1372 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1373 sp -= cache->wd.callsize * 4;
1375 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1377 cache->wd.aregs[i] = sp;
1382 if ((cache->prev_sp == 0) && ( ra != 0 ))
1383 /* If RA is equal to 0 this frame is an outermost frame. Leave
1384 cache->prev_sp unchanged marking the boundary of the frame stack. */
1386 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1388 /* Register window overflow already happened.
1389 We can read caller's SP from the proper spill loction. */
1390 sp = get_frame_register_unsigned
1391 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1392 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1396 /* Read caller's frame SP directly from the previous window. */
1397 int regnum = arreg_number
1398 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1401 cache->prev_sp = xtensa_read_register (regnum);
1405 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1407 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1409 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1410 /* Everything was set already, including cache->base. */
1413 else /* Call0 framework. */
1415 call0_frame_cache (this_frame, cache, pc);
1416 fp_regnum = cache->c0.fp_regnum;
1419 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1424 static int xtensa_session_once_reported = 1;
1426 /* Report a problem with prologue analysis while doing backtracing.
1427 But, do it only once to avoid annoyng repeated messages. */
1432 if (xtensa_session_once_reported == 0)
1434 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1435 This message will not be repeated in this session.\n"));
1437 xtensa_session_once_reported = 1;
1442 xtensa_frame_this_id (struct frame_info *this_frame,
1444 struct frame_id *this_id)
1446 struct xtensa_frame_cache *cache =
1447 xtensa_frame_cache (this_frame, this_cache);
1449 if (cache->prev_sp == 0)
1452 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1455 static struct value *
1456 xtensa_frame_prev_register (struct frame_info *this_frame,
1460 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1461 struct xtensa_frame_cache *cache;
1462 ULONGEST saved_reg = 0;
1465 if (*this_cache == NULL)
1466 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1467 cache = *this_cache;
1469 if (regnum ==gdbarch_pc_regnum (gdbarch))
1470 saved_reg = cache->ra;
1471 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1472 saved_reg = cache->prev_sp;
1473 else if (!cache->call0)
1475 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1476 saved_reg = cache->wd.ws;
1477 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1478 saved_reg = cache->wd.wb;
1479 else if (regnum == gdbarch_ps_regnum (gdbarch))
1480 saved_reg = cache->ps;
1488 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1490 if (!cache->call0) /* Windowed ABI. */
1492 /* Convert A-register numbers to AR-register numbers,
1493 if we deal with A-register. */
1494 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1495 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1496 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1498 /* Check, if we deal with AR-register saved on stack. */
1499 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1500 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1501 + gdbarch_tdep (gdbarch)->num_aregs))
1503 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1506 && areg < XTENSA_NUM_SAVED_AREGS
1507 && cache->wd.aregs[areg] != -1)
1508 return frame_unwind_got_memory (this_frame, regnum,
1509 cache->wd.aregs[areg]);
1512 else /* Call0 ABI. */
1514 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1515 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1517 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1524 /* If register was saved in the prologue, retrieve it. */
1525 stkofs = cache->c0.c0_rt[reg].to_stk;
1526 if (stkofs != C0_NOSTK)
1528 /* Determine SP on entry based on FP. */
1529 spe = cache->c0.c0_fp
1530 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1532 return frame_unwind_got_memory (this_frame, regnum,
1538 /* All other registers have been either saved to
1539 the stack or are still alive in the processor. */
1541 return frame_unwind_got_register (this_frame, regnum, regnum);
1545 static const struct frame_unwind
1549 default_frame_unwind_stop_reason,
1550 xtensa_frame_this_id,
1551 xtensa_frame_prev_register,
1553 default_frame_sniffer
1557 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1559 struct xtensa_frame_cache *cache =
1560 xtensa_frame_cache (this_frame, this_cache);
1565 static const struct frame_base
1569 xtensa_frame_base_address,
1570 xtensa_frame_base_address,
1571 xtensa_frame_base_address
1576 xtensa_extract_return_value (struct type *type,
1577 struct regcache *regcache,
1580 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1581 bfd_byte *valbuf = dst;
1582 int len = TYPE_LENGTH (type);
1587 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1589 gdb_assert(len > 0);
1591 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1593 /* First, we have to find the caller window in the register file. */
1594 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1595 callsize = extract_call_winsize (gdbarch, pc);
1597 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1598 if (len > (callsize > 8 ? 8 : 16))
1599 internal_error (__FILE__, __LINE__,
1600 _("cannot extract return value of %d bytes long"),
1603 /* Get the register offset of the return
1604 register (A2) in the caller window. */
1605 regcache_raw_read_unsigned
1606 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1607 areg = arreg_number (gdbarch,
1608 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1612 /* No windowing hardware - Call0 ABI. */
1613 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1616 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1618 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1621 for (; len > 0; len -= 4, areg++, valbuf += 4)
1624 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1626 regcache_raw_read (regcache, areg, valbuf);
1632 xtensa_store_return_value (struct type *type,
1633 struct regcache *regcache,
1636 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1637 const bfd_byte *valbuf = dst;
1641 int len = TYPE_LENGTH (type);
1644 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1646 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1648 regcache_raw_read_unsigned
1649 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1650 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1651 callsize = extract_call_winsize (gdbarch, pc);
1653 if (len > (callsize > 8 ? 8 : 16))
1654 internal_error (__FILE__, __LINE__,
1655 _("unimplemented for this length: %d"),
1656 TYPE_LENGTH (type));
1657 areg = arreg_number (gdbarch,
1658 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1660 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1661 callsize, (int) wb);
1665 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1668 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1671 for (; len > 0; len -= 4, areg++, valbuf += 4)
1674 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1676 regcache_raw_write (regcache, areg, valbuf);
1681 static enum return_value_convention
1682 xtensa_return_value (struct gdbarch *gdbarch,
1683 struct value *function,
1684 struct type *valtype,
1685 struct regcache *regcache,
1687 const gdb_byte *writebuf)
1689 /* Structures up to 16 bytes are returned in registers. */
1691 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1692 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1693 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1694 && TYPE_LENGTH (valtype) > 16);
1697 return RETURN_VALUE_STRUCT_CONVENTION;
1699 DEBUGTRACE ("xtensa_return_value(...)\n");
1701 if (writebuf != NULL)
1703 xtensa_store_return_value (valtype, regcache, writebuf);
1706 if (readbuf != NULL)
1708 gdb_assert (!struct_return);
1709 xtensa_extract_return_value (valtype, regcache, readbuf);
1711 return RETURN_VALUE_REGISTER_CONVENTION;
1718 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1719 struct value *function,
1720 struct regcache *regcache,
1723 struct value **args,
1726 CORE_ADDR struct_addr)
1728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1730 int size, onstack_size;
1731 gdb_byte *buf = (gdb_byte *) alloca (16);
1733 struct argument_info
1735 const bfd_byte *contents;
1737 int onstack; /* onstack == 0 => in reg */
1738 int align; /* alignment */
1741 int offset; /* stack offset if on stack. */
1742 int regno; /* regno if in register. */
1746 struct argument_info *arg_info =
1747 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1751 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1753 if (xtensa_debug_level > 3)
1756 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1757 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1758 "struct_addr=0x%x\n",
1759 (int) sp, (int) struct_return, (int) struct_addr);
1761 for (i = 0; i < nargs; i++)
1763 struct value *arg = args[i];
1764 struct type *arg_type = check_typedef (value_type (arg));
1765 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1766 host_address_to_string (arg),
1767 TYPE_LENGTH (arg_type));
1768 switch (TYPE_CODE (arg_type))
1771 fprintf_unfiltered (gdb_stdlog, "int");
1773 case TYPE_CODE_STRUCT:
1774 fprintf_unfiltered (gdb_stdlog, "struct");
1777 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1780 fprintf_unfiltered (gdb_stdlog, " %s\n",
1781 host_address_to_string (value_contents (arg)));
1785 /* First loop: collect information.
1786 Cast into type_long. (This shouldn't happen often for C because
1787 GDB already does this earlier.) It's possible that GDB could
1788 do it all the time but it's harmless to leave this code here. */
1795 size = REGISTER_SIZE;
1797 for (i = 0; i < nargs; i++)
1799 struct argument_info *info = &arg_info[i];
1800 struct value *arg = args[i];
1801 struct type *arg_type = check_typedef (value_type (arg));
1803 switch (TYPE_CODE (arg_type))
1806 case TYPE_CODE_BOOL:
1807 case TYPE_CODE_CHAR:
1808 case TYPE_CODE_RANGE:
1809 case TYPE_CODE_ENUM:
1811 /* Cast argument to long if necessary as the mask does it too. */
1812 if (TYPE_LENGTH (arg_type)
1813 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1815 arg_type = builtin_type (gdbarch)->builtin_long;
1816 arg = value_cast (arg_type, arg);
1818 /* Aligment is equal to the type length for the basic types. */
1819 info->align = TYPE_LENGTH (arg_type);
1824 /* Align doubles correctly. */
1825 if (TYPE_LENGTH (arg_type)
1826 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1827 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1829 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1832 case TYPE_CODE_STRUCT:
1834 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1837 info->length = TYPE_LENGTH (arg_type);
1838 info->contents = value_contents (arg);
1840 /* Align size and onstack_size. */
1841 size = (size + info->align - 1) & ~(info->align - 1);
1842 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1844 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1847 info->u.offset = onstack_size;
1848 onstack_size += info->length;
1853 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1855 size += info->length;
1858 /* Adjust the stack pointer and align it. */
1859 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1861 /* Simulate MOVSP, if Windowed ABI. */
1862 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1865 read_memory (osp - 16, buf, 16);
1866 write_memory (sp - 16, buf, 16);
1869 /* Second Loop: Load arguments. */
1873 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1874 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1877 for (i = 0; i < nargs; i++)
1879 struct argument_info *info = &arg_info[i];
1883 int n = info->length;
1884 CORE_ADDR offset = sp + info->u.offset;
1886 /* Odd-sized structs are aligned to the lower side of a memory
1887 word in big-endian mode and require a shift. This only
1888 applies for structures smaller than one word. */
1890 if (n < REGISTER_SIZE
1891 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1892 offset += (REGISTER_SIZE - n);
1894 write_memory (offset, info->contents, info->length);
1899 int n = info->length;
1900 const bfd_byte *cp = info->contents;
1901 int r = info->u.regno;
1903 /* Odd-sized structs are aligned to the lower side of registers in
1904 big-endian mode and require a shift. The odd-sized leftover will
1905 be at the end. Note that this is only true for structures smaller
1906 than REGISTER_SIZE; for larger odd-sized structures the excess
1907 will be left-aligned in the register on both endiannesses. */
1909 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1912 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1913 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1915 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1916 regcache_cooked_write (regcache, r, buf);
1918 cp += REGISTER_SIZE;
1925 regcache_cooked_write (regcache, r, cp);
1927 cp += REGISTER_SIZE;
1934 /* Set the return address of dummy frame to the dummy address.
1935 The return address for the current function (in A0) is
1936 saved in the dummy frame, so we can savely overwrite A0 here. */
1938 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1942 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1943 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1944 ps = (unsigned long) val & ~0x00030000;
1945 regcache_cooked_write_unsigned
1946 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1947 regcache_cooked_write_unsigned (regcache,
1948 gdbarch_ps_regnum (gdbarch),
1951 /* All the registers have been saved. After executing
1952 dummy call, they all will be restored. So it's safe
1953 to modify WINDOWSTART register to make it look like there
1954 is only one register window corresponding to WINDOWEBASE. */
1956 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1957 regcache_cooked_write_unsigned
1958 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1959 1 << extract_unsigned_integer (buf, 4, byte_order));
1963 /* Simulate CALL0: write RA into A0 register. */
1964 regcache_cooked_write_unsigned
1965 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1968 /* Set new stack pointer and return it. */
1969 regcache_cooked_write_unsigned (regcache,
1970 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1971 /* Make dummy frame ID unique by adding a constant. */
1972 return sp + SP_ALIGNMENT;
1976 /* Return a breakpoint for the current location of PC. We always use
1977 the density version if we have density instructions (regardless of the
1978 current instruction at PC), and use regular instructions otherwise. */
1980 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1981 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1982 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1983 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1985 static const unsigned char *
1986 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1989 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1990 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1991 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1992 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1994 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1996 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1998 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2000 *lenptr = sizeof (density_big_breakpoint);
2001 return density_big_breakpoint;
2005 *lenptr = sizeof (density_little_breakpoint);
2006 return density_little_breakpoint;
2011 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2013 *lenptr = sizeof (big_breakpoint);
2014 return big_breakpoint;
2018 *lenptr = sizeof (little_breakpoint);
2019 return little_breakpoint;
2024 /* Call0 ABI support routines. */
2026 /* Return true, if PC points to "ret" or "ret.n". */
2029 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2031 #define RETURN_RET goto done
2033 xtensa_insnbuf ins, slot;
2034 gdb_byte ibuf[XTENSA_ISA_BSZ];
2035 CORE_ADDR ia, bt, ba;
2037 int ilen, islots, is;
2039 const char *opcname;
2042 isa = xtensa_default_isa;
2043 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2044 ins = xtensa_insnbuf_alloc (isa);
2045 slot = xtensa_insnbuf_alloc (isa);
2048 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2050 if (ia + xtensa_isa_maxlength (isa) > bt)
2053 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2054 ? ba + XTENSA_ISA_BSZ : finish_pc;
2055 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2059 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2060 ifmt = xtensa_format_decode (isa, ins);
2061 if (ifmt == XTENSA_UNDEFINED)
2063 ilen = xtensa_format_length (isa, ifmt);
2064 if (ilen == XTENSA_UNDEFINED)
2066 islots = xtensa_format_num_slots (isa, ifmt);
2067 if (islots == XTENSA_UNDEFINED)
2070 for (is = 0; is < islots; ++is)
2072 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2075 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2076 if (opc == XTENSA_UNDEFINED)
2079 opcname = xtensa_opcode_name (isa, opc);
2081 if ((strcasecmp (opcname, "ret.n") == 0)
2082 || (strcasecmp (opcname, "ret") == 0))
2090 xtensa_insnbuf_free(isa, slot);
2091 xtensa_insnbuf_free(isa, ins);
2095 /* Call0 opcode class. Opcodes are preclassified according to what they
2096 mean for Call0 prologue analysis, and their number of significant operands.
2097 The purpose of this is to simplify prologue analysis by separating
2098 instruction decoding (libisa) from the semantics of prologue analysis. */
2102 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2103 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2104 c0opc_flow, /* Flow control insn. */
2105 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2106 c0opc_break, /* Debugger software breakpoints. */
2107 c0opc_add, /* Adding two registers. */
2108 c0opc_addi, /* Adding a register and an immediate. */
2109 c0opc_and, /* Bitwise "and"-ing two registers. */
2110 c0opc_sub, /* Subtracting a register from a register. */
2111 c0opc_mov, /* Moving a register to a register. */
2112 c0opc_movi, /* Moving an immediate to a register. */
2113 c0opc_l32r, /* Loading a literal. */
2114 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2115 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2116 c0opc_l32e, /* L32E instruction. */
2117 c0opc_s32e, /* S32E instruction. */
2118 c0opc_rfwo, /* RFWO instruction. */
2119 c0opc_rfwu, /* RFWU instruction. */
2120 c0opc_NrOf /* Number of opcode classifications. */
2123 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2126 rwx_special_register (const char *opcname)
2128 char ch = *opcname++;
2130 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2132 if (*opcname++ != 's')
2134 if (*opcname++ != 'r')
2136 if (*opcname++ != '.')
2142 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2144 static xtensa_insn_kind
2145 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2147 const char *opcname;
2148 xtensa_insn_kind opclass = c0opc_uninteresting;
2150 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2152 /* Get opcode name and handle special classifications. */
2154 opcname = xtensa_opcode_name (isa, opc);
2157 || strcasecmp (opcname, "ill") == 0
2158 || strcasecmp (opcname, "ill.n") == 0)
2159 opclass = c0opc_illegal;
2160 else if (strcasecmp (opcname, "break") == 0
2161 || strcasecmp (opcname, "break.n") == 0)
2162 opclass = c0opc_break;
2163 else if (strcasecmp (opcname, "entry") == 0)
2164 opclass = c0opc_entry;
2165 else if (strcasecmp (opcname, "rfwo") == 0)
2166 opclass = c0opc_rfwo;
2167 else if (strcasecmp (opcname, "rfwu") == 0)
2168 opclass = c0opc_rfwu;
2169 else if (xtensa_opcode_is_branch (isa, opc) > 0
2170 || xtensa_opcode_is_jump (isa, opc) > 0
2171 || xtensa_opcode_is_loop (isa, opc) > 0
2172 || xtensa_opcode_is_call (isa, opc) > 0
2173 || strcasecmp (opcname, "simcall") == 0
2174 || strcasecmp (opcname, "syscall") == 0)
2175 opclass = c0opc_flow;
2177 /* Also, classify specific opcodes that need to be tracked. */
2178 else if (strcasecmp (opcname, "add") == 0
2179 || strcasecmp (opcname, "add.n") == 0)
2180 opclass = c0opc_add;
2181 else if (strcasecmp (opcname, "and") == 0)
2182 opclass = c0opc_and;
2183 else if (strcasecmp (opcname, "addi") == 0
2184 || strcasecmp (opcname, "addi.n") == 0
2185 || strcasecmp (opcname, "addmi") == 0)
2186 opclass = c0opc_addi;
2187 else if (strcasecmp (opcname, "sub") == 0)
2188 opclass = c0opc_sub;
2189 else if (strcasecmp (opcname, "mov.n") == 0
2190 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2191 opclass = c0opc_mov;
2192 else if (strcasecmp (opcname, "movi") == 0
2193 || strcasecmp (opcname, "movi.n") == 0)
2194 opclass = c0opc_movi;
2195 else if (strcasecmp (opcname, "l32r") == 0)
2196 opclass = c0opc_l32r;
2197 else if (strcasecmp (opcname, "s32i") == 0
2198 || strcasecmp (opcname, "s32i.n") == 0)
2199 opclass = c0opc_s32i;
2200 else if (strcasecmp (opcname, "l32e") == 0)
2201 opclass = c0opc_l32e;
2202 else if (strcasecmp (opcname, "s32e") == 0)
2203 opclass = c0opc_s32e;
2204 else if (rwx_special_register (opcname))
2205 opclass = c0opc_rwxsr;
2210 /* Tracks register movement/mutation for a given operation, which may
2211 be within a bundle. Updates the destination register tracking info
2212 accordingly. The pc is needed only for pc-relative load instructions
2213 (eg. l32r). The SP register number is needed to identify stores to
2214 the stack frame. Returns 0, if analysis was succesfull, non-zero
2218 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2219 xtensa_insn_kind opclass, int nods, unsigned odv[],
2220 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2222 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2223 unsigned litbase, litaddr, litval;
2228 /* 3 operands: dst, src, imm. */
2229 gdb_assert (nods == 3);
2230 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2231 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2234 /* 3 operands: dst, src1, src2. */
2235 gdb_assert (nods == 3);
2236 if (src[odv[1]].fr_reg == C0_CONST)
2238 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2239 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2241 else if (src[odv[2]].fr_reg == C0_CONST)
2243 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2244 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2246 else dst[odv[0]].fr_reg = C0_INEXP;
2249 /* 3 operands: dst, src1, src2. */
2250 gdb_assert (nods == 3);
2251 if (cache->c0.c0_fpalign == 0)
2253 /* Handle dynamic stack alignment. */
2254 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2256 if (src[odv[2]].fr_reg == C0_CONST)
2257 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2260 else if ((src[odv[0]].fr_reg == spreg)
2261 && (src[odv[2]].fr_reg == spreg))
2263 if (src[odv[1]].fr_reg == C0_CONST)
2264 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2267 /* else fall through. */
2269 if (src[odv[1]].fr_reg == C0_CONST)
2271 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2272 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2274 else if (src[odv[2]].fr_reg == C0_CONST)
2276 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2277 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2279 else dst[odv[0]].fr_reg = C0_INEXP;
2282 /* 3 operands: dst, src1, src2. */
2283 gdb_assert (nods == 3);
2284 if (src[odv[2]].fr_reg == C0_CONST)
2286 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2287 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2289 else dst[odv[0]].fr_reg = C0_INEXP;
2292 /* 2 operands: dst, src [, src]. */
2293 gdb_assert (nods == 2);
2294 /* First, check if it's a special case of saving unaligned SP
2295 to a spare register in case of dynamic stack adjustment.
2296 But, only do it one time. The second time could be initializing
2297 frame pointer. We don't want to overwrite the first one. */
2298 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2299 cache->c0.c0_old_sp = odv[0];
2301 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2302 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2305 /* 2 operands: dst, imm. */
2306 gdb_assert (nods == 2);
2307 dst[odv[0]].fr_reg = C0_CONST;
2308 dst[odv[0]].fr_ofs = odv[1];
2311 /* 2 operands: dst, literal offset. */
2312 gdb_assert (nods == 2);
2313 /* litbase = xtensa_get_litbase (pc); can be also used. */
2314 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2315 ? 0 : xtensa_read_register
2316 (gdbarch_tdep (gdbarch)->litbase_regnum);
2317 litaddr = litbase & 1
2318 ? (litbase & ~1) + (signed)odv[1]
2319 : (pc + 3 + (signed)odv[1]) & ~3;
2320 litval = read_memory_integer (litaddr, 4, byte_order);
2321 dst[odv[0]].fr_reg = C0_CONST;
2322 dst[odv[0]].fr_ofs = litval;
2325 /* 3 operands: value, base, offset. */
2326 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2327 /* First, check if it's a spill for saved unaligned SP,
2328 when dynamic stack adjustment was applied to this frame. */
2329 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2330 && (odv[1] == spreg) /* SP usage indicates spill. */
2331 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2332 cache->c0.c0_sp_ofs = odv[2];
2334 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2335 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2336 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2337 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2338 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2340 /* ISA encoding guarantees alignment. But, check it anyway. */
2341 gdb_assert ((odv[2] & 3) == 0);
2342 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2345 /* If we end up inside Window Overflow / Underflow interrupt handler
2346 report an error because these handlers should have been handled
2347 already in a different way. */
2359 /* Analyze prologue of the function at start address to determine if it uses
2360 the Call0 ABI, and if so track register moves and linear modifications
2361 in the prologue up to the PC or just beyond the prologue, whichever is
2362 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2363 prologue. The prologue may overlap non-prologue instructions but is
2364 guaranteed to end by the first flow-control instruction (jump, branch,
2365 call or return). Since an optimized function may move information around
2366 and change the stack frame arbitrarily during the prologue, the information
2367 is guaranteed valid only at the point in the function indicated by the PC.
2368 May be used to skip the prologue or identify the ABI, w/o tracking.
2370 Returns: Address of first instruction after prologue, or PC (whichever
2371 is first), or 0, if decoding failed (in libisa).
2373 start Start address of function/prologue.
2374 pc Program counter to stop at. Use 0 to continue to end of prologue.
2375 If 0, avoids infinite run-on in corrupt code memory by bounding
2376 the scan to the end of the function if that can be determined.
2377 nregs Number of general registers to track.
2379 cache Xtensa frame cache.
2381 Note that these may produce useful results even if decoding fails
2382 because they begin with default assumptions that analysis may change. */
2385 call0_analyze_prologue (struct gdbarch *gdbarch,
2386 CORE_ADDR start, CORE_ADDR pc,
2387 int nregs, xtensa_frame_cache_t *cache)
2389 CORE_ADDR ia; /* Current insn address in prologue. */
2390 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2391 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2392 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2393 xtensa_isa isa; /* libisa ISA handle. */
2394 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2395 xtensa_format ifmt; /* libisa instruction format. */
2396 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2397 xtensa_opcode opc; /* Opcode in current slot. */
2398 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2399 int nods; /* Opcode number of operands. */
2400 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2401 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2402 int j; /* General loop counter. */
2403 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2404 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2405 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2407 struct symtab_and_line prologue_sal;
2409 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2410 (int)start, (int)pc);
2412 /* Try to limit the scan to the end of the function if a non-zero pc
2413 arg was not supplied to avoid probing beyond the end of valid memory.
2414 If memory is full of garbage that classifies as c0opc_uninteresting.
2415 If this fails (eg. if no symbols) pc ends up 0 as it was.
2416 Intialize the Call0 frame and register tracking info.
2417 Assume it's Call0 until an 'entry' instruction is encountered.
2418 Assume we may be in the prologue until we hit a flow control instr. */
2424 /* Find out, if we have an information about the prologue from DWARF. */
2425 prologue_sal = find_pc_line (start, 0);
2426 if (prologue_sal.line != 0) /* Found debug info. */
2427 body_pc = prologue_sal.end;
2429 /* If we are going to analyze the prologue in general without knowing about
2430 the current PC, make the best assumtion for the end of the prologue. */
2433 find_pc_partial_function (start, 0, NULL, &end_pc);
2434 body_pc = min (end_pc, body_pc);
2437 body_pc = min (pc, body_pc);
2440 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2442 if (!xtensa_default_isa)
2443 xtensa_default_isa = xtensa_isa_init (0, 0);
2444 isa = xtensa_default_isa;
2445 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2446 ins = xtensa_insnbuf_alloc (isa);
2447 slot = xtensa_insnbuf_alloc (isa);
2449 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2451 /* (Re)fill instruction buffer from memory if necessary, but do not
2452 read memory beyond PC to be sure we stay within text section
2453 (this protection only works if a non-zero pc is supplied). */
2455 if (ia + xtensa_isa_maxlength (isa) > bt)
2458 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2459 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2460 error (_("Unable to read target memory ..."));
2463 /* Decode format information. */
2465 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2466 ifmt = xtensa_format_decode (isa, ins);
2467 if (ifmt == XTENSA_UNDEFINED)
2472 ilen = xtensa_format_length (isa, ifmt);
2473 if (ilen == XTENSA_UNDEFINED)
2478 islots = xtensa_format_num_slots (isa, ifmt);
2479 if (islots == XTENSA_UNDEFINED)
2485 /* Analyze a bundle or a single instruction, using a snapshot of
2486 the register tracking info as input for the entire bundle so that
2487 register changes do not take effect within this bundle. */
2489 for (j = 0; j < nregs; ++j)
2490 rtmp[j] = cache->c0.c0_rt[j];
2492 for (is = 0; is < islots; ++is)
2494 /* Decode a slot and classify the opcode. */
2496 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2500 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2501 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2503 if (opc == XTENSA_UNDEFINED)
2504 opclass = c0opc_illegal;
2506 opclass = call0_classify_opcode (isa, opc);
2508 /* Decide whether to track this opcode, ignore it, or bail out. */
2517 case c0opc_uninteresting:
2520 case c0opc_flow: /* Flow control instructions stop analysis. */
2521 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2526 ia += ilen; /* Skip over 'entry' insn. */
2533 /* Only expected opcodes should get this far. */
2535 /* Extract and decode the operands. */
2536 nods = xtensa_opcode_num_operands (isa, opc);
2537 if (nods == XTENSA_UNDEFINED)
2543 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2545 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2550 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2555 /* Check operands to verify use of 'mov' assembler macro. */
2556 if (opclass == c0opc_mov && nods == 3)
2558 if (odv[2] == odv[1])
2561 if ((odv[0] == 1) && (odv[1] != 1))
2562 /* OR A1, An, An , where n != 1.
2563 This means we are inside epilogue already. */
2568 opclass = c0opc_uninteresting;
2573 /* Track register movement and modification for this operation. */
2574 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2575 opclass, nods, odv, ia, 1, cache);
2581 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2582 (unsigned)ia, fail ? "failed" : "succeeded");
2583 xtensa_insnbuf_free(isa, slot);
2584 xtensa_insnbuf_free(isa, ins);
2585 return fail ? XTENSA_ISA_BADPC : ia;
2588 /* Initialize frame cache for the current frame in CALL0 ABI. */
2591 call0_frame_cache (struct frame_info *this_frame,
2592 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2594 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2595 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2596 CORE_ADDR start_pc; /* The beginning of the function. */
2597 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2598 CORE_ADDR sp, fp, ra;
2599 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2601 sp = get_frame_register_unsigned
2602 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2603 fp = sp; /* Assume FP == SP until proven otherwise. */
2605 /* Find the beginning of the prologue of the function containing the PC
2606 and analyze it up to the PC or the end of the prologue. */
2608 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2610 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2612 if (body_pc == XTENSA_ISA_BADPC)
2616 goto finish_frame_analysis;
2620 /* Get the frame information and FP (if used) at the current PC.
2621 If PC is in the prologue, the prologue analysis is more reliable
2622 than DWARF info. We don't not know for sure, if PC is in the prologue,
2623 but we do know no calls have yet taken place, so we can almost
2624 certainly rely on the prologue analysis. */
2628 /* Prologue analysis was successful up to the PC.
2629 It includes the cases when PC == START_PC. */
2630 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2631 /* c0_hasfp == true means there is a frame pointer because
2632 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2633 was derived from SP. Otherwise, it would be C0_FP. */
2634 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2635 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2636 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2638 else /* No data from the prologue analysis. */
2641 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2646 if (cache->c0.c0_fpalign)
2648 /* This frame has a special prologue with a dynamic stack adjustment
2649 to force an alignment, which is bigger than standard 16 bytes. */
2651 CORE_ADDR unaligned_sp;
2653 if (cache->c0.c0_old_sp == C0_INEXP)
2654 /* This can't be. Prologue code should be consistent.
2655 Unaligned stack pointer should be saved in a spare register. */
2659 goto finish_frame_analysis;
2662 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2663 /* Saved unaligned value of SP is kept in a register. */
2664 unaligned_sp = get_frame_register_unsigned
2665 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2667 /* Get the value from stack. */
2668 unaligned_sp = (CORE_ADDR)
2669 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2671 prev_sp = unaligned_sp + c0_frmsz;
2674 prev_sp = fp + c0_frmsz;
2676 /* Frame size from debug info or prologue tracking does not account for
2677 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2680 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2682 /* Update the stack frame size. */
2683 c0_frmsz += fp - sp;
2686 /* Get the return address (RA) from the stack if saved,
2687 or try to get it from a register. */
2689 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2690 if (to_stk != C0_NOSTK)
2692 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2695 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2696 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2698 /* Special case for terminating backtrace at a function that wants to
2699 be seen as the outermost one. Such a function will clear it's RA (A0)
2700 register to 0 in the prologue instead of saving its original value. */
2705 /* RA was copied to another register or (before any function call) may
2706 still be in the original RA register. This is not always reliable:
2707 even in a leaf function, register tracking stops after prologue, and
2708 even in prologue, non-prologue instructions (not tracked) may overwrite
2709 RA or any register it was copied to. If likely in prologue or before
2710 any call, use retracking info and hope for the best (compiler should
2711 have saved RA in stack if not in a leaf function). If not in prologue,
2717 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2719 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2723 ra = get_frame_register_unsigned
2725 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2730 finish_frame_analysis:
2731 cache->pc = start_pc;
2733 /* RA == 0 marks the outermost frame. Do not go past it. */
2734 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2735 cache->c0.fp_regnum = fp_regnum;
2736 cache->c0.c0_frmsz = c0_frmsz;
2737 cache->c0.c0_hasfp = c0_hasfp;
2738 cache->c0.c0_fp = fp;
2741 static CORE_ADDR a0_saved;
2742 static CORE_ADDR a7_saved;
2743 static CORE_ADDR a11_saved;
2744 static int a0_was_saved;
2745 static int a7_was_saved;
2746 static int a11_was_saved;
2748 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2750 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2752 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2753 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2754 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2755 unsigned int spilled_value
2756 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2758 if ((at == 0) && !a0_was_saved)
2760 a0_saved = xtensa_read_register (atreg);
2763 else if ((at == 7) && !a7_was_saved)
2765 a7_saved = xtensa_read_register (atreg);
2768 else if ((at == 11) && !a11_was_saved)
2770 a11_saved = xtensa_read_register (atreg);
2774 xtensa_write_register (atreg, spilled_value);
2777 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2779 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2781 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2782 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2783 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2784 ULONGEST spilled_value = xtensa_read_register (atreg);
2786 write_memory_unsigned_integer (addr, 4,
2787 gdbarch_byte_order (gdbarch),
2791 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2797 xtNoExceptionHandler
2798 } xtensa_exception_handler_t;
2800 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2801 Return type of Xtensa Window Interrupt Handler on success. */
2802 static xtensa_exception_handler_t
2803 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2806 xtensa_insnbuf ins, slot;
2807 gdb_byte ibuf[XTENSA_ISA_BSZ];
2808 CORE_ADDR ia, bt, ba;
2810 int ilen, islots, is;
2814 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2816 uint32_t at, as, offset;
2818 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2819 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2821 isa = xtensa_default_isa;
2822 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2823 ins = xtensa_insnbuf_alloc (isa);
2824 slot = xtensa_insnbuf_alloc (isa);
2833 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2835 if (ia + xtensa_isa_maxlength (isa) > bt)
2838 bt = (ba + XTENSA_ISA_BSZ);
2839 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2840 return xtNoExceptionHandler;
2842 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2843 ifmt = xtensa_format_decode (isa, ins);
2844 if (ifmt == XTENSA_UNDEFINED)
2845 return xtNoExceptionHandler;
2846 ilen = xtensa_format_length (isa, ifmt);
2847 if (ilen == XTENSA_UNDEFINED)
2848 return xtNoExceptionHandler;
2849 islots = xtensa_format_num_slots (isa, ifmt);
2850 if (islots == XTENSA_UNDEFINED)
2851 return xtNoExceptionHandler;
2852 for (is = 0; is < islots; ++is)
2854 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2855 return xtNoExceptionHandler;
2856 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2857 if (opc == XTENSA_UNDEFINED)
2858 return xtNoExceptionHandler;
2859 switch (call0_classify_opcode (isa, opc))
2865 /* We expect none of them here. */
2866 return xtNoExceptionHandler;
2868 func = execute_l32e;
2871 func = execute_s32e;
2873 case c0opc_rfwo: /* RFWO. */
2874 /* Here, we return from WindowOverflow handler and,
2875 if we stopped at the very beginning, which means
2876 A0 was saved, we have to restore it now. */
2879 int arreg = arreg_number (gdbarch,
2880 gdbarch_tdep (gdbarch)->a0_base,
2882 xtensa_write_register (arreg, a0_saved);
2884 return xtWindowOverflow;
2885 case c0opc_rfwu: /* RFWU. */
2886 /* Here, we return from WindowUnderflow handler.
2887 Let's see if either A7 or A11 has to be restored. */
2888 if (WindowUnderflow12)
2892 int arreg = arreg_number (gdbarch,
2893 gdbarch_tdep (gdbarch)->a0_base + 11,
2895 xtensa_write_register (arreg, a11_saved);
2898 else if (a7_was_saved)
2900 int arreg = arreg_number (gdbarch,
2901 gdbarch_tdep (gdbarch)->a0_base + 7,
2903 xtensa_write_register (arreg, a7_saved);
2905 return xtWindowUnderflow;
2906 default: /* Simply skip this insns. */
2910 /* Decode arguments for L32E / S32E and simulate their execution. */
2911 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2912 return xtNoExceptionHandler;
2913 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2914 return xtNoExceptionHandler;
2915 if (xtensa_operand_decode (isa, opc, 0, &at))
2916 return xtNoExceptionHandler;
2917 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2918 return xtNoExceptionHandler;
2919 if (xtensa_operand_decode (isa, opc, 1, &as))
2920 return xtNoExceptionHandler;
2921 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2922 return xtNoExceptionHandler;
2923 if (xtensa_operand_decode (isa, opc, 2, &offset))
2924 return xtNoExceptionHandler;
2926 (*func) (gdbarch, at, as, offset, wb);
2931 return xtNoExceptionHandler;
2934 /* Handle Window Overflow / Underflow exception frames. */
2937 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2938 xtensa_frame_cache_t *cache,
2941 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2942 CORE_ADDR ps, wb, ws, ra;
2943 int epc1_regnum, i, regnum;
2944 xtensa_exception_handler_t eh_type;
2946 /* Read PS, WB, and WS from the hardware. Note that PS register
2947 must be present, if Windowed ABI is supported. */
2948 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2949 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2950 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2952 /* Execute all the remaining instructions from Window Interrupt Handler
2953 by simulating them on the remote protocol level. On return, set the
2954 type of Xtensa Window Interrupt Handler, or report an error. */
2955 eh_type = execute_code (gdbarch, pc, wb);
2956 if (eh_type == xtNoExceptionHandler)
2958 Unable to decode Xtensa Window Interrupt Handler's code."));
2960 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2961 cache->call0 = 0; /* It's Windowed ABI. */
2963 /* All registers for the cached frame will be alive. */
2964 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2965 cache->wd.aregs[i] = -1;
2967 if (eh_type == xtWindowOverflow)
2968 cache->wd.ws = ws ^ (1 << wb);
2969 else /* eh_type == xtWindowUnderflow. */
2970 cache->wd.ws = ws | (1 << wb);
2972 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2973 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2975 ra = xtensa_read_register (regnum);
2976 cache->wd.callsize = WINSIZE (ra);
2977 cache->prev_sp = xtensa_read_register (regnum + 1);
2978 /* Set regnum to a frame pointer of the frame being cached. */
2979 regnum = xtensa_scan_prologue (gdbarch, pc);
2980 regnum = arreg_number (gdbarch,
2981 gdbarch_tdep (gdbarch)->a0_base + regnum,
2983 cache->base = get_frame_register_unsigned (this_frame, regnum);
2985 /* Read PC of interrupted function from EPC1 register. */
2986 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2987 if (epc1_regnum < 0)
2988 error(_("Unable to read Xtensa register EPC1"));
2989 cache->ra = xtensa_read_register (epc1_regnum);
2990 cache->pc = get_frame_func (this_frame);
2994 /* Skip function prologue.
2996 Return the pc of the first instruction after prologue. GDB calls this to
2997 find the address of the first line of the function or (if there is no line
2998 number information) to skip the prologue for planting breakpoints on
2999 function entries. Use debug info (if present) or prologue analysis to skip
3000 the prologue to achieve reliable debugging behavior. For windowed ABI,
3001 only the 'entry' instruction is skipped. It is not strictly necessary to
3002 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
3003 backtrace at any point in the prologue, however certain potential hazards
3004 are avoided and a more "normal" debugging experience is ensured by
3005 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
3006 For example, if we don't skip the prologue:
3007 - Some args may not yet have been saved to the stack where the debug
3008 info expects to find them (true anyway when only 'entry' is skipped);
3009 - Software breakpoints ('break' instrs) may not have been unplanted
3010 when the prologue analysis is done on initializing the frame cache,
3011 and breaks in the prologue will throw off the analysis.
3013 If we have debug info ( line-number info, in particular ) we simply skip
3014 the code associated with the first function line effectively skipping
3015 the prologue code. It works even in cases like
3018 { int local_var = 1;
3022 because, for this source code, both Xtensa compilers will generate two
3023 separate entries ( with the same line number ) in dwarf line-number
3024 section to make sure there is a boundary between the prologue code and
3025 the rest of the function.
3027 If there is no debug info, we need to analyze the code. */
3029 /* #define DONT_SKIP_PROLOGUE */
3032 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3034 struct symtab_and_line prologue_sal;
3037 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3039 #if DONT_SKIP_PROLOGUE
3043 /* Try to find first body line from debug info. */
3045 prologue_sal = find_pc_line (start_pc, 0);
3046 if (prologue_sal.line != 0) /* Found debug info. */
3048 /* In Call0, it is possible to have a function with only one instruction
3049 ('ret') resulting from a one-line optimized function that does nothing.
3050 In that case, prologue_sal.end may actually point to the start of the
3051 next function in the text section, causing a breakpoint to be set at
3052 the wrong place. Check, if the end address is within a different
3053 function, and if so return the start PC. We know we have symbol
3058 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3059 && call0_ret (start_pc, prologue_sal.end))
3062 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3063 if (end_func != start_pc)
3066 return prologue_sal.end;
3069 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3070 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3071 xtensa_alloc_frame_cache (0));
3072 return body_pc != 0 ? body_pc : start_pc;
3075 /* Verify the current configuration. */
3077 xtensa_verify_config (struct gdbarch *gdbarch)
3079 struct ui_file *log;
3080 struct cleanup *cleanups;
3081 struct gdbarch_tdep *tdep;
3085 tdep = gdbarch_tdep (gdbarch);
3086 log = mem_fileopen ();
3087 cleanups = make_cleanup_ui_file_delete (log);
3089 /* Verify that we got a reasonable number of AREGS. */
3090 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3091 fprintf_unfiltered (log, _("\
3092 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3095 /* Verify that certain registers exist. */
3097 if (tdep->pc_regnum == -1)
3098 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3099 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3100 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3102 if (tdep->isa_use_windowed_registers)
3104 if (tdep->wb_regnum == -1)
3105 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3106 if (tdep->ws_regnum == -1)
3107 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3108 if (tdep->ar_base == -1)
3109 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3112 if (tdep->a0_base == -1)
3113 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3115 buf = ui_file_xstrdup (log, &length);
3116 make_cleanup (xfree, buf);
3118 internal_error (__FILE__, __LINE__,
3119 _("the following are invalid: %s"), buf);
3120 do_cleanups (cleanups);
3124 /* Derive specific register numbers from the array of registers. */
3127 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3129 xtensa_register_t* rmap;
3130 int n, max_size = 4;
3133 tdep->num_nopriv_regs = 0;
3135 /* Special registers 0..255 (core). */
3136 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3138 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3140 if (rmap->target_number == 0x0020)
3141 tdep->pc_regnum = n;
3142 else if (rmap->target_number == 0x0100)
3144 else if (rmap->target_number == 0x0000)
3146 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3147 tdep->wb_regnum = n;
3148 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3149 tdep->ws_regnum = n;
3150 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3151 tdep->debugcause_regnum = n;
3152 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3153 tdep->exccause_regnum = n;
3154 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3155 tdep->excvaddr_regnum = n;
3156 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3157 tdep->lbeg_regnum = n;
3158 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3159 tdep->lend_regnum = n;
3160 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3161 tdep->lcount_regnum = n;
3162 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3163 tdep->sar_regnum = n;
3164 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3165 tdep->litbase_regnum = n;
3166 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3167 tdep->ps_regnum = n;
3169 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3170 tdep->interrupt_regnum = n;
3171 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3172 tdep->interrupt2_regnum = n;
3173 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3174 tdep->cpenable_regnum = n;
3177 if (rmap->byte_size > max_size)
3178 max_size = rmap->byte_size;
3179 if (rmap->mask != 0 && tdep->num_regs == 0)
3181 /* Find out out how to deal with priveleged registers.
3183 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3184 && tdep->num_nopriv_regs == 0)
3185 tdep->num_nopriv_regs = n;
3187 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3188 && tdep->num_regs == 0)
3192 /* Number of pseudo registers. */
3193 tdep->num_pseudo_regs = n - tdep->num_regs;
3195 /* Empirically determined maximum sizes. */
3196 tdep->max_register_raw_size = max_size;
3197 tdep->max_register_virtual_size = max_size;
3200 /* Module "constructor" function. */
3202 extern struct gdbarch_tdep xtensa_tdep;
3204 static struct gdbarch *
3205 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3207 struct gdbarch_tdep *tdep;
3208 struct gdbarch *gdbarch;
3209 struct xtensa_abi_handler *abi_handler;
3211 DEBUGTRACE ("gdbarch_init()\n");
3213 /* We have to set the byte order before we call gdbarch_alloc. */
3214 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3216 tdep = &xtensa_tdep;
3217 gdbarch = gdbarch_alloc (&info, tdep);
3218 xtensa_derive_tdep (tdep);
3220 /* Verify our configuration. */
3221 xtensa_verify_config (gdbarch);
3222 xtensa_session_once_reported = 0;
3224 /* Pseudo-Register read/write. */
3225 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3226 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3228 /* Set target information. */
3229 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3230 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3231 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3232 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3233 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3235 /* Renumber registers for known formats (stabs and dwarf2). */
3236 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3237 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3239 /* We provide our own function to get register information. */
3240 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3241 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3243 /* To call functions from GDB using dummy frame. */
3244 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3246 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3248 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3250 /* Advance PC across any prologue instructions to reach "real" code. */
3251 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3253 /* Stack grows downward. */
3254 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3256 /* Set breakpoints. */
3257 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3259 /* After breakpoint instruction or illegal instruction, pc still
3260 points at break instruction, so don't decrement. */
3261 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3263 /* We don't skip args. */
3264 set_gdbarch_frame_args_skip (gdbarch, 0);
3266 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3268 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3270 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3272 /* Frame handling. */
3273 frame_base_set_default (gdbarch, &xtensa_frame_base);
3274 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3275 dwarf2_append_unwinders (gdbarch);
3277 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3279 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3281 xtensa_add_reggroups (gdbarch);
3282 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3284 set_gdbarch_regset_from_core_section (gdbarch,
3285 xtensa_regset_from_core_section);
3287 set_solib_svr4_fetch_link_map_offsets
3288 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3294 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3296 error (_("xtensa_dump_tdep(): not implemented"));
3299 /* Provide a prototype to silence -Wmissing-prototypes. */
3300 extern initialize_file_ftype _initialize_xtensa_tdep;
3303 _initialize_xtensa_tdep (void)
3305 struct cmd_list_element *c;
3307 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3308 xtensa_init_reggroups ();
3310 add_setshow_zuinteger_cmd ("xtensa",
3312 &xtensa_debug_level,
3313 _("Set Xtensa debugging."),
3314 _("Show Xtensa debugging."), _("\
3315 When non-zero, Xtensa-specific debugging is enabled. \
3316 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3319 &setdebuglist, &showdebuglist);