x86: Properly handle PLT expression in directive
[external/binutils.git] / gdb / x86-nat.c
1 /* Native-dependent code for x86 (i386 and x86-64).
2
3    Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "x86-nat.h"
22 #include "gdbcmd.h"
23 #include "inferior.h"
24
25 /* Support for hardware watchpoints and breakpoints using the x86
26    debug registers.
27
28    This provides several functions for inserting and removing
29    hardware-assisted breakpoints and watchpoints, testing if one or
30    more of the watchpoints triggered and at what address, checking
31    whether a given region can be watched, etc.
32
33    The functions below implement debug registers sharing by reference
34    counts, and allow to watch regions up to 16 bytes long.  */
35
36 /* Low-level function vector.  */
37 struct x86_dr_low_type x86_dr_low;
38
39 /* Per-process data.  We don't bind this to a per-inferior registry
40    because of targets like x86 GNU/Linux that need to keep track of
41    processes that aren't bound to any inferior (e.g., fork children,
42    checkpoints).  */
43
44 struct x86_process_info
45 {
46   /* Linked list.  */
47   struct x86_process_info *next;
48
49   /* The process identifier.  */
50   pid_t pid;
51
52   /* Copy of x86 hardware debug registers.  */
53   struct x86_debug_reg_state state;
54 };
55
56 static struct x86_process_info *x86_process_list = NULL;
57
58 /* Find process data for process PID.  */
59
60 static struct x86_process_info *
61 x86_find_process_pid (pid_t pid)
62 {
63   struct x86_process_info *proc;
64
65   for (proc = x86_process_list; proc; proc = proc->next)
66     if (proc->pid == pid)
67       return proc;
68
69   return NULL;
70 }
71
72 /* Add process data for process PID.  Returns newly allocated info
73    object.  */
74
75 static struct x86_process_info *
76 x86_add_process (pid_t pid)
77 {
78   struct x86_process_info *proc = XCNEW (struct x86_process_info);
79
80   proc->pid = pid;
81   proc->next = x86_process_list;
82   x86_process_list = proc;
83
84   return proc;
85 }
86
87 /* Get data specific info for process PID, creating it if necessary.
88    Never returns NULL.  */
89
90 static struct x86_process_info *
91 x86_process_info_get (pid_t pid)
92 {
93   struct x86_process_info *proc;
94
95   proc = x86_find_process_pid (pid);
96   if (proc == NULL)
97     proc = x86_add_process (pid);
98
99   return proc;
100 }
101
102 /* Get debug registers state for process PID.  */
103
104 struct x86_debug_reg_state *
105 x86_debug_reg_state (pid_t pid)
106 {
107   return &x86_process_info_get (pid)->state;
108 }
109
110 /* See declaration in x86-nat.h.  */
111
112 void
113 x86_forget_process (pid_t pid)
114 {
115   struct x86_process_info *proc, **proc_link;
116
117   proc = x86_process_list;
118   proc_link = &x86_process_list;
119
120   while (proc != NULL)
121     {
122       if (proc->pid == pid)
123         {
124           *proc_link = proc->next;
125
126           xfree (proc);
127           return;
128         }
129
130       proc_link = &proc->next;
131       proc = *proc_link;
132     }
133 }
134
135 /* Clear the reference counts and forget everything we knew about the
136    debug registers.  */
137
138 void
139 x86_cleanup_dregs (void)
140 {
141   /* Starting from scratch has the same effect.  */
142   x86_forget_process (inferior_ptid.pid ());
143 }
144
145 /* Insert a watchpoint to watch a memory region which starts at
146    address ADDR and whose length is LEN bytes.  Watch memory accesses
147    of the type TYPE.  Return 0 on success, -1 on failure.  */
148
149 int
150 x86_insert_watchpoint (CORE_ADDR addr, int len,
151                        enum target_hw_bp_type type, struct expression *cond)
152 {
153   struct x86_debug_reg_state *state
154     = x86_debug_reg_state (inferior_ptid.pid ());
155
156   return x86_dr_insert_watchpoint (state, type, addr, len);
157 }
158
159 /* Remove a watchpoint that watched the memory region which starts at
160    address ADDR, whose length is LEN bytes, and for accesses of the
161    type TYPE.  Return 0 on success, -1 on failure.  */
162 int
163 x86_remove_watchpoint (CORE_ADDR addr, int len,
164                        enum target_hw_bp_type type, struct expression *cond)
165 {
166   struct x86_debug_reg_state *state
167     = x86_debug_reg_state (inferior_ptid.pid ());
168
169   return x86_dr_remove_watchpoint (state, type, addr, len);
170 }
171
172 /* Return non-zero if we can watch a memory region that starts at
173    address ADDR and whose length is LEN bytes.  */
174
175 int
176 x86_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
177 {
178   struct x86_debug_reg_state *state
179     = x86_debug_reg_state (inferior_ptid.pid ());
180
181   return x86_dr_region_ok_for_watchpoint (state, addr, len);
182 }
183
184 /* If the inferior has some break/watchpoint that triggered, set the
185    address associated with that break/watchpoint and return non-zero.
186    Otherwise, return zero.  */
187
188 int
189 x86_stopped_data_address (CORE_ADDR *addr_p)
190 {
191   struct x86_debug_reg_state *state
192     = x86_debug_reg_state (inferior_ptid.pid ());
193
194   return x86_dr_stopped_data_address (state, addr_p);
195 }
196
197 /* Return non-zero if the inferior has some watchpoint that triggered.
198    Otherwise return zero.  */
199
200 int
201 x86_stopped_by_watchpoint ()
202 {
203   struct x86_debug_reg_state *state
204     = x86_debug_reg_state (inferior_ptid.pid ());
205
206   return x86_dr_stopped_by_watchpoint (state);
207 }
208
209 /* Insert a hardware-assisted breakpoint at BP_TGT->reqstd_address.
210    Return 0 on success, EBUSY on failure.  */
211
212 int
213 x86_insert_hw_breakpoint (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
214 {
215   struct x86_debug_reg_state *state
216     = x86_debug_reg_state (inferior_ptid.pid ());
217
218   bp_tgt->placed_address = bp_tgt->reqstd_address;
219   return x86_dr_insert_watchpoint (state, hw_execute,
220                                    bp_tgt->placed_address, 1) ? EBUSY : 0;
221 }
222
223 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
224    Return 0 on success, -1 on failure.  */
225
226 int
227 x86_remove_hw_breakpoint (struct gdbarch *gdbarch,
228                           struct bp_target_info *bp_tgt)
229 {
230   struct x86_debug_reg_state *state
231     = x86_debug_reg_state (inferior_ptid.pid ());
232
233   return x86_dr_remove_watchpoint (state, hw_execute,
234                                    bp_tgt->placed_address, 1);
235 }
236
237 /* Returns the number of hardware watchpoints of type TYPE that we can
238    set.  Value is positive if we can set CNT watchpoints, zero if
239    setting watchpoints of type TYPE is not supported, and negative if
240    CNT is more than the maximum number of watchpoints of type TYPE
241    that we can support.  TYPE is one of bp_hardware_watchpoint,
242    bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
243    CNT is the number of such watchpoints used so far (including this
244    one).  OTHERTYPE is non-zero if other types of watchpoints are
245    currently enabled.
246
247    We always return 1 here because we don't have enough information
248    about possible overlap of addresses that they want to watch.  As an
249    extreme example, consider the case where all the watchpoints watch
250    the same address and the same region length: then we can handle a
251    virtually unlimited number of watchpoints, due to debug register
252    sharing implemented via reference counts in x86-nat.c.  */
253
254 int
255 x86_can_use_hw_breakpoint (enum bptype type, int cnt, int othertype)
256 {
257   return 1;
258 }
259
260 /* Return non-zero if the inferior has some breakpoint that triggered.
261    Otherwise return zero.  */
262
263 int
264 x86_stopped_by_hw_breakpoint ()
265 {
266   struct x86_debug_reg_state *state
267     = x86_debug_reg_state (inferior_ptid.pid ());
268
269   return x86_dr_stopped_by_hw_breakpoint (state);
270 }
271
272 static void
273 add_show_debug_regs_command (void)
274 {
275   /* A maintenance command to enable printing the internal DRi mirror
276      variables.  */
277   add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
278                            &show_debug_regs, _("\
279 Set whether to show variables that mirror the x86 debug registers."), _("\
280 Show whether to show variables that mirror the x86 debug registers."), _("\
281 Use \"on\" to enable, \"off\" to disable.\n\
282 If enabled, the debug registers values are shown when GDB inserts\n\
283 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
284 triggers a breakpoint or watchpoint."),
285                            NULL,
286                            NULL,
287                            &maintenance_set_cmdlist,
288                            &maintenance_show_cmdlist);
289 }
290
291 /* See x86-nat.h.  */
292
293 void
294 x86_set_debug_register_length (int len)
295 {
296   /* This function should be called only once for each native target.  */
297   gdb_assert (x86_dr_low.debug_register_length == 0);
298   gdb_assert (len == 4 || len == 8);
299   x86_dr_low.debug_register_length = len;
300   add_show_debug_regs_command ();
301 }