2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Nathan Sidwell <nathan@codesourcery.com>
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #if !defined (GDB_VEC_H)
25 #include "gdb_string.h"
26 #include "gdb_assert.h"
28 /* The macros here implement a set of templated vector types and
29 associated interfaces. These templates are implemented with
30 macros, as we're not in C++ land. The interface functions are
31 typesafe and use static inline functions, sometimes backed by
32 out-of-line generic functions.
34 Because of the different behavior of structure objects, scalar
35 objects and of pointers, there are three flavors, one for each of
36 these variants. Both the structure object and pointer variants
37 pass pointers to objects around -- in the former case the pointers
38 are stored into the vector and in the latter case the pointers are
39 dereferenced and the objects copied into the vector. The scalar
40 object variant is suitable for int-like objects, and the vector
41 elements are returned by value.
43 There are both 'index' and 'iterate' accessors. The iterator
44 returns a boolean iteration condition and updates the iteration
45 variable passed by reference. Because the iterator will be
46 inlined, the address-of can be optimized away.
48 The vectors are implemented using the trailing array idiom, thus
49 they are not resizeable without changing the address of the vector
50 object itself. This means you cannot have variables or fields of
51 vector type -- always use a pointer to a vector. The one exception
52 is the final field of a structure, which could be a vector type.
53 You will have to use the embedded_size & embedded_init calls to
54 create such objects, and they will probably not be resizeable (so
55 don't use the 'safe' allocation variants). The trailing array
56 idiom is used (rather than a pointer to an array of data), because,
57 if we allow NULL to also represent an empty vector, empty vectors
58 occupy minimal space in the structure containing them.
60 Each operation that increases the number of active elements is
61 available in 'quick' and 'safe' variants. The former presumes that
62 there is sufficient allocated space for the operation to succeed
63 (it dies if there is not). The latter will reallocate the
64 vector, if needed. Reallocation causes an exponential increase in
65 vector size. If you know you will be adding N elements, it would
66 be more efficient to use the reserve operation before adding the
67 elements with the 'quick' operation. This will ensure there are at
68 least as many elements as you ask for, it will exponentially
69 increase if there are too few spare slots. If you want reserve a
70 specific number of slots, but do not want the exponential increase
71 (for instance, you know this is the last allocation), use a
72 negative number for reservation. You can also create a vector of a
73 specific size from the get go.
75 You should prefer the push and pop operations, as they append and
76 remove from the end of the vector. If you need to remove several
77 items in one go, use the truncate operation. The insert and remove
78 operations allow you to change elements in the middle of the
79 vector. There are two remove operations, one which preserves the
80 element ordering 'ordered_remove', and one which does not
81 'unordered_remove'. The latter function copies the end element
82 into the removed slot, rather than invoke a memmove operation. The
83 'lower_bound' function will determine where to place an item in the
84 array using insert that will maintain sorted order.
86 If you need to directly manipulate a vector, then the 'address'
87 accessor will return the address of the start of the vector. Also
88 the 'space' predicate will tell you whether there is spare capacity
89 in the vector. You will not normally need to use these two functions.
91 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
92 Variables of vector type are declared using a VEC(TYPEDEF) macro.
93 The characters O, P and I indicate whether TYPEDEF is a pointer
94 (P), object (O) or integral (I) type. Be careful to pick the
95 correct one, as you'll get an awkward and inefficient API if you
96 use the wrong one. There is a check, which results in a
97 compile-time warning, for the P and I versions, but there is no
98 check for the O versions, as that is not possible in plain C.
100 An example of their use would be,
102 DEF_VEC_P(tree); // non-managed tree vector.
105 VEC(tree) *v; // A (pointer to) a vector of tree pointers.
110 if (VEC_length(tree, s->v)) { we have some contents }
111 VEC_safe_push(tree, s->v, decl); // append some decl onto the end
112 for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
113 { do something with elt }
117 /* Macros to invoke API calls. A single macro works for both pointer
118 and object vectors, but the argument and return types might well be
119 different. In each macro, T is the typedef of the vector elements.
120 Some of these macros pass the vector, V, by reference (by taking
121 its address), this is noted in the descriptions. */
124 unsigned VEC_T_length(const VEC(T) *v);
126 Return the number of active elements in V. V can be NULL, in which
127 case zero is returned. */
129 #define VEC_length(T,V) (VEC_OP(T,length)(V))
132 /* Check if vector is empty
133 int VEC_T_empty(const VEC(T) *v);
135 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
137 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
140 /* Get the final element of the vector.
141 T VEC_T_last(VEC(T) *v); // Integer
142 T VEC_T_last(VEC(T) *v); // Pointer
143 T *VEC_T_last(VEC(T) *v); // Object
145 Return the final element. V must not be empty. */
147 #define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO))
150 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
151 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
152 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
154 Return the IX'th element. If IX must be in the domain of V. */
156 #define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
158 /* Iterate over vector
159 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
160 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
161 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
163 Return iteration condition and update PTR to point to the IX'th
164 element. At the end of iteration, sets PTR to NULL. Use this to
165 iterate over the elements of a vector as follows,
167 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
170 #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
172 /* Allocate new vector.
173 VEC(T,A) *VEC_T_alloc(int reserve);
175 Allocate a new vector with space for RESERVE objects. If RESERVE
176 is zero, NO vector is created. */
178 #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
181 void VEC_T_free(VEC(T,A) *&);
183 Free a vector and set it to NULL. */
185 #define VEC_free(T,V) (VEC_OP(T,free)(&V))
187 /* A cleanup function for a vector.
188 void VEC_T_cleanup(void *);
190 Clean up a vector. */
192 #define VEC_cleanup(T) (VEC_OP(T,cleanup))
194 /* Use these to determine the required size and initialization of a
195 vector embedded within another structure (as the final member).
197 size_t VEC_T_embedded_size(int reserve);
198 void VEC_T_embedded_init(VEC(T) *v, int reserve);
200 These allow the caller to perform the memory allocation. */
202 #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
203 #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
206 VEC(T,A) *VEC_T_copy(VEC(T) *);
208 Copy the live elements of a vector into a new vector. The new and
209 old vectors need not be allocated by the same mechanism. */
211 #define VEC_copy(T,V) (VEC_OP(T,copy)(V))
213 /* Determine if a vector has additional capacity.
215 int VEC_T_space (VEC(T) *v,int reserve)
217 If V has space for RESERVE additional entries, return nonzero. You
218 usually only need to use this if you are doing your own vector
219 reallocation, for instance on an embedded vector. This returns
220 nonzero in exactly the same circumstances that VEC_T_reserve
223 #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
226 int VEC_T_reserve(VEC(T,A) *&v, int reserve);
228 Ensure that V has at least abs(RESERVE) slots available. The
229 signedness of RESERVE determines the reallocation behavior. A
230 negative value will not create additional headroom beyond that
231 requested. A positive value will create additional headroom. Note
232 this can cause V to be reallocated. Returns nonzero iff
233 reallocation actually occurred. */
235 #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
237 /* Push object with no reallocation
238 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
239 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
240 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
242 Push a new element onto the end, returns a pointer to the slot
243 filled in. For object vectors, the new value can be NULL, in which
244 case NO initialization is performed. There must
245 be sufficient space in the vector. */
247 #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
249 /* Push object with reallocation
250 T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
251 T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
252 T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
254 Push a new element onto the end, returns a pointer to the slot
255 filled in. For object vectors, the new value can be NULL, in which
256 case NO initialization is performed. Reallocates V, if needed. */
258 #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
260 /* Pop element off end
261 T VEC_T_pop (VEC(T) *v); // Integer
262 T VEC_T_pop (VEC(T) *v); // Pointer
263 void VEC_T_pop (VEC(T) *v); // Object
265 Pop the last element off the end. Returns the element popped, for
268 #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
270 /* Truncate to specific length
271 void VEC_T_truncate (VEC(T) *v, unsigned len);
273 Set the length as specified. The new length must be less than or
274 equal to the current length. This is an O(1) operation. */
276 #define VEC_truncate(T,V,I) \
277 (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
279 /* Grow to a specific length.
280 void VEC_T_safe_grow (VEC(T,A) *&v, int len);
282 Grow the vector to a specific length. The LEN must be as
283 long or longer than the current length. The new elements are
286 #define VEC_safe_grow(T,V,I) \
287 (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
290 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
291 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
292 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
294 Replace the IXth element of V with a new value, VAL. For pointer
295 vectors returns the original value. For object vectors returns a
296 pointer to the new value. For object vectors the new value can be
297 NULL, in which case no overwriting of the slot is actually
300 #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
302 /* Insert object with no reallocation
303 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
304 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
305 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
307 Insert an element, VAL, at the IXth position of V. Return a pointer
308 to the slot created. For vectors of object, the new value can be
309 NULL, in which case no initialization of the inserted slot takes
310 place. There must be sufficient space. */
312 #define VEC_quick_insert(T,V,I,O) \
313 (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
315 /* Insert object with reallocation
316 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
317 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
318 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
320 Insert an element, VAL, at the IXth position of V. Return a pointer
321 to the slot created. For vectors of object, the new value can be
322 NULL, in which case no initialization of the inserted slot takes
323 place. Reallocate V, if necessary. */
325 #define VEC_safe_insert(T,V,I,O) \
326 (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
328 /* Remove element retaining order
329 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
330 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
331 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
333 Remove an element from the IXth position of V. Ordering of
334 remaining elements is preserved. For pointer vectors returns the
335 removed object. This is an O(N) operation due to a memmove. */
337 #define VEC_ordered_remove(T,V,I) \
338 (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
340 /* Remove element destroying order
341 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
342 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
343 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
345 Remove an element from the IXth position of V. Ordering of
346 remaining elements is destroyed. For pointer vectors returns the
347 removed object. This is an O(1) operation. */
349 #define VEC_unordered_remove(T,V,I) \
350 (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
352 /* Remove a block of elements
353 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
355 Remove LEN elements starting at the IXth. Ordering is retained.
356 This is an O(N) operation due to memmove. */
358 #define VEC_block_remove(T,V,I,L) \
359 (VEC_OP(T,block_remove)(V,I,L VEC_ASSERT_INFO))
361 /* Get the address of the array of elements
362 T *VEC_T_address (VEC(T) v)
364 If you need to directly manipulate the array (for instance, you
365 want to feed it to qsort), use this accessor. */
367 #define VEC_address(T,V) (VEC_OP(T,address)(V))
369 /* Find the first index in the vector not less than the object.
370 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
371 int (*lessthan) (const T, const T)); // Integer
372 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
373 int (*lessthan) (const T, const T)); // Pointer
374 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
375 int (*lessthan) (const T*, const T*)); // Object
377 Find the first position in which VAL could be inserted without
378 changing the ordering of V. LESSTHAN is a function that returns
379 true if the first argument is strictly less than the second. */
381 #define VEC_lower_bound(T,V,O,LT) \
382 (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
384 /* Reallocate an array of elements with prefix. */
385 extern void *vec_p_reserve (void *, int);
386 extern void *vec_o_reserve (void *, int, size_t, size_t);
387 #define vec_free_(V) xfree (V)
389 #define VEC_ASSERT_INFO ,__FILE__,__LINE__
390 #define VEC_ASSERT_DECL ,const char *file_,unsigned line_
391 #define VEC_ASSERT_PASS ,file_,line_
392 #define vec_assert(expr, op) \
393 ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, \
394 ASSERT_FUNCTION), 0)))
396 #define VEC(T) VEC_##T
397 #define VEC_OP(T,OP) VEC_##T##_##OP
400 typedef struct VEC(T) \
407 /* Vector of integer-like object. */
408 #define DEF_VEC_I(T) \
409 static inline void VEC_OP (T,must_be_integral_type) (void) \
416 DEF_VEC_ALLOC_FUNC_I(T) \
417 struct vec_swallow_trailing_semi
419 /* Vector of pointer to object. */
420 #define DEF_VEC_P(T) \
421 static inline void VEC_OP (T,must_be_pointer_type) (void) \
423 (void)((T)1 == (void *)1); \
428 DEF_VEC_ALLOC_FUNC_P(T) \
429 struct vec_swallow_trailing_semi
431 /* Vector of object. */
432 #define DEF_VEC_O(T) \
435 DEF_VEC_ALLOC_FUNC_O(T) \
436 struct vec_swallow_trailing_semi
438 #define DEF_VEC_ALLOC_FUNC_I(T) \
439 static inline VEC(T) *VEC_OP (T,alloc) \
442 /* We must request exact size allocation, hence the negation. */ \
443 return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
444 offsetof (VEC(T),vec), sizeof (T)); \
447 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
449 size_t len_ = vec_ ? vec_->num : 0; \
450 VEC (T) *new_vec_ = NULL; \
454 /* We must request exact size allocation, hence the negation. */ \
455 new_vec_ = (VEC (T) *) \
456 vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
458 new_vec_->num = len_; \
459 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
464 static inline void VEC_OP (T,free) \
472 static inline void VEC_OP (T,cleanup) \
475 VEC(T) **vec_ = arg_; \
481 static inline int VEC_OP (T,reserve) \
482 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
484 int extend = !VEC_OP (T,space) \
485 (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
488 *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
489 offsetof (VEC(T),vec), sizeof (T)); \
494 static inline void VEC_OP (T,safe_grow) \
495 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
497 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
499 VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
501 (*vec_)->num = size_; \
504 static inline T *VEC_OP (T,safe_push) \
505 (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
507 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
509 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
512 static inline T *VEC_OP (T,safe_insert) \
513 (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
515 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
517 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
520 #define DEF_VEC_FUNC_P(T) \
521 static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
523 return vec_ ? vec_->num : 0; \
526 static inline T VEC_OP (T,last) \
527 (const VEC(T) *vec_ VEC_ASSERT_DECL) \
529 vec_assert (vec_ && vec_->num, "last"); \
531 return vec_->vec[vec_->num - 1]; \
534 static inline T VEC_OP (T,index) \
535 (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
537 vec_assert (vec_ && ix_ < vec_->num, "index"); \
539 return vec_->vec[ix_]; \
542 static inline int VEC_OP (T,iterate) \
543 (const VEC(T) *vec_, unsigned ix_, T *ptr) \
545 if (vec_ && ix_ < vec_->num) \
547 *ptr = vec_->vec[ix_]; \
557 static inline size_t VEC_OP (T,embedded_size) \
560 return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
563 static inline void VEC_OP (T,embedded_init) \
564 (VEC(T) *vec_, int alloc_) \
567 vec_->alloc = alloc_; \
570 static inline int VEC_OP (T,space) \
571 (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
573 vec_assert (alloc_ >= 0, "space"); \
574 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
577 static inline T *VEC_OP (T,quick_push) \
578 (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
582 vec_assert (vec_->num < vec_->alloc, "quick_push"); \
583 slot_ = &vec_->vec[vec_->num++]; \
589 static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
593 vec_assert (vec_->num, "pop"); \
594 obj_ = vec_->vec[--vec_->num]; \
599 static inline void VEC_OP (T,truncate) \
600 (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
602 vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
607 static inline T VEC_OP (T,replace) \
608 (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
612 vec_assert (ix_ < vec_->num, "replace"); \
613 old_obj_ = vec_->vec[ix_]; \
614 vec_->vec[ix_] = obj_; \
619 static inline T *VEC_OP (T,quick_insert) \
620 (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
624 vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
625 slot_ = &vec_->vec[ix_]; \
626 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
632 static inline T VEC_OP (T,ordered_remove) \
633 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
638 vec_assert (ix_ < vec_->num, "ordered_remove"); \
639 slot_ = &vec_->vec[ix_]; \
641 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
646 static inline T VEC_OP (T,unordered_remove) \
647 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
652 vec_assert (ix_ < vec_->num, "unordered_remove"); \
653 slot_ = &vec_->vec[ix_]; \
655 *slot_ = vec_->vec[--vec_->num]; \
660 static inline void VEC_OP (T,block_remove) \
661 (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
665 vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
666 slot_ = &vec_->vec[ix_]; \
668 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
671 static inline T *VEC_OP (T,address) \
674 return vec_ ? vec_->vec : 0; \
677 static inline unsigned VEC_OP (T,lower_bound) \
678 (VEC(T) *vec_, const T obj_, \
679 int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
681 unsigned int len_ = VEC_OP (T, length) (vec_); \
682 unsigned int half_, middle_; \
683 unsigned int first_ = 0; \
690 middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
691 if (lessthan_ (middle_elem_, obj_)) \
695 len_ = len_ - half_ - 1; \
703 #define DEF_VEC_ALLOC_FUNC_P(T) \
704 static inline VEC(T) *VEC_OP (T,alloc) \
707 /* We must request exact size allocation, hence the negation. */ \
708 return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
711 static inline void VEC_OP (T,free) \
719 static inline void VEC_OP (T,cleanup) \
722 VEC(T) **vec_ = arg_; \
728 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
730 size_t len_ = vec_ ? vec_->num : 0; \
731 VEC (T) *new_vec_ = NULL; \
735 /* We must request exact size allocation, hence the negation. */ \
736 new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
738 new_vec_->num = len_; \
739 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
744 static inline int VEC_OP (T,reserve) \
745 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
747 int extend = !VEC_OP (T,space) \
748 (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
751 *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
756 static inline void VEC_OP (T,safe_grow) \
757 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
759 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
762 (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
763 (*vec_)->num = size_; \
766 static inline T *VEC_OP (T,safe_push) \
767 (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
769 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
771 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
774 static inline T *VEC_OP (T,safe_insert) \
775 (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
777 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
779 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
782 #define DEF_VEC_FUNC_O(T) \
783 static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
785 return vec_ ? vec_->num : 0; \
788 static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
790 vec_assert (vec_ && vec_->num, "last"); \
792 return &vec_->vec[vec_->num - 1]; \
795 static inline T *VEC_OP (T,index) \
796 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
798 vec_assert (vec_ && ix_ < vec_->num, "index"); \
800 return &vec_->vec[ix_]; \
803 static inline int VEC_OP (T,iterate) \
804 (VEC(T) *vec_, unsigned ix_, T **ptr) \
806 if (vec_ && ix_ < vec_->num) \
808 *ptr = &vec_->vec[ix_]; \
818 static inline size_t VEC_OP (T,embedded_size) \
821 return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
824 static inline void VEC_OP (T,embedded_init) \
825 (VEC(T) *vec_, int alloc_) \
828 vec_->alloc = alloc_; \
831 static inline int VEC_OP (T,space) \
832 (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
834 vec_assert (alloc_ >= 0, "space"); \
835 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
838 static inline T *VEC_OP (T,quick_push) \
839 (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
843 vec_assert (vec_->num < vec_->alloc, "quick_push"); \
844 slot_ = &vec_->vec[vec_->num++]; \
851 static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
853 vec_assert (vec_->num, "pop"); \
857 static inline void VEC_OP (T,truncate) \
858 (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
860 vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
865 static inline T *VEC_OP (T,replace) \
866 (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
870 vec_assert (ix_ < vec_->num, "replace"); \
871 slot_ = &vec_->vec[ix_]; \
878 static inline T *VEC_OP (T,quick_insert) \
879 (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
883 vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
884 slot_ = &vec_->vec[ix_]; \
885 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
892 static inline void VEC_OP (T,ordered_remove) \
893 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
897 vec_assert (ix_ < vec_->num, "ordered_remove"); \
898 slot_ = &vec_->vec[ix_]; \
899 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
902 static inline void VEC_OP (T,unordered_remove) \
903 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
905 vec_assert (ix_ < vec_->num, "unordered_remove"); \
906 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
909 static inline void VEC_OP (T,block_remove) \
910 (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
914 vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
915 slot_ = &vec_->vec[ix_]; \
917 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
920 static inline T *VEC_OP (T,address) \
923 return vec_ ? vec_->vec : 0; \
926 static inline unsigned VEC_OP (T,lower_bound) \
927 (VEC(T) *vec_, const T *obj_, \
928 int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
930 unsigned int len_ = VEC_OP (T, length) (vec_); \
931 unsigned int half_, middle_; \
932 unsigned int first_ = 0; \
939 middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
940 if (lessthan_ (middle_elem_, obj_)) \
944 len_ = len_ - half_ - 1; \
952 #define DEF_VEC_ALLOC_FUNC_O(T) \
953 static inline VEC(T) *VEC_OP (T,alloc) \
956 /* We must request exact size allocation, hence the negation. */ \
957 return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
958 offsetof (VEC(T),vec), sizeof (T)); \
961 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
963 size_t len_ = vec_ ? vec_->num : 0; \
964 VEC (T) *new_vec_ = NULL; \
968 /* We must request exact size allocation, hence the negation. */ \
969 new_vec_ = (VEC (T) *) \
970 vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
972 new_vec_->num = len_; \
973 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
978 static inline void VEC_OP (T,free) \
986 static inline void VEC_OP (T,cleanup) \
989 VEC(T) **vec_ = arg_; \
995 static inline int VEC_OP (T,reserve) \
996 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
998 int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
1002 *vec_ = (VEC(T) *) \
1003 vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
1008 static inline void VEC_OP (T,safe_grow) \
1009 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
1011 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
1013 VEC_OP (T,reserve) \
1014 (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
1015 (*vec_)->num = size_; \
1018 static inline T *VEC_OP (T,safe_push) \
1019 (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
1021 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
1023 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
1026 static inline T *VEC_OP (T,safe_insert) \
1027 (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
1029 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
1031 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
1034 #endif /* GDB_VEC_H */