2 Copyright (C) 2004-2012 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #if !defined (GDB_VEC_H)
24 #include "gdb_string.h"
25 #include "gdb_assert.h"
27 /* The macros here implement a set of templated vector types and
28 associated interfaces. These templates are implemented with
29 macros, as we're not in C++ land. The interface functions are
30 typesafe and use static inline functions, sometimes backed by
31 out-of-line generic functions.
33 Because of the different behavior of structure objects, scalar
34 objects and of pointers, there are three flavors, one for each of
35 these variants. Both the structure object and pointer variants
36 pass pointers to objects around -- in the former case the pointers
37 are stored into the vector and in the latter case the pointers are
38 dereferenced and the objects copied into the vector. The scalar
39 object variant is suitable for int-like objects, and the vector
40 elements are returned by value.
42 There are both 'index' and 'iterate' accessors. The iterator
43 returns a boolean iteration condition and updates the iteration
44 variable passed by reference. Because the iterator will be
45 inlined, the address-of can be optimized away.
47 The vectors are implemented using the trailing array idiom, thus
48 they are not resizeable without changing the address of the vector
49 object itself. This means you cannot have variables or fields of
50 vector type -- always use a pointer to a vector. The one exception
51 is the final field of a structure, which could be a vector type.
52 You will have to use the embedded_size & embedded_init calls to
53 create such objects, and they will probably not be resizeable (so
54 don't use the 'safe' allocation variants). The trailing array
55 idiom is used (rather than a pointer to an array of data), because,
56 if we allow NULL to also represent an empty vector, empty vectors
57 occupy minimal space in the structure containing them.
59 Each operation that increases the number of active elements is
60 available in 'quick' and 'safe' variants. The former presumes that
61 there is sufficient allocated space for the operation to succeed
62 (it dies if there is not). The latter will reallocate the
63 vector, if needed. Reallocation causes an exponential increase in
64 vector size. If you know you will be adding N elements, it would
65 be more efficient to use the reserve operation before adding the
66 elements with the 'quick' operation. This will ensure there are at
67 least as many elements as you ask for, it will exponentially
68 increase if there are too few spare slots. If you want reserve a
69 specific number of slots, but do not want the exponential increase
70 (for instance, you know this is the last allocation), use a
71 negative number for reservation. You can also create a vector of a
72 specific size from the get go.
74 You should prefer the push and pop operations, as they append and
75 remove from the end of the vector. If you need to remove several
76 items in one go, use the truncate operation. The insert and remove
77 operations allow you to change elements in the middle of the
78 vector. There are two remove operations, one which preserves the
79 element ordering 'ordered_remove', and one which does not
80 'unordered_remove'. The latter function copies the end element
81 into the removed slot, rather than invoke a memmove operation. The
82 'lower_bound' function will determine where to place an item in the
83 array using insert that will maintain sorted order.
85 If you need to directly manipulate a vector, then the 'address'
86 accessor will return the address of the start of the vector. Also
87 the 'space' predicate will tell you whether there is spare capacity
88 in the vector. You will not normally need to use these two functions.
90 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
91 Variables of vector type are declared using a VEC(TYPEDEF) macro.
92 The characters O, P and I indicate whether TYPEDEF is a pointer
93 (P), object (O) or integral (I) type. Be careful to pick the
94 correct one, as you'll get an awkward and inefficient API if you
95 use the wrong one. There is a check, which results in a
96 compile-time warning, for the P and I versions, but there is no
97 check for the O versions, as that is not possible in plain C.
99 An example of their use would be,
101 DEF_VEC_P(tree); // non-managed tree vector.
104 VEC(tree) *v; // A (pointer to) a vector of tree pointers.
109 if (VEC_length(tree, s->v)) { we have some contents }
110 VEC_safe_push(tree, s->v, decl); // append some decl onto the end
111 for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
112 { do something with elt }
116 /* Macros to invoke API calls. A single macro works for both pointer
117 and object vectors, but the argument and return types might well be
118 different. In each macro, T is the typedef of the vector elements.
119 Some of these macros pass the vector, V, by reference (by taking
120 its address), this is noted in the descriptions. */
123 unsigned VEC_T_length(const VEC(T) *v);
125 Return the number of active elements in V. V can be NULL, in which
126 case zero is returned. */
128 #define VEC_length(T,V) (VEC_OP(T,length)(V))
131 /* Check if vector is empty
132 int VEC_T_empty(const VEC(T) *v);
134 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
136 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
139 /* Get the final element of the vector.
140 T VEC_T_last(VEC(T) *v); // Integer
141 T VEC_T_last(VEC(T) *v); // Pointer
142 T *VEC_T_last(VEC(T) *v); // Object
144 Return the final element. V must not be empty. */
146 #define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO))
149 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
150 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
151 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
153 Return the IX'th element. If IX must be in the domain of V. */
155 #define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
157 /* Iterate over vector
158 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
159 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
160 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
162 Return iteration condition and update PTR to point to the IX'th
163 element. At the end of iteration, sets PTR to NULL. Use this to
164 iterate over the elements of a vector as follows,
166 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
169 #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
171 /* Allocate new vector.
172 VEC(T,A) *VEC_T_alloc(int reserve);
174 Allocate a new vector with space for RESERVE objects. If RESERVE
175 is zero, NO vector is created. */
177 #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
180 void VEC_T_free(VEC(T,A) *&);
182 Free a vector and set it to NULL. */
184 #define VEC_free(T,V) (VEC_OP(T,free)(&V))
186 /* A cleanup function for a vector.
187 void VEC_T_cleanup(void *);
189 Clean up a vector. */
191 #define VEC_cleanup(T) (VEC_OP(T,cleanup))
193 /* Use these to determine the required size and initialization of a
194 vector embedded within another structure (as the final member).
196 size_t VEC_T_embedded_size(int reserve);
197 void VEC_T_embedded_init(VEC(T) *v, int reserve);
199 These allow the caller to perform the memory allocation. */
201 #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
202 #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
205 VEC(T,A) *VEC_T_copy(VEC(T) *);
207 Copy the live elements of a vector into a new vector. The new and
208 old vectors need not be allocated by the same mechanism. */
210 #define VEC_copy(T,V) (VEC_OP(T,copy)(V))
212 /* Determine if a vector has additional capacity.
214 int VEC_T_space (VEC(T) *v,int reserve)
216 If V has space for RESERVE additional entries, return nonzero. You
217 usually only need to use this if you are doing your own vector
218 reallocation, for instance on an embedded vector. This returns
219 nonzero in exactly the same circumstances that VEC_T_reserve
222 #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
225 int VEC_T_reserve(VEC(T,A) *&v, int reserve);
227 Ensure that V has at least abs(RESERVE) slots available. The
228 signedness of RESERVE determines the reallocation behavior. A
229 negative value will not create additional headroom beyond that
230 requested. A positive value will create additional headroom. Note
231 this can cause V to be reallocated. Returns nonzero iff
232 reallocation actually occurred. */
234 #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
236 /* Push object with no reallocation
237 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
238 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
239 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
241 Push a new element onto the end, returns a pointer to the slot
242 filled in. For object vectors, the new value can be NULL, in which
243 case NO initialization is performed. There must
244 be sufficient space in the vector. */
246 #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
248 /* Push object with reallocation
249 T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
250 T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
251 T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
253 Push a new element onto the end, returns a pointer to the slot
254 filled in. For object vectors, the new value can be NULL, in which
255 case NO initialization is performed. Reallocates V, if needed. */
257 #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
259 /* Pop element off end
260 T VEC_T_pop (VEC(T) *v); // Integer
261 T VEC_T_pop (VEC(T) *v); // Pointer
262 void VEC_T_pop (VEC(T) *v); // Object
264 Pop the last element off the end. Returns the element popped, for
267 #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
269 /* Truncate to specific length
270 void VEC_T_truncate (VEC(T) *v, unsigned len);
272 Set the length as specified. The new length must be less than or
273 equal to the current length. This is an O(1) operation. */
275 #define VEC_truncate(T,V,I) \
276 (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
278 /* Grow to a specific length.
279 void VEC_T_safe_grow (VEC(T,A) *&v, int len);
281 Grow the vector to a specific length. The LEN must be as
282 long or longer than the current length. The new elements are
285 #define VEC_safe_grow(T,V,I) \
286 (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
289 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
290 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
291 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
293 Replace the IXth element of V with a new value, VAL. For pointer
294 vectors returns the original value. For object vectors returns a
295 pointer to the new value. For object vectors the new value can be
296 NULL, in which case no overwriting of the slot is actually
299 #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
301 /* Insert object with no reallocation
302 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
303 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
304 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
306 Insert an element, VAL, at the IXth position of V. Return a pointer
307 to the slot created. For vectors of object, the new value can be
308 NULL, in which case no initialization of the inserted slot takes
309 place. There must be sufficient space. */
311 #define VEC_quick_insert(T,V,I,O) \
312 (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
314 /* Insert object with reallocation
315 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
316 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
317 T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
319 Insert an element, VAL, at the IXth position of V. Return a pointer
320 to the slot created. For vectors of object, the new value can be
321 NULL, in which case no initialization of the inserted slot takes
322 place. Reallocate V, if necessary. */
324 #define VEC_safe_insert(T,V,I,O) \
325 (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
327 /* Remove element retaining order
328 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
329 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
330 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
332 Remove an element from the IXth position of V. Ordering of
333 remaining elements is preserved. For pointer vectors returns the
334 removed object. This is an O(N) operation due to a memmove. */
336 #define VEC_ordered_remove(T,V,I) \
337 (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
339 /* Remove element destroying order
340 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
341 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
342 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
344 Remove an element from the IXth position of V. Ordering of
345 remaining elements is destroyed. For pointer vectors returns the
346 removed object. This is an O(1) operation. */
348 #define VEC_unordered_remove(T,V,I) \
349 (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
351 /* Remove a block of elements
352 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
354 Remove LEN elements starting at the IXth. Ordering is retained.
355 This is an O(N) operation due to memmove. */
357 #define VEC_block_remove(T,V,I,L) \
358 (VEC_OP(T,block_remove)(V,I,L VEC_ASSERT_INFO))
360 /* Get the address of the array of elements
361 T *VEC_T_address (VEC(T) v)
363 If you need to directly manipulate the array (for instance, you
364 want to feed it to qsort), use this accessor. */
366 #define VEC_address(T,V) (VEC_OP(T,address)(V))
368 /* Find the first index in the vector not less than the object.
369 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
370 int (*lessthan) (const T, const T)); // Integer
371 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
372 int (*lessthan) (const T, const T)); // Pointer
373 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
374 int (*lessthan) (const T*, const T*)); // Object
376 Find the first position in which VAL could be inserted without
377 changing the ordering of V. LESSTHAN is a function that returns
378 true if the first argument is strictly less than the second. */
380 #define VEC_lower_bound(T,V,O,LT) \
381 (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
383 /* Reallocate an array of elements with prefix. */
384 extern void *vec_p_reserve (void *, int);
385 extern void *vec_o_reserve (void *, int, size_t, size_t);
386 #define vec_free_(V) xfree (V)
388 #define VEC_ASSERT_INFO ,__FILE__,__LINE__
389 #define VEC_ASSERT_DECL ,const char *file_,unsigned line_
390 #define VEC_ASSERT_PASS ,file_,line_
391 #define vec_assert(expr, op) \
392 ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, \
393 ASSERT_FUNCTION), 0)))
395 #define VEC(T) VEC_##T
396 #define VEC_OP(T,OP) VEC_##T##_##OP
399 typedef struct VEC(T) \
406 /* Vector of integer-like object. */
407 #define DEF_VEC_I(T) \
408 static inline void VEC_OP (T,must_be_integral_type) (void) \
415 DEF_VEC_ALLOC_FUNC_I(T) \
416 struct vec_swallow_trailing_semi
418 /* Vector of pointer to object. */
419 #define DEF_VEC_P(T) \
420 static inline void VEC_OP (T,must_be_pointer_type) (void) \
422 (void)((T)1 == (void *)1); \
427 DEF_VEC_ALLOC_FUNC_P(T) \
428 struct vec_swallow_trailing_semi
430 /* Vector of object. */
431 #define DEF_VEC_O(T) \
434 DEF_VEC_ALLOC_FUNC_O(T) \
435 struct vec_swallow_trailing_semi
437 #define DEF_VEC_ALLOC_FUNC_I(T) \
438 static inline VEC(T) *VEC_OP (T,alloc) \
441 /* We must request exact size allocation, hence the negation. */ \
442 return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
443 offsetof (VEC(T),vec), sizeof (T)); \
446 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
448 size_t len_ = vec_ ? vec_->num : 0; \
449 VEC (T) *new_vec_ = NULL; \
453 /* We must request exact size allocation, hence the negation. */ \
454 new_vec_ = (VEC (T) *) \
455 vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
457 new_vec_->num = len_; \
458 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
463 static inline void VEC_OP (T,free) \
471 static inline void VEC_OP (T,cleanup) \
474 VEC(T) **vec_ = arg_; \
480 static inline int VEC_OP (T,reserve) \
481 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
483 int extend = !VEC_OP (T,space) \
484 (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
487 *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
488 offsetof (VEC(T),vec), sizeof (T)); \
493 static inline void VEC_OP (T,safe_grow) \
494 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
496 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
498 VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
500 (*vec_)->num = size_; \
503 static inline T *VEC_OP (T,safe_push) \
504 (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
506 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
508 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
511 static inline T *VEC_OP (T,safe_insert) \
512 (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
514 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
516 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
519 #define DEF_VEC_FUNC_P(T) \
520 static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
522 return vec_ ? vec_->num : 0; \
525 static inline T VEC_OP (T,last) \
526 (const VEC(T) *vec_ VEC_ASSERT_DECL) \
528 vec_assert (vec_ && vec_->num, "last"); \
530 return vec_->vec[vec_->num - 1]; \
533 static inline T VEC_OP (T,index) \
534 (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
536 vec_assert (vec_ && ix_ < vec_->num, "index"); \
538 return vec_->vec[ix_]; \
541 static inline int VEC_OP (T,iterate) \
542 (const VEC(T) *vec_, unsigned ix_, T *ptr) \
544 if (vec_ && ix_ < vec_->num) \
546 *ptr = vec_->vec[ix_]; \
556 static inline size_t VEC_OP (T,embedded_size) \
559 return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
562 static inline void VEC_OP (T,embedded_init) \
563 (VEC(T) *vec_, int alloc_) \
566 vec_->alloc = alloc_; \
569 static inline int VEC_OP (T,space) \
570 (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
572 vec_assert (alloc_ >= 0, "space"); \
573 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
576 static inline T *VEC_OP (T,quick_push) \
577 (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
581 vec_assert (vec_->num < vec_->alloc, "quick_push"); \
582 slot_ = &vec_->vec[vec_->num++]; \
588 static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
592 vec_assert (vec_->num, "pop"); \
593 obj_ = vec_->vec[--vec_->num]; \
598 static inline void VEC_OP (T,truncate) \
599 (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
601 vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
606 static inline T VEC_OP (T,replace) \
607 (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
611 vec_assert (ix_ < vec_->num, "replace"); \
612 old_obj_ = vec_->vec[ix_]; \
613 vec_->vec[ix_] = obj_; \
618 static inline T *VEC_OP (T,quick_insert) \
619 (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
623 vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
624 slot_ = &vec_->vec[ix_]; \
625 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
631 static inline T VEC_OP (T,ordered_remove) \
632 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
637 vec_assert (ix_ < vec_->num, "ordered_remove"); \
638 slot_ = &vec_->vec[ix_]; \
640 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
645 static inline T VEC_OP (T,unordered_remove) \
646 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
651 vec_assert (ix_ < vec_->num, "unordered_remove"); \
652 slot_ = &vec_->vec[ix_]; \
654 *slot_ = vec_->vec[--vec_->num]; \
659 static inline void VEC_OP (T,block_remove) \
660 (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
664 vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
665 slot_ = &vec_->vec[ix_]; \
667 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
670 static inline T *VEC_OP (T,address) \
673 return vec_ ? vec_->vec : 0; \
676 static inline unsigned VEC_OP (T,lower_bound) \
677 (VEC(T) *vec_, const T obj_, \
678 int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
680 unsigned int len_ = VEC_OP (T, length) (vec_); \
681 unsigned int half_, middle_; \
682 unsigned int first_ = 0; \
689 middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
690 if (lessthan_ (middle_elem_, obj_)) \
694 len_ = len_ - half_ - 1; \
702 #define DEF_VEC_ALLOC_FUNC_P(T) \
703 static inline VEC(T) *VEC_OP (T,alloc) \
706 /* We must request exact size allocation, hence the negation. */ \
707 return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
710 static inline void VEC_OP (T,free) \
718 static inline void VEC_OP (T,cleanup) \
721 VEC(T) **vec_ = arg_; \
727 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
729 size_t len_ = vec_ ? vec_->num : 0; \
730 VEC (T) *new_vec_ = NULL; \
734 /* We must request exact size allocation, hence the negation. */ \
735 new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
737 new_vec_->num = len_; \
738 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
743 static inline int VEC_OP (T,reserve) \
744 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
746 int extend = !VEC_OP (T,space) \
747 (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
750 *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
755 static inline void VEC_OP (T,safe_grow) \
756 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
758 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
761 (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
762 (*vec_)->num = size_; \
765 static inline T *VEC_OP (T,safe_push) \
766 (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
768 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
770 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
773 static inline T *VEC_OP (T,safe_insert) \
774 (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
776 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
778 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
781 #define DEF_VEC_FUNC_O(T) \
782 static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
784 return vec_ ? vec_->num : 0; \
787 static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
789 vec_assert (vec_ && vec_->num, "last"); \
791 return &vec_->vec[vec_->num - 1]; \
794 static inline T *VEC_OP (T,index) \
795 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
797 vec_assert (vec_ && ix_ < vec_->num, "index"); \
799 return &vec_->vec[ix_]; \
802 static inline int VEC_OP (T,iterate) \
803 (VEC(T) *vec_, unsigned ix_, T **ptr) \
805 if (vec_ && ix_ < vec_->num) \
807 *ptr = &vec_->vec[ix_]; \
817 static inline size_t VEC_OP (T,embedded_size) \
820 return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
823 static inline void VEC_OP (T,embedded_init) \
824 (VEC(T) *vec_, int alloc_) \
827 vec_->alloc = alloc_; \
830 static inline int VEC_OP (T,space) \
831 (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
833 vec_assert (alloc_ >= 0, "space"); \
834 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
837 static inline T *VEC_OP (T,quick_push) \
838 (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
842 vec_assert (vec_->num < vec_->alloc, "quick_push"); \
843 slot_ = &vec_->vec[vec_->num++]; \
850 static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
852 vec_assert (vec_->num, "pop"); \
856 static inline void VEC_OP (T,truncate) \
857 (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
859 vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
864 static inline T *VEC_OP (T,replace) \
865 (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
869 vec_assert (ix_ < vec_->num, "replace"); \
870 slot_ = &vec_->vec[ix_]; \
877 static inline T *VEC_OP (T,quick_insert) \
878 (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
882 vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
883 slot_ = &vec_->vec[ix_]; \
884 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
891 static inline void VEC_OP (T,ordered_remove) \
892 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
896 vec_assert (ix_ < vec_->num, "ordered_remove"); \
897 slot_ = &vec_->vec[ix_]; \
898 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
901 static inline void VEC_OP (T,unordered_remove) \
902 (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
904 vec_assert (ix_ < vec_->num, "unordered_remove"); \
905 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
908 static inline void VEC_OP (T,block_remove) \
909 (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
913 vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
914 slot_ = &vec_->vec[ix_]; \
916 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
919 static inline T *VEC_OP (T,address) \
922 return vec_ ? vec_->vec : 0; \
925 static inline unsigned VEC_OP (T,lower_bound) \
926 (VEC(T) *vec_, const T *obj_, \
927 int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
929 unsigned int len_ = VEC_OP (T, length) (vec_); \
930 unsigned int half_, middle_; \
931 unsigned int first_ = 0; \
938 middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
939 if (lessthan_ (middle_elem_, obj_)) \
943 len_ = len_ - half_ - 1; \
951 #define DEF_VEC_ALLOC_FUNC_O(T) \
952 static inline VEC(T) *VEC_OP (T,alloc) \
955 /* We must request exact size allocation, hence the negation. */ \
956 return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
957 offsetof (VEC(T),vec), sizeof (T)); \
960 static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
962 size_t len_ = vec_ ? vec_->num : 0; \
963 VEC (T) *new_vec_ = NULL; \
967 /* We must request exact size allocation, hence the negation. */ \
968 new_vec_ = (VEC (T) *) \
969 vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
971 new_vec_->num = len_; \
972 memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
977 static inline void VEC_OP (T,free) \
985 static inline void VEC_OP (T,cleanup) \
988 VEC(T) **vec_ = arg_; \
994 static inline int VEC_OP (T,reserve) \
995 (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
997 int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
1001 *vec_ = (VEC(T) *) \
1002 vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
1007 static inline void VEC_OP (T,safe_grow) \
1008 (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
1010 vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
1012 VEC_OP (T,reserve) \
1013 (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
1014 (*vec_)->num = size_; \
1017 static inline T *VEC_OP (T,safe_push) \
1018 (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
1020 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
1022 return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
1025 static inline T *VEC_OP (T,safe_insert) \
1026 (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
1028 VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
1030 return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
1033 #endif /* GDB_VEC_H */