1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
35 #include "python/python.h"
36 #include "python/python-internal.h"
41 /* Non-zero if we want to see trace of varobj level stuff. */
43 unsigned int varobjdebug = 0;
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
59 varobj_enable_pretty_printing (void)
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
77 /* The frame for this expression. This field is set iff valid_block is
79 struct frame_id frame;
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
97 /* Language-related operations for this variable and its
99 const struct lang_varobj_ops *lang_ops;
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
104 /* Next root variable */
105 struct varobj_root *next;
108 /* Dynamic part of varobj. */
110 struct varobj_dynamic
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
116 int children_requested;
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
127 /* The iterator returned by the printer's 'children' method, or NULL
129 struct varobj_iter *child_iter;
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
139 /* A list of varobjs */
147 /* Private function prototypes */
149 /* Helper functions for the above subcommands. */
151 static int delete_variable (struct varobj *, int);
153 static void delete_variable_1 (int *, struct varobj *, int, int);
155 static int install_variable (struct varobj *);
157 static void uninstall_variable (struct varobj *);
159 static struct varobj *create_child (struct varobj *, int, char *);
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
165 /* Utility routines */
167 static struct varobj *new_variable (void);
169 static struct varobj *new_root_variable (void);
171 static void free_variable (struct varobj *var);
173 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
175 static enum varobj_display_formats variable_default_display (struct varobj *);
177 static int update_type_if_necessary (struct varobj *var,
178 struct value *new_value);
180 static int install_new_value (struct varobj *var, struct value *value,
183 /* Language-specific routines. */
185 static int number_of_children (const struct varobj *);
187 static char *name_of_variable (const struct varobj *);
189 static char *name_of_child (struct varobj *, int);
191 static struct value *value_of_root (struct varobj **var_handle, int *);
193 static struct value *value_of_child (const struct varobj *parent, int index);
195 static char *my_value_of_variable (struct varobj *var,
196 enum varobj_display_formats format);
198 static int is_root_p (const struct varobj *var);
200 static struct varobj *varobj_add_child (struct varobj *var,
201 struct varobj_item *item);
205 /* Mappings of varobj_display_formats enums to gdb's format codes. */
206 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
208 /* Header of the list of root variable objects. */
209 static struct varobj_root *rootlist;
211 /* Prime number indicating the number of buckets in the hash table. */
212 /* A prime large enough to avoid too many collisions. */
213 #define VAROBJ_TABLE_SIZE 227
215 /* Pointer to the varobj hash table (built at run time). */
216 static struct vlist **varobj_table;
220 /* API Implementation */
222 is_root_p (const struct varobj *var)
224 return (var->root->rootvar == var);
228 /* Helper function to install a Python environment suitable for
229 use during operations on VAR. */
231 varobj_ensure_python_env (const struct varobj *var)
233 return ensure_python_env (var->root->exp->gdbarch,
234 var->root->exp->language_defn);
238 /* Return the full FRAME which corresponds to the given CORE_ADDR
239 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
241 static struct frame_info *
242 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
244 struct frame_info *frame = NULL;
246 if (frame_addr == (CORE_ADDR) 0)
249 for (frame = get_current_frame ();
251 frame = get_prev_frame (frame))
253 /* The CORE_ADDR we get as argument was parsed from a string GDB
254 output as $fp. This output got truncated to gdbarch_addr_bit.
255 Truncate the frame base address in the same manner before
256 comparing it against our argument. */
257 CORE_ADDR frame_base = get_frame_base_address (frame);
258 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
260 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
261 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
263 if (frame_base == frame_addr)
270 /* Creates a varobj (not its children). */
273 varobj_create (char *objname,
274 char *expression, CORE_ADDR frame, enum varobj_type type)
277 struct cleanup *old_chain;
279 /* Fill out a varobj structure for the (root) variable being constructed. */
280 var = new_root_variable ();
281 old_chain = make_cleanup_free_variable (var);
283 if (expression != NULL)
285 struct frame_info *fi;
286 struct frame_id old_id = null_frame_id;
287 const struct block *block;
289 struct value *value = NULL;
292 /* Parse and evaluate the expression, filling in as much of the
293 variable's data as possible. */
295 if (has_stack_frames ())
297 /* Allow creator to specify context of variable. */
298 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
299 fi = get_selected_frame (NULL);
301 /* FIXME: cagney/2002-11-23: This code should be doing a
302 lookup using the frame ID and not just the frame's
303 ``address''. This, of course, means an interface
304 change. However, with out that interface change ISAs,
305 such as the ia64 with its two stacks, won't work.
306 Similar goes for the case where there is a frameless
308 fi = find_frame_addr_in_frame_chain (frame);
313 /* frame = -2 means always use selected frame. */
314 if (type == USE_SELECTED_FRAME)
315 var->root->floating = 1;
321 block = get_frame_block (fi, 0);
322 pc = get_frame_pc (fi);
326 innermost_block = NULL;
327 /* Wrap the call to parse expression, so we can
328 return a sensible error. */
331 var->root->exp = parse_exp_1 (&p, pc, block, 0);
334 CATCH (except, RETURN_MASK_ERROR)
336 do_cleanups (old_chain);
341 /* Don't allow variables to be created for types. */
342 if (var->root->exp->elts[0].opcode == OP_TYPE
343 || var->root->exp->elts[0].opcode == OP_TYPEOF
344 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
346 do_cleanups (old_chain);
347 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
348 " as an expression.\n");
352 var->format = variable_default_display (var);
353 var->root->valid_block = innermost_block;
354 var->name = xstrdup (expression);
355 /* For a root var, the name and the expr are the same. */
356 var->path_expr = xstrdup (expression);
358 /* When the frame is different from the current frame,
359 we must select the appropriate frame before parsing
360 the expression, otherwise the value will not be current.
361 Since select_frame is so benign, just call it for all cases. */
364 /* User could specify explicit FRAME-ADDR which was not found but
365 EXPRESSION is frame specific and we would not be able to evaluate
366 it correctly next time. With VALID_BLOCK set we must also set
367 FRAME and THREAD_ID. */
369 error (_("Failed to find the specified frame"));
371 var->root->frame = get_frame_id (fi);
372 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
373 old_id = get_frame_id (get_selected_frame (NULL));
377 /* We definitely need to catch errors here.
378 If evaluate_expression succeeds we got the value we wanted.
379 But if it fails, we still go on with a call to evaluate_type(). */
382 value = evaluate_expression (var->root->exp);
384 CATCH (except, RETURN_MASK_ERROR)
386 /* Error getting the value. Try to at least get the
388 struct value *type_only_value = evaluate_type (var->root->exp);
390 var->type = value_type (type_only_value);
396 int real_type_found = 0;
398 var->type = value_actual_type (value, 0, &real_type_found);
400 value = value_cast (var->type, value);
403 /* Set language info */
404 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
406 install_new_value (var, value, 1 /* Initial assignment */);
408 /* Set ourselves as our root. */
409 var->root->rootvar = var;
411 /* Reset the selected frame. */
412 if (frame_id_p (old_id))
413 select_frame (frame_find_by_id (old_id));
416 /* If the variable object name is null, that means this
417 is a temporary variable, so don't install it. */
419 if ((var != NULL) && (objname != NULL))
421 var->obj_name = xstrdup (objname);
423 /* If a varobj name is duplicated, the install will fail so
425 if (!install_variable (var))
427 do_cleanups (old_chain);
432 discard_cleanups (old_chain);
436 /* Generates an unique name that can be used for a varobj. */
439 varobj_gen_name (void)
444 /* Generate a name for this object. */
446 obj_name = xstrprintf ("var%d", id);
451 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
452 error if OBJNAME cannot be found. */
455 varobj_get_handle (char *objname)
459 unsigned int index = 0;
462 for (chp = objname; *chp; chp++)
464 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
467 cv = *(varobj_table + index);
468 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
472 error (_("Variable object not found"));
477 /* Given the handle, return the name of the object. */
480 varobj_get_objname (const struct varobj *var)
482 return var->obj_name;
485 /* Given the handle, return the expression represented by the object. The
486 result must be freed by the caller. */
489 varobj_get_expression (const struct varobj *var)
491 return name_of_variable (var);
497 varobj_delete (struct varobj *var, int only_children)
499 return delete_variable (var, only_children);
504 /* Convenience function for varobj_set_visualizer. Instantiate a
505 pretty-printer for a given value. */
507 instantiate_pretty_printer (PyObject *constructor, struct value *value)
509 PyObject *val_obj = NULL;
512 val_obj = value_to_value_object (value);
516 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
523 /* Set/Get variable object display format. */
525 enum varobj_display_formats
526 varobj_set_display_format (struct varobj *var,
527 enum varobj_display_formats format)
534 case FORMAT_HEXADECIMAL:
536 case FORMAT_ZHEXADECIMAL:
537 var->format = format;
541 var->format = variable_default_display (var);
544 if (varobj_value_is_changeable_p (var)
545 && var->value && !value_lazy (var->value))
547 xfree (var->print_value);
548 var->print_value = varobj_value_get_print_value (var->value,
555 enum varobj_display_formats
556 varobj_get_display_format (const struct varobj *var)
562 varobj_get_display_hint (const struct varobj *var)
567 struct cleanup *back_to;
569 if (!gdb_python_initialized)
572 back_to = varobj_ensure_python_env (var);
574 if (var->dynamic->pretty_printer != NULL)
575 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
577 do_cleanups (back_to);
583 /* Return true if the varobj has items after TO, false otherwise. */
586 varobj_has_more (const struct varobj *var, int to)
588 if (VEC_length (varobj_p, var->children) > to)
590 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
591 && (var->dynamic->saved_item != NULL));
594 /* If the variable object is bound to a specific thread, that
595 is its evaluation can always be done in context of a frame
596 inside that thread, returns GDB id of the thread -- which
597 is always positive. Otherwise, returns -1. */
599 varobj_get_thread_id (const struct varobj *var)
601 if (var->root->valid_block && var->root->thread_id > 0)
602 return var->root->thread_id;
608 varobj_set_frozen (struct varobj *var, int frozen)
610 /* When a variable is unfrozen, we don't fetch its value.
611 The 'not_fetched' flag remains set, so next -var-update
614 We don't fetch the value, because for structures the client
615 should do -var-update anyway. It would be bad to have different
616 client-size logic for structure and other types. */
617 var->frozen = frozen;
621 varobj_get_frozen (const struct varobj *var)
626 /* A helper function that restricts a range to what is actually
627 available in a VEC. This follows the usual rules for the meaning
628 of FROM and TO -- if either is negative, the entire range is
632 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
634 if (*from < 0 || *to < 0)
637 *to = VEC_length (varobj_p, children);
641 if (*from > VEC_length (varobj_p, children))
642 *from = VEC_length (varobj_p, children);
643 if (*to > VEC_length (varobj_p, children))
644 *to = VEC_length (varobj_p, children);
650 /* A helper for update_dynamic_varobj_children that installs a new
651 child when needed. */
654 install_dynamic_child (struct varobj *var,
655 VEC (varobj_p) **changed,
656 VEC (varobj_p) **type_changed,
657 VEC (varobj_p) **newobj,
658 VEC (varobj_p) **unchanged,
661 struct varobj_item *item)
663 if (VEC_length (varobj_p, var->children) < index + 1)
665 /* There's no child yet. */
666 struct varobj *child = varobj_add_child (var, item);
670 VEC_safe_push (varobj_p, *newobj, child);
676 varobj_p existing = VEC_index (varobj_p, var->children, index);
677 int type_updated = update_type_if_necessary (existing, item->value);
682 VEC_safe_push (varobj_p, *type_changed, existing);
684 if (install_new_value (existing, item->value, 0))
686 if (!type_updated && changed)
687 VEC_safe_push (varobj_p, *changed, existing);
689 else if (!type_updated && unchanged)
690 VEC_safe_push (varobj_p, *unchanged, existing);
697 dynamic_varobj_has_child_method (const struct varobj *var)
699 struct cleanup *back_to;
700 PyObject *printer = var->dynamic->pretty_printer;
703 if (!gdb_python_initialized)
706 back_to = varobj_ensure_python_env (var);
707 result = PyObject_HasAttr (printer, gdbpy_children_cst);
708 do_cleanups (back_to);
713 /* A factory for creating dynamic varobj's iterators. Returns an
714 iterator object suitable for iterating over VAR's children. */
716 static struct varobj_iter *
717 varobj_get_iterator (struct varobj *var)
720 if (var->dynamic->pretty_printer)
721 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
724 gdb_assert_not_reached (_("\
725 requested an iterator from a non-dynamic varobj"));
728 /* Release and clear VAR's saved item, if any. */
731 varobj_clear_saved_item (struct varobj_dynamic *var)
733 if (var->saved_item != NULL)
735 value_free (var->saved_item->value);
736 xfree (var->saved_item);
737 var->saved_item = NULL;
742 update_dynamic_varobj_children (struct varobj *var,
743 VEC (varobj_p) **changed,
744 VEC (varobj_p) **type_changed,
745 VEC (varobj_p) **newobj,
746 VEC (varobj_p) **unchanged,
756 if (update_children || var->dynamic->child_iter == NULL)
758 varobj_iter_delete (var->dynamic->child_iter);
759 var->dynamic->child_iter = varobj_get_iterator (var);
761 varobj_clear_saved_item (var->dynamic);
765 if (var->dynamic->child_iter == NULL)
769 i = VEC_length (varobj_p, var->children);
771 /* We ask for one extra child, so that MI can report whether there
772 are more children. */
773 for (; to < 0 || i < to + 1; ++i)
777 /* See if there was a leftover from last time. */
778 if (var->dynamic->saved_item != NULL)
780 item = var->dynamic->saved_item;
781 var->dynamic->saved_item = NULL;
785 item = varobj_iter_next (var->dynamic->child_iter);
786 /* Release vitem->value so its lifetime is not bound to the
787 execution of a command. */
788 if (item != NULL && item->value != NULL)
789 release_value_or_incref (item->value);
794 /* Iteration is done. Remove iterator from VAR. */
795 varobj_iter_delete (var->dynamic->child_iter);
796 var->dynamic->child_iter = NULL;
799 /* We don't want to push the extra child on any report list. */
800 if (to < 0 || i < to)
802 int can_mention = from < 0 || i >= from;
804 install_dynamic_child (var, can_mention ? changed : NULL,
805 can_mention ? type_changed : NULL,
806 can_mention ? newobj : NULL,
807 can_mention ? unchanged : NULL,
808 can_mention ? cchanged : NULL, i,
815 var->dynamic->saved_item = item;
817 /* We want to truncate the child list just before this
823 if (i < VEC_length (varobj_p, var->children))
828 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
829 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
830 VEC_truncate (varobj_p, var->children, i);
833 /* If there are fewer children than requested, note that the list of
835 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
838 var->num_children = VEC_length (varobj_p, var->children);
844 varobj_get_num_children (struct varobj *var)
846 if (var->num_children == -1)
848 if (varobj_is_dynamic_p (var))
852 /* If we have a dynamic varobj, don't report -1 children.
853 So, try to fetch some children first. */
854 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
858 var->num_children = number_of_children (var);
861 return var->num_children >= 0 ? var->num_children : 0;
864 /* Creates a list of the immediate children of a variable object;
865 the return code is the number of such children or -1 on error. */
868 varobj_list_children (struct varobj *var, int *from, int *to)
871 int i, children_changed;
873 var->dynamic->children_requested = 1;
875 if (varobj_is_dynamic_p (var))
877 /* This, in theory, can result in the number of children changing without
878 frontend noticing. But well, calling -var-list-children on the same
879 varobj twice is not something a sane frontend would do. */
880 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
881 &children_changed, 0, 0, *to);
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
886 if (var->num_children == -1)
887 var->num_children = number_of_children (var);
889 /* If that failed, give up. */
890 if (var->num_children == -1)
891 return var->children;
893 /* If we're called when the list of children is not yet initialized,
894 allocate enough elements in it. */
895 while (VEC_length (varobj_p, var->children) < var->num_children)
896 VEC_safe_push (varobj_p, var->children, NULL);
898 for (i = 0; i < var->num_children; i++)
900 varobj_p existing = VEC_index (varobj_p, var->children, i);
902 if (existing == NULL)
904 /* Either it's the first call to varobj_list_children for
905 this variable object, and the child was never created,
906 or it was explicitly deleted by the client. */
907 name = name_of_child (var, i);
908 existing = create_child (var, i, name);
909 VEC_replace (varobj_p, var->children, i, existing);
913 varobj_restrict_range (var->children, from, to);
914 return var->children;
917 static struct varobj *
918 varobj_add_child (struct varobj *var, struct varobj_item *item)
920 varobj_p v = create_child_with_value (var,
921 VEC_length (varobj_p, var->children),
924 VEC_safe_push (varobj_p, var->children, v);
928 /* Obtain the type of an object Variable as a string similar to the one gdb
929 prints on the console. The caller is responsible for freeing the string.
933 varobj_get_type (struct varobj *var)
935 /* For the "fake" variables, do not return a type. (Its type is
937 Do not return a type for invalid variables as well. */
938 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
941 return type_to_string (var->type);
944 /* Obtain the type of an object variable. */
947 varobj_get_gdb_type (const struct varobj *var)
952 /* Is VAR a path expression parent, i.e., can it be used to construct
953 a valid path expression? */
956 is_path_expr_parent (const struct varobj *var)
958 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
959 return var->root->lang_ops->is_path_expr_parent (var);
962 /* Is VAR a path expression parent, i.e., can it be used to construct
963 a valid path expression? By default we assume any VAR can be a path
967 varobj_default_is_path_expr_parent (const struct varobj *var)
972 /* Return the path expression parent for VAR. */
974 const struct varobj *
975 varobj_get_path_expr_parent (const struct varobj *var)
977 const struct varobj *parent = var;
979 while (!is_root_p (parent) && !is_path_expr_parent (parent))
980 parent = parent->parent;
985 /* Return a pointer to the full rooted expression of varobj VAR.
986 If it has not been computed yet, compute it. */
988 varobj_get_path_expr (const struct varobj *var)
990 if (var->path_expr == NULL)
992 /* For root varobjs, we initialize path_expr
993 when creating varobj, so here it should be
995 struct varobj *mutable_var = (struct varobj *) var;
996 gdb_assert (!is_root_p (var));
998 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
1001 return var->path_expr;
1004 const struct language_defn *
1005 varobj_get_language (const struct varobj *var)
1007 return var->root->exp->language_defn;
1011 varobj_get_attributes (const struct varobj *var)
1015 if (varobj_editable_p (var))
1016 /* FIXME: define masks for attributes. */
1017 attributes |= 0x00000001; /* Editable */
1022 /* Return true if VAR is a dynamic varobj. */
1025 varobj_is_dynamic_p (const struct varobj *var)
1027 return var->dynamic->pretty_printer != NULL;
1031 varobj_get_formatted_value (struct varobj *var,
1032 enum varobj_display_formats format)
1034 return my_value_of_variable (var, format);
1038 varobj_get_value (struct varobj *var)
1040 return my_value_of_variable (var, var->format);
1043 /* Set the value of an object variable (if it is editable) to the
1044 value of the given expression. */
1045 /* Note: Invokes functions that can call error(). */
1048 varobj_set_value (struct varobj *var, char *expression)
1050 struct value *val = NULL; /* Initialize to keep gcc happy. */
1051 /* The argument "expression" contains the variable's new value.
1052 We need to first construct a legal expression for this -- ugh! */
1053 /* Does this cover all the bases? */
1054 struct expression *exp;
1055 struct value *value = NULL; /* Initialize to keep gcc happy. */
1056 int saved_input_radix = input_radix;
1057 const char *s = expression;
1059 gdb_assert (varobj_editable_p (var));
1061 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1062 exp = parse_exp_1 (&s, 0, 0, 0);
1065 value = evaluate_expression (exp);
1068 CATCH (except, RETURN_MASK_ERROR)
1070 /* We cannot proceed without a valid expression. */
1076 /* All types that are editable must also be changeable. */
1077 gdb_assert (varobj_value_is_changeable_p (var));
1079 /* The value of a changeable variable object must not be lazy. */
1080 gdb_assert (!value_lazy (var->value));
1082 /* Need to coerce the input. We want to check if the
1083 value of the variable object will be different
1084 after assignment, and the first thing value_assign
1085 does is coerce the input.
1086 For example, if we are assigning an array to a pointer variable we
1087 should compare the pointer with the array's address, not with the
1089 value = coerce_array (value);
1091 /* The new value may be lazy. value_assign, or
1092 rather value_contents, will take care of this. */
1095 val = value_assign (var->value, value);
1098 CATCH (except, RETURN_MASK_ERROR)
1104 /* If the value has changed, record it, so that next -var-update can
1105 report this change. If a variable had a value of '1', we've set it
1106 to '333' and then set again to '1', when -var-update will report this
1107 variable as changed -- because the first assignment has set the
1108 'updated' flag. There's no need to optimize that, because return value
1109 of -var-update should be considered an approximation. */
1110 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1111 input_radix = saved_input_radix;
1117 /* A helper function to install a constructor function and visualizer
1118 in a varobj_dynamic. */
1121 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1122 PyObject *visualizer)
1124 Py_XDECREF (var->constructor);
1125 var->constructor = constructor;
1127 Py_XDECREF (var->pretty_printer);
1128 var->pretty_printer = visualizer;
1130 varobj_iter_delete (var->child_iter);
1131 var->child_iter = NULL;
1134 /* Install the default visualizer for VAR. */
1137 install_default_visualizer (struct varobj *var)
1139 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1140 if (CPLUS_FAKE_CHILD (var))
1143 if (pretty_printing)
1145 PyObject *pretty_printer = NULL;
1149 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1150 if (! pretty_printer)
1152 gdbpy_print_stack ();
1153 error (_("Cannot instantiate printer for default visualizer"));
1157 if (pretty_printer == Py_None)
1159 Py_DECREF (pretty_printer);
1160 pretty_printer = NULL;
1163 install_visualizer (var->dynamic, NULL, pretty_printer);
1167 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1168 make a new object. */
1171 construct_visualizer (struct varobj *var, PyObject *constructor)
1173 PyObject *pretty_printer;
1175 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1176 if (CPLUS_FAKE_CHILD (var))
1179 Py_INCREF (constructor);
1180 if (constructor == Py_None)
1181 pretty_printer = NULL;
1184 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1185 if (! pretty_printer)
1187 gdbpy_print_stack ();
1188 Py_DECREF (constructor);
1189 constructor = Py_None;
1190 Py_INCREF (constructor);
1193 if (pretty_printer == Py_None)
1195 Py_DECREF (pretty_printer);
1196 pretty_printer = NULL;
1200 install_visualizer (var->dynamic, constructor, pretty_printer);
1203 #endif /* HAVE_PYTHON */
1205 /* A helper function for install_new_value. This creates and installs
1206 a visualizer for VAR, if appropriate. */
1209 install_new_value_visualizer (struct varobj *var)
1212 /* If the constructor is None, then we want the raw value. If VAR
1213 does not have a value, just skip this. */
1214 if (!gdb_python_initialized)
1217 if (var->dynamic->constructor != Py_None && var->value != NULL)
1219 struct cleanup *cleanup;
1221 cleanup = varobj_ensure_python_env (var);
1223 if (var->dynamic->constructor == NULL)
1224 install_default_visualizer (var);
1226 construct_visualizer (var, var->dynamic->constructor);
1228 do_cleanups (cleanup);
1235 /* When using RTTI to determine variable type it may be changed in runtime when
1236 the variable value is changed. This function checks whether type of varobj
1237 VAR will change when a new value NEW_VALUE is assigned and if it is so
1238 updates the type of VAR. */
1241 update_type_if_necessary (struct varobj *var, struct value *new_value)
1245 struct value_print_options opts;
1247 get_user_print_options (&opts);
1248 if (opts.objectprint)
1250 struct type *new_type;
1251 char *curr_type_str, *new_type_str;
1252 int type_name_changed;
1254 new_type = value_actual_type (new_value, 0, 0);
1255 new_type_str = type_to_string (new_type);
1256 curr_type_str = varobj_get_type (var);
1257 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1258 xfree (curr_type_str);
1259 xfree (new_type_str);
1261 if (type_name_changed)
1263 var->type = new_type;
1265 /* This information may be not valid for a new type. */
1266 varobj_delete (var, 1);
1267 VEC_free (varobj_p, var->children);
1268 var->num_children = -1;
1277 /* Assign a new value to a variable object. If INITIAL is non-zero,
1278 this is the first assignement after the variable object was just
1279 created, or changed type. In that case, just assign the value
1281 Otherwise, assign the new value, and return 1 if the value is
1282 different from the current one, 0 otherwise. The comparison is
1283 done on textual representation of value. Therefore, some types
1284 need not be compared. E.g. for structures the reported value is
1285 always "{...}", so no comparison is necessary here. If the old
1286 value was NULL and new one is not, or vice versa, we always return 1.
1288 The VALUE parameter should not be released -- the function will
1289 take care of releasing it when needed. */
1291 install_new_value (struct varobj *var, struct value *value, int initial)
1296 int intentionally_not_fetched = 0;
1297 char *print_value = NULL;
1299 /* We need to know the varobj's type to decide if the value should
1300 be fetched or not. C++ fake children (public/protected/private)
1301 don't have a type. */
1302 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1303 changeable = varobj_value_is_changeable_p (var);
1305 /* If the type has custom visualizer, we consider it to be always
1306 changeable. FIXME: need to make sure this behaviour will not
1307 mess up read-sensitive values. */
1308 if (var->dynamic->pretty_printer != NULL)
1311 need_to_fetch = changeable;
1313 /* We are not interested in the address of references, and given
1314 that in C++ a reference is not rebindable, it cannot
1315 meaningfully change. So, get hold of the real value. */
1317 value = coerce_ref (value);
1319 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1320 /* For unions, we need to fetch the value implicitly because
1321 of implementation of union member fetch. When gdb
1322 creates a value for a field and the value of the enclosing
1323 structure is not lazy, it immediately copies the necessary
1324 bytes from the enclosing values. If the enclosing value is
1325 lazy, the call to value_fetch_lazy on the field will read
1326 the data from memory. For unions, that means we'll read the
1327 same memory more than once, which is not desirable. So
1331 /* The new value might be lazy. If the type is changeable,
1332 that is we'll be comparing values of this type, fetch the
1333 value now. Otherwise, on the next update the old value
1334 will be lazy, which means we've lost that old value. */
1335 if (need_to_fetch && value && value_lazy (value))
1337 const struct varobj *parent = var->parent;
1338 int frozen = var->frozen;
1340 for (; !frozen && parent; parent = parent->parent)
1341 frozen |= parent->frozen;
1343 if (frozen && initial)
1345 /* For variables that are frozen, or are children of frozen
1346 variables, we don't do fetch on initial assignment.
1347 For non-initial assignemnt we do the fetch, since it means we're
1348 explicitly asked to compare the new value with the old one. */
1349 intentionally_not_fetched = 1;
1356 value_fetch_lazy (value);
1359 CATCH (except, RETURN_MASK_ERROR)
1361 /* Set the value to NULL, so that for the next -var-update,
1362 we don't try to compare the new value with this value,
1363 that we couldn't even read. */
1370 /* Get a reference now, before possibly passing it to any Python
1371 code that might release it. */
1373 value_incref (value);
1375 /* Below, we'll be comparing string rendering of old and new
1376 values. Don't get string rendering if the value is
1377 lazy -- if it is, the code above has decided that the value
1378 should not be fetched. */
1379 if (value != NULL && !value_lazy (value)
1380 && var->dynamic->pretty_printer == NULL)
1381 print_value = varobj_value_get_print_value (value, var->format, var);
1383 /* If the type is changeable, compare the old and the new values.
1384 If this is the initial assignment, we don't have any old value
1386 if (!initial && changeable)
1388 /* If the value of the varobj was changed by -var-set-value,
1389 then the value in the varobj and in the target is the same.
1390 However, that value is different from the value that the
1391 varobj had after the previous -var-update. So need to the
1392 varobj as changed. */
1397 else if (var->dynamic->pretty_printer == NULL)
1399 /* Try to compare the values. That requires that both
1400 values are non-lazy. */
1401 if (var->not_fetched && value_lazy (var->value))
1403 /* This is a frozen varobj and the value was never read.
1404 Presumably, UI shows some "never read" indicator.
1405 Now that we've fetched the real value, we need to report
1406 this varobj as changed so that UI can show the real
1410 else if (var->value == NULL && value == NULL)
1413 else if (var->value == NULL || value == NULL)
1419 gdb_assert (!value_lazy (var->value));
1420 gdb_assert (!value_lazy (value));
1422 gdb_assert (var->print_value != NULL && print_value != NULL);
1423 if (strcmp (var->print_value, print_value) != 0)
1429 if (!initial && !changeable)
1431 /* For values that are not changeable, we don't compare the values.
1432 However, we want to notice if a value was not NULL and now is NULL,
1433 or vise versa, so that we report when top-level varobjs come in scope
1434 and leave the scope. */
1435 changed = (var->value != NULL) != (value != NULL);
1438 /* We must always keep the new value, since children depend on it. */
1439 if (var->value != NULL && var->value != value)
1440 value_free (var->value);
1442 if (value && value_lazy (value) && intentionally_not_fetched)
1443 var->not_fetched = 1;
1445 var->not_fetched = 0;
1448 install_new_value_visualizer (var);
1450 /* If we installed a pretty-printer, re-compare the printed version
1451 to see if the variable changed. */
1452 if (var->dynamic->pretty_printer != NULL)
1454 xfree (print_value);
1455 print_value = varobj_value_get_print_value (var->value, var->format,
1457 if ((var->print_value == NULL && print_value != NULL)
1458 || (var->print_value != NULL && print_value == NULL)
1459 || (var->print_value != NULL && print_value != NULL
1460 && strcmp (var->print_value, print_value) != 0))
1463 if (var->print_value)
1464 xfree (var->print_value);
1465 var->print_value = print_value;
1467 gdb_assert (!var->value || value_type (var->value));
1472 /* Return the requested range for a varobj. VAR is the varobj. FROM
1473 and TO are out parameters; *FROM and *TO will be set to the
1474 selected sub-range of VAR. If no range was selected using
1475 -var-set-update-range, then both will be -1. */
1477 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1483 /* Set the selected sub-range of children of VAR to start at index
1484 FROM and end at index TO. If either FROM or TO is less than zero,
1485 this is interpreted as a request for all children. */
1487 varobj_set_child_range (struct varobj *var, int from, int to)
1494 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1497 PyObject *mainmod, *globals, *constructor;
1498 struct cleanup *back_to;
1500 if (!gdb_python_initialized)
1503 back_to = varobj_ensure_python_env (var);
1505 mainmod = PyImport_AddModule ("__main__");
1506 globals = PyModule_GetDict (mainmod);
1507 Py_INCREF (globals);
1508 make_cleanup_py_decref (globals);
1510 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1514 gdbpy_print_stack ();
1515 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1518 construct_visualizer (var, constructor);
1519 Py_XDECREF (constructor);
1521 /* If there are any children now, wipe them. */
1522 varobj_delete (var, 1 /* children only */);
1523 var->num_children = -1;
1525 do_cleanups (back_to);
1527 error (_("Python support required"));
1531 /* If NEW_VALUE is the new value of the given varobj (var), return
1532 non-zero if var has mutated. In other words, if the type of
1533 the new value is different from the type of the varobj's old
1536 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1539 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1540 struct type *new_type)
1542 /* If we haven't previously computed the number of children in var,
1543 it does not matter from the front-end's perspective whether
1544 the type has mutated or not. For all intents and purposes,
1545 it has not mutated. */
1546 if (var->num_children < 0)
1549 if (var->root->lang_ops->value_has_mutated)
1551 /* The varobj module, when installing new values, explicitly strips
1552 references, saying that we're not interested in those addresses.
1553 But detection of mutation happens before installing the new
1554 value, so our value may be a reference that we need to strip
1555 in order to remain consistent. */
1556 if (new_value != NULL)
1557 new_value = coerce_ref (new_value);
1558 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1564 /* Update the values for a variable and its children. This is a
1565 two-pronged attack. First, re-parse the value for the root's
1566 expression to see if it's changed. Then go all the way
1567 through its children, reconstructing them and noting if they've
1570 The EXPLICIT parameter specifies if this call is result
1571 of MI request to update this specific variable, or
1572 result of implicit -var-update *. For implicit request, we don't
1573 update frozen variables.
1575 NOTE: This function may delete the caller's varobj. If it
1576 returns TYPE_CHANGED, then it has done this and VARP will be modified
1577 to point to the new varobj. */
1579 VEC(varobj_update_result) *
1580 varobj_update (struct varobj **varp, int is_explicit)
1582 int type_changed = 0;
1584 struct value *newobj;
1585 VEC (varobj_update_result) *stack = NULL;
1586 VEC (varobj_update_result) *result = NULL;
1588 /* Frozen means frozen -- we don't check for any change in
1589 this varobj, including its going out of scope, or
1590 changing type. One use case for frozen varobjs is
1591 retaining previously evaluated expressions, and we don't
1592 want them to be reevaluated at all. */
1593 if (!is_explicit && (*varp)->frozen)
1596 if (!(*varp)->root->is_valid)
1598 varobj_update_result r = {0};
1601 r.status = VAROBJ_INVALID;
1602 VEC_safe_push (varobj_update_result, result, &r);
1606 if ((*varp)->root->rootvar == *varp)
1608 varobj_update_result r = {0};
1611 r.status = VAROBJ_IN_SCOPE;
1613 /* Update the root variable. value_of_root can return NULL
1614 if the variable is no longer around, i.e. we stepped out of
1615 the frame in which a local existed. We are letting the
1616 value_of_root variable dispose of the varobj if the type
1618 newobj = value_of_root (varp, &type_changed);
1619 if (update_type_if_necessary(*varp, newobj))
1622 r.type_changed = type_changed;
1623 if (install_new_value ((*varp), newobj, type_changed))
1627 r.status = VAROBJ_NOT_IN_SCOPE;
1628 r.value_installed = 1;
1630 if (r.status == VAROBJ_NOT_IN_SCOPE)
1632 if (r.type_changed || r.changed)
1633 VEC_safe_push (varobj_update_result, result, &r);
1637 VEC_safe_push (varobj_update_result, stack, &r);
1641 varobj_update_result r = {0};
1644 VEC_safe_push (varobj_update_result, stack, &r);
1647 /* Walk through the children, reconstructing them all. */
1648 while (!VEC_empty (varobj_update_result, stack))
1650 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1651 struct varobj *v = r.varobj;
1653 VEC_pop (varobj_update_result, stack);
1655 /* Update this variable, unless it's a root, which is already
1657 if (!r.value_installed)
1659 struct type *new_type;
1661 newobj = value_of_child (v->parent, v->index);
1662 if (update_type_if_necessary(v, newobj))
1665 new_type = value_type (newobj);
1667 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1669 if (varobj_value_has_mutated (v, newobj, new_type))
1671 /* The children are no longer valid; delete them now.
1672 Report the fact that its type changed as well. */
1673 varobj_delete (v, 1 /* only_children */);
1674 v->num_children = -1;
1681 if (install_new_value (v, newobj, r.type_changed))
1688 /* We probably should not get children of a dynamic varobj, but
1689 for which -var-list-children was never invoked. */
1690 if (varobj_is_dynamic_p (v))
1692 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1693 VEC (varobj_p) *newobj = 0;
1694 int i, children_changed = 0;
1699 if (!v->dynamic->children_requested)
1703 /* If we initially did not have potential children, but
1704 now we do, consider the varobj as changed.
1705 Otherwise, if children were never requested, consider
1706 it as unchanged -- presumably, such varobj is not yet
1707 expanded in the UI, so we need not bother getting
1709 if (!varobj_has_more (v, 0))
1711 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1713 if (varobj_has_more (v, 0))
1718 VEC_safe_push (varobj_update_result, result, &r);
1723 /* If update_dynamic_varobj_children returns 0, then we have
1724 a non-conforming pretty-printer, so we skip it. */
1725 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1726 &unchanged, &children_changed, 1,
1729 if (children_changed || newobj)
1731 r.children_changed = 1;
1734 /* Push in reverse order so that the first child is
1735 popped from the work stack first, and so will be
1736 added to result first. This does not affect
1737 correctness, just "nicer". */
1738 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1740 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1741 varobj_update_result r = {0};
1743 /* Type may change only if value was changed. */
1747 r.value_installed = 1;
1748 VEC_safe_push (varobj_update_result, stack, &r);
1750 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1752 varobj_p tmp = VEC_index (varobj_p, changed, i);
1753 varobj_update_result r = {0};
1757 r.value_installed = 1;
1758 VEC_safe_push (varobj_update_result, stack, &r);
1760 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1762 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1766 varobj_update_result r = {0};
1769 r.value_installed = 1;
1770 VEC_safe_push (varobj_update_result, stack, &r);
1773 if (r.changed || r.children_changed)
1774 VEC_safe_push (varobj_update_result, result, &r);
1776 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1777 because NEW has been put into the result vector. */
1778 VEC_free (varobj_p, changed);
1779 VEC_free (varobj_p, type_changed);
1780 VEC_free (varobj_p, unchanged);
1786 /* Push any children. Use reverse order so that the first
1787 child is popped from the work stack first, and so
1788 will be added to result first. This does not
1789 affect correctness, just "nicer". */
1790 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1792 varobj_p c = VEC_index (varobj_p, v->children, i);
1794 /* Child may be NULL if explicitly deleted by -var-delete. */
1795 if (c != NULL && !c->frozen)
1797 varobj_update_result r = {0};
1800 VEC_safe_push (varobj_update_result, stack, &r);
1804 if (r.changed || r.type_changed)
1805 VEC_safe_push (varobj_update_result, result, &r);
1808 VEC_free (varobj_update_result, stack);
1814 /* Helper functions */
1817 * Variable object construction/destruction
1821 delete_variable (struct varobj *var, int only_children_p)
1825 delete_variable_1 (&delcount, var, only_children_p,
1826 1 /* remove_from_parent_p */ );
1831 /* Delete the variable object VAR and its children. */
1832 /* IMPORTANT NOTE: If we delete a variable which is a child
1833 and the parent is not removed we dump core. It must be always
1834 initially called with remove_from_parent_p set. */
1836 delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
1837 int remove_from_parent_p)
1841 /* Delete any children of this variable, too. */
1842 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1844 varobj_p child = VEC_index (varobj_p, var->children, i);
1848 if (!remove_from_parent_p)
1849 child->parent = NULL;
1850 delete_variable_1 (delcountp, child, 0, only_children_p);
1852 VEC_free (varobj_p, var->children);
1854 /* if we were called to delete only the children we are done here. */
1855 if (only_children_p)
1858 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1859 /* If the name is null, this is a temporary variable, that has not
1860 yet been installed, don't report it, it belongs to the caller... */
1861 if (var->obj_name != NULL)
1863 *delcountp = *delcountp + 1;
1866 /* If this variable has a parent, remove it from its parent's list. */
1867 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1868 (as indicated by remove_from_parent_p) we don't bother doing an
1869 expensive list search to find the element to remove when we are
1870 discarding the list afterwards. */
1871 if ((remove_from_parent_p) && (var->parent != NULL))
1873 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1876 if (var->obj_name != NULL)
1877 uninstall_variable (var);
1879 /* Free memory associated with this variable. */
1880 free_variable (var);
1883 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1885 install_variable (struct varobj *var)
1888 struct vlist *newvl;
1890 unsigned int index = 0;
1893 for (chp = var->obj_name; *chp; chp++)
1895 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1898 cv = *(varobj_table + index);
1899 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1903 error (_("Duplicate variable object name"));
1905 /* Add varobj to hash table. */
1906 newvl = XNEW (struct vlist);
1907 newvl->next = *(varobj_table + index);
1909 *(varobj_table + index) = newvl;
1911 /* If root, add varobj to root list. */
1912 if (is_root_p (var))
1914 /* Add to list of root variables. */
1915 if (rootlist == NULL)
1916 var->root->next = NULL;
1918 var->root->next = rootlist;
1919 rootlist = var->root;
1925 /* Unistall the object VAR. */
1927 uninstall_variable (struct varobj *var)
1931 struct varobj_root *cr;
1932 struct varobj_root *prer;
1934 unsigned int index = 0;
1937 /* Remove varobj from hash table. */
1938 for (chp = var->obj_name; *chp; chp++)
1940 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1943 cv = *(varobj_table + index);
1945 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1952 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1957 ("Assertion failed: Could not find variable object \"%s\" to delete",
1963 *(varobj_table + index) = cv->next;
1965 prev->next = cv->next;
1969 /* If root, remove varobj from root list. */
1970 if (is_root_p (var))
1972 /* Remove from list of root variables. */
1973 if (rootlist == var->root)
1974 rootlist = var->root->next;
1979 while ((cr != NULL) && (cr->rootvar != var))
1986 warning (_("Assertion failed: Could not find "
1987 "varobj \"%s\" in root list"),
1994 prer->next = cr->next;
2000 /* Create and install a child of the parent of the given name.
2002 The created VAROBJ takes ownership of the allocated NAME. */
2004 static struct varobj *
2005 create_child (struct varobj *parent, int index, char *name)
2007 struct varobj_item item;
2010 item.value = value_of_child (parent, index);
2012 return create_child_with_value (parent, index, &item);
2015 static struct varobj *
2016 create_child_with_value (struct varobj *parent, int index,
2017 struct varobj_item *item)
2019 struct varobj *child;
2022 child = new_variable ();
2024 /* NAME is allocated by caller. */
2025 child->name = item->name;
2026 child->index = index;
2027 child->parent = parent;
2028 child->root = parent->root;
2030 if (varobj_is_anonymous_child (child))
2031 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2033 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2034 child->obj_name = childs_name;
2036 install_variable (child);
2038 /* Compute the type of the child. Must do this before
2039 calling install_new_value. */
2040 if (item->value != NULL)
2041 /* If the child had no evaluation errors, var->value
2042 will be non-NULL and contain a valid type. */
2043 child->type = value_actual_type (item->value, 0, NULL);
2045 /* Otherwise, we must compute the type. */
2046 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2048 install_new_value (child, item->value, 1);
2055 * Miscellaneous utility functions.
2058 /* Allocate memory and initialize a new variable. */
2059 static struct varobj *
2064 var = XNEW (struct varobj);
2066 var->path_expr = NULL;
2067 var->obj_name = NULL;
2071 var->num_children = -1;
2073 var->children = NULL;
2074 var->format = FORMAT_NATURAL;
2077 var->print_value = NULL;
2079 var->not_fetched = 0;
2080 var->dynamic = XNEW (struct varobj_dynamic);
2081 var->dynamic->children_requested = 0;
2084 var->dynamic->constructor = 0;
2085 var->dynamic->pretty_printer = 0;
2086 var->dynamic->child_iter = 0;
2087 var->dynamic->saved_item = 0;
2092 /* Allocate memory and initialize a new root variable. */
2093 static struct varobj *
2094 new_root_variable (void)
2096 struct varobj *var = new_variable ();
2098 var->root = XNEW (struct varobj_root);
2099 var->root->lang_ops = NULL;
2100 var->root->exp = NULL;
2101 var->root->valid_block = NULL;
2102 var->root->frame = null_frame_id;
2103 var->root->floating = 0;
2104 var->root->rootvar = NULL;
2105 var->root->is_valid = 1;
2110 /* Free any allocated memory associated with VAR. */
2112 free_variable (struct varobj *var)
2115 if (var->dynamic->pretty_printer != NULL)
2117 struct cleanup *cleanup = varobj_ensure_python_env (var);
2119 Py_XDECREF (var->dynamic->constructor);
2120 Py_XDECREF (var->dynamic->pretty_printer);
2121 do_cleanups (cleanup);
2125 varobj_iter_delete (var->dynamic->child_iter);
2126 varobj_clear_saved_item (var->dynamic);
2127 value_free (var->value);
2129 /* Free the expression if this is a root variable. */
2130 if (is_root_p (var))
2132 xfree (var->root->exp);
2137 xfree (var->obj_name);
2138 xfree (var->print_value);
2139 xfree (var->path_expr);
2140 xfree (var->dynamic);
2145 do_free_variable_cleanup (void *var)
2147 free_variable ((struct varobj *) var);
2150 static struct cleanup *
2151 make_cleanup_free_variable (struct varobj *var)
2153 return make_cleanup (do_free_variable_cleanup, var);
2156 /* Return the type of the value that's stored in VAR,
2157 or that would have being stored there if the
2158 value were accessible.
2160 This differs from VAR->type in that VAR->type is always
2161 the true type of the expession in the source language.
2162 The return value of this function is the type we're
2163 actually storing in varobj, and using for displaying
2164 the values and for comparing previous and new values.
2166 For example, top-level references are always stripped. */
2168 varobj_get_value_type (const struct varobj *var)
2173 type = value_type (var->value);
2177 type = check_typedef (type);
2179 if (TYPE_CODE (type) == TYPE_CODE_REF)
2180 type = get_target_type (type);
2182 type = check_typedef (type);
2187 /* What is the default display for this variable? We assume that
2188 everything is "natural". Any exceptions? */
2189 static enum varobj_display_formats
2190 variable_default_display (struct varobj *var)
2192 return FORMAT_NATURAL;
2196 * Language-dependencies
2199 /* Common entry points */
2201 /* Return the number of children for a given variable.
2202 The result of this function is defined by the language
2203 implementation. The number of children returned by this function
2204 is the number of children that the user will see in the variable
2207 number_of_children (const struct varobj *var)
2209 return (*var->root->lang_ops->number_of_children) (var);
2212 /* What is the expression for the root varobj VAR? Returns a malloc'd
2215 name_of_variable (const struct varobj *var)
2217 return (*var->root->lang_ops->name_of_variable) (var);
2220 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2223 name_of_child (struct varobj *var, int index)
2225 return (*var->root->lang_ops->name_of_child) (var, index);
2228 /* If frame associated with VAR can be found, switch
2229 to it and return 1. Otherwise, return 0. */
2232 check_scope (const struct varobj *var)
2234 struct frame_info *fi;
2237 fi = frame_find_by_id (var->root->frame);
2242 CORE_ADDR pc = get_frame_pc (fi);
2244 if (pc < BLOCK_START (var->root->valid_block) ||
2245 pc >= BLOCK_END (var->root->valid_block))
2253 /* Helper function to value_of_root. */
2255 static struct value *
2256 value_of_root_1 (struct varobj **var_handle)
2258 struct value *new_val = NULL;
2259 struct varobj *var = *var_handle;
2260 int within_scope = 0;
2261 struct cleanup *back_to;
2263 /* Only root variables can be updated... */
2264 if (!is_root_p (var))
2265 /* Not a root var. */
2268 back_to = make_cleanup_restore_current_thread ();
2270 /* Determine whether the variable is still around. */
2271 if (var->root->valid_block == NULL || var->root->floating)
2273 else if (var->root->thread_id == 0)
2275 /* The program was single-threaded when the variable object was
2276 created. Technically, it's possible that the program became
2277 multi-threaded since then, but we don't support such
2279 within_scope = check_scope (var);
2283 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2285 if (!ptid_equal (minus_one_ptid, ptid))
2287 switch_to_thread (ptid);
2288 within_scope = check_scope (var);
2295 /* We need to catch errors here, because if evaluate
2296 expression fails we want to just return NULL. */
2299 new_val = evaluate_expression (var->root->exp);
2301 CATCH (except, RETURN_MASK_ERROR)
2307 do_cleanups (back_to);
2312 /* What is the ``struct value *'' of the root variable VAR?
2313 For floating variable object, evaluation can get us a value
2314 of different type from what is stored in varobj already. In
2316 - *type_changed will be set to 1
2317 - old varobj will be freed, and new one will be
2318 created, with the same name.
2319 - *var_handle will be set to the new varobj
2320 Otherwise, *type_changed will be set to 0. */
2321 static struct value *
2322 value_of_root (struct varobj **var_handle, int *type_changed)
2326 if (var_handle == NULL)
2331 /* This should really be an exception, since this should
2332 only get called with a root variable. */
2334 if (!is_root_p (var))
2337 if (var->root->floating)
2339 struct varobj *tmp_var;
2340 char *old_type, *new_type;
2342 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2343 USE_SELECTED_FRAME);
2344 if (tmp_var == NULL)
2348 old_type = varobj_get_type (var);
2349 new_type = varobj_get_type (tmp_var);
2350 if (strcmp (old_type, new_type) == 0)
2352 /* The expression presently stored inside var->root->exp
2353 remembers the locations of local variables relatively to
2354 the frame where the expression was created (in DWARF location
2355 button, for example). Naturally, those locations are not
2356 correct in other frames, so update the expression. */
2358 struct expression *tmp_exp = var->root->exp;
2360 var->root->exp = tmp_var->root->exp;
2361 tmp_var->root->exp = tmp_exp;
2363 varobj_delete (tmp_var, 0);
2368 tmp_var->obj_name = xstrdup (var->obj_name);
2369 tmp_var->from = var->from;
2370 tmp_var->to = var->to;
2371 varobj_delete (var, 0);
2373 install_variable (tmp_var);
2374 *var_handle = tmp_var;
2387 struct value *value;
2389 value = value_of_root_1 (var_handle);
2390 if (var->value == NULL || value == NULL)
2392 /* For root varobj-s, a NULL value indicates a scoping issue.
2393 So, nothing to do in terms of checking for mutations. */
2395 else if (varobj_value_has_mutated (var, value, value_type (value)))
2397 /* The type has mutated, so the children are no longer valid.
2398 Just delete them, and tell our caller that the type has
2400 varobj_delete (var, 1 /* only_children */);
2401 var->num_children = -1;
2410 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2411 static struct value *
2412 value_of_child (const struct varobj *parent, int index)
2414 struct value *value;
2416 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2421 /* GDB already has a command called "value_of_variable". Sigh. */
2423 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2425 if (var->root->is_valid)
2427 if (var->dynamic->pretty_printer != NULL)
2428 return varobj_value_get_print_value (var->value, var->format, var);
2429 return (*var->root->lang_ops->value_of_variable) (var, format);
2436 varobj_formatted_print_options (struct value_print_options *opts,
2437 enum varobj_display_formats format)
2439 get_formatted_print_options (opts, format_code[(int) format]);
2440 opts->deref_ref = 0;
2445 varobj_value_get_print_value (struct value *value,
2446 enum varobj_display_formats format,
2447 const struct varobj *var)
2449 struct ui_file *stb;
2450 struct cleanup *old_chain;
2451 char *thevalue = NULL;
2452 struct value_print_options opts;
2453 struct type *type = NULL;
2455 char *encoding = NULL;
2456 /* Initialize it just to avoid a GCC false warning. */
2457 CORE_ADDR str_addr = 0;
2458 int string_print = 0;
2463 stb = mem_fileopen ();
2464 old_chain = make_cleanup_ui_file_delete (stb);
2467 if (gdb_python_initialized)
2469 PyObject *value_formatter = var->dynamic->pretty_printer;
2471 varobj_ensure_python_env (var);
2473 if (value_formatter)
2475 /* First check to see if we have any children at all. If so,
2476 we simply return {...}. */
2477 if (dynamic_varobj_has_child_method (var))
2479 do_cleanups (old_chain);
2480 return xstrdup ("{...}");
2483 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2485 struct value *replacement;
2486 PyObject *output = NULL;
2488 output = apply_varobj_pretty_printer (value_formatter,
2492 /* If we have string like output ... */
2495 make_cleanup_py_decref (output);
2497 /* If this is a lazy string, extract it. For lazy
2498 strings we always print as a string, so set
2500 if (gdbpy_is_lazy_string (output))
2502 gdbpy_extract_lazy_string (output, &str_addr, &type,
2504 make_cleanup (free_current_contents, &encoding);
2509 /* If it is a regular (non-lazy) string, extract
2510 it and copy the contents into THEVALUE. If the
2511 hint says to print it as a string, set
2512 string_print. Otherwise just return the extracted
2513 string as a value. */
2515 char *s = python_string_to_target_string (output);
2519 struct gdbarch *gdbarch;
2522 hint = gdbpy_get_display_hint (value_formatter);
2525 if (!strcmp (hint, "string"))
2531 thevalue = (char *) xmemdup (s, len + 1, len + 1);
2532 gdbarch = get_type_arch (value_type (value));
2533 type = builtin_type (gdbarch)->builtin_char;
2538 do_cleanups (old_chain);
2542 make_cleanup (xfree, thevalue);
2545 gdbpy_print_stack ();
2548 /* If the printer returned a replacement value, set VALUE
2549 to REPLACEMENT. If there is not a replacement value,
2550 just use the value passed to this function. */
2552 value = replacement;
2558 varobj_formatted_print_options (&opts, format);
2560 /* If the THEVALUE has contents, it is a regular string. */
2562 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2563 else if (string_print)
2564 /* Otherwise, if string_print is set, and it is not a regular
2565 string, it is a lazy string. */
2566 val_print_string (type, encoding, str_addr, len, stb, &opts);
2568 /* All other cases. */
2569 common_val_print (value, stb, 0, &opts, current_language);
2571 thevalue = ui_file_xstrdup (stb, NULL);
2573 do_cleanups (old_chain);
2578 varobj_editable_p (const struct varobj *var)
2582 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2585 type = varobj_get_value_type (var);
2587 switch (TYPE_CODE (type))
2589 case TYPE_CODE_STRUCT:
2590 case TYPE_CODE_UNION:
2591 case TYPE_CODE_ARRAY:
2592 case TYPE_CODE_FUNC:
2593 case TYPE_CODE_METHOD:
2603 /* Call VAR's value_is_changeable_p language-specific callback. */
2606 varobj_value_is_changeable_p (const struct varobj *var)
2608 return var->root->lang_ops->value_is_changeable_p (var);
2611 /* Return 1 if that varobj is floating, that is is always evaluated in the
2612 selected frame, and not bound to thread/frame. Such variable objects
2613 are created using '@' as frame specifier to -var-create. */
2615 varobj_floating_p (const struct varobj *var)
2617 return var->root->floating;
2620 /* Implement the "value_is_changeable_p" varobj callback for most
2624 varobj_default_value_is_changeable_p (const struct varobj *var)
2629 if (CPLUS_FAKE_CHILD (var))
2632 type = varobj_get_value_type (var);
2634 switch (TYPE_CODE (type))
2636 case TYPE_CODE_STRUCT:
2637 case TYPE_CODE_UNION:
2638 case TYPE_CODE_ARRAY:
2649 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2650 with an arbitrary caller supplied DATA pointer. */
2653 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2655 struct varobj_root *var_root, *var_root_next;
2657 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2659 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2661 var_root_next = var_root->next;
2663 (*func) (var_root->rootvar, data);
2667 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2668 defined on globals. It is a helper for varobj_invalidate.
2670 This function is called after changing the symbol file, in this case the
2671 pointers to "struct type" stored by the varobj are no longer valid. All
2672 varobj must be either re-evaluated, or marked as invalid here. */
2675 varobj_invalidate_iter (struct varobj *var, void *unused)
2677 /* global and floating var must be re-evaluated. */
2678 if (var->root->floating || var->root->valid_block == NULL)
2680 struct varobj *tmp_var;
2682 /* Try to create a varobj with same expression. If we succeed
2683 replace the old varobj, otherwise invalidate it. */
2684 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2686 if (tmp_var != NULL)
2688 tmp_var->obj_name = xstrdup (var->obj_name);
2689 varobj_delete (var, 0);
2690 install_variable (tmp_var);
2693 var->root->is_valid = 0;
2695 else /* locals must be invalidated. */
2696 var->root->is_valid = 0;
2699 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2700 are defined on globals.
2701 Invalidated varobjs will be always printed in_scope="invalid". */
2704 varobj_invalidate (void)
2706 all_root_varobjs (varobj_invalidate_iter, NULL);
2709 extern void _initialize_varobj (void);
2711 _initialize_varobj (void)
2713 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2715 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2717 _("Set varobj debugging."),
2718 _("Show varobj debugging."),
2719 _("When non-zero, varobj debugging is enabled."),
2720 NULL, show_varobjdebug,
2721 &setdebuglist, &showdebuglist);