1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include "exceptions.h"
21 #include "expression.h"
29 #include "gdb_regex.h"
33 #include "gdbthread.h"
35 #include "varobj-iter.h"
38 #include "python/python.h"
39 #include "python/python-internal.h"
44 /* Non-zero if we want to see trace of varobj level stuff. */
46 unsigned int varobjdebug = 0;
48 show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 /* String representations of gdb's format codes. */
55 char *varobj_format_string[] =
56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58 /* True if we want to allow Python-based pretty-printing. */
59 static int pretty_printing = 0;
62 varobj_enable_pretty_printing (void)
69 /* Every root variable has one of these structures saved in its
70 varobj. Members which must be free'd are noted. */
74 /* Alloc'd expression for this parent. */
75 struct expression *exp;
77 /* Block for which this expression is valid. */
78 const struct block *valid_block;
80 /* The frame for this expression. This field is set iff valid_block is
82 struct frame_id frame;
84 /* The thread ID that this varobj_root belong to. This field
85 is only valid if valid_block is not NULL.
86 When not 0, indicates which thread 'frame' belongs to.
87 When 0, indicates that the thread list was empty when the varobj_root
91 /* If 1, the -var-update always recomputes the value in the
92 current thread and frame. Otherwise, variable object is
93 always updated in the specific scope/thread/frame. */
96 /* Flag that indicates validity: set to 0 when this varobj_root refers
97 to symbols that do not exist anymore. */
100 /* Language-related operations for this variable and its
102 const struct lang_varobj_ops *lang_ops;
104 /* The varobj for this root node. */
105 struct varobj *rootvar;
107 /* Next root variable */
108 struct varobj_root *next;
111 /* Dynamic part of varobj. */
113 struct varobj_dynamic
115 /* Whether the children of this varobj were requested. This field is
116 used to decide if dynamic varobj should recompute their children.
117 In the event that the frontend never asked for the children, we
119 int children_requested;
121 /* The pretty-printer constructor. If NULL, then the default
122 pretty-printer will be looked up. If None, then no
123 pretty-printer will be installed. */
124 PyObject *constructor;
126 /* The pretty-printer that has been constructed. If NULL, then a
127 new printer object is needed, and one will be constructed. */
128 PyObject *pretty_printer;
130 /* The iterator returned by the printer's 'children' method, or NULL
132 struct varobj_iter *child_iter;
134 /* We request one extra item from the iterator, so that we can
135 report to the caller whether there are more items than we have
136 already reported. However, we don't want to install this value
137 when we read it, because that will mess up future updates. So,
138 we stash it here instead. */
139 varobj_item *saved_item;
145 struct cpstack *next;
148 /* A list of varobjs */
156 /* Private function prototypes */
158 /* Helper functions for the above subcommands. */
160 static int delete_variable (struct cpstack **, struct varobj *, int);
162 static void delete_variable_1 (struct cpstack **, int *,
163 struct varobj *, int, int);
165 static int install_variable (struct varobj *);
167 static void uninstall_variable (struct varobj *);
169 static struct varobj *create_child (struct varobj *, int, char *);
171 static struct varobj *
172 create_child_with_value (struct varobj *parent, int index,
173 struct varobj_item *item);
175 /* Utility routines */
177 static struct varobj *new_variable (void);
179 static struct varobj *new_root_variable (void);
181 static void free_variable (struct varobj *var);
183 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
185 static enum varobj_display_formats variable_default_display (struct varobj *);
187 static void cppush (struct cpstack **pstack, char *name);
189 static char *cppop (struct cpstack **pstack);
191 static int update_type_if_necessary (struct varobj *var,
192 struct value *new_value);
194 static int install_new_value (struct varobj *var, struct value *value,
197 /* Language-specific routines. */
199 static int number_of_children (struct varobj *);
201 static char *name_of_variable (struct varobj *);
203 static char *name_of_child (struct varobj *, int);
205 static struct value *value_of_root (struct varobj **var_handle, int *);
207 static struct value *value_of_child (struct varobj *parent, int index);
209 static char *my_value_of_variable (struct varobj *var,
210 enum varobj_display_formats format);
212 static int is_root_p (struct varobj *var);
214 static struct varobj *varobj_add_child (struct varobj *var,
215 struct varobj_item *item);
219 /* Mappings of varobj_display_formats enums to gdb's format codes. */
220 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
222 /* Header of the list of root variable objects. */
223 static struct varobj_root *rootlist;
225 /* Prime number indicating the number of buckets in the hash table. */
226 /* A prime large enough to avoid too many colisions. */
227 #define VAROBJ_TABLE_SIZE 227
229 /* Pointer to the varobj hash table (built at run time). */
230 static struct vlist **varobj_table;
234 /* API Implementation */
236 is_root_p (struct varobj *var)
238 return (var->root->rootvar == var);
242 /* Helper function to install a Python environment suitable for
243 use during operations on VAR. */
245 varobj_ensure_python_env (struct varobj *var)
247 return ensure_python_env (var->root->exp->gdbarch,
248 var->root->exp->language_defn);
252 /* Creates a varobj (not its children). */
254 /* Return the full FRAME which corresponds to the given CORE_ADDR
255 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
257 static struct frame_info *
258 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
260 struct frame_info *frame = NULL;
262 if (frame_addr == (CORE_ADDR) 0)
265 for (frame = get_current_frame ();
267 frame = get_prev_frame (frame))
269 /* The CORE_ADDR we get as argument was parsed from a string GDB
270 output as $fp. This output got truncated to gdbarch_addr_bit.
271 Truncate the frame base address in the same manner before
272 comparing it against our argument. */
273 CORE_ADDR frame_base = get_frame_base_address (frame);
274 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
276 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
277 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
279 if (frame_base == frame_addr)
287 varobj_create (char *objname,
288 char *expression, CORE_ADDR frame, enum varobj_type type)
291 struct cleanup *old_chain;
293 /* Fill out a varobj structure for the (root) variable being constructed. */
294 var = new_root_variable ();
295 old_chain = make_cleanup_free_variable (var);
297 if (expression != NULL)
299 struct frame_info *fi;
300 struct frame_id old_id = null_frame_id;
301 const struct block *block;
303 struct value *value = NULL;
304 volatile struct gdb_exception except;
307 /* Parse and evaluate the expression, filling in as much of the
308 variable's data as possible. */
310 if (has_stack_frames ())
312 /* Allow creator to specify context of variable. */
313 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
314 fi = get_selected_frame (NULL);
316 /* FIXME: cagney/2002-11-23: This code should be doing a
317 lookup using the frame ID and not just the frame's
318 ``address''. This, of course, means an interface
319 change. However, with out that interface change ISAs,
320 such as the ia64 with its two stacks, won't work.
321 Similar goes for the case where there is a frameless
323 fi = find_frame_addr_in_frame_chain (frame);
328 /* frame = -2 means always use selected frame. */
329 if (type == USE_SELECTED_FRAME)
330 var->root->floating = 1;
336 block = get_frame_block (fi, 0);
337 pc = get_frame_pc (fi);
341 innermost_block = NULL;
342 /* Wrap the call to parse expression, so we can
343 return a sensible error. */
344 TRY_CATCH (except, RETURN_MASK_ERROR)
346 var->root->exp = parse_exp_1 (&p, pc, block, 0);
349 if (except.reason < 0)
351 do_cleanups (old_chain);
355 /* Don't allow variables to be created for types. */
356 if (var->root->exp->elts[0].opcode == OP_TYPE
357 || var->root->exp->elts[0].opcode == OP_TYPEOF
358 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
360 do_cleanups (old_chain);
361 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
362 " as an expression.\n");
366 var->format = variable_default_display (var);
367 var->root->valid_block = innermost_block;
368 var->name = xstrdup (expression);
369 /* For a root var, the name and the expr are the same. */
370 var->path_expr = xstrdup (expression);
372 /* When the frame is different from the current frame,
373 we must select the appropriate frame before parsing
374 the expression, otherwise the value will not be current.
375 Since select_frame is so benign, just call it for all cases. */
378 /* User could specify explicit FRAME-ADDR which was not found but
379 EXPRESSION is frame specific and we would not be able to evaluate
380 it correctly next time. With VALID_BLOCK set we must also set
381 FRAME and THREAD_ID. */
383 error (_("Failed to find the specified frame"));
385 var->root->frame = get_frame_id (fi);
386 var->root->thread_id = pid_to_thread_id (inferior_ptid);
387 old_id = get_frame_id (get_selected_frame (NULL));
391 /* We definitely need to catch errors here.
392 If evaluate_expression succeeds we got the value we wanted.
393 But if it fails, we still go on with a call to evaluate_type(). */
394 TRY_CATCH (except, RETURN_MASK_ERROR)
396 value = evaluate_expression (var->root->exp);
399 if (except.reason < 0)
401 /* Error getting the value. Try to at least get the
403 struct value *type_only_value = evaluate_type (var->root->exp);
405 var->type = value_type (type_only_value);
409 int real_type_found = 0;
411 var->type = value_actual_type (value, 0, &real_type_found);
413 value = value_cast (var->type, value);
416 /* Set language info */
417 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
419 install_new_value (var, value, 1 /* Initial assignment */);
421 /* Set ourselves as our root. */
422 var->root->rootvar = var;
424 /* Reset the selected frame. */
425 if (frame_id_p (old_id))
426 select_frame (frame_find_by_id (old_id));
429 /* If the variable object name is null, that means this
430 is a temporary variable, so don't install it. */
432 if ((var != NULL) && (objname != NULL))
434 var->obj_name = xstrdup (objname);
436 /* If a varobj name is duplicated, the install will fail so
438 if (!install_variable (var))
440 do_cleanups (old_chain);
445 discard_cleanups (old_chain);
449 /* Generates an unique name that can be used for a varobj. */
452 varobj_gen_name (void)
457 /* Generate a name for this object. */
459 obj_name = xstrprintf ("var%d", id);
464 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
465 error if OBJNAME cannot be found. */
468 varobj_get_handle (char *objname)
472 unsigned int index = 0;
475 for (chp = objname; *chp; chp++)
477 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
480 cv = *(varobj_table + index);
481 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
485 error (_("Variable object not found"));
490 /* Given the handle, return the name of the object. */
493 varobj_get_objname (struct varobj *var)
495 return var->obj_name;
498 /* Given the handle, return the expression represented by the object. */
501 varobj_get_expression (struct varobj *var)
503 return name_of_variable (var);
506 /* Deletes a varobj and all its children if only_children == 0,
507 otherwise deletes only the children; returns a malloc'ed list of
508 all the (malloc'ed) names of the variables that have been deleted
509 (NULL terminated). */
512 varobj_delete (struct varobj *var, char ***dellist, int only_children)
516 struct cpstack *result = NULL;
519 /* Initialize a stack for temporary results. */
520 cppush (&result, NULL);
523 /* Delete only the variable children. */
524 delcount = delete_variable (&result, var, 1 /* only the children */ );
526 /* Delete the variable and all its children. */
527 delcount = delete_variable (&result, var, 0 /* parent+children */ );
529 /* We may have been asked to return a list of what has been deleted. */
532 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
536 *cp = cppop (&result);
537 while ((*cp != NULL) && (mycount > 0))
541 *cp = cppop (&result);
544 if (mycount || (*cp != NULL))
545 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
554 /* Convenience function for varobj_set_visualizer. Instantiate a
555 pretty-printer for a given value. */
557 instantiate_pretty_printer (PyObject *constructor, struct value *value)
559 PyObject *val_obj = NULL;
562 val_obj = value_to_value_object (value);
566 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
573 /* Set/Get variable object display format. */
575 enum varobj_display_formats
576 varobj_set_display_format (struct varobj *var,
577 enum varobj_display_formats format)
584 case FORMAT_HEXADECIMAL:
586 var->format = format;
590 var->format = variable_default_display (var);
593 if (varobj_value_is_changeable_p (var)
594 && var->value && !value_lazy (var->value))
596 xfree (var->print_value);
597 var->print_value = varobj_value_get_print_value (var->value,
604 enum varobj_display_formats
605 varobj_get_display_format (struct varobj *var)
611 varobj_get_display_hint (struct varobj *var)
616 struct cleanup *back_to;
618 if (!gdb_python_initialized)
621 back_to = varobj_ensure_python_env (var);
623 if (var->dynamic->pretty_printer != NULL)
624 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
626 do_cleanups (back_to);
632 /* Return true if the varobj has items after TO, false otherwise. */
635 varobj_has_more (struct varobj *var, int to)
637 if (VEC_length (varobj_p, var->children) > to)
639 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
640 && (var->dynamic->saved_item != NULL));
643 /* If the variable object is bound to a specific thread, that
644 is its evaluation can always be done in context of a frame
645 inside that thread, returns GDB id of the thread -- which
646 is always positive. Otherwise, returns -1. */
648 varobj_get_thread_id (struct varobj *var)
650 if (var->root->valid_block && var->root->thread_id > 0)
651 return var->root->thread_id;
657 varobj_set_frozen (struct varobj *var, int frozen)
659 /* When a variable is unfrozen, we don't fetch its value.
660 The 'not_fetched' flag remains set, so next -var-update
663 We don't fetch the value, because for structures the client
664 should do -var-update anyway. It would be bad to have different
665 client-size logic for structure and other types. */
666 var->frozen = frozen;
670 varobj_get_frozen (struct varobj *var)
675 /* A helper function that restricts a range to what is actually
676 available in a VEC. This follows the usual rules for the meaning
677 of FROM and TO -- if either is negative, the entire range is
681 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
683 if (*from < 0 || *to < 0)
686 *to = VEC_length (varobj_p, children);
690 if (*from > VEC_length (varobj_p, children))
691 *from = VEC_length (varobj_p, children);
692 if (*to > VEC_length (varobj_p, children))
693 *to = VEC_length (varobj_p, children);
699 /* A helper for update_dynamic_varobj_children that installs a new
700 child when needed. */
703 install_dynamic_child (struct varobj *var,
704 VEC (varobj_p) **changed,
705 VEC (varobj_p) **type_changed,
706 VEC (varobj_p) **new,
707 VEC (varobj_p) **unchanged,
710 struct varobj_item *item)
712 if (VEC_length (varobj_p, var->children) < index + 1)
714 /* There's no child yet. */
715 struct varobj *child = varobj_add_child (var, item);
719 VEC_safe_push (varobj_p, *new, child);
725 varobj_p existing = VEC_index (varobj_p, var->children, index);
726 int type_updated = update_type_if_necessary (existing, item->value);
731 VEC_safe_push (varobj_p, *type_changed, existing);
733 if (install_new_value (existing, item->value, 0))
735 if (!type_updated && changed)
736 VEC_safe_push (varobj_p, *changed, existing);
738 else if (!type_updated && unchanged)
739 VEC_safe_push (varobj_p, *unchanged, existing);
746 dynamic_varobj_has_child_method (struct varobj *var)
748 struct cleanup *back_to;
749 PyObject *printer = var->dynamic->pretty_printer;
752 if (!gdb_python_initialized)
755 back_to = varobj_ensure_python_env (var);
756 result = PyObject_HasAttr (printer, gdbpy_children_cst);
757 do_cleanups (back_to);
762 /* A factory for creating dynamic varobj's iterators. Returns an
763 iterator object suitable for iterating over VAR's children. */
765 static struct varobj_iter *
766 varobj_get_iterator (struct varobj *var)
769 if (var->dynamic->pretty_printer)
770 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
773 gdb_assert_not_reached (_("\
774 requested an iterator from a non-dynamic varobj"));
777 /* Release and clear VAR's saved item, if any. */
780 varobj_clear_saved_item (struct varobj_dynamic *var)
782 if (var->saved_item != NULL)
784 value_free (var->saved_item->value);
785 xfree (var->saved_item);
786 var->saved_item = NULL;
791 update_dynamic_varobj_children (struct varobj *var,
792 VEC (varobj_p) **changed,
793 VEC (varobj_p) **type_changed,
794 VEC (varobj_p) **new,
795 VEC (varobj_p) **unchanged,
805 if (update_children || var->dynamic->child_iter == NULL)
807 varobj_iter_delete (var->dynamic->child_iter);
808 var->dynamic->child_iter = varobj_get_iterator (var);
810 varobj_clear_saved_item (var->dynamic);
814 if (var->dynamic->child_iter == NULL)
818 i = VEC_length (varobj_p, var->children);
820 /* We ask for one extra child, so that MI can report whether there
821 are more children. */
822 for (; to < 0 || i < to + 1; ++i)
826 /* See if there was a leftover from last time. */
827 if (var->dynamic->saved_item != NULL)
829 item = var->dynamic->saved_item;
830 var->dynamic->saved_item = NULL;
834 item = varobj_iter_next (var->dynamic->child_iter);
835 /* Release vitem->value so its lifetime is not bound to the
836 execution of a command. */
837 if (item != NULL && item->value != NULL)
838 release_value_or_incref (item->value);
843 /* Iteration is done. Remove iterator from VAR. */
844 varobj_iter_delete (var->dynamic->child_iter);
845 var->dynamic->child_iter = NULL;
848 /* We don't want to push the extra child on any report list. */
849 if (to < 0 || i < to)
851 int can_mention = from < 0 || i >= from;
853 install_dynamic_child (var, can_mention ? changed : NULL,
854 can_mention ? type_changed : NULL,
855 can_mention ? new : NULL,
856 can_mention ? unchanged : NULL,
857 can_mention ? cchanged : NULL, i,
864 var->dynamic->saved_item = item;
866 /* We want to truncate the child list just before this
872 if (i < VEC_length (varobj_p, var->children))
877 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
878 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
879 VEC_truncate (varobj_p, var->children, i);
882 /* If there are fewer children than requested, note that the list of
884 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
887 var->num_children = VEC_length (varobj_p, var->children);
893 varobj_get_num_children (struct varobj *var)
895 if (var->num_children == -1)
897 if (varobj_is_dynamic_p (var))
901 /* If we have a dynamic varobj, don't report -1 children.
902 So, try to fetch some children first. */
903 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
907 var->num_children = number_of_children (var);
910 return var->num_children >= 0 ? var->num_children : 0;
913 /* Creates a list of the immediate children of a variable object;
914 the return code is the number of such children or -1 on error. */
917 varobj_list_children (struct varobj *var, int *from, int *to)
920 int i, children_changed;
922 var->dynamic->children_requested = 1;
924 if (varobj_is_dynamic_p (var))
926 /* This, in theory, can result in the number of children changing without
927 frontend noticing. But well, calling -var-list-children on the same
928 varobj twice is not something a sane frontend would do. */
929 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
930 &children_changed, 0, 0, *to);
931 varobj_restrict_range (var->children, from, to);
932 return var->children;
935 if (var->num_children == -1)
936 var->num_children = number_of_children (var);
938 /* If that failed, give up. */
939 if (var->num_children == -1)
940 return var->children;
942 /* If we're called when the list of children is not yet initialized,
943 allocate enough elements in it. */
944 while (VEC_length (varobj_p, var->children) < var->num_children)
945 VEC_safe_push (varobj_p, var->children, NULL);
947 for (i = 0; i < var->num_children; i++)
949 varobj_p existing = VEC_index (varobj_p, var->children, i);
951 if (existing == NULL)
953 /* Either it's the first call to varobj_list_children for
954 this variable object, and the child was never created,
955 or it was explicitly deleted by the client. */
956 name = name_of_child (var, i);
957 existing = create_child (var, i, name);
958 VEC_replace (varobj_p, var->children, i, existing);
962 varobj_restrict_range (var->children, from, to);
963 return var->children;
966 static struct varobj *
967 varobj_add_child (struct varobj *var, struct varobj_item *item)
969 varobj_p v = create_child_with_value (var,
970 VEC_length (varobj_p, var->children),
973 VEC_safe_push (varobj_p, var->children, v);
977 /* Obtain the type of an object Variable as a string similar to the one gdb
978 prints on the console. */
981 varobj_get_type (struct varobj *var)
983 /* For the "fake" variables, do not return a type. (Its type is
985 Do not return a type for invalid variables as well. */
986 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
989 return type_to_string (var->type);
992 /* Obtain the type of an object variable. */
995 varobj_get_gdb_type (struct varobj *var)
1000 /* Is VAR a path expression parent, i.e., can it be used to construct
1001 a valid path expression? */
1004 is_path_expr_parent (struct varobj *var)
1006 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1007 return var->root->lang_ops->is_path_expr_parent (var);
1010 /* Is VAR a path expression parent, i.e., can it be used to construct
1011 a valid path expression? By default we assume any VAR can be a path
1015 varobj_default_is_path_expr_parent (struct varobj *var)
1020 /* Return the path expression parent for VAR. */
1023 varobj_get_path_expr_parent (struct varobj *var)
1025 struct varobj *parent = var;
1027 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1028 parent = parent->parent;
1033 /* Return a pointer to the full rooted expression of varobj VAR.
1034 If it has not been computed yet, compute it. */
1036 varobj_get_path_expr (struct varobj *var)
1038 if (var->path_expr != NULL)
1039 return var->path_expr;
1042 /* For root varobjs, we initialize path_expr
1043 when creating varobj, so here it should be
1045 gdb_assert (!is_root_p (var));
1046 return (*var->root->lang_ops->path_expr_of_child) (var);
1050 const struct language_defn *
1051 varobj_get_language (struct varobj *var)
1053 return var->root->exp->language_defn;
1057 varobj_get_attributes (struct varobj *var)
1061 if (varobj_editable_p (var))
1062 /* FIXME: define masks for attributes. */
1063 attributes |= 0x00000001; /* Editable */
1068 /* Return true if VAR is a dynamic varobj. */
1071 varobj_is_dynamic_p (struct varobj *var)
1073 return var->dynamic->pretty_printer != NULL;
1077 varobj_get_formatted_value (struct varobj *var,
1078 enum varobj_display_formats format)
1080 return my_value_of_variable (var, format);
1084 varobj_get_value (struct varobj *var)
1086 return my_value_of_variable (var, var->format);
1089 /* Set the value of an object variable (if it is editable) to the
1090 value of the given expression. */
1091 /* Note: Invokes functions that can call error(). */
1094 varobj_set_value (struct varobj *var, char *expression)
1096 struct value *val = NULL; /* Initialize to keep gcc happy. */
1097 /* The argument "expression" contains the variable's new value.
1098 We need to first construct a legal expression for this -- ugh! */
1099 /* Does this cover all the bases? */
1100 struct expression *exp;
1101 struct value *value = NULL; /* Initialize to keep gcc happy. */
1102 int saved_input_radix = input_radix;
1103 const char *s = expression;
1104 volatile struct gdb_exception except;
1106 gdb_assert (varobj_editable_p (var));
1108 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1109 exp = parse_exp_1 (&s, 0, 0, 0);
1110 TRY_CATCH (except, RETURN_MASK_ERROR)
1112 value = evaluate_expression (exp);
1115 if (except.reason < 0)
1117 /* We cannot proceed without a valid expression. */
1122 /* All types that are editable must also be changeable. */
1123 gdb_assert (varobj_value_is_changeable_p (var));
1125 /* The value of a changeable variable object must not be lazy. */
1126 gdb_assert (!value_lazy (var->value));
1128 /* Need to coerce the input. We want to check if the
1129 value of the variable object will be different
1130 after assignment, and the first thing value_assign
1131 does is coerce the input.
1132 For example, if we are assigning an array to a pointer variable we
1133 should compare the pointer with the array's address, not with the
1135 value = coerce_array (value);
1137 /* The new value may be lazy. value_assign, or
1138 rather value_contents, will take care of this. */
1139 TRY_CATCH (except, RETURN_MASK_ERROR)
1141 val = value_assign (var->value, value);
1144 if (except.reason < 0)
1147 /* If the value has changed, record it, so that next -var-update can
1148 report this change. If a variable had a value of '1', we've set it
1149 to '333' and then set again to '1', when -var-update will report this
1150 variable as changed -- because the first assignment has set the
1151 'updated' flag. There's no need to optimize that, because return value
1152 of -var-update should be considered an approximation. */
1153 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1154 input_radix = saved_input_radix;
1160 /* A helper function to install a constructor function and visualizer
1161 in a varobj_dynamic. */
1164 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1165 PyObject *visualizer)
1167 Py_XDECREF (var->constructor);
1168 var->constructor = constructor;
1170 Py_XDECREF (var->pretty_printer);
1171 var->pretty_printer = visualizer;
1173 varobj_iter_delete (var->child_iter);
1174 var->child_iter = NULL;
1177 /* Install the default visualizer for VAR. */
1180 install_default_visualizer (struct varobj *var)
1182 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1183 if (CPLUS_FAKE_CHILD (var))
1186 if (pretty_printing)
1188 PyObject *pretty_printer = NULL;
1192 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1193 if (! pretty_printer)
1195 gdbpy_print_stack ();
1196 error (_("Cannot instantiate printer for default visualizer"));
1200 if (pretty_printer == Py_None)
1202 Py_DECREF (pretty_printer);
1203 pretty_printer = NULL;
1206 install_visualizer (var->dynamic, NULL, pretty_printer);
1210 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1211 make a new object. */
1214 construct_visualizer (struct varobj *var, PyObject *constructor)
1216 PyObject *pretty_printer;
1218 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1219 if (CPLUS_FAKE_CHILD (var))
1222 Py_INCREF (constructor);
1223 if (constructor == Py_None)
1224 pretty_printer = NULL;
1227 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1228 if (! pretty_printer)
1230 gdbpy_print_stack ();
1231 Py_DECREF (constructor);
1232 constructor = Py_None;
1233 Py_INCREF (constructor);
1236 if (pretty_printer == Py_None)
1238 Py_DECREF (pretty_printer);
1239 pretty_printer = NULL;
1243 install_visualizer (var->dynamic, constructor, pretty_printer);
1246 #endif /* HAVE_PYTHON */
1248 /* A helper function for install_new_value. This creates and installs
1249 a visualizer for VAR, if appropriate. */
1252 install_new_value_visualizer (struct varobj *var)
1255 /* If the constructor is None, then we want the raw value. If VAR
1256 does not have a value, just skip this. */
1257 if (!gdb_python_initialized)
1260 if (var->dynamic->constructor != Py_None && var->value != NULL)
1262 struct cleanup *cleanup;
1264 cleanup = varobj_ensure_python_env (var);
1266 if (var->dynamic->constructor == NULL)
1267 install_default_visualizer (var);
1269 construct_visualizer (var, var->dynamic->constructor);
1271 do_cleanups (cleanup);
1278 /* When using RTTI to determine variable type it may be changed in runtime when
1279 the variable value is changed. This function checks whether type of varobj
1280 VAR will change when a new value NEW_VALUE is assigned and if it is so
1281 updates the type of VAR. */
1284 update_type_if_necessary (struct varobj *var, struct value *new_value)
1288 struct value_print_options opts;
1290 get_user_print_options (&opts);
1291 if (opts.objectprint)
1293 struct type *new_type;
1294 char *curr_type_str, *new_type_str;
1296 new_type = value_actual_type (new_value, 0, 0);
1297 new_type_str = type_to_string (new_type);
1298 curr_type_str = varobj_get_type (var);
1299 if (strcmp (curr_type_str, new_type_str) != 0)
1301 var->type = new_type;
1303 /* This information may be not valid for a new type. */
1304 varobj_delete (var, NULL, 1);
1305 VEC_free (varobj_p, var->children);
1306 var->num_children = -1;
1315 /* Assign a new value to a variable object. If INITIAL is non-zero,
1316 this is the first assignement after the variable object was just
1317 created, or changed type. In that case, just assign the value
1319 Otherwise, assign the new value, and return 1 if the value is
1320 different from the current one, 0 otherwise. The comparison is
1321 done on textual representation of value. Therefore, some types
1322 need not be compared. E.g. for structures the reported value is
1323 always "{...}", so no comparison is necessary here. If the old
1324 value was NULL and new one is not, or vice versa, we always return 1.
1326 The VALUE parameter should not be released -- the function will
1327 take care of releasing it when needed. */
1329 install_new_value (struct varobj *var, struct value *value, int initial)
1334 int intentionally_not_fetched = 0;
1335 char *print_value = NULL;
1337 /* We need to know the varobj's type to decide if the value should
1338 be fetched or not. C++ fake children (public/protected/private)
1339 don't have a type. */
1340 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1341 changeable = varobj_value_is_changeable_p (var);
1343 /* If the type has custom visualizer, we consider it to be always
1344 changeable. FIXME: need to make sure this behaviour will not
1345 mess up read-sensitive values. */
1346 if (var->dynamic->pretty_printer != NULL)
1349 need_to_fetch = changeable;
1351 /* We are not interested in the address of references, and given
1352 that in C++ a reference is not rebindable, it cannot
1353 meaningfully change. So, get hold of the real value. */
1355 value = coerce_ref (value);
1357 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1358 /* For unions, we need to fetch the value implicitly because
1359 of implementation of union member fetch. When gdb
1360 creates a value for a field and the value of the enclosing
1361 structure is not lazy, it immediately copies the necessary
1362 bytes from the enclosing values. If the enclosing value is
1363 lazy, the call to value_fetch_lazy on the field will read
1364 the data from memory. For unions, that means we'll read the
1365 same memory more than once, which is not desirable. So
1369 /* The new value might be lazy. If the type is changeable,
1370 that is we'll be comparing values of this type, fetch the
1371 value now. Otherwise, on the next update the old value
1372 will be lazy, which means we've lost that old value. */
1373 if (need_to_fetch && value && value_lazy (value))
1375 struct varobj *parent = var->parent;
1376 int frozen = var->frozen;
1378 for (; !frozen && parent; parent = parent->parent)
1379 frozen |= parent->frozen;
1381 if (frozen && initial)
1383 /* For variables that are frozen, or are children of frozen
1384 variables, we don't do fetch on initial assignment.
1385 For non-initial assignemnt we do the fetch, since it means we're
1386 explicitly asked to compare the new value with the old one. */
1387 intentionally_not_fetched = 1;
1391 volatile struct gdb_exception except;
1393 TRY_CATCH (except, RETURN_MASK_ERROR)
1395 value_fetch_lazy (value);
1398 if (except.reason < 0)
1400 /* Set the value to NULL, so that for the next -var-update,
1401 we don't try to compare the new value with this value,
1402 that we couldn't even read. */
1408 /* Get a reference now, before possibly passing it to any Python
1409 code that might release it. */
1411 value_incref (value);
1413 /* Below, we'll be comparing string rendering of old and new
1414 values. Don't get string rendering if the value is
1415 lazy -- if it is, the code above has decided that the value
1416 should not be fetched. */
1417 if (value != NULL && !value_lazy (value)
1418 && var->dynamic->pretty_printer == NULL)
1419 print_value = varobj_value_get_print_value (value, var->format, var);
1421 /* If the type is changeable, compare the old and the new values.
1422 If this is the initial assignment, we don't have any old value
1424 if (!initial && changeable)
1426 /* If the value of the varobj was changed by -var-set-value,
1427 then the value in the varobj and in the target is the same.
1428 However, that value is different from the value that the
1429 varobj had after the previous -var-update. So need to the
1430 varobj as changed. */
1435 else if (var->dynamic->pretty_printer == NULL)
1437 /* Try to compare the values. That requires that both
1438 values are non-lazy. */
1439 if (var->not_fetched && value_lazy (var->value))
1441 /* This is a frozen varobj and the value was never read.
1442 Presumably, UI shows some "never read" indicator.
1443 Now that we've fetched the real value, we need to report
1444 this varobj as changed so that UI can show the real
1448 else if (var->value == NULL && value == NULL)
1451 else if (var->value == NULL || value == NULL)
1457 gdb_assert (!value_lazy (var->value));
1458 gdb_assert (!value_lazy (value));
1460 gdb_assert (var->print_value != NULL && print_value != NULL);
1461 if (strcmp (var->print_value, print_value) != 0)
1467 if (!initial && !changeable)
1469 /* For values that are not changeable, we don't compare the values.
1470 However, we want to notice if a value was not NULL and now is NULL,
1471 or vise versa, so that we report when top-level varobjs come in scope
1472 and leave the scope. */
1473 changed = (var->value != NULL) != (value != NULL);
1476 /* We must always keep the new value, since children depend on it. */
1477 if (var->value != NULL && var->value != value)
1478 value_free (var->value);
1480 if (value && value_lazy (value) && intentionally_not_fetched)
1481 var->not_fetched = 1;
1483 var->not_fetched = 0;
1486 install_new_value_visualizer (var);
1488 /* If we installed a pretty-printer, re-compare the printed version
1489 to see if the variable changed. */
1490 if (var->dynamic->pretty_printer != NULL)
1492 xfree (print_value);
1493 print_value = varobj_value_get_print_value (var->value, var->format,
1495 if ((var->print_value == NULL && print_value != NULL)
1496 || (var->print_value != NULL && print_value == NULL)
1497 || (var->print_value != NULL && print_value != NULL
1498 && strcmp (var->print_value, print_value) != 0))
1501 if (var->print_value)
1502 xfree (var->print_value);
1503 var->print_value = print_value;
1505 gdb_assert (!var->value || value_type (var->value));
1510 /* Return the requested range for a varobj. VAR is the varobj. FROM
1511 and TO are out parameters; *FROM and *TO will be set to the
1512 selected sub-range of VAR. If no range was selected using
1513 -var-set-update-range, then both will be -1. */
1515 varobj_get_child_range (struct varobj *var, int *from, int *to)
1521 /* Set the selected sub-range of children of VAR to start at index
1522 FROM and end at index TO. If either FROM or TO is less than zero,
1523 this is interpreted as a request for all children. */
1525 varobj_set_child_range (struct varobj *var, int from, int to)
1532 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1535 PyObject *mainmod, *globals, *constructor;
1536 struct cleanup *back_to;
1538 if (!gdb_python_initialized)
1541 back_to = varobj_ensure_python_env (var);
1543 mainmod = PyImport_AddModule ("__main__");
1544 globals = PyModule_GetDict (mainmod);
1545 Py_INCREF (globals);
1546 make_cleanup_py_decref (globals);
1548 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1552 gdbpy_print_stack ();
1553 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1556 construct_visualizer (var, constructor);
1557 Py_XDECREF (constructor);
1559 /* If there are any children now, wipe them. */
1560 varobj_delete (var, NULL, 1 /* children only */);
1561 var->num_children = -1;
1563 do_cleanups (back_to);
1565 error (_("Python support required"));
1569 /* If NEW_VALUE is the new value of the given varobj (var), return
1570 non-zero if var has mutated. In other words, if the type of
1571 the new value is different from the type of the varobj's old
1574 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1577 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1578 struct type *new_type)
1580 /* If we haven't previously computed the number of children in var,
1581 it does not matter from the front-end's perspective whether
1582 the type has mutated or not. For all intents and purposes,
1583 it has not mutated. */
1584 if (var->num_children < 0)
1587 if (var->root->lang_ops->value_has_mutated)
1589 /* The varobj module, when installing new values, explicitly strips
1590 references, saying that we're not interested in those addresses.
1591 But detection of mutation happens before installing the new
1592 value, so our value may be a reference that we need to strip
1593 in order to remain consistent. */
1594 if (new_value != NULL)
1595 new_value = coerce_ref (new_value);
1596 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1602 /* Update the values for a variable and its children. This is a
1603 two-pronged attack. First, re-parse the value for the root's
1604 expression to see if it's changed. Then go all the way
1605 through its children, reconstructing them and noting if they've
1608 The EXPLICIT parameter specifies if this call is result
1609 of MI request to update this specific variable, or
1610 result of implicit -var-update *. For implicit request, we don't
1611 update frozen variables.
1613 NOTE: This function may delete the caller's varobj. If it
1614 returns TYPE_CHANGED, then it has done this and VARP will be modified
1615 to point to the new varobj. */
1617 VEC(varobj_update_result) *
1618 varobj_update (struct varobj **varp, int explicit)
1620 int type_changed = 0;
1623 VEC (varobj_update_result) *stack = NULL;
1624 VEC (varobj_update_result) *result = NULL;
1626 /* Frozen means frozen -- we don't check for any change in
1627 this varobj, including its going out of scope, or
1628 changing type. One use case for frozen varobjs is
1629 retaining previously evaluated expressions, and we don't
1630 want them to be reevaluated at all. */
1631 if (!explicit && (*varp)->frozen)
1634 if (!(*varp)->root->is_valid)
1636 varobj_update_result r = {0};
1639 r.status = VAROBJ_INVALID;
1640 VEC_safe_push (varobj_update_result, result, &r);
1644 if ((*varp)->root->rootvar == *varp)
1646 varobj_update_result r = {0};
1649 r.status = VAROBJ_IN_SCOPE;
1651 /* Update the root variable. value_of_root can return NULL
1652 if the variable is no longer around, i.e. we stepped out of
1653 the frame in which a local existed. We are letting the
1654 value_of_root variable dispose of the varobj if the type
1656 new = value_of_root (varp, &type_changed);
1657 if (update_type_if_necessary(*varp, new))
1660 r.type_changed = type_changed;
1661 if (install_new_value ((*varp), new, type_changed))
1665 r.status = VAROBJ_NOT_IN_SCOPE;
1666 r.value_installed = 1;
1668 if (r.status == VAROBJ_NOT_IN_SCOPE)
1670 if (r.type_changed || r.changed)
1671 VEC_safe_push (varobj_update_result, result, &r);
1675 VEC_safe_push (varobj_update_result, stack, &r);
1679 varobj_update_result r = {0};
1682 VEC_safe_push (varobj_update_result, stack, &r);
1685 /* Walk through the children, reconstructing them all. */
1686 while (!VEC_empty (varobj_update_result, stack))
1688 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1689 struct varobj *v = r.varobj;
1691 VEC_pop (varobj_update_result, stack);
1693 /* Update this variable, unless it's a root, which is already
1695 if (!r.value_installed)
1697 struct type *new_type;
1699 new = value_of_child (v->parent, v->index);
1700 if (update_type_if_necessary(v, new))
1703 new_type = value_type (new);
1705 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1707 if (varobj_value_has_mutated (v, new, new_type))
1709 /* The children are no longer valid; delete them now.
1710 Report the fact that its type changed as well. */
1711 varobj_delete (v, NULL, 1 /* only_children */);
1712 v->num_children = -1;
1719 if (install_new_value (v, new, r.type_changed))
1726 /* We probably should not get children of a dynamic varobj, but
1727 for which -var-list-children was never invoked. */
1728 if (varobj_is_dynamic_p (v))
1730 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1731 VEC (varobj_p) *new = 0;
1732 int i, children_changed = 0;
1737 if (!v->dynamic->children_requested)
1741 /* If we initially did not have potential children, but
1742 now we do, consider the varobj as changed.
1743 Otherwise, if children were never requested, consider
1744 it as unchanged -- presumably, such varobj is not yet
1745 expanded in the UI, so we need not bother getting
1747 if (!varobj_has_more (v, 0))
1749 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1751 if (varobj_has_more (v, 0))
1756 VEC_safe_push (varobj_update_result, result, &r);
1761 /* If update_dynamic_varobj_children returns 0, then we have
1762 a non-conforming pretty-printer, so we skip it. */
1763 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1764 &unchanged, &children_changed, 1,
1767 if (children_changed || new)
1769 r.children_changed = 1;
1772 /* Push in reverse order so that the first child is
1773 popped from the work stack first, and so will be
1774 added to result first. This does not affect
1775 correctness, just "nicer". */
1776 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1778 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1779 varobj_update_result r = {0};
1781 /* Type may change only if value was changed. */
1785 r.value_installed = 1;
1786 VEC_safe_push (varobj_update_result, stack, &r);
1788 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1790 varobj_p tmp = VEC_index (varobj_p, changed, i);
1791 varobj_update_result r = {0};
1795 r.value_installed = 1;
1796 VEC_safe_push (varobj_update_result, stack, &r);
1798 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1800 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1804 varobj_update_result r = {0};
1807 r.value_installed = 1;
1808 VEC_safe_push (varobj_update_result, stack, &r);
1811 if (r.changed || r.children_changed)
1812 VEC_safe_push (varobj_update_result, result, &r);
1814 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1815 because NEW has been put into the result vector. */
1816 VEC_free (varobj_p, changed);
1817 VEC_free (varobj_p, type_changed);
1818 VEC_free (varobj_p, unchanged);
1824 /* Push any children. Use reverse order so that the first
1825 child is popped from the work stack first, and so
1826 will be added to result first. This does not
1827 affect correctness, just "nicer". */
1828 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1830 varobj_p c = VEC_index (varobj_p, v->children, i);
1832 /* Child may be NULL if explicitly deleted by -var-delete. */
1833 if (c != NULL && !c->frozen)
1835 varobj_update_result r = {0};
1838 VEC_safe_push (varobj_update_result, stack, &r);
1842 if (r.changed || r.type_changed)
1843 VEC_safe_push (varobj_update_result, result, &r);
1846 VEC_free (varobj_update_result, stack);
1852 /* Helper functions */
1855 * Variable object construction/destruction
1859 delete_variable (struct cpstack **resultp, struct varobj *var,
1860 int only_children_p)
1864 delete_variable_1 (resultp, &delcount, var,
1865 only_children_p, 1 /* remove_from_parent_p */ );
1870 /* Delete the variable object VAR and its children. */
1871 /* IMPORTANT NOTE: If we delete a variable which is a child
1872 and the parent is not removed we dump core. It must be always
1873 initially called with remove_from_parent_p set. */
1875 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1876 struct varobj *var, int only_children_p,
1877 int remove_from_parent_p)
1881 /* Delete any children of this variable, too. */
1882 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1884 varobj_p child = VEC_index (varobj_p, var->children, i);
1888 if (!remove_from_parent_p)
1889 child->parent = NULL;
1890 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1892 VEC_free (varobj_p, var->children);
1894 /* if we were called to delete only the children we are done here. */
1895 if (only_children_p)
1898 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1899 /* If the name is null, this is a temporary variable, that has not
1900 yet been installed, don't report it, it belongs to the caller... */
1901 if (var->obj_name != NULL)
1903 cppush (resultp, xstrdup (var->obj_name));
1904 *delcountp = *delcountp + 1;
1907 /* If this variable has a parent, remove it from its parent's list. */
1908 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1909 (as indicated by remove_from_parent_p) we don't bother doing an
1910 expensive list search to find the element to remove when we are
1911 discarding the list afterwards. */
1912 if ((remove_from_parent_p) && (var->parent != NULL))
1914 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1917 if (var->obj_name != NULL)
1918 uninstall_variable (var);
1920 /* Free memory associated with this variable. */
1921 free_variable (var);
1924 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1926 install_variable (struct varobj *var)
1929 struct vlist *newvl;
1931 unsigned int index = 0;
1934 for (chp = var->obj_name; *chp; chp++)
1936 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1939 cv = *(varobj_table + index);
1940 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1944 error (_("Duplicate variable object name"));
1946 /* Add varobj to hash table. */
1947 newvl = xmalloc (sizeof (struct vlist));
1948 newvl->next = *(varobj_table + index);
1950 *(varobj_table + index) = newvl;
1952 /* If root, add varobj to root list. */
1953 if (is_root_p (var))
1955 /* Add to list of root variables. */
1956 if (rootlist == NULL)
1957 var->root->next = NULL;
1959 var->root->next = rootlist;
1960 rootlist = var->root;
1966 /* Unistall the object VAR. */
1968 uninstall_variable (struct varobj *var)
1972 struct varobj_root *cr;
1973 struct varobj_root *prer;
1975 unsigned int index = 0;
1978 /* Remove varobj from hash table. */
1979 for (chp = var->obj_name; *chp; chp++)
1981 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1984 cv = *(varobj_table + index);
1986 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1993 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1998 ("Assertion failed: Could not find variable object \"%s\" to delete",
2004 *(varobj_table + index) = cv->next;
2006 prev->next = cv->next;
2010 /* If root, remove varobj from root list. */
2011 if (is_root_p (var))
2013 /* Remove from list of root variables. */
2014 if (rootlist == var->root)
2015 rootlist = var->root->next;
2020 while ((cr != NULL) && (cr->rootvar != var))
2027 warning (_("Assertion failed: Could not find "
2028 "varobj \"%s\" in root list"),
2035 prer->next = cr->next;
2041 /* Create and install a child of the parent of the given name. */
2042 static struct varobj *
2043 create_child (struct varobj *parent, int index, char *name)
2045 struct varobj_item item;
2048 item.value = value_of_child (parent, index);
2050 return create_child_with_value (parent, index, &item);
2053 static struct varobj *
2054 create_child_with_value (struct varobj *parent, int index,
2055 struct varobj_item *item)
2057 struct varobj *child;
2060 child = new_variable ();
2062 /* NAME is allocated by caller. */
2063 child->name = item->name;
2064 child->index = index;
2065 child->parent = parent;
2066 child->root = parent->root;
2068 if (varobj_is_anonymous_child (child))
2069 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2071 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2072 child->obj_name = childs_name;
2074 install_variable (child);
2076 /* Compute the type of the child. Must do this before
2077 calling install_new_value. */
2078 if (item->value != NULL)
2079 /* If the child had no evaluation errors, var->value
2080 will be non-NULL and contain a valid type. */
2081 child->type = value_actual_type (item->value, 0, NULL);
2083 /* Otherwise, we must compute the type. */
2084 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2086 install_new_value (child, item->value, 1);
2093 * Miscellaneous utility functions.
2096 /* Allocate memory and initialize a new variable. */
2097 static struct varobj *
2102 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2104 var->path_expr = NULL;
2105 var->obj_name = NULL;
2109 var->num_children = -1;
2111 var->children = NULL;
2115 var->print_value = NULL;
2117 var->not_fetched = 0;
2119 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2120 var->dynamic->children_requested = 0;
2123 var->dynamic->constructor = 0;
2124 var->dynamic->pretty_printer = 0;
2125 var->dynamic->child_iter = 0;
2126 var->dynamic->saved_item = 0;
2131 /* Allocate memory and initialize a new root variable. */
2132 static struct varobj *
2133 new_root_variable (void)
2135 struct varobj *var = new_variable ();
2137 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2138 var->root->lang_ops = NULL;
2139 var->root->exp = NULL;
2140 var->root->valid_block = NULL;
2141 var->root->frame = null_frame_id;
2142 var->root->floating = 0;
2143 var->root->rootvar = NULL;
2144 var->root->is_valid = 1;
2149 /* Free any allocated memory associated with VAR. */
2151 free_variable (struct varobj *var)
2154 if (var->dynamic->pretty_printer != NULL)
2156 struct cleanup *cleanup = varobj_ensure_python_env (var);
2158 Py_XDECREF (var->dynamic->constructor);
2159 Py_XDECREF (var->dynamic->pretty_printer);
2160 do_cleanups (cleanup);
2164 varobj_iter_delete (var->dynamic->child_iter);
2165 varobj_clear_saved_item (var->dynamic);
2166 value_free (var->value);
2168 /* Free the expression if this is a root variable. */
2169 if (is_root_p (var))
2171 xfree (var->root->exp);
2176 xfree (var->obj_name);
2177 xfree (var->print_value);
2178 xfree (var->path_expr);
2179 xfree (var->dynamic);
2184 do_free_variable_cleanup (void *var)
2186 free_variable (var);
2189 static struct cleanup *
2190 make_cleanup_free_variable (struct varobj *var)
2192 return make_cleanup (do_free_variable_cleanup, var);
2195 /* Return the type of the value that's stored in VAR,
2196 or that would have being stored there if the
2197 value were accessible.
2199 This differs from VAR->type in that VAR->type is always
2200 the true type of the expession in the source language.
2201 The return value of this function is the type we're
2202 actually storing in varobj, and using for displaying
2203 the values and for comparing previous and new values.
2205 For example, top-level references are always stripped. */
2207 varobj_get_value_type (struct varobj *var)
2212 type = value_type (var->value);
2216 type = check_typedef (type);
2218 if (TYPE_CODE (type) == TYPE_CODE_REF)
2219 type = get_target_type (type);
2221 type = check_typedef (type);
2226 /* What is the default display for this variable? We assume that
2227 everything is "natural". Any exceptions? */
2228 static enum varobj_display_formats
2229 variable_default_display (struct varobj *var)
2231 return FORMAT_NATURAL;
2234 /* FIXME: The following should be generic for any pointer. */
2236 cppush (struct cpstack **pstack, char *name)
2240 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2246 /* FIXME: The following should be generic for any pointer. */
2248 cppop (struct cpstack **pstack)
2253 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2258 *pstack = (*pstack)->next;
2265 * Language-dependencies
2268 /* Common entry points */
2270 /* Return the number of children for a given variable.
2271 The result of this function is defined by the language
2272 implementation. The number of children returned by this function
2273 is the number of children that the user will see in the variable
2276 number_of_children (struct varobj *var)
2278 return (*var->root->lang_ops->number_of_children) (var);
2281 /* What is the expression for the root varobj VAR? Returns a malloc'd
2284 name_of_variable (struct varobj *var)
2286 return (*var->root->lang_ops->name_of_variable) (var);
2289 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2292 name_of_child (struct varobj *var, int index)
2294 return (*var->root->lang_ops->name_of_child) (var, index);
2297 /* If frame associated with VAR can be found, switch
2298 to it and return 1. Otherwise, return 0. */
2301 check_scope (struct varobj *var)
2303 struct frame_info *fi;
2306 fi = frame_find_by_id (var->root->frame);
2311 CORE_ADDR pc = get_frame_pc (fi);
2313 if (pc < BLOCK_START (var->root->valid_block) ||
2314 pc >= BLOCK_END (var->root->valid_block))
2322 /* Helper function to value_of_root. */
2324 static struct value *
2325 value_of_root_1 (struct varobj **var_handle)
2327 struct value *new_val = NULL;
2328 struct varobj *var = *var_handle;
2329 int within_scope = 0;
2330 struct cleanup *back_to;
2332 /* Only root variables can be updated... */
2333 if (!is_root_p (var))
2334 /* Not a root var. */
2337 back_to = make_cleanup_restore_current_thread ();
2339 /* Determine whether the variable is still around. */
2340 if (var->root->valid_block == NULL || var->root->floating)
2342 else if (var->root->thread_id == 0)
2344 /* The program was single-threaded when the variable object was
2345 created. Technically, it's possible that the program became
2346 multi-threaded since then, but we don't support such
2348 within_scope = check_scope (var);
2352 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2353 if (in_thread_list (ptid))
2355 switch_to_thread (ptid);
2356 within_scope = check_scope (var);
2362 volatile struct gdb_exception except;
2364 /* We need to catch errors here, because if evaluate
2365 expression fails we want to just return NULL. */
2366 TRY_CATCH (except, RETURN_MASK_ERROR)
2368 new_val = evaluate_expression (var->root->exp);
2372 do_cleanups (back_to);
2377 /* What is the ``struct value *'' of the root variable VAR?
2378 For floating variable object, evaluation can get us a value
2379 of different type from what is stored in varobj already. In
2381 - *type_changed will be set to 1
2382 - old varobj will be freed, and new one will be
2383 created, with the same name.
2384 - *var_handle will be set to the new varobj
2385 Otherwise, *type_changed will be set to 0. */
2386 static struct value *
2387 value_of_root (struct varobj **var_handle, int *type_changed)
2391 if (var_handle == NULL)
2396 /* This should really be an exception, since this should
2397 only get called with a root variable. */
2399 if (!is_root_p (var))
2402 if (var->root->floating)
2404 struct varobj *tmp_var;
2405 char *old_type, *new_type;
2407 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2408 USE_SELECTED_FRAME);
2409 if (tmp_var == NULL)
2413 old_type = varobj_get_type (var);
2414 new_type = varobj_get_type (tmp_var);
2415 if (strcmp (old_type, new_type) == 0)
2417 /* The expression presently stored inside var->root->exp
2418 remembers the locations of local variables relatively to
2419 the frame where the expression was created (in DWARF location
2420 button, for example). Naturally, those locations are not
2421 correct in other frames, so update the expression. */
2423 struct expression *tmp_exp = var->root->exp;
2425 var->root->exp = tmp_var->root->exp;
2426 tmp_var->root->exp = tmp_exp;
2428 varobj_delete (tmp_var, NULL, 0);
2433 tmp_var->obj_name = xstrdup (var->obj_name);
2434 tmp_var->from = var->from;
2435 tmp_var->to = var->to;
2436 varobj_delete (var, NULL, 0);
2438 install_variable (tmp_var);
2439 *var_handle = tmp_var;
2452 struct value *value;
2454 value = value_of_root_1 (var_handle);
2455 if (var->value == NULL || value == NULL)
2457 /* For root varobj-s, a NULL value indicates a scoping issue.
2458 So, nothing to do in terms of checking for mutations. */
2460 else if (varobj_value_has_mutated (var, value, value_type (value)))
2462 /* The type has mutated, so the children are no longer valid.
2463 Just delete them, and tell our caller that the type has
2465 varobj_delete (var, NULL, 1 /* only_children */);
2466 var->num_children = -1;
2475 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2476 static struct value *
2477 value_of_child (struct varobj *parent, int index)
2479 struct value *value;
2481 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2486 /* GDB already has a command called "value_of_variable". Sigh. */
2488 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2490 if (var->root->is_valid)
2492 if (var->dynamic->pretty_printer != NULL)
2493 return varobj_value_get_print_value (var->value, var->format, var);
2494 return (*var->root->lang_ops->value_of_variable) (var, format);
2501 varobj_formatted_print_options (struct value_print_options *opts,
2502 enum varobj_display_formats format)
2504 get_formatted_print_options (opts, format_code[(int) format]);
2505 opts->deref_ref = 0;
2510 varobj_value_get_print_value (struct value *value,
2511 enum varobj_display_formats format,
2514 struct ui_file *stb;
2515 struct cleanup *old_chain;
2516 char *thevalue = NULL;
2517 struct value_print_options opts;
2518 struct type *type = NULL;
2520 char *encoding = NULL;
2521 struct gdbarch *gdbarch = NULL;
2522 /* Initialize it just to avoid a GCC false warning. */
2523 CORE_ADDR str_addr = 0;
2524 int string_print = 0;
2529 stb = mem_fileopen ();
2530 old_chain = make_cleanup_ui_file_delete (stb);
2532 gdbarch = get_type_arch (value_type (value));
2534 if (gdb_python_initialized)
2536 PyObject *value_formatter = var->dynamic->pretty_printer;
2538 varobj_ensure_python_env (var);
2540 if (value_formatter)
2542 /* First check to see if we have any children at all. If so,
2543 we simply return {...}. */
2544 if (dynamic_varobj_has_child_method (var))
2546 do_cleanups (old_chain);
2547 return xstrdup ("{...}");
2550 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2552 struct value *replacement;
2553 PyObject *output = NULL;
2555 output = apply_varobj_pretty_printer (value_formatter,
2559 /* If we have string like output ... */
2562 make_cleanup_py_decref (output);
2564 /* If this is a lazy string, extract it. For lazy
2565 strings we always print as a string, so set
2567 if (gdbpy_is_lazy_string (output))
2569 gdbpy_extract_lazy_string (output, &str_addr, &type,
2571 make_cleanup (free_current_contents, &encoding);
2576 /* If it is a regular (non-lazy) string, extract
2577 it and copy the contents into THEVALUE. If the
2578 hint says to print it as a string, set
2579 string_print. Otherwise just return the extracted
2580 string as a value. */
2582 char *s = python_string_to_target_string (output);
2588 hint = gdbpy_get_display_hint (value_formatter);
2591 if (!strcmp (hint, "string"))
2597 thevalue = xmemdup (s, len + 1, len + 1);
2598 type = builtin_type (gdbarch)->builtin_char;
2603 do_cleanups (old_chain);
2607 make_cleanup (xfree, thevalue);
2610 gdbpy_print_stack ();
2613 /* If the printer returned a replacement value, set VALUE
2614 to REPLACEMENT. If there is not a replacement value,
2615 just use the value passed to this function. */
2617 value = replacement;
2623 varobj_formatted_print_options (&opts, format);
2625 /* If the THEVALUE has contents, it is a regular string. */
2627 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2628 else if (string_print)
2629 /* Otherwise, if string_print is set, and it is not a regular
2630 string, it is a lazy string. */
2631 val_print_string (type, encoding, str_addr, len, stb, &opts);
2633 /* All other cases. */
2634 common_val_print (value, stb, 0, &opts, current_language);
2636 thevalue = ui_file_xstrdup (stb, NULL);
2638 do_cleanups (old_chain);
2643 varobj_editable_p (struct varobj *var)
2647 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2650 type = varobj_get_value_type (var);
2652 switch (TYPE_CODE (type))
2654 case TYPE_CODE_STRUCT:
2655 case TYPE_CODE_UNION:
2656 case TYPE_CODE_ARRAY:
2657 case TYPE_CODE_FUNC:
2658 case TYPE_CODE_METHOD:
2668 /* Call VAR's value_is_changeable_p language-specific callback. */
2671 varobj_value_is_changeable_p (struct varobj *var)
2673 return var->root->lang_ops->value_is_changeable_p (var);
2676 /* Return 1 if that varobj is floating, that is is always evaluated in the
2677 selected frame, and not bound to thread/frame. Such variable objects
2678 are created using '@' as frame specifier to -var-create. */
2680 varobj_floating_p (struct varobj *var)
2682 return var->root->floating;
2685 /* Implement the "value_is_changeable_p" varobj callback for most
2689 varobj_default_value_is_changeable_p (struct varobj *var)
2694 if (CPLUS_FAKE_CHILD (var))
2697 type = varobj_get_value_type (var);
2699 switch (TYPE_CODE (type))
2701 case TYPE_CODE_STRUCT:
2702 case TYPE_CODE_UNION:
2703 case TYPE_CODE_ARRAY:
2714 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2715 with an arbitrary caller supplied DATA pointer. */
2718 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2720 struct varobj_root *var_root, *var_root_next;
2722 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2724 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2726 var_root_next = var_root->next;
2728 (*func) (var_root->rootvar, data);
2732 extern void _initialize_varobj (void);
2734 _initialize_varobj (void)
2736 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2738 varobj_table = xmalloc (sizeof_table);
2739 memset (varobj_table, 0, sizeof_table);
2741 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2743 _("Set varobj debugging."),
2744 _("Show varobj debugging."),
2745 _("When non-zero, varobj debugging is enabled."),
2746 NULL, show_varobjdebug,
2747 &setdebuglist, &showdebuglist);
2750 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2751 defined on globals. It is a helper for varobj_invalidate.
2753 This function is called after changing the symbol file, in this case the
2754 pointers to "struct type" stored by the varobj are no longer valid. All
2755 varobj must be either re-evaluated, or marked as invalid here. */
2758 varobj_invalidate_iter (struct varobj *var, void *unused)
2760 /* global and floating var must be re-evaluated. */
2761 if (var->root->floating || var->root->valid_block == NULL)
2763 struct varobj *tmp_var;
2765 /* Try to create a varobj with same expression. If we succeed
2766 replace the old varobj, otherwise invalidate it. */
2767 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2769 if (tmp_var != NULL)
2771 tmp_var->obj_name = xstrdup (var->obj_name);
2772 varobj_delete (var, NULL, 0);
2773 install_variable (tmp_var);
2776 var->root->is_valid = 0;
2778 else /* locals must be invalidated. */
2779 var->root->is_valid = 0;
2782 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2783 are defined on globals.
2784 Invalidated varobjs will be always printed in_scope="invalid". */
2787 varobj_invalidate (void)
2789 all_root_varobjs (varobj_invalidate_iter, NULL);