1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "exceptions.h"
22 #include "expression.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
36 #include "gdbthread.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
46 /* Non-zero if we want to see trace of varobj level stuff. */
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
67 varobj_enable_pretty_printing (void)
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
82 /* Block for which this expression is valid */
83 struct block *valid_block;
85 /* The frame for this expression. This field is set iff valid_block is
87 struct frame_id frame;
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
111 /* Next root variable */
112 struct varobj_root *next;
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
135 /* Index of this variable in its parent or -1 */
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
149 /* The number of (immediate) children this variable has */
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
155 /* Children of this object. */
156 VEC (varobj_p) *children;
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
162 int children_requested;
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
170 /* Was this variable updated via a varobj_set_value operation */
173 /* Last print value. */
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
201 /* The iterator returned by the printer's 'children' method, or NULL
203 PyObject *child_iter;
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
216 struct cpstack *next;
219 /* A list of varobjs */
227 /* Private function prototypes */
229 /* Helper functions for the above subcommands. */
231 static int delete_variable (struct cpstack **, struct varobj *, int);
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
236 static int install_variable (struct varobj *);
238 static void uninstall_variable (struct varobj *);
240 static struct varobj *create_child (struct varobj *, int, char *);
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
246 /* Utility routines */
248 static struct varobj *new_variable (void);
250 static struct varobj *new_root_variable (void);
252 static void free_variable (struct varobj *var);
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256 static struct type *get_type (struct varobj *var);
258 static struct type *get_value_type (struct varobj *var);
260 static struct type *get_target_type (struct type *);
262 static enum varobj_display_formats variable_default_display (struct varobj *);
264 static void cppush (struct cpstack **pstack, char *name);
266 static char *cppop (struct cpstack **pstack);
268 static int install_new_value (struct varobj *var, struct value *value,
271 /* Language-specific routines. */
273 static enum varobj_languages variable_language (struct varobj *var);
275 static int number_of_children (struct varobj *);
277 static char *name_of_variable (struct varobj *);
279 static char *name_of_child (struct varobj *, int);
281 static struct value *value_of_root (struct varobj **var_handle, int *);
283 static struct value *value_of_child (struct varobj *parent, int index);
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
292 static int varobj_value_is_changeable_p (struct varobj *var);
294 static int is_root_p (struct varobj *var);
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
301 #endif /* HAVE_PYTHON */
303 /* C implementation */
305 static int c_number_of_children (struct varobj *var);
307 static char *c_name_of_variable (struct varobj *parent);
309 static char *c_name_of_child (struct varobj *parent, int index);
311 static char *c_path_expr_of_child (struct varobj *child);
313 static struct value *c_value_of_root (struct varobj **var_handle);
315 static struct value *c_value_of_child (struct varobj *parent, int index);
317 static struct type *c_type_of_child (struct varobj *parent, int index);
319 static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
322 /* C++ implementation */
324 static int cplus_number_of_children (struct varobj *var);
326 static void cplus_class_num_children (struct type *type, int children[3]);
328 static char *cplus_name_of_variable (struct varobj *parent);
330 static char *cplus_name_of_child (struct varobj *parent, int index);
332 static char *cplus_path_expr_of_child (struct varobj *child);
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
340 static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
343 /* Java implementation */
345 static int java_number_of_children (struct varobj *var);
347 static char *java_name_of_variable (struct varobj *parent);
349 static char *java_name_of_child (struct varobj *parent, int index);
351 static char *java_path_expr_of_child (struct varobj *child);
353 static struct value *java_value_of_root (struct varobj **var_handle);
355 static struct value *java_value_of_child (struct varobj *parent, int index);
357 static struct type *java_type_of_child (struct varobj *parent, int index);
359 static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
362 /* The language specific vector */
364 struct language_specific
367 /* The language of this variable */
368 enum varobj_languages language;
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
402 c_number_of_children,
405 c_path_expr_of_child,
414 c_number_of_children,
417 c_path_expr_of_child,
426 cplus_number_of_children,
427 cplus_name_of_variable,
429 cplus_path_expr_of_child,
431 cplus_value_of_child,
433 cplus_value_of_variable}
438 java_number_of_children,
439 java_name_of_variable,
441 java_path_expr_of_child,
445 java_value_of_variable}
448 /* A little convenience enum for dealing with C++/Java */
451 v_public = 0, v_private, v_protected
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
474 /* API Implementation */
476 is_root_p (struct varobj *var)
478 return (var->root->rootvar == var);
482 /* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
485 varobj_ensure_python_env (struct varobj *var)
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
492 /* Creates a varobj (not its children) */
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
500 struct frame_info *frame = NULL;
502 if (frame_addr == (CORE_ADDR) 0)
505 for (frame = get_current_frame ();
507 frame = get_prev_frame (frame))
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
516 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
518 if (frame_base == frame_addr)
526 varobj_create (char *objname,
527 char *expression, CORE_ADDR frame, enum varobj_type type)
530 struct frame_info *fi;
531 struct frame_info *old_fi = NULL;
533 struct cleanup *old_chain;
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
539 if (expression != NULL)
542 enum varobj_languages lang;
543 struct value *value = NULL;
545 /* Parse and evaluate the expression, filling in as much of the
546 variable's data as possible. */
548 if (has_stack_frames ())
550 /* Allow creator to specify context of variable */
551 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
552 fi = get_selected_frame (NULL);
554 /* FIXME: cagney/2002-11-23: This code should be doing a
555 lookup using the frame ID and not just the frame's
556 ``address''. This, of course, means an interface
557 change. However, with out that interface change ISAs,
558 such as the ia64 with its two stacks, won't work.
559 Similar goes for the case where there is a frameless
561 fi = find_frame_addr_in_frame_chain (frame);
566 /* frame = -2 means always use selected frame */
567 if (type == USE_SELECTED_FRAME)
568 var->root->floating = 1;
572 block = get_frame_block (fi, 0);
575 innermost_block = NULL;
576 /* Wrap the call to parse expression, so we can
577 return a sensible error. */
578 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
583 /* Don't allow variables to be created for types. */
584 if (var->root->exp->elts[0].opcode == OP_TYPE)
586 do_cleanups (old_chain);
587 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
588 " as an expression.\n");
592 var->format = variable_default_display (var);
593 var->root->valid_block = innermost_block;
594 var->name = xstrdup (expression);
595 /* For a root var, the name and the expr are the same. */
596 var->path_expr = xstrdup (expression);
598 /* When the frame is different from the current frame,
599 we must select the appropriate frame before parsing
600 the expression, otherwise the value will not be current.
601 Since select_frame is so benign, just call it for all cases. */
604 /* User could specify explicit FRAME-ADDR which was not found but
605 EXPRESSION is frame specific and we would not be able to evaluate
606 it correctly next time. With VALID_BLOCK set we must also set
607 FRAME and THREAD_ID. */
609 error (_("Failed to find the specified frame"));
611 var->root->frame = get_frame_id (fi);
612 var->root->thread_id = pid_to_thread_id (inferior_ptid);
613 old_fi = get_selected_frame (NULL);
617 /* We definitely need to catch errors here.
618 If evaluate_expression succeeds we got the value we wanted.
619 But if it fails, we still go on with a call to evaluate_type() */
620 if (!gdb_evaluate_expression (var->root->exp, &value))
622 /* Error getting the value. Try to at least get the
624 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
628 var->type = value_type (value);
630 install_new_value (var, value, 1 /* Initial assignment */);
632 /* Set language info */
633 lang = variable_language (var);
634 var->root->lang = &languages[lang];
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
639 /* Reset the selected frame */
641 select_frame (old_fi);
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
647 if ((var != NULL) && (objname != NULL))
649 var->obj_name = xstrdup (objname);
651 /* If a varobj name is duplicated, the install will fail so
653 if (!install_variable (var))
655 do_cleanups (old_chain);
660 discard_cleanups (old_chain);
664 /* Generates an unique name that can be used for a varobj */
667 varobj_gen_name (void)
672 /* generate a name for this object */
674 obj_name = xstrprintf ("var%d", id);
679 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
683 varobj_get_handle (char *objname)
687 unsigned int index = 0;
690 for (chp = objname; *chp; chp++)
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
700 error (_("Variable object not found"));
705 /* Given the handle, return the name of the object */
708 varobj_get_objname (struct varobj *var)
710 return var->obj_name;
713 /* Given the handle, return the expression represented by the object */
716 varobj_get_expression (struct varobj *var)
718 return name_of_variable (var);
721 /* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
726 varobj_delete (struct varobj *var, char ***dellist, int only_children)
730 struct cpstack *result = NULL;
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
743 /* We may have been asked to return a list of what has been deleted */
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
755 *cp = cppop (&result);
758 if (mycount || (*cp != NULL))
759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
768 /* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
771 instantiate_pretty_printer (PyObject *constructor, struct value *value)
773 PyObject *val_obj = NULL;
776 val_obj = value_to_value_object (value);
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
788 /* Set/Get variable object display format */
790 enum varobj_display_formats
791 varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
799 case FORMAT_HEXADECIMAL:
801 var->format = format;
805 var->format = variable_default_display (var);
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
811 xfree (var->print_value);
812 var->print_value = value_get_print_value (var->value, var->format, var);
818 enum varobj_display_formats
819 varobj_get_display_format (struct varobj *var)
825 varobj_get_display_hint (struct varobj *var)
830 struct cleanup *back_to = varobj_ensure_python_env (var);
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
835 do_cleanups (back_to);
841 /* Return true if the varobj has items after TO, false otherwise. */
844 varobj_has_more (struct varobj *var, int to)
846 if (VEC_length (varobj_p, var->children) > to)
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
852 /* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
857 varobj_get_thread_id (struct varobj *var)
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
866 varobj_set_frozen (struct varobj *var, int frozen)
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
879 varobj_get_frozen (struct varobj *var)
884 /* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
890 restrict_range (VEC (varobj_p) *children, int *from, int *to)
892 if (*from < 0 || *to < 0)
895 *to = VEC_length (varobj_p, children);
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
910 /* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
914 install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
923 if (VEC_length (varobj_p, var->children) < index + 1)
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
929 VEC_safe_push (varobj_p, *new, child);
935 varobj_p existing = VEC_index (varobj_p, var->children, index);
936 if (install_new_value (existing, value, 0))
939 VEC_safe_push (varobj_p, *changed, existing);
942 VEC_safe_push (varobj_p, *unchanged, existing);
947 dynamic_varobj_has_child_method (struct varobj *var)
949 struct cleanup *back_to;
950 PyObject *printer = var->pretty_printer;
953 back_to = varobj_ensure_python_env (var);
954 result = PyObject_HasAttr (printer, gdbpy_children_cst);
955 do_cleanups (back_to);
962 update_dynamic_varobj_children (struct varobj *var,
963 VEC (varobj_p) **changed,
964 VEC (varobj_p) **new,
965 VEC (varobj_p) **unchanged,
972 struct cleanup *back_to;
975 PyObject *printer = var->pretty_printer;
977 back_to = varobj_ensure_python_env (var);
980 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
982 do_cleanups (back_to);
986 if (update_children || !var->child_iter)
988 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
993 gdbpy_print_stack ();
994 error (_("Null value returned for children"));
997 make_cleanup_py_decref (children);
999 if (!PyIter_Check (children))
1000 error (_("Returned value is not iterable"));
1002 Py_XDECREF (var->child_iter);
1003 var->child_iter = PyObject_GetIter (children);
1004 if (!var->child_iter)
1006 gdbpy_print_stack ();
1007 error (_("Could not get children iterator"));
1010 Py_XDECREF (var->saved_item);
1011 var->saved_item = NULL;
1016 i = VEC_length (varobj_p, var->children);
1018 /* We ask for one extra child, so that MI can report whether there
1019 are more children. */
1020 for (; to < 0 || i < to + 1; ++i)
1024 /* See if there was a leftover from last time. */
1025 if (var->saved_item)
1027 item = var->saved_item;
1028 var->saved_item = NULL;
1031 item = PyIter_Next (var->child_iter);
1036 /* We don't want to push the extra child on any report list. */
1037 if (to < 0 || i < to)
1042 struct cleanup *inner;
1043 int can_mention = from < 0 || i >= from;
1045 inner = make_cleanup_py_decref (item);
1047 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1048 error (_("Invalid item from the child list"));
1050 v = convert_value_from_python (py_v);
1051 install_dynamic_child (var, can_mention ? changed : NULL,
1052 can_mention ? new : NULL,
1053 can_mention ? unchanged : NULL,
1054 can_mention ? cchanged : NULL, i, name, v);
1055 do_cleanups (inner);
1059 Py_XDECREF (var->saved_item);
1060 var->saved_item = item;
1062 /* We want to truncate the child list just before this
1068 if (i < VEC_length (varobj_p, var->children))
1072 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1073 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1074 VEC_truncate (varobj_p, var->children, i);
1077 /* If there are fewer children than requested, note that the list of
1078 children changed. */
1079 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1082 var->num_children = VEC_length (varobj_p, var->children);
1084 do_cleanups (back_to);
1088 gdb_assert (0 && "should never be called if Python is not enabled");
1093 varobj_get_num_children (struct varobj *var)
1095 if (var->num_children == -1)
1097 if (var->pretty_printer)
1101 /* If we have a dynamic varobj, don't report -1 children.
1102 So, try to fetch some children first. */
1103 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1107 var->num_children = number_of_children (var);
1110 return var->num_children >= 0 ? var->num_children : 0;
1113 /* Creates a list of the immediate children of a variable object;
1114 the return code is the number of such children or -1 on error */
1117 varobj_list_children (struct varobj *var, int *from, int *to)
1119 struct varobj *child;
1121 int i, children_changed;
1123 var->children_requested = 1;
1125 if (var->pretty_printer)
1127 /* This, in theory, can result in the number of children changing without
1128 frontend noticing. But well, calling -var-list-children on the same
1129 varobj twice is not something a sane frontend would do. */
1130 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1132 restrict_range (var->children, from, to);
1133 return var->children;
1136 if (var->num_children == -1)
1137 var->num_children = number_of_children (var);
1139 /* If that failed, give up. */
1140 if (var->num_children == -1)
1141 return var->children;
1143 /* If we're called when the list of children is not yet initialized,
1144 allocate enough elements in it. */
1145 while (VEC_length (varobj_p, var->children) < var->num_children)
1146 VEC_safe_push (varobj_p, var->children, NULL);
1148 for (i = 0; i < var->num_children; i++)
1150 varobj_p existing = VEC_index (varobj_p, var->children, i);
1152 if (existing == NULL)
1154 /* Either it's the first call to varobj_list_children for
1155 this variable object, and the child was never created,
1156 or it was explicitly deleted by the client. */
1157 name = name_of_child (var, i);
1158 existing = create_child (var, i, name);
1159 VEC_replace (varobj_p, var->children, i, existing);
1163 restrict_range (var->children, from, to);
1164 return var->children;
1169 static struct varobj *
1170 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1172 varobj_p v = create_child_with_value (var,
1173 VEC_length (varobj_p, var->children),
1175 VEC_safe_push (varobj_p, var->children, v);
1179 #endif /* HAVE_PYTHON */
1181 /* Obtain the type of an object Variable as a string similar to the one gdb
1182 prints on the console */
1185 varobj_get_type (struct varobj *var)
1187 /* For the "fake" variables, do not return a type. (It's type is
1189 Do not return a type for invalid variables as well. */
1190 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1193 return type_to_string (var->type);
1196 /* Obtain the type of an object variable. */
1199 varobj_get_gdb_type (struct varobj *var)
1204 /* Return a pointer to the full rooted expression of varobj VAR.
1205 If it has not been computed yet, compute it. */
1207 varobj_get_path_expr (struct varobj *var)
1209 if (var->path_expr != NULL)
1210 return var->path_expr;
1213 /* For root varobjs, we initialize path_expr
1214 when creating varobj, so here it should be
1216 gdb_assert (!is_root_p (var));
1217 return (*var->root->lang->path_expr_of_child) (var);
1221 enum varobj_languages
1222 varobj_get_language (struct varobj *var)
1224 return variable_language (var);
1228 varobj_get_attributes (struct varobj *var)
1232 if (varobj_editable_p (var))
1233 /* FIXME: define masks for attributes */
1234 attributes |= 0x00000001; /* Editable */
1240 varobj_pretty_printed_p (struct varobj *var)
1242 return var->pretty_printer != NULL;
1246 varobj_get_formatted_value (struct varobj *var,
1247 enum varobj_display_formats format)
1249 return my_value_of_variable (var, format);
1253 varobj_get_value (struct varobj *var)
1255 return my_value_of_variable (var, var->format);
1258 /* Set the value of an object variable (if it is editable) to the
1259 value of the given expression */
1260 /* Note: Invokes functions that can call error() */
1263 varobj_set_value (struct varobj *var, char *expression)
1269 /* The argument "expression" contains the variable's new value.
1270 We need to first construct a legal expression for this -- ugh! */
1271 /* Does this cover all the bases? */
1272 struct expression *exp;
1273 struct value *value;
1274 int saved_input_radix = input_radix;
1275 char *s = expression;
1278 gdb_assert (varobj_editable_p (var));
1280 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1281 exp = parse_exp_1 (&s, 0, 0);
1282 if (!gdb_evaluate_expression (exp, &value))
1284 /* We cannot proceed without a valid expression. */
1289 /* All types that are editable must also be changeable. */
1290 gdb_assert (varobj_value_is_changeable_p (var));
1292 /* The value of a changeable variable object must not be lazy. */
1293 gdb_assert (!value_lazy (var->value));
1295 /* Need to coerce the input. We want to check if the
1296 value of the variable object will be different
1297 after assignment, and the first thing value_assign
1298 does is coerce the input.
1299 For example, if we are assigning an array to a pointer variable we
1300 should compare the pointer with the the array's address, not with the
1302 value = coerce_array (value);
1304 /* The new value may be lazy. gdb_value_assign, or
1305 rather value_contents, will take care of this.
1306 If fetching of the new value will fail, gdb_value_assign
1307 with catch the exception. */
1308 if (!gdb_value_assign (var->value, value, &val))
1311 /* If the value has changed, record it, so that next -var-update can
1312 report this change. If a variable had a value of '1', we've set it
1313 to '333' and then set again to '1', when -var-update will report this
1314 variable as changed -- because the first assignment has set the
1315 'updated' flag. There's no need to optimize that, because return value
1316 of -var-update should be considered an approximation. */
1317 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1318 input_radix = saved_input_radix;
1324 /* A helper function to install a constructor function and visualizer
1328 install_visualizer (struct varobj *var, PyObject *constructor,
1329 PyObject *visualizer)
1331 Py_XDECREF (var->constructor);
1332 var->constructor = constructor;
1334 Py_XDECREF (var->pretty_printer);
1335 var->pretty_printer = visualizer;
1337 Py_XDECREF (var->child_iter);
1338 var->child_iter = NULL;
1341 /* Install the default visualizer for VAR. */
1344 install_default_visualizer (struct varobj *var)
1346 if (pretty_printing)
1348 PyObject *pretty_printer = NULL;
1352 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1353 if (! pretty_printer)
1355 gdbpy_print_stack ();
1356 error (_("Cannot instantiate printer for default visualizer"));
1360 if (pretty_printer == Py_None)
1362 Py_DECREF (pretty_printer);
1363 pretty_printer = NULL;
1366 install_visualizer (var, NULL, pretty_printer);
1370 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1371 make a new object. */
1374 construct_visualizer (struct varobj *var, PyObject *constructor)
1376 PyObject *pretty_printer;
1378 Py_INCREF (constructor);
1379 if (constructor == Py_None)
1380 pretty_printer = NULL;
1383 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1384 if (! pretty_printer)
1386 gdbpy_print_stack ();
1387 Py_DECREF (constructor);
1388 constructor = Py_None;
1389 Py_INCREF (constructor);
1392 if (pretty_printer == Py_None)
1394 Py_DECREF (pretty_printer);
1395 pretty_printer = NULL;
1399 install_visualizer (var, constructor, pretty_printer);
1402 #endif /* HAVE_PYTHON */
1404 /* A helper function for install_new_value. This creates and installs
1405 a visualizer for VAR, if appropriate. */
1408 install_new_value_visualizer (struct varobj *var)
1411 /* If the constructor is None, then we want the raw value. If VAR
1412 does not have a value, just skip this. */
1413 if (var->constructor != Py_None && var->value)
1415 struct cleanup *cleanup;
1416 PyObject *pretty_printer = NULL;
1418 cleanup = varobj_ensure_python_env (var);
1420 if (!var->constructor)
1421 install_default_visualizer (var);
1423 construct_visualizer (var, var->constructor);
1425 do_cleanups (cleanup);
1432 /* Assign a new value to a variable object. If INITIAL is non-zero,
1433 this is the first assignement after the variable object was just
1434 created, or changed type. In that case, just assign the value
1436 Otherwise, assign the new value, and return 1 if the value is different
1437 from the current one, 0 otherwise. The comparison is done on textual
1438 representation of value. Therefore, some types need not be compared. E.g.
1439 for structures the reported value is always "{...}", so no comparison is
1440 necessary here. If the old value was NULL and new one is not, or vice versa,
1443 The VALUE parameter should not be released -- the function will
1444 take care of releasing it when needed. */
1446 install_new_value (struct varobj *var, struct value *value, int initial)
1451 int intentionally_not_fetched = 0;
1452 char *print_value = NULL;
1454 /* We need to know the varobj's type to decide if the value should
1455 be fetched or not. C++ fake children (public/protected/private) don't have
1457 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1458 changeable = varobj_value_is_changeable_p (var);
1460 /* If the type has custom visualizer, we consider it to be always
1461 changeable. FIXME: need to make sure this behaviour will not
1462 mess up read-sensitive values. */
1463 if (var->pretty_printer)
1466 need_to_fetch = changeable;
1468 /* We are not interested in the address of references, and given
1469 that in C++ a reference is not rebindable, it cannot
1470 meaningfully change. So, get hold of the real value. */
1472 value = coerce_ref (value);
1474 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1475 /* For unions, we need to fetch the value implicitly because
1476 of implementation of union member fetch. When gdb
1477 creates a value for a field and the value of the enclosing
1478 structure is not lazy, it immediately copies the necessary
1479 bytes from the enclosing values. If the enclosing value is
1480 lazy, the call to value_fetch_lazy on the field will read
1481 the data from memory. For unions, that means we'll read the
1482 same memory more than once, which is not desirable. So
1486 /* The new value might be lazy. If the type is changeable,
1487 that is we'll be comparing values of this type, fetch the
1488 value now. Otherwise, on the next update the old value
1489 will be lazy, which means we've lost that old value. */
1490 if (need_to_fetch && value && value_lazy (value))
1492 struct varobj *parent = var->parent;
1493 int frozen = var->frozen;
1494 for (; !frozen && parent; parent = parent->parent)
1495 frozen |= parent->frozen;
1497 if (frozen && initial)
1499 /* For variables that are frozen, or are children of frozen
1500 variables, we don't do fetch on initial assignment.
1501 For non-initial assignemnt we do the fetch, since it means we're
1502 explicitly asked to compare the new value with the old one. */
1503 intentionally_not_fetched = 1;
1505 else if (!gdb_value_fetch_lazy (value))
1507 /* Set the value to NULL, so that for the next -var-update,
1508 we don't try to compare the new value with this value,
1509 that we couldn't even read. */
1515 /* Below, we'll be comparing string rendering of old and new
1516 values. Don't get string rendering if the value is
1517 lazy -- if it is, the code above has decided that the value
1518 should not be fetched. */
1519 if (value && !value_lazy (value) && !var->pretty_printer)
1520 print_value = value_get_print_value (value, var->format, var);
1522 /* If the type is changeable, compare the old and the new values.
1523 If this is the initial assignment, we don't have any old value
1525 if (!initial && changeable)
1527 /* If the value of the varobj was changed by -var-set-value, then the
1528 value in the varobj and in the target is the same. However, that value
1529 is different from the value that the varobj had after the previous
1530 -var-update. So need to the varobj as changed. */
1535 else if (! var->pretty_printer)
1537 /* Try to compare the values. That requires that both
1538 values are non-lazy. */
1539 if (var->not_fetched && value_lazy (var->value))
1541 /* This is a frozen varobj and the value was never read.
1542 Presumably, UI shows some "never read" indicator.
1543 Now that we've fetched the real value, we need to report
1544 this varobj as changed so that UI can show the real
1548 else if (var->value == NULL && value == NULL)
1551 else if (var->value == NULL || value == NULL)
1557 gdb_assert (!value_lazy (var->value));
1558 gdb_assert (!value_lazy (value));
1560 gdb_assert (var->print_value != NULL && print_value != NULL);
1561 if (strcmp (var->print_value, print_value) != 0)
1567 if (!initial && !changeable)
1569 /* For values that are not changeable, we don't compare the values.
1570 However, we want to notice if a value was not NULL and now is NULL,
1571 or vise versa, so that we report when top-level varobjs come in scope
1572 and leave the scope. */
1573 changed = (var->value != NULL) != (value != NULL);
1576 /* We must always keep the new value, since children depend on it. */
1577 if (var->value != NULL && var->value != value)
1578 value_free (var->value);
1581 value_incref (value);
1582 if (value && value_lazy (value) && intentionally_not_fetched)
1583 var->not_fetched = 1;
1585 var->not_fetched = 0;
1588 install_new_value_visualizer (var);
1590 /* If we installed a pretty-printer, re-compare the printed version
1591 to see if the variable changed. */
1592 if (var->pretty_printer)
1594 xfree (print_value);
1595 print_value = value_get_print_value (var->value, var->format, var);
1596 if (!var->print_value || strcmp (var->print_value, print_value) != 0)
1599 if (var->print_value)
1600 xfree (var->print_value);
1601 var->print_value = print_value;
1603 gdb_assert (!var->value || value_type (var->value));
1608 /* Return the requested range for a varobj. VAR is the varobj. FROM
1609 and TO are out parameters; *FROM and *TO will be set to the
1610 selected sub-range of VAR. If no range was selected using
1611 -var-set-update-range, then both will be -1. */
1613 varobj_get_child_range (struct varobj *var, int *from, int *to)
1619 /* Set the selected sub-range of children of VAR to start at index
1620 FROM and end at index TO. If either FROM or TO is less than zero,
1621 this is interpreted as a request for all children. */
1623 varobj_set_child_range (struct varobj *var, int from, int to)
1630 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1633 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1634 struct cleanup *back_to, *value;
1636 back_to = varobj_ensure_python_env (var);
1638 mainmod = PyImport_AddModule ("__main__");
1639 globals = PyModule_GetDict (mainmod);
1640 Py_INCREF (globals);
1641 make_cleanup_py_decref (globals);
1643 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1647 gdbpy_print_stack ();
1648 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1651 construct_visualizer (var, constructor);
1652 Py_XDECREF (constructor);
1654 /* If there are any children now, wipe them. */
1655 varobj_delete (var, NULL, 1 /* children only */);
1656 var->num_children = -1;
1658 do_cleanups (back_to);
1660 error (_("Python support required"));
1664 /* Update the values for a variable and its children. This is a
1665 two-pronged attack. First, re-parse the value for the root's
1666 expression to see if it's changed. Then go all the way
1667 through its children, reconstructing them and noting if they've
1670 The EXPLICIT parameter specifies if this call is result
1671 of MI request to update this specific variable, or
1672 result of implicit -var-update *. For implicit request, we don't
1673 update frozen variables.
1675 NOTE: This function may delete the caller's varobj. If it
1676 returns TYPE_CHANGED, then it has done this and VARP will be modified
1677 to point to the new varobj. */
1679 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1682 int type_changed = 0;
1687 struct varobj **templist = NULL;
1689 VEC (varobj_update_result) *stack = NULL;
1690 VEC (varobj_update_result) *result = NULL;
1691 struct frame_info *fi;
1693 /* Frozen means frozen -- we don't check for any change in
1694 this varobj, including its going out of scope, or
1695 changing type. One use case for frozen varobjs is
1696 retaining previously evaluated expressions, and we don't
1697 want them to be reevaluated at all. */
1698 if (!explicit && (*varp)->frozen)
1701 if (!(*varp)->root->is_valid)
1703 varobj_update_result r = {*varp};
1704 r.status = VAROBJ_INVALID;
1705 VEC_safe_push (varobj_update_result, result, &r);
1709 if ((*varp)->root->rootvar == *varp)
1711 varobj_update_result r = {*varp};
1712 r.status = VAROBJ_IN_SCOPE;
1714 /* Update the root variable. value_of_root can return NULL
1715 if the variable is no longer around, i.e. we stepped out of
1716 the frame in which a local existed. We are letting the
1717 value_of_root variable dispose of the varobj if the type
1719 new = value_of_root (varp, &type_changed);
1722 r.type_changed = type_changed;
1723 if (install_new_value ((*varp), new, type_changed))
1727 r.status = VAROBJ_NOT_IN_SCOPE;
1728 r.value_installed = 1;
1730 if (r.status == VAROBJ_NOT_IN_SCOPE)
1732 if (r.type_changed || r.changed)
1733 VEC_safe_push (varobj_update_result, result, &r);
1737 VEC_safe_push (varobj_update_result, stack, &r);
1741 varobj_update_result r = {*varp};
1742 VEC_safe_push (varobj_update_result, stack, &r);
1745 /* Walk through the children, reconstructing them all. */
1746 while (!VEC_empty (varobj_update_result, stack))
1748 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1749 struct varobj *v = r.varobj;
1751 VEC_pop (varobj_update_result, stack);
1753 /* Update this variable, unless it's a root, which is already
1755 if (!r.value_installed)
1757 new = value_of_child (v->parent, v->index);
1758 if (install_new_value (v, new, 0 /* type not changed */))
1765 /* We probably should not get children of a varobj that has a
1766 pretty-printer, but for which -var-list-children was never
1768 if (v->pretty_printer)
1770 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1771 int i, children_changed = 0;
1776 if (!v->children_requested)
1780 /* If we initially did not have potential children, but
1781 now we do, consider the varobj as changed.
1782 Otherwise, if children were never requested, consider
1783 it as unchanged -- presumably, such varobj is not yet
1784 expanded in the UI, so we need not bother getting
1786 if (!varobj_has_more (v, 0))
1788 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1790 if (varobj_has_more (v, 0))
1795 VEC_safe_push (varobj_update_result, result, &r);
1800 /* If update_dynamic_varobj_children returns 0, then we have
1801 a non-conforming pretty-printer, so we skip it. */
1802 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1803 &children_changed, 1,
1806 if (children_changed || new)
1808 r.children_changed = 1;
1811 /* Push in reverse order so that the first child is
1812 popped from the work stack first, and so will be
1813 added to result first. This does not affect
1814 correctness, just "nicer". */
1815 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1817 varobj_p tmp = VEC_index (varobj_p, changed, i);
1818 varobj_update_result r = {tmp};
1820 r.value_installed = 1;
1821 VEC_safe_push (varobj_update_result, stack, &r);
1823 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1825 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1828 varobj_update_result r = {tmp};
1829 r.value_installed = 1;
1830 VEC_safe_push (varobj_update_result, stack, &r);
1833 if (r.changed || r.children_changed)
1834 VEC_safe_push (varobj_update_result, result, &r);
1836 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1837 has been put into the result vector. */
1838 VEC_free (varobj_p, changed);
1839 VEC_free (varobj_p, unchanged);
1845 /* Push any children. Use reverse order so that the first
1846 child is popped from the work stack first, and so
1847 will be added to result first. This does not
1848 affect correctness, just "nicer". */
1849 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1851 varobj_p c = VEC_index (varobj_p, v->children, i);
1852 /* Child may be NULL if explicitly deleted by -var-delete. */
1853 if (c != NULL && !c->frozen)
1855 varobj_update_result r = {c};
1856 VEC_safe_push (varobj_update_result, stack, &r);
1860 if (r.changed || r.type_changed)
1861 VEC_safe_push (varobj_update_result, result, &r);
1864 VEC_free (varobj_update_result, stack);
1870 /* Helper functions */
1873 * Variable object construction/destruction
1877 delete_variable (struct cpstack **resultp, struct varobj *var,
1878 int only_children_p)
1882 delete_variable_1 (resultp, &delcount, var,
1883 only_children_p, 1 /* remove_from_parent_p */ );
1888 /* Delete the variable object VAR and its children */
1889 /* IMPORTANT NOTE: If we delete a variable which is a child
1890 and the parent is not removed we dump core. It must be always
1891 initially called with remove_from_parent_p set */
1893 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1894 struct varobj *var, int only_children_p,
1895 int remove_from_parent_p)
1899 /* Delete any children of this variable, too. */
1900 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1902 varobj_p child = VEC_index (varobj_p, var->children, i);
1905 if (!remove_from_parent_p)
1906 child->parent = NULL;
1907 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1909 VEC_free (varobj_p, var->children);
1911 /* if we were called to delete only the children we are done here */
1912 if (only_children_p)
1915 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1916 /* If the name is null, this is a temporary variable, that has not
1917 yet been installed, don't report it, it belongs to the caller... */
1918 if (var->obj_name != NULL)
1920 cppush (resultp, xstrdup (var->obj_name));
1921 *delcountp = *delcountp + 1;
1924 /* If this variable has a parent, remove it from its parent's list */
1925 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1926 (as indicated by remove_from_parent_p) we don't bother doing an
1927 expensive list search to find the element to remove when we are
1928 discarding the list afterwards */
1929 if ((remove_from_parent_p) && (var->parent != NULL))
1931 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1934 if (var->obj_name != NULL)
1935 uninstall_variable (var);
1937 /* Free memory associated with this variable */
1938 free_variable (var);
1941 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1943 install_variable (struct varobj *var)
1946 struct vlist *newvl;
1948 unsigned int index = 0;
1951 for (chp = var->obj_name; *chp; chp++)
1953 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1956 cv = *(varobj_table + index);
1957 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1961 error (_("Duplicate variable object name"));
1963 /* Add varobj to hash table */
1964 newvl = xmalloc (sizeof (struct vlist));
1965 newvl->next = *(varobj_table + index);
1967 *(varobj_table + index) = newvl;
1969 /* If root, add varobj to root list */
1970 if (is_root_p (var))
1972 /* Add to list of root variables */
1973 if (rootlist == NULL)
1974 var->root->next = NULL;
1976 var->root->next = rootlist;
1977 rootlist = var->root;
1983 /* Unistall the object VAR. */
1985 uninstall_variable (struct varobj *var)
1989 struct varobj_root *cr;
1990 struct varobj_root *prer;
1992 unsigned int index = 0;
1995 /* Remove varobj from hash table */
1996 for (chp = var->obj_name; *chp; chp++)
1998 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2001 cv = *(varobj_table + index);
2003 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2010 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2015 ("Assertion failed: Could not find variable object \"%s\" to delete",
2021 *(varobj_table + index) = cv->next;
2023 prev->next = cv->next;
2027 /* If root, remove varobj from root list */
2028 if (is_root_p (var))
2030 /* Remove from list of root variables */
2031 if (rootlist == var->root)
2032 rootlist = var->root->next;
2037 while ((cr != NULL) && (cr->rootvar != var))
2045 ("Assertion failed: Could not find varobj \"%s\" in root list",
2052 prer->next = cr->next;
2058 /* Create and install a child of the parent of the given name */
2059 static struct varobj *
2060 create_child (struct varobj *parent, int index, char *name)
2062 return create_child_with_value (parent, index, name,
2063 value_of_child (parent, index));
2066 static struct varobj *
2067 create_child_with_value (struct varobj *parent, int index, const char *name,
2068 struct value *value)
2070 struct varobj *child;
2073 child = new_variable ();
2075 /* name is allocated by name_of_child */
2076 /* FIXME: xstrdup should not be here. */
2077 child->name = xstrdup (name);
2078 child->index = index;
2079 child->parent = parent;
2080 child->root = parent->root;
2081 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2082 child->obj_name = childs_name;
2083 install_variable (child);
2085 /* Compute the type of the child. Must do this before
2086 calling install_new_value. */
2088 /* If the child had no evaluation errors, var->value
2089 will be non-NULL and contain a valid type. */
2090 child->type = value_type (value);
2092 /* Otherwise, we must compute the type. */
2093 child->type = (*child->root->lang->type_of_child) (child->parent,
2095 install_new_value (child, value, 1);
2102 * Miscellaneous utility functions.
2105 /* Allocate memory and initialize a new variable */
2106 static struct varobj *
2111 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2113 var->path_expr = NULL;
2114 var->obj_name = NULL;
2118 var->num_children = -1;
2120 var->children = NULL;
2124 var->print_value = NULL;
2126 var->not_fetched = 0;
2127 var->children_requested = 0;
2130 var->constructor = 0;
2131 var->pretty_printer = 0;
2132 var->child_iter = 0;
2133 var->saved_item = 0;
2138 /* Allocate memory and initialize a new root variable */
2139 static struct varobj *
2140 new_root_variable (void)
2142 struct varobj *var = new_variable ();
2143 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2144 var->root->lang = NULL;
2145 var->root->exp = NULL;
2146 var->root->valid_block = NULL;
2147 var->root->frame = null_frame_id;
2148 var->root->floating = 0;
2149 var->root->rootvar = NULL;
2150 var->root->is_valid = 1;
2155 /* Free any allocated memory associated with VAR. */
2157 free_variable (struct varobj *var)
2160 if (var->pretty_printer)
2162 struct cleanup *cleanup = varobj_ensure_python_env (var);
2163 Py_XDECREF (var->constructor);
2164 Py_XDECREF (var->pretty_printer);
2165 Py_XDECREF (var->child_iter);
2166 Py_XDECREF (var->saved_item);
2167 do_cleanups (cleanup);
2171 value_free (var->value);
2173 /* Free the expression if this is a root variable. */
2174 if (is_root_p (var))
2176 xfree (var->root->exp);
2181 xfree (var->obj_name);
2182 xfree (var->print_value);
2183 xfree (var->path_expr);
2188 do_free_variable_cleanup (void *var)
2190 free_variable (var);
2193 static struct cleanup *
2194 make_cleanup_free_variable (struct varobj *var)
2196 return make_cleanup (do_free_variable_cleanup, var);
2199 /* This returns the type of the variable. It also skips past typedefs
2200 to return the real type of the variable.
2202 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2203 except within get_target_type and get_type. */
2204 static struct type *
2205 get_type (struct varobj *var)
2211 type = check_typedef (type);
2216 /* Return the type of the value that's stored in VAR,
2217 or that would have being stored there if the
2218 value were accessible.
2220 This differs from VAR->type in that VAR->type is always
2221 the true type of the expession in the source language.
2222 The return value of this function is the type we're
2223 actually storing in varobj, and using for displaying
2224 the values and for comparing previous and new values.
2226 For example, top-level references are always stripped. */
2227 static struct type *
2228 get_value_type (struct varobj *var)
2233 type = value_type (var->value);
2237 type = check_typedef (type);
2239 if (TYPE_CODE (type) == TYPE_CODE_REF)
2240 type = get_target_type (type);
2242 type = check_typedef (type);
2247 /* This returns the target type (or NULL) of TYPE, also skipping
2248 past typedefs, just like get_type ().
2250 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2251 except within get_target_type and get_type. */
2252 static struct type *
2253 get_target_type (struct type *type)
2257 type = TYPE_TARGET_TYPE (type);
2259 type = check_typedef (type);
2265 /* What is the default display for this variable? We assume that
2266 everything is "natural". Any exceptions? */
2267 static enum varobj_display_formats
2268 variable_default_display (struct varobj *var)
2270 return FORMAT_NATURAL;
2273 /* FIXME: The following should be generic for any pointer */
2275 cppush (struct cpstack **pstack, char *name)
2279 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2285 /* FIXME: The following should be generic for any pointer */
2287 cppop (struct cpstack **pstack)
2292 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2297 *pstack = (*pstack)->next;
2304 * Language-dependencies
2307 /* Common entry points */
2309 /* Get the language of variable VAR. */
2310 static enum varobj_languages
2311 variable_language (struct varobj *var)
2313 enum varobj_languages lang;
2315 switch (var->root->exp->language_defn->la_language)
2321 case language_cplus:
2332 /* Return the number of children for a given variable.
2333 The result of this function is defined by the language
2334 implementation. The number of children returned by this function
2335 is the number of children that the user will see in the variable
2338 number_of_children (struct varobj *var)
2340 return (*var->root->lang->number_of_children) (var);;
2343 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2345 name_of_variable (struct varobj *var)
2347 return (*var->root->lang->name_of_variable) (var);
2350 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2352 name_of_child (struct varobj *var, int index)
2354 return (*var->root->lang->name_of_child) (var, index);
2357 /* What is the ``struct value *'' of the root variable VAR?
2358 For floating variable object, evaluation can get us a value
2359 of different type from what is stored in varobj already. In
2361 - *type_changed will be set to 1
2362 - old varobj will be freed, and new one will be
2363 created, with the same name.
2364 - *var_handle will be set to the new varobj
2365 Otherwise, *type_changed will be set to 0. */
2366 static struct value *
2367 value_of_root (struct varobj **var_handle, int *type_changed)
2371 if (var_handle == NULL)
2376 /* This should really be an exception, since this should
2377 only get called with a root variable. */
2379 if (!is_root_p (var))
2382 if (var->root->floating)
2384 struct varobj *tmp_var;
2385 char *old_type, *new_type;
2387 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2388 USE_SELECTED_FRAME);
2389 if (tmp_var == NULL)
2393 old_type = varobj_get_type (var);
2394 new_type = varobj_get_type (tmp_var);
2395 if (strcmp (old_type, new_type) == 0)
2397 /* The expression presently stored inside var->root->exp
2398 remembers the locations of local variables relatively to
2399 the frame where the expression was created (in DWARF location
2400 button, for example). Naturally, those locations are not
2401 correct in other frames, so update the expression. */
2403 struct expression *tmp_exp = var->root->exp;
2404 var->root->exp = tmp_var->root->exp;
2405 tmp_var->root->exp = tmp_exp;
2407 varobj_delete (tmp_var, NULL, 0);
2412 tmp_var->obj_name = xstrdup (var->obj_name);
2413 tmp_var->from = var->from;
2414 tmp_var->to = var->to;
2415 varobj_delete (var, NULL, 0);
2417 install_variable (tmp_var);
2418 *var_handle = tmp_var;
2430 return (*var->root->lang->value_of_root) (var_handle);
2433 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2434 static struct value *
2435 value_of_child (struct varobj *parent, int index)
2437 struct value *value;
2439 value = (*parent->root->lang->value_of_child) (parent, index);
2444 /* GDB already has a command called "value_of_variable". Sigh. */
2446 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2448 if (var->root->is_valid)
2450 if (var->pretty_printer)
2451 return value_get_print_value (var->value, var->format, var);
2452 return (*var->root->lang->value_of_variable) (var, format);
2459 value_get_print_value (struct value *value, enum varobj_display_formats format,
2462 struct ui_file *stb;
2463 struct cleanup *old_chain;
2464 gdb_byte *thevalue = NULL;
2465 struct value_print_options opts;
2466 struct type *type = NULL;
2468 char *encoding = NULL;
2469 struct gdbarch *gdbarch = NULL;
2474 gdbarch = get_type_arch (value_type (value));
2477 struct cleanup *back_to = varobj_ensure_python_env (var);
2478 PyObject *value_formatter = var->pretty_printer;
2480 if (value_formatter)
2482 /* First check to see if we have any children at all. If so,
2483 we simply return {...}. */
2484 if (dynamic_varobj_has_child_method (var))
2485 return xstrdup ("{...}");
2487 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2490 struct value *replacement;
2491 int string_print = 0;
2492 PyObject *output = NULL;
2494 hint = gdbpy_get_display_hint (value_formatter);
2497 if (!strcmp (hint, "string"))
2502 output = apply_varobj_pretty_printer (value_formatter,
2506 if (gdbpy_is_lazy_string (output))
2508 thevalue = gdbpy_extract_lazy_string (output, &type,
2515 = python_string_to_target_python_string (output);
2518 char *s = PyString_AsString (py_str);
2519 len = PyString_Size (py_str);
2520 thevalue = xmemdup (s, len + 1, len + 1);
2521 type = builtin_type (gdbarch)->builtin_char;
2527 if (thevalue && !string_print)
2529 do_cleanups (back_to);
2534 value = replacement;
2537 do_cleanups (back_to);
2541 stb = mem_fileopen ();
2542 old_chain = make_cleanup_ui_file_delete (stb);
2544 get_formatted_print_options (&opts, format_code[(int) format]);
2549 make_cleanup (xfree, thevalue);
2550 make_cleanup (xfree, encoding);
2551 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2554 common_val_print (value, stb, 0, &opts, current_language);
2555 thevalue = ui_file_xstrdup (stb, NULL);
2557 do_cleanups (old_chain);
2562 varobj_editable_p (struct varobj *var)
2565 struct value *value;
2567 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2570 type = get_value_type (var);
2572 switch (TYPE_CODE (type))
2574 case TYPE_CODE_STRUCT:
2575 case TYPE_CODE_UNION:
2576 case TYPE_CODE_ARRAY:
2577 case TYPE_CODE_FUNC:
2578 case TYPE_CODE_METHOD:
2588 /* Return non-zero if changes in value of VAR
2589 must be detected and reported by -var-update.
2590 Return zero is -var-update should never report
2591 changes of such values. This makes sense for structures
2592 (since the changes in children values will be reported separately),
2593 or for artifical objects (like 'public' pseudo-field in C++).
2595 Return value of 0 means that gdb need not call value_fetch_lazy
2596 for the value of this variable object. */
2598 varobj_value_is_changeable_p (struct varobj *var)
2603 if (CPLUS_FAKE_CHILD (var))
2606 type = get_value_type (var);
2608 switch (TYPE_CODE (type))
2610 case TYPE_CODE_STRUCT:
2611 case TYPE_CODE_UNION:
2612 case TYPE_CODE_ARRAY:
2623 /* Return 1 if that varobj is floating, that is is always evaluated in the
2624 selected frame, and not bound to thread/frame. Such variable objects
2625 are created using '@' as frame specifier to -var-create. */
2627 varobj_floating_p (struct varobj *var)
2629 return var->root->floating;
2632 /* Given the value and the type of a variable object,
2633 adjust the value and type to those necessary
2634 for getting children of the variable object.
2635 This includes dereferencing top-level references
2636 to all types and dereferencing pointers to
2639 Both TYPE and *TYPE should be non-null. VALUE
2640 can be null if we want to only translate type.
2641 *VALUE can be null as well -- if the parent
2644 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2645 depending on whether pointer was dereferenced
2646 in this function. */
2648 adjust_value_for_child_access (struct value **value,
2652 gdb_assert (type && *type);
2657 *type = check_typedef (*type);
2659 /* The type of value stored in varobj, that is passed
2660 to us, is already supposed to be
2661 reference-stripped. */
2663 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2665 /* Pointers to structures are treated just like
2666 structures when accessing children. Don't
2667 dererences pointers to other types. */
2668 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2670 struct type *target_type = get_target_type (*type);
2671 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2672 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2674 if (value && *value)
2676 int success = gdb_value_ind (*value, value);
2680 *type = target_type;
2686 /* The 'get_target_type' function calls check_typedef on
2687 result, so we can immediately check type code. No
2688 need to call check_typedef here. */
2693 c_number_of_children (struct varobj *var)
2695 struct type *type = get_value_type (var);
2697 struct type *target;
2699 adjust_value_for_child_access (NULL, &type, NULL);
2700 target = get_target_type (type);
2702 switch (TYPE_CODE (type))
2704 case TYPE_CODE_ARRAY:
2705 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2706 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2707 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2709 /* If we don't know how many elements there are, don't display
2714 case TYPE_CODE_STRUCT:
2715 case TYPE_CODE_UNION:
2716 children = TYPE_NFIELDS (type);
2720 /* The type here is a pointer to non-struct. Typically, pointers
2721 have one child, except for function ptrs, which have no children,
2722 and except for void*, as we don't know what to show.
2724 We can show char* so we allow it to be dereferenced. If you decide
2725 to test for it, please mind that a little magic is necessary to
2726 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2727 TYPE_NAME == "char" */
2728 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2729 || TYPE_CODE (target) == TYPE_CODE_VOID)
2736 /* Other types have no children */
2744 c_name_of_variable (struct varobj *parent)
2746 return xstrdup (parent->name);
2749 /* Return the value of element TYPE_INDEX of a structure
2750 value VALUE. VALUE's type should be a structure,
2751 or union, or a typedef to struct/union.
2753 Returns NULL if getting the value fails. Never throws. */
2754 static struct value *
2755 value_struct_element_index (struct value *value, int type_index)
2757 struct value *result = NULL;
2758 volatile struct gdb_exception e;
2760 struct type *type = value_type (value);
2761 type = check_typedef (type);
2763 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2764 || TYPE_CODE (type) == TYPE_CODE_UNION);
2766 TRY_CATCH (e, RETURN_MASK_ERROR)
2768 if (field_is_static (&TYPE_FIELD (type, type_index)))
2769 result = value_static_field (type, type_index);
2771 result = value_primitive_field (value, 0, type_index, type);
2783 /* Obtain the information about child INDEX of the variable
2785 If CNAME is not null, sets *CNAME to the name of the child relative
2787 If CVALUE is not null, sets *CVALUE to the value of the child.
2788 If CTYPE is not null, sets *CTYPE to the type of the child.
2790 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2791 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2794 c_describe_child (struct varobj *parent, int index,
2795 char **cname, struct value **cvalue, struct type **ctype,
2796 char **cfull_expression)
2798 struct value *value = parent->value;
2799 struct type *type = get_value_type (parent);
2800 char *parent_expression = NULL;
2809 if (cfull_expression)
2811 *cfull_expression = NULL;
2812 parent_expression = varobj_get_path_expr (parent);
2814 adjust_value_for_child_access (&value, &type, &was_ptr);
2816 switch (TYPE_CODE (type))
2818 case TYPE_CODE_ARRAY:
2820 *cname = xstrdup (int_string (index
2821 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2824 if (cvalue && value)
2826 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2827 gdb_value_subscript (value, real_index, cvalue);
2831 *ctype = get_target_type (type);
2833 if (cfull_expression)
2835 xstrprintf ("(%s)[%s]", parent_expression,
2837 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2843 case TYPE_CODE_STRUCT:
2844 case TYPE_CODE_UNION:
2846 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2848 if (cvalue && value)
2850 /* For C, varobj index is the same as type index. */
2851 *cvalue = value_struct_element_index (value, index);
2855 *ctype = TYPE_FIELD_TYPE (type, index);
2857 if (cfull_expression)
2859 char *join = was_ptr ? "->" : ".";
2860 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2861 TYPE_FIELD_NAME (type, index));
2868 *cname = xstrprintf ("*%s", parent->name);
2870 if (cvalue && value)
2872 int success = gdb_value_ind (value, cvalue);
2877 /* Don't use get_target_type because it calls
2878 check_typedef and here, we want to show the true
2879 declared type of the variable. */
2881 *ctype = TYPE_TARGET_TYPE (type);
2883 if (cfull_expression)
2884 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2889 /* This should not happen */
2891 *cname = xstrdup ("???");
2892 if (cfull_expression)
2893 *cfull_expression = xstrdup ("???");
2894 /* Don't set value and type, we don't know then. */
2899 c_name_of_child (struct varobj *parent, int index)
2902 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2907 c_path_expr_of_child (struct varobj *child)
2909 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2911 return child->path_expr;
2914 /* If frame associated with VAR can be found, switch
2915 to it and return 1. Otherwise, return 0. */
2917 check_scope (struct varobj *var)
2919 struct frame_info *fi;
2922 fi = frame_find_by_id (var->root->frame);
2927 CORE_ADDR pc = get_frame_pc (fi);
2928 if (pc < BLOCK_START (var->root->valid_block) ||
2929 pc >= BLOCK_END (var->root->valid_block))
2937 static struct value *
2938 c_value_of_root (struct varobj **var_handle)
2940 struct value *new_val = NULL;
2941 struct varobj *var = *var_handle;
2942 struct frame_info *fi;
2943 int within_scope = 0;
2944 struct cleanup *back_to;
2946 /* Only root variables can be updated... */
2947 if (!is_root_p (var))
2948 /* Not a root var */
2951 back_to = make_cleanup_restore_current_thread ();
2953 /* Determine whether the variable is still around. */
2954 if (var->root->valid_block == NULL || var->root->floating)
2956 else if (var->root->thread_id == 0)
2958 /* The program was single-threaded when the variable object was
2959 created. Technically, it's possible that the program became
2960 multi-threaded since then, but we don't support such
2962 within_scope = check_scope (var);
2966 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2967 if (in_thread_list (ptid))
2969 switch_to_thread (ptid);
2970 within_scope = check_scope (var);
2976 /* We need to catch errors here, because if evaluate
2977 expression fails we want to just return NULL. */
2978 gdb_evaluate_expression (var->root->exp, &new_val);
2982 do_cleanups (back_to);
2987 static struct value *
2988 c_value_of_child (struct varobj *parent, int index)
2990 struct value *value = NULL;
2991 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2996 static struct type *
2997 c_type_of_child (struct varobj *parent, int index)
2999 struct type *type = NULL;
3000 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3005 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3007 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3008 it will print out its children instead of "{...}". So we need to
3009 catch that case explicitly. */
3010 struct type *type = get_type (var);
3012 /* If we have a custom formatter, return whatever string it has
3014 if (var->pretty_printer && var->print_value)
3015 return xstrdup (var->print_value);
3017 /* Strip top-level references. */
3018 while (TYPE_CODE (type) == TYPE_CODE_REF)
3019 type = check_typedef (TYPE_TARGET_TYPE (type));
3021 switch (TYPE_CODE (type))
3023 case TYPE_CODE_STRUCT:
3024 case TYPE_CODE_UNION:
3025 return xstrdup ("{...}");
3028 case TYPE_CODE_ARRAY:
3031 number = xstrprintf ("[%d]", var->num_children);
3038 if (var->value == NULL)
3040 /* This can happen if we attempt to get the value of a struct
3041 member when the parent is an invalid pointer. This is an
3042 error condition, so we should tell the caller. */
3047 if (var->not_fetched && value_lazy (var->value))
3048 /* Frozen variable and no value yet. We don't
3049 implicitly fetch the value. MI response will
3050 use empty string for the value, which is OK. */
3053 gdb_assert (varobj_value_is_changeable_p (var));
3054 gdb_assert (!value_lazy (var->value));
3056 /* If the specified format is the current one,
3057 we can reuse print_value */
3058 if (format == var->format)
3059 return xstrdup (var->print_value);
3061 return value_get_print_value (var->value, format, var);
3071 cplus_number_of_children (struct varobj *var)
3074 int children, dont_know;
3079 if (!CPLUS_FAKE_CHILD (var))
3081 type = get_value_type (var);
3082 adjust_value_for_child_access (NULL, &type, NULL);
3084 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3085 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3089 cplus_class_num_children (type, kids);
3090 if (kids[v_public] != 0)
3092 if (kids[v_private] != 0)
3094 if (kids[v_protected] != 0)
3097 /* Add any baseclasses */
3098 children += TYPE_N_BASECLASSES (type);
3101 /* FIXME: save children in var */
3108 type = get_value_type (var->parent);
3109 adjust_value_for_child_access (NULL, &type, NULL);
3111 cplus_class_num_children (type, kids);
3112 if (strcmp (var->name, "public") == 0)
3113 children = kids[v_public];
3114 else if (strcmp (var->name, "private") == 0)
3115 children = kids[v_private];
3117 children = kids[v_protected];
3122 children = c_number_of_children (var);
3127 /* Compute # of public, private, and protected variables in this class.
3128 That means we need to descend into all baseclasses and find out
3129 how many are there, too. */
3131 cplus_class_num_children (struct type *type, int children[3])
3133 int i, vptr_fieldno;
3134 struct type *basetype = NULL;
3136 children[v_public] = 0;
3137 children[v_private] = 0;
3138 children[v_protected] = 0;
3140 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3141 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3143 /* If we have a virtual table pointer, omit it. Even if virtual
3144 table pointers are not specifically marked in the debug info,
3145 they should be artificial. */
3146 if ((type == basetype && i == vptr_fieldno)
3147 || TYPE_FIELD_ARTIFICIAL (type, i))
3150 if (TYPE_FIELD_PROTECTED (type, i))
3151 children[v_protected]++;
3152 else if (TYPE_FIELD_PRIVATE (type, i))
3153 children[v_private]++;
3155 children[v_public]++;
3160 cplus_name_of_variable (struct varobj *parent)
3162 return c_name_of_variable (parent);
3165 enum accessibility { private_field, protected_field, public_field };
3167 /* Check if field INDEX of TYPE has the specified accessibility.
3168 Return 0 if so and 1 otherwise. */
3170 match_accessibility (struct type *type, int index, enum accessibility acc)
3172 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3174 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3176 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3177 && !TYPE_FIELD_PROTECTED (type, index))
3184 cplus_describe_child (struct varobj *parent, int index,
3185 char **cname, struct value **cvalue, struct type **ctype,
3186 char **cfull_expression)
3189 struct value *value;
3192 char *parent_expression = NULL;
3200 if (cfull_expression)
3201 *cfull_expression = NULL;
3203 if (CPLUS_FAKE_CHILD (parent))
3205 value = parent->parent->value;
3206 type = get_value_type (parent->parent);
3207 if (cfull_expression)
3208 parent_expression = varobj_get_path_expr (parent->parent);
3212 value = parent->value;
3213 type = get_value_type (parent);
3214 if (cfull_expression)
3215 parent_expression = varobj_get_path_expr (parent);
3218 adjust_value_for_child_access (&value, &type, &was_ptr);
3220 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3221 || TYPE_CODE (type) == TYPE_CODE_UNION)
3223 char *join = was_ptr ? "->" : ".";
3224 if (CPLUS_FAKE_CHILD (parent))
3226 /* The fields of the class type are ordered as they
3227 appear in the class. We are given an index for a
3228 particular access control type ("public","protected",
3229 or "private"). We must skip over fields that don't
3230 have the access control we are looking for to properly
3231 find the indexed field. */
3232 int type_index = TYPE_N_BASECLASSES (type);
3233 enum accessibility acc = public_field;
3235 struct type *basetype = NULL;
3237 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3238 if (strcmp (parent->name, "private") == 0)
3239 acc = private_field;
3240 else if (strcmp (parent->name, "protected") == 0)
3241 acc = protected_field;
3245 if ((type == basetype && type_index == vptr_fieldno)
3246 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3248 else if (match_accessibility (type, type_index, acc))
3255 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3257 if (cvalue && value)
3258 *cvalue = value_struct_element_index (value, type_index);
3261 *ctype = TYPE_FIELD_TYPE (type, type_index);
3263 if (cfull_expression)
3264 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3266 TYPE_FIELD_NAME (type, type_index));
3268 else if (index < TYPE_N_BASECLASSES (type))
3270 /* This is a baseclass. */
3272 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3274 if (cvalue && value)
3275 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3279 *ctype = TYPE_FIELD_TYPE (type, index);
3282 if (cfull_expression)
3284 char *ptr = was_ptr ? "*" : "";
3285 /* Cast the parent to the base' type. Note that in gdb,
3288 will create an lvalue, for all appearences, so we don't
3289 need to use more fancy:
3292 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3294 TYPE_FIELD_NAME (type, index),
3301 char *access = NULL;
3303 cplus_class_num_children (type, children);
3305 /* Everything beyond the baseclasses can
3306 only be "public", "private", or "protected"
3308 The special "fake" children are always output by varobj in
3309 this order. So if INDEX == 2, it MUST be "protected". */
3310 index -= TYPE_N_BASECLASSES (type);
3314 if (children[v_public] > 0)
3316 else if (children[v_private] > 0)
3319 access = "protected";
3322 if (children[v_public] > 0)
3324 if (children[v_private] > 0)
3327 access = "protected";
3329 else if (children[v_private] > 0)
3330 access = "protected";
3333 /* Must be protected */
3334 access = "protected";
3341 gdb_assert (access);
3343 *cname = xstrdup (access);
3345 /* Value and type and full expression are null here. */
3350 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3355 cplus_name_of_child (struct varobj *parent, int index)
3358 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3363 cplus_path_expr_of_child (struct varobj *child)
3365 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3367 return child->path_expr;
3370 static struct value *
3371 cplus_value_of_root (struct varobj **var_handle)
3373 return c_value_of_root (var_handle);
3376 static struct value *
3377 cplus_value_of_child (struct varobj *parent, int index)
3379 struct value *value = NULL;
3380 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3384 static struct type *
3385 cplus_type_of_child (struct varobj *parent, int index)
3387 struct type *type = NULL;
3388 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3393 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3396 /* If we have one of our special types, don't print out
3398 if (CPLUS_FAKE_CHILD (var))
3399 return xstrdup ("");
3401 return c_value_of_variable (var, format);
3407 java_number_of_children (struct varobj *var)
3409 return cplus_number_of_children (var);
3413 java_name_of_variable (struct varobj *parent)
3417 name = cplus_name_of_variable (parent);
3418 /* If the name has "-" in it, it is because we
3419 needed to escape periods in the name... */
3422 while (*p != '\000')
3433 java_name_of_child (struct varobj *parent, int index)
3437 name = cplus_name_of_child (parent, index);
3438 /* Escape any periods in the name... */
3441 while (*p != '\000')
3452 java_path_expr_of_child (struct varobj *child)
3457 static struct value *
3458 java_value_of_root (struct varobj **var_handle)
3460 return cplus_value_of_root (var_handle);
3463 static struct value *
3464 java_value_of_child (struct varobj *parent, int index)
3466 return cplus_value_of_child (parent, index);
3469 static struct type *
3470 java_type_of_child (struct varobj *parent, int index)
3472 return cplus_type_of_child (parent, index);
3476 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3478 return cplus_value_of_variable (var, format);
3481 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3482 with an arbitrary caller supplied DATA pointer. */
3485 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3487 struct varobj_root *var_root, *var_root_next;
3489 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3491 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3493 var_root_next = var_root->next;
3495 (*func) (var_root->rootvar, data);
3499 extern void _initialize_varobj (void);
3501 _initialize_varobj (void)
3503 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3505 varobj_table = xmalloc (sizeof_table);
3506 memset (varobj_table, 0, sizeof_table);
3508 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3510 Set varobj debugging."), _("\
3511 Show varobj debugging."), _("\
3512 When non-zero, varobj debugging is enabled."),
3515 &setlist, &showlist);
3518 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3519 defined on globals. It is a helper for varobj_invalidate. */
3522 varobj_invalidate_iter (struct varobj *var, void *unused)
3524 /* Floating varobjs are reparsed on each stop, so we don't care if the
3525 presently parsed expression refers to something that's gone. */
3526 if (var->root->floating)
3529 /* global var must be re-evaluated. */
3530 if (var->root->valid_block == NULL)
3532 struct varobj *tmp_var;
3534 /* Try to create a varobj with same expression. If we succeed
3535 replace the old varobj, otherwise invalidate it. */
3536 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3538 if (tmp_var != NULL)
3540 tmp_var->obj_name = xstrdup (var->obj_name);
3541 varobj_delete (var, NULL, 0);
3542 install_variable (tmp_var);
3545 var->root->is_valid = 0;
3547 else /* locals must be invalidated. */
3548 var->root->is_valid = 0;
3551 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3552 are defined on globals.
3553 Invalidated varobjs will be always printed in_scope="invalid". */
3556 varobj_invalidate (void)
3558 all_root_varobjs (varobj_invalidate_iter, NULL);