1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
35 #include "python/python.h"
36 #include "python/python-internal.h"
41 /* Non-zero if we want to see trace of varobj level stuff. */
43 unsigned int varobjdebug = 0;
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
59 varobj_enable_pretty_printing (void)
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
77 /* The frame for this expression. This field is set iff valid_block is
79 struct frame_id frame;
81 /* The thread ID that this varobj_root belong to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
97 /* Language-related operations for this variable and its
99 const struct lang_varobj_ops *lang_ops;
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
104 /* Next root variable */
105 struct varobj_root *next;
108 /* Dynamic part of varobj. */
110 struct varobj_dynamic
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
116 int children_requested;
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
127 /* The iterator returned by the printer's 'children' method, or NULL
129 struct varobj_iter *child_iter;
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
142 struct cpstack *next;
145 /* A list of varobjs */
153 /* Private function prototypes */
155 /* Helper functions for the above subcommands. */
157 static int delete_variable (struct cpstack **, struct varobj *, int);
159 static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
162 static int install_variable (struct varobj *);
164 static void uninstall_variable (struct varobj *);
166 static struct varobj *create_child (struct varobj *, int, char *);
168 static struct varobj *
169 create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
172 /* Utility routines */
174 static struct varobj *new_variable (void);
176 static struct varobj *new_root_variable (void);
178 static void free_variable (struct varobj *var);
180 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
182 static enum varobj_display_formats variable_default_display (struct varobj *);
184 static void cppush (struct cpstack **pstack, char *name);
186 static char *cppop (struct cpstack **pstack);
188 static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
191 static int install_new_value (struct varobj *var, struct value *value,
194 /* Language-specific routines. */
196 static int number_of_children (struct varobj *);
198 static char *name_of_variable (struct varobj *);
200 static char *name_of_child (struct varobj *, int);
202 static struct value *value_of_root (struct varobj **var_handle, int *);
204 static struct value *value_of_child (struct varobj *parent, int index);
206 static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
209 static int is_root_p (struct varobj *var);
211 static struct varobj *varobj_add_child (struct varobj *var,
212 struct varobj_item *item);
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
219 /* Header of the list of root variable objects. */
220 static struct varobj_root *rootlist;
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist **varobj_table;
231 /* API Implementation */
233 is_root_p (struct varobj *var)
235 return (var->root->rootvar == var);
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
242 varobj_ensure_python_env (struct varobj *var)
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
249 /* Creates a varobj (not its children). */
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
254 static struct frame_info *
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
257 struct frame_info *frame = NULL;
259 if (frame_addr == (CORE_ADDR) 0)
262 for (frame = get_current_frame ();
264 frame = get_prev_frame (frame))
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
276 if (frame_base == frame_addr)
284 varobj_create (char *objname,
285 char *expression, CORE_ADDR frame, enum varobj_type type)
288 struct cleanup *old_chain;
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var = new_root_variable ();
292 old_chain = make_cleanup_free_variable (var);
294 if (expression != NULL)
296 struct frame_info *fi;
297 struct frame_id old_id = null_frame_id;
298 const struct block *block;
300 struct value *value = NULL;
301 volatile struct gdb_exception except;
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
307 if (has_stack_frames ())
309 /* Allow creator to specify context of variable. */
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
320 fi = find_frame_addr_in_frame_chain (frame);
325 /* frame = -2 means always use selected frame. */
326 if (type == USE_SELECTED_FRAME)
327 var->root->floating = 1;
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
338 innermost_block = NULL;
339 /* Wrap the call to parse expression, so we can
340 return a sensible error. */
341 TRY_CATCH (except, RETURN_MASK_ERROR)
343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
346 if (except.reason < 0)
348 do_cleanups (old_chain);
352 /* Don't allow variables to be created for types. */
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
357 do_cleanups (old_chain);
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
365 var->name = xstrdup (expression);
366 /* For a root var, the name and the expr are the same. */
367 var->path_expr = xstrdup (expression);
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
380 error (_("Failed to find the specified frame"));
382 var->root->frame = get_frame_id (fi);
383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
384 old_id = get_frame_id (get_selected_frame (NULL));
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
391 TRY_CATCH (except, RETURN_MASK_ERROR)
393 value = evaluate_expression (var->root->exp);
396 if (except.reason < 0)
398 /* Error getting the value. Try to at least get the
400 struct value *type_only_value = evaluate_type (var->root->exp);
402 var->type = value_type (type_only_value);
406 int real_type_found = 0;
408 var->type = value_actual_type (value, 0, &real_type_found);
410 value = value_cast (var->type, value);
413 /* Set language info */
414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
416 install_new_value (var, value, 1 /* Initial assignment */);
418 /* Set ourselves as our root. */
419 var->root->rootvar = var;
421 /* Reset the selected frame. */
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
426 /* If the variable object name is null, that means this
427 is a temporary variable, so don't install it. */
429 if ((var != NULL) && (objname != NULL))
431 var->obj_name = xstrdup (objname);
433 /* If a varobj name is duplicated, the install will fail so
435 if (!install_variable (var))
437 do_cleanups (old_chain);
442 discard_cleanups (old_chain);
446 /* Generates an unique name that can be used for a varobj. */
449 varobj_gen_name (void)
454 /* Generate a name for this object. */
456 obj_name = xstrprintf ("var%d", id);
461 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
465 varobj_get_handle (char *objname)
469 unsigned int index = 0;
472 for (chp = objname; *chp; chp++)
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
482 error (_("Variable object not found"));
487 /* Given the handle, return the name of the object. */
490 varobj_get_objname (struct varobj *var)
492 return var->obj_name;
495 /* Given the handle, return the expression represented by the object. */
498 varobj_get_expression (struct varobj *var)
500 return name_of_variable (var);
503 /* Deletes a varobj and all its children if only_children == 0,
504 otherwise deletes only the children; returns a malloc'ed list of
505 all the (malloc'ed) names of the variables that have been deleted
506 (NULL terminated). */
509 varobj_delete (struct varobj *var, char ***dellist, int only_children)
513 struct cpstack *result = NULL;
516 /* Initialize a stack for temporary results. */
517 cppush (&result, NULL);
520 /* Delete only the variable children. */
521 delcount = delete_variable (&result, var, 1 /* only the children */ );
523 /* Delete the variable and all its children. */
524 delcount = delete_variable (&result, var, 0 /* parent+children */ );
526 /* We may have been asked to return a list of what has been deleted. */
529 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
533 *cp = cppop (&result);
534 while ((*cp != NULL) && (mycount > 0))
538 *cp = cppop (&result);
541 if (mycount || (*cp != NULL))
542 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
551 /* Convenience function for varobj_set_visualizer. Instantiate a
552 pretty-printer for a given value. */
554 instantiate_pretty_printer (PyObject *constructor, struct value *value)
556 PyObject *val_obj = NULL;
559 val_obj = value_to_value_object (value);
563 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
570 /* Set/Get variable object display format. */
572 enum varobj_display_formats
573 varobj_set_display_format (struct varobj *var,
574 enum varobj_display_formats format)
581 case FORMAT_HEXADECIMAL:
583 var->format = format;
587 var->format = variable_default_display (var);
590 if (varobj_value_is_changeable_p (var)
591 && var->value && !value_lazy (var->value))
593 xfree (var->print_value);
594 var->print_value = varobj_value_get_print_value (var->value,
601 enum varobj_display_formats
602 varobj_get_display_format (struct varobj *var)
608 varobj_get_display_hint (struct varobj *var)
613 struct cleanup *back_to;
615 if (!gdb_python_initialized)
618 back_to = varobj_ensure_python_env (var);
620 if (var->dynamic->pretty_printer != NULL)
621 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
623 do_cleanups (back_to);
629 /* Return true if the varobj has items after TO, false otherwise. */
632 varobj_has_more (struct varobj *var, int to)
634 if (VEC_length (varobj_p, var->children) > to)
636 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
637 && (var->dynamic->saved_item != NULL));
640 /* If the variable object is bound to a specific thread, that
641 is its evaluation can always be done in context of a frame
642 inside that thread, returns GDB id of the thread -- which
643 is always positive. Otherwise, returns -1. */
645 varobj_get_thread_id (struct varobj *var)
647 if (var->root->valid_block && var->root->thread_id > 0)
648 return var->root->thread_id;
654 varobj_set_frozen (struct varobj *var, int frozen)
656 /* When a variable is unfrozen, we don't fetch its value.
657 The 'not_fetched' flag remains set, so next -var-update
660 We don't fetch the value, because for structures the client
661 should do -var-update anyway. It would be bad to have different
662 client-size logic for structure and other types. */
663 var->frozen = frozen;
667 varobj_get_frozen (struct varobj *var)
672 /* A helper function that restricts a range to what is actually
673 available in a VEC. This follows the usual rules for the meaning
674 of FROM and TO -- if either is negative, the entire range is
678 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
680 if (*from < 0 || *to < 0)
683 *to = VEC_length (varobj_p, children);
687 if (*from > VEC_length (varobj_p, children))
688 *from = VEC_length (varobj_p, children);
689 if (*to > VEC_length (varobj_p, children))
690 *to = VEC_length (varobj_p, children);
696 /* A helper for update_dynamic_varobj_children that installs a new
697 child when needed. */
700 install_dynamic_child (struct varobj *var,
701 VEC (varobj_p) **changed,
702 VEC (varobj_p) **type_changed,
703 VEC (varobj_p) **new,
704 VEC (varobj_p) **unchanged,
707 struct varobj_item *item)
709 if (VEC_length (varobj_p, var->children) < index + 1)
711 /* There's no child yet. */
712 struct varobj *child = varobj_add_child (var, item);
716 VEC_safe_push (varobj_p, *new, child);
722 varobj_p existing = VEC_index (varobj_p, var->children, index);
723 int type_updated = update_type_if_necessary (existing, item->value);
728 VEC_safe_push (varobj_p, *type_changed, existing);
730 if (install_new_value (existing, item->value, 0))
732 if (!type_updated && changed)
733 VEC_safe_push (varobj_p, *changed, existing);
735 else if (!type_updated && unchanged)
736 VEC_safe_push (varobj_p, *unchanged, existing);
743 dynamic_varobj_has_child_method (struct varobj *var)
745 struct cleanup *back_to;
746 PyObject *printer = var->dynamic->pretty_printer;
749 if (!gdb_python_initialized)
752 back_to = varobj_ensure_python_env (var);
753 result = PyObject_HasAttr (printer, gdbpy_children_cst);
754 do_cleanups (back_to);
759 /* A factory for creating dynamic varobj's iterators. Returns an
760 iterator object suitable for iterating over VAR's children. */
762 static struct varobj_iter *
763 varobj_get_iterator (struct varobj *var)
766 if (var->dynamic->pretty_printer)
767 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
770 gdb_assert_not_reached (_("\
771 requested an iterator from a non-dynamic varobj"));
774 /* Release and clear VAR's saved item, if any. */
777 varobj_clear_saved_item (struct varobj_dynamic *var)
779 if (var->saved_item != NULL)
781 value_free (var->saved_item->value);
782 xfree (var->saved_item);
783 var->saved_item = NULL;
788 update_dynamic_varobj_children (struct varobj *var,
789 VEC (varobj_p) **changed,
790 VEC (varobj_p) **type_changed,
791 VEC (varobj_p) **new,
792 VEC (varobj_p) **unchanged,
802 if (update_children || var->dynamic->child_iter == NULL)
804 varobj_iter_delete (var->dynamic->child_iter);
805 var->dynamic->child_iter = varobj_get_iterator (var);
807 varobj_clear_saved_item (var->dynamic);
811 if (var->dynamic->child_iter == NULL)
815 i = VEC_length (varobj_p, var->children);
817 /* We ask for one extra child, so that MI can report whether there
818 are more children. */
819 for (; to < 0 || i < to + 1; ++i)
823 /* See if there was a leftover from last time. */
824 if (var->dynamic->saved_item != NULL)
826 item = var->dynamic->saved_item;
827 var->dynamic->saved_item = NULL;
831 item = varobj_iter_next (var->dynamic->child_iter);
832 /* Release vitem->value so its lifetime is not bound to the
833 execution of a command. */
834 if (item != NULL && item->value != NULL)
835 release_value_or_incref (item->value);
840 /* Iteration is done. Remove iterator from VAR. */
841 varobj_iter_delete (var->dynamic->child_iter);
842 var->dynamic->child_iter = NULL;
845 /* We don't want to push the extra child on any report list. */
846 if (to < 0 || i < to)
848 int can_mention = from < 0 || i >= from;
850 install_dynamic_child (var, can_mention ? changed : NULL,
851 can_mention ? type_changed : NULL,
852 can_mention ? new : NULL,
853 can_mention ? unchanged : NULL,
854 can_mention ? cchanged : NULL, i,
861 var->dynamic->saved_item = item;
863 /* We want to truncate the child list just before this
869 if (i < VEC_length (varobj_p, var->children))
874 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
875 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
876 VEC_truncate (varobj_p, var->children, i);
879 /* If there are fewer children than requested, note that the list of
881 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
884 var->num_children = VEC_length (varobj_p, var->children);
890 varobj_get_num_children (struct varobj *var)
892 if (var->num_children == -1)
894 if (varobj_is_dynamic_p (var))
898 /* If we have a dynamic varobj, don't report -1 children.
899 So, try to fetch some children first. */
900 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
904 var->num_children = number_of_children (var);
907 return var->num_children >= 0 ? var->num_children : 0;
910 /* Creates a list of the immediate children of a variable object;
911 the return code is the number of such children or -1 on error. */
914 varobj_list_children (struct varobj *var, int *from, int *to)
917 int i, children_changed;
919 var->dynamic->children_requested = 1;
921 if (varobj_is_dynamic_p (var))
923 /* This, in theory, can result in the number of children changing without
924 frontend noticing. But well, calling -var-list-children on the same
925 varobj twice is not something a sane frontend would do. */
926 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
927 &children_changed, 0, 0, *to);
928 varobj_restrict_range (var->children, from, to);
929 return var->children;
932 if (var->num_children == -1)
933 var->num_children = number_of_children (var);
935 /* If that failed, give up. */
936 if (var->num_children == -1)
937 return var->children;
939 /* If we're called when the list of children is not yet initialized,
940 allocate enough elements in it. */
941 while (VEC_length (varobj_p, var->children) < var->num_children)
942 VEC_safe_push (varobj_p, var->children, NULL);
944 for (i = 0; i < var->num_children; i++)
946 varobj_p existing = VEC_index (varobj_p, var->children, i);
948 if (existing == NULL)
950 /* Either it's the first call to varobj_list_children for
951 this variable object, and the child was never created,
952 or it was explicitly deleted by the client. */
953 name = name_of_child (var, i);
954 existing = create_child (var, i, name);
955 VEC_replace (varobj_p, var->children, i, existing);
959 varobj_restrict_range (var->children, from, to);
960 return var->children;
963 static struct varobj *
964 varobj_add_child (struct varobj *var, struct varobj_item *item)
966 varobj_p v = create_child_with_value (var,
967 VEC_length (varobj_p, var->children),
970 VEC_safe_push (varobj_p, var->children, v);
974 /* Obtain the type of an object Variable as a string similar to the one gdb
975 prints on the console. */
978 varobj_get_type (struct varobj *var)
980 /* For the "fake" variables, do not return a type. (Its type is
982 Do not return a type for invalid variables as well. */
983 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
986 return type_to_string (var->type);
989 /* Obtain the type of an object variable. */
992 varobj_get_gdb_type (struct varobj *var)
997 /* Is VAR a path expression parent, i.e., can it be used to construct
998 a valid path expression? */
1001 is_path_expr_parent (struct varobj *var)
1003 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1004 return var->root->lang_ops->is_path_expr_parent (var);
1007 /* Is VAR a path expression parent, i.e., can it be used to construct
1008 a valid path expression? By default we assume any VAR can be a path
1012 varobj_default_is_path_expr_parent (struct varobj *var)
1017 /* Return the path expression parent for VAR. */
1020 varobj_get_path_expr_parent (struct varobj *var)
1022 struct varobj *parent = var;
1024 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1025 parent = parent->parent;
1030 /* Return a pointer to the full rooted expression of varobj VAR.
1031 If it has not been computed yet, compute it. */
1033 varobj_get_path_expr (struct varobj *var)
1035 if (var->path_expr != NULL)
1036 return var->path_expr;
1039 /* For root varobjs, we initialize path_expr
1040 when creating varobj, so here it should be
1042 gdb_assert (!is_root_p (var));
1043 return (*var->root->lang_ops->path_expr_of_child) (var);
1047 const struct language_defn *
1048 varobj_get_language (struct varobj *var)
1050 return var->root->exp->language_defn;
1054 varobj_get_attributes (struct varobj *var)
1058 if (varobj_editable_p (var))
1059 /* FIXME: define masks for attributes. */
1060 attributes |= 0x00000001; /* Editable */
1065 /* Return true if VAR is a dynamic varobj. */
1068 varobj_is_dynamic_p (struct varobj *var)
1070 return var->dynamic->pretty_printer != NULL;
1074 varobj_get_formatted_value (struct varobj *var,
1075 enum varobj_display_formats format)
1077 return my_value_of_variable (var, format);
1081 varobj_get_value (struct varobj *var)
1083 return my_value_of_variable (var, var->format);
1086 /* Set the value of an object variable (if it is editable) to the
1087 value of the given expression. */
1088 /* Note: Invokes functions that can call error(). */
1091 varobj_set_value (struct varobj *var, char *expression)
1093 struct value *val = NULL; /* Initialize to keep gcc happy. */
1094 /* The argument "expression" contains the variable's new value.
1095 We need to first construct a legal expression for this -- ugh! */
1096 /* Does this cover all the bases? */
1097 struct expression *exp;
1098 struct value *value = NULL; /* Initialize to keep gcc happy. */
1099 int saved_input_radix = input_radix;
1100 const char *s = expression;
1101 volatile struct gdb_exception except;
1103 gdb_assert (varobj_editable_p (var));
1105 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1106 exp = parse_exp_1 (&s, 0, 0, 0);
1107 TRY_CATCH (except, RETURN_MASK_ERROR)
1109 value = evaluate_expression (exp);
1112 if (except.reason < 0)
1114 /* We cannot proceed without a valid expression. */
1119 /* All types that are editable must also be changeable. */
1120 gdb_assert (varobj_value_is_changeable_p (var));
1122 /* The value of a changeable variable object must not be lazy. */
1123 gdb_assert (!value_lazy (var->value));
1125 /* Need to coerce the input. We want to check if the
1126 value of the variable object will be different
1127 after assignment, and the first thing value_assign
1128 does is coerce the input.
1129 For example, if we are assigning an array to a pointer variable we
1130 should compare the pointer with the array's address, not with the
1132 value = coerce_array (value);
1134 /* The new value may be lazy. value_assign, or
1135 rather value_contents, will take care of this. */
1136 TRY_CATCH (except, RETURN_MASK_ERROR)
1138 val = value_assign (var->value, value);
1141 if (except.reason < 0)
1144 /* If the value has changed, record it, so that next -var-update can
1145 report this change. If a variable had a value of '1', we've set it
1146 to '333' and then set again to '1', when -var-update will report this
1147 variable as changed -- because the first assignment has set the
1148 'updated' flag. There's no need to optimize that, because return value
1149 of -var-update should be considered an approximation. */
1150 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1151 input_radix = saved_input_radix;
1157 /* A helper function to install a constructor function and visualizer
1158 in a varobj_dynamic. */
1161 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1162 PyObject *visualizer)
1164 Py_XDECREF (var->constructor);
1165 var->constructor = constructor;
1167 Py_XDECREF (var->pretty_printer);
1168 var->pretty_printer = visualizer;
1170 varobj_iter_delete (var->child_iter);
1171 var->child_iter = NULL;
1174 /* Install the default visualizer for VAR. */
1177 install_default_visualizer (struct varobj *var)
1179 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1180 if (CPLUS_FAKE_CHILD (var))
1183 if (pretty_printing)
1185 PyObject *pretty_printer = NULL;
1189 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1190 if (! pretty_printer)
1192 gdbpy_print_stack ();
1193 error (_("Cannot instantiate printer for default visualizer"));
1197 if (pretty_printer == Py_None)
1199 Py_DECREF (pretty_printer);
1200 pretty_printer = NULL;
1203 install_visualizer (var->dynamic, NULL, pretty_printer);
1207 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1208 make a new object. */
1211 construct_visualizer (struct varobj *var, PyObject *constructor)
1213 PyObject *pretty_printer;
1215 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1216 if (CPLUS_FAKE_CHILD (var))
1219 Py_INCREF (constructor);
1220 if (constructor == Py_None)
1221 pretty_printer = NULL;
1224 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1225 if (! pretty_printer)
1227 gdbpy_print_stack ();
1228 Py_DECREF (constructor);
1229 constructor = Py_None;
1230 Py_INCREF (constructor);
1233 if (pretty_printer == Py_None)
1235 Py_DECREF (pretty_printer);
1236 pretty_printer = NULL;
1240 install_visualizer (var->dynamic, constructor, pretty_printer);
1243 #endif /* HAVE_PYTHON */
1245 /* A helper function for install_new_value. This creates and installs
1246 a visualizer for VAR, if appropriate. */
1249 install_new_value_visualizer (struct varobj *var)
1252 /* If the constructor is None, then we want the raw value. If VAR
1253 does not have a value, just skip this. */
1254 if (!gdb_python_initialized)
1257 if (var->dynamic->constructor != Py_None && var->value != NULL)
1259 struct cleanup *cleanup;
1261 cleanup = varobj_ensure_python_env (var);
1263 if (var->dynamic->constructor == NULL)
1264 install_default_visualizer (var);
1266 construct_visualizer (var, var->dynamic->constructor);
1268 do_cleanups (cleanup);
1275 /* When using RTTI to determine variable type it may be changed in runtime when
1276 the variable value is changed. This function checks whether type of varobj
1277 VAR will change when a new value NEW_VALUE is assigned and if it is so
1278 updates the type of VAR. */
1281 update_type_if_necessary (struct varobj *var, struct value *new_value)
1285 struct value_print_options opts;
1287 get_user_print_options (&opts);
1288 if (opts.objectprint)
1290 struct type *new_type;
1291 char *curr_type_str, *new_type_str;
1293 new_type = value_actual_type (new_value, 0, 0);
1294 new_type_str = type_to_string (new_type);
1295 curr_type_str = varobj_get_type (var);
1296 if (strcmp (curr_type_str, new_type_str) != 0)
1298 var->type = new_type;
1300 /* This information may be not valid for a new type. */
1301 varobj_delete (var, NULL, 1);
1302 VEC_free (varobj_p, var->children);
1303 var->num_children = -1;
1312 /* Assign a new value to a variable object. If INITIAL is non-zero,
1313 this is the first assignement after the variable object was just
1314 created, or changed type. In that case, just assign the value
1316 Otherwise, assign the new value, and return 1 if the value is
1317 different from the current one, 0 otherwise. The comparison is
1318 done on textual representation of value. Therefore, some types
1319 need not be compared. E.g. for structures the reported value is
1320 always "{...}", so no comparison is necessary here. If the old
1321 value was NULL and new one is not, or vice versa, we always return 1.
1323 The VALUE parameter should not be released -- the function will
1324 take care of releasing it when needed. */
1326 install_new_value (struct varobj *var, struct value *value, int initial)
1331 int intentionally_not_fetched = 0;
1332 char *print_value = NULL;
1334 /* We need to know the varobj's type to decide if the value should
1335 be fetched or not. C++ fake children (public/protected/private)
1336 don't have a type. */
1337 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1338 changeable = varobj_value_is_changeable_p (var);
1340 /* If the type has custom visualizer, we consider it to be always
1341 changeable. FIXME: need to make sure this behaviour will not
1342 mess up read-sensitive values. */
1343 if (var->dynamic->pretty_printer != NULL)
1346 need_to_fetch = changeable;
1348 /* We are not interested in the address of references, and given
1349 that in C++ a reference is not rebindable, it cannot
1350 meaningfully change. So, get hold of the real value. */
1352 value = coerce_ref (value);
1354 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1355 /* For unions, we need to fetch the value implicitly because
1356 of implementation of union member fetch. When gdb
1357 creates a value for a field and the value of the enclosing
1358 structure is not lazy, it immediately copies the necessary
1359 bytes from the enclosing values. If the enclosing value is
1360 lazy, the call to value_fetch_lazy on the field will read
1361 the data from memory. For unions, that means we'll read the
1362 same memory more than once, which is not desirable. So
1366 /* The new value might be lazy. If the type is changeable,
1367 that is we'll be comparing values of this type, fetch the
1368 value now. Otherwise, on the next update the old value
1369 will be lazy, which means we've lost that old value. */
1370 if (need_to_fetch && value && value_lazy (value))
1372 struct varobj *parent = var->parent;
1373 int frozen = var->frozen;
1375 for (; !frozen && parent; parent = parent->parent)
1376 frozen |= parent->frozen;
1378 if (frozen && initial)
1380 /* For variables that are frozen, or are children of frozen
1381 variables, we don't do fetch on initial assignment.
1382 For non-initial assignemnt we do the fetch, since it means we're
1383 explicitly asked to compare the new value with the old one. */
1384 intentionally_not_fetched = 1;
1388 volatile struct gdb_exception except;
1390 TRY_CATCH (except, RETURN_MASK_ERROR)
1392 value_fetch_lazy (value);
1395 if (except.reason < 0)
1397 /* Set the value to NULL, so that for the next -var-update,
1398 we don't try to compare the new value with this value,
1399 that we couldn't even read. */
1405 /* Get a reference now, before possibly passing it to any Python
1406 code that might release it. */
1408 value_incref (value);
1410 /* Below, we'll be comparing string rendering of old and new
1411 values. Don't get string rendering if the value is
1412 lazy -- if it is, the code above has decided that the value
1413 should not be fetched. */
1414 if (value != NULL && !value_lazy (value)
1415 && var->dynamic->pretty_printer == NULL)
1416 print_value = varobj_value_get_print_value (value, var->format, var);
1418 /* If the type is changeable, compare the old and the new values.
1419 If this is the initial assignment, we don't have any old value
1421 if (!initial && changeable)
1423 /* If the value of the varobj was changed by -var-set-value,
1424 then the value in the varobj and in the target is the same.
1425 However, that value is different from the value that the
1426 varobj had after the previous -var-update. So need to the
1427 varobj as changed. */
1432 else if (var->dynamic->pretty_printer == NULL)
1434 /* Try to compare the values. That requires that both
1435 values are non-lazy. */
1436 if (var->not_fetched && value_lazy (var->value))
1438 /* This is a frozen varobj and the value was never read.
1439 Presumably, UI shows some "never read" indicator.
1440 Now that we've fetched the real value, we need to report
1441 this varobj as changed so that UI can show the real
1445 else if (var->value == NULL && value == NULL)
1448 else if (var->value == NULL || value == NULL)
1454 gdb_assert (!value_lazy (var->value));
1455 gdb_assert (!value_lazy (value));
1457 gdb_assert (var->print_value != NULL && print_value != NULL);
1458 if (strcmp (var->print_value, print_value) != 0)
1464 if (!initial && !changeable)
1466 /* For values that are not changeable, we don't compare the values.
1467 However, we want to notice if a value was not NULL and now is NULL,
1468 or vise versa, so that we report when top-level varobjs come in scope
1469 and leave the scope. */
1470 changed = (var->value != NULL) != (value != NULL);
1473 /* We must always keep the new value, since children depend on it. */
1474 if (var->value != NULL && var->value != value)
1475 value_free (var->value);
1477 if (value && value_lazy (value) && intentionally_not_fetched)
1478 var->not_fetched = 1;
1480 var->not_fetched = 0;
1483 install_new_value_visualizer (var);
1485 /* If we installed a pretty-printer, re-compare the printed version
1486 to see if the variable changed. */
1487 if (var->dynamic->pretty_printer != NULL)
1489 xfree (print_value);
1490 print_value = varobj_value_get_print_value (var->value, var->format,
1492 if ((var->print_value == NULL && print_value != NULL)
1493 || (var->print_value != NULL && print_value == NULL)
1494 || (var->print_value != NULL && print_value != NULL
1495 && strcmp (var->print_value, print_value) != 0))
1498 if (var->print_value)
1499 xfree (var->print_value);
1500 var->print_value = print_value;
1502 gdb_assert (!var->value || value_type (var->value));
1507 /* Return the requested range for a varobj. VAR is the varobj. FROM
1508 and TO are out parameters; *FROM and *TO will be set to the
1509 selected sub-range of VAR. If no range was selected using
1510 -var-set-update-range, then both will be -1. */
1512 varobj_get_child_range (struct varobj *var, int *from, int *to)
1518 /* Set the selected sub-range of children of VAR to start at index
1519 FROM and end at index TO. If either FROM or TO is less than zero,
1520 this is interpreted as a request for all children. */
1522 varobj_set_child_range (struct varobj *var, int from, int to)
1529 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1532 PyObject *mainmod, *globals, *constructor;
1533 struct cleanup *back_to;
1535 if (!gdb_python_initialized)
1538 back_to = varobj_ensure_python_env (var);
1540 mainmod = PyImport_AddModule ("__main__");
1541 globals = PyModule_GetDict (mainmod);
1542 Py_INCREF (globals);
1543 make_cleanup_py_decref (globals);
1545 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1549 gdbpy_print_stack ();
1550 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1553 construct_visualizer (var, constructor);
1554 Py_XDECREF (constructor);
1556 /* If there are any children now, wipe them. */
1557 varobj_delete (var, NULL, 1 /* children only */);
1558 var->num_children = -1;
1560 do_cleanups (back_to);
1562 error (_("Python support required"));
1566 /* If NEW_VALUE is the new value of the given varobj (var), return
1567 non-zero if var has mutated. In other words, if the type of
1568 the new value is different from the type of the varobj's old
1571 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1574 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1575 struct type *new_type)
1577 /* If we haven't previously computed the number of children in var,
1578 it does not matter from the front-end's perspective whether
1579 the type has mutated or not. For all intents and purposes,
1580 it has not mutated. */
1581 if (var->num_children < 0)
1584 if (var->root->lang_ops->value_has_mutated)
1586 /* The varobj module, when installing new values, explicitly strips
1587 references, saying that we're not interested in those addresses.
1588 But detection of mutation happens before installing the new
1589 value, so our value may be a reference that we need to strip
1590 in order to remain consistent. */
1591 if (new_value != NULL)
1592 new_value = coerce_ref (new_value);
1593 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1599 /* Update the values for a variable and its children. This is a
1600 two-pronged attack. First, re-parse the value for the root's
1601 expression to see if it's changed. Then go all the way
1602 through its children, reconstructing them and noting if they've
1605 The EXPLICIT parameter specifies if this call is result
1606 of MI request to update this specific variable, or
1607 result of implicit -var-update *. For implicit request, we don't
1608 update frozen variables.
1610 NOTE: This function may delete the caller's varobj. If it
1611 returns TYPE_CHANGED, then it has done this and VARP will be modified
1612 to point to the new varobj. */
1614 VEC(varobj_update_result) *
1615 varobj_update (struct varobj **varp, int explicit)
1617 int type_changed = 0;
1620 VEC (varobj_update_result) *stack = NULL;
1621 VEC (varobj_update_result) *result = NULL;
1623 /* Frozen means frozen -- we don't check for any change in
1624 this varobj, including its going out of scope, or
1625 changing type. One use case for frozen varobjs is
1626 retaining previously evaluated expressions, and we don't
1627 want them to be reevaluated at all. */
1628 if (!explicit && (*varp)->frozen)
1631 if (!(*varp)->root->is_valid)
1633 varobj_update_result r = {0};
1636 r.status = VAROBJ_INVALID;
1637 VEC_safe_push (varobj_update_result, result, &r);
1641 if ((*varp)->root->rootvar == *varp)
1643 varobj_update_result r = {0};
1646 r.status = VAROBJ_IN_SCOPE;
1648 /* Update the root variable. value_of_root can return NULL
1649 if the variable is no longer around, i.e. we stepped out of
1650 the frame in which a local existed. We are letting the
1651 value_of_root variable dispose of the varobj if the type
1653 new = value_of_root (varp, &type_changed);
1654 if (update_type_if_necessary(*varp, new))
1657 r.type_changed = type_changed;
1658 if (install_new_value ((*varp), new, type_changed))
1662 r.status = VAROBJ_NOT_IN_SCOPE;
1663 r.value_installed = 1;
1665 if (r.status == VAROBJ_NOT_IN_SCOPE)
1667 if (r.type_changed || r.changed)
1668 VEC_safe_push (varobj_update_result, result, &r);
1672 VEC_safe_push (varobj_update_result, stack, &r);
1676 varobj_update_result r = {0};
1679 VEC_safe_push (varobj_update_result, stack, &r);
1682 /* Walk through the children, reconstructing them all. */
1683 while (!VEC_empty (varobj_update_result, stack))
1685 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1686 struct varobj *v = r.varobj;
1688 VEC_pop (varobj_update_result, stack);
1690 /* Update this variable, unless it's a root, which is already
1692 if (!r.value_installed)
1694 struct type *new_type;
1696 new = value_of_child (v->parent, v->index);
1697 if (update_type_if_necessary(v, new))
1700 new_type = value_type (new);
1702 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1704 if (varobj_value_has_mutated (v, new, new_type))
1706 /* The children are no longer valid; delete them now.
1707 Report the fact that its type changed as well. */
1708 varobj_delete (v, NULL, 1 /* only_children */);
1709 v->num_children = -1;
1716 if (install_new_value (v, new, r.type_changed))
1723 /* We probably should not get children of a dynamic varobj, but
1724 for which -var-list-children was never invoked. */
1725 if (varobj_is_dynamic_p (v))
1727 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1728 VEC (varobj_p) *new = 0;
1729 int i, children_changed = 0;
1734 if (!v->dynamic->children_requested)
1738 /* If we initially did not have potential children, but
1739 now we do, consider the varobj as changed.
1740 Otherwise, if children were never requested, consider
1741 it as unchanged -- presumably, such varobj is not yet
1742 expanded in the UI, so we need not bother getting
1744 if (!varobj_has_more (v, 0))
1746 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1748 if (varobj_has_more (v, 0))
1753 VEC_safe_push (varobj_update_result, result, &r);
1758 /* If update_dynamic_varobj_children returns 0, then we have
1759 a non-conforming pretty-printer, so we skip it. */
1760 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1761 &unchanged, &children_changed, 1,
1764 if (children_changed || new)
1766 r.children_changed = 1;
1769 /* Push in reverse order so that the first child is
1770 popped from the work stack first, and so will be
1771 added to result first. This does not affect
1772 correctness, just "nicer". */
1773 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1775 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1776 varobj_update_result r = {0};
1778 /* Type may change only if value was changed. */
1782 r.value_installed = 1;
1783 VEC_safe_push (varobj_update_result, stack, &r);
1785 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1787 varobj_p tmp = VEC_index (varobj_p, changed, i);
1788 varobj_update_result r = {0};
1792 r.value_installed = 1;
1793 VEC_safe_push (varobj_update_result, stack, &r);
1795 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1797 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1801 varobj_update_result r = {0};
1804 r.value_installed = 1;
1805 VEC_safe_push (varobj_update_result, stack, &r);
1808 if (r.changed || r.children_changed)
1809 VEC_safe_push (varobj_update_result, result, &r);
1811 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1812 because NEW has been put into the result vector. */
1813 VEC_free (varobj_p, changed);
1814 VEC_free (varobj_p, type_changed);
1815 VEC_free (varobj_p, unchanged);
1821 /* Push any children. Use reverse order so that the first
1822 child is popped from the work stack first, and so
1823 will be added to result first. This does not
1824 affect correctness, just "nicer". */
1825 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1827 varobj_p c = VEC_index (varobj_p, v->children, i);
1829 /* Child may be NULL if explicitly deleted by -var-delete. */
1830 if (c != NULL && !c->frozen)
1832 varobj_update_result r = {0};
1835 VEC_safe_push (varobj_update_result, stack, &r);
1839 if (r.changed || r.type_changed)
1840 VEC_safe_push (varobj_update_result, result, &r);
1843 VEC_free (varobj_update_result, stack);
1849 /* Helper functions */
1852 * Variable object construction/destruction
1856 delete_variable (struct cpstack **resultp, struct varobj *var,
1857 int only_children_p)
1861 delete_variable_1 (resultp, &delcount, var,
1862 only_children_p, 1 /* remove_from_parent_p */ );
1867 /* Delete the variable object VAR and its children. */
1868 /* IMPORTANT NOTE: If we delete a variable which is a child
1869 and the parent is not removed we dump core. It must be always
1870 initially called with remove_from_parent_p set. */
1872 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1873 struct varobj *var, int only_children_p,
1874 int remove_from_parent_p)
1878 /* Delete any children of this variable, too. */
1879 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1881 varobj_p child = VEC_index (varobj_p, var->children, i);
1885 if (!remove_from_parent_p)
1886 child->parent = NULL;
1887 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1889 VEC_free (varobj_p, var->children);
1891 /* if we were called to delete only the children we are done here. */
1892 if (only_children_p)
1895 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1896 /* If the name is null, this is a temporary variable, that has not
1897 yet been installed, don't report it, it belongs to the caller... */
1898 if (var->obj_name != NULL)
1900 cppush (resultp, xstrdup (var->obj_name));
1901 *delcountp = *delcountp + 1;
1904 /* If this variable has a parent, remove it from its parent's list. */
1905 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1906 (as indicated by remove_from_parent_p) we don't bother doing an
1907 expensive list search to find the element to remove when we are
1908 discarding the list afterwards. */
1909 if ((remove_from_parent_p) && (var->parent != NULL))
1911 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1914 if (var->obj_name != NULL)
1915 uninstall_variable (var);
1917 /* Free memory associated with this variable. */
1918 free_variable (var);
1921 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1923 install_variable (struct varobj *var)
1926 struct vlist *newvl;
1928 unsigned int index = 0;
1931 for (chp = var->obj_name; *chp; chp++)
1933 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1936 cv = *(varobj_table + index);
1937 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1941 error (_("Duplicate variable object name"));
1943 /* Add varobj to hash table. */
1944 newvl = xmalloc (sizeof (struct vlist));
1945 newvl->next = *(varobj_table + index);
1947 *(varobj_table + index) = newvl;
1949 /* If root, add varobj to root list. */
1950 if (is_root_p (var))
1952 /* Add to list of root variables. */
1953 if (rootlist == NULL)
1954 var->root->next = NULL;
1956 var->root->next = rootlist;
1957 rootlist = var->root;
1963 /* Unistall the object VAR. */
1965 uninstall_variable (struct varobj *var)
1969 struct varobj_root *cr;
1970 struct varobj_root *prer;
1972 unsigned int index = 0;
1975 /* Remove varobj from hash table. */
1976 for (chp = var->obj_name; *chp; chp++)
1978 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1981 cv = *(varobj_table + index);
1983 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1990 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1995 ("Assertion failed: Could not find variable object \"%s\" to delete",
2001 *(varobj_table + index) = cv->next;
2003 prev->next = cv->next;
2007 /* If root, remove varobj from root list. */
2008 if (is_root_p (var))
2010 /* Remove from list of root variables. */
2011 if (rootlist == var->root)
2012 rootlist = var->root->next;
2017 while ((cr != NULL) && (cr->rootvar != var))
2024 warning (_("Assertion failed: Could not find "
2025 "varobj \"%s\" in root list"),
2032 prer->next = cr->next;
2038 /* Create and install a child of the parent of the given name. */
2039 static struct varobj *
2040 create_child (struct varobj *parent, int index, char *name)
2042 struct varobj_item item;
2045 item.value = value_of_child (parent, index);
2047 return create_child_with_value (parent, index, &item);
2050 static struct varobj *
2051 create_child_with_value (struct varobj *parent, int index,
2052 struct varobj_item *item)
2054 struct varobj *child;
2057 child = new_variable ();
2059 /* NAME is allocated by caller. */
2060 child->name = item->name;
2061 child->index = index;
2062 child->parent = parent;
2063 child->root = parent->root;
2065 if (varobj_is_anonymous_child (child))
2066 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2068 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2069 child->obj_name = childs_name;
2071 install_variable (child);
2073 /* Compute the type of the child. Must do this before
2074 calling install_new_value. */
2075 if (item->value != NULL)
2076 /* If the child had no evaluation errors, var->value
2077 will be non-NULL and contain a valid type. */
2078 child->type = value_actual_type (item->value, 0, NULL);
2080 /* Otherwise, we must compute the type. */
2081 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2083 install_new_value (child, item->value, 1);
2090 * Miscellaneous utility functions.
2093 /* Allocate memory and initialize a new variable. */
2094 static struct varobj *
2099 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2101 var->path_expr = NULL;
2102 var->obj_name = NULL;
2106 var->num_children = -1;
2108 var->children = NULL;
2112 var->print_value = NULL;
2114 var->not_fetched = 0;
2116 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2117 var->dynamic->children_requested = 0;
2120 var->dynamic->constructor = 0;
2121 var->dynamic->pretty_printer = 0;
2122 var->dynamic->child_iter = 0;
2123 var->dynamic->saved_item = 0;
2128 /* Allocate memory and initialize a new root variable. */
2129 static struct varobj *
2130 new_root_variable (void)
2132 struct varobj *var = new_variable ();
2134 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2135 var->root->lang_ops = NULL;
2136 var->root->exp = NULL;
2137 var->root->valid_block = NULL;
2138 var->root->frame = null_frame_id;
2139 var->root->floating = 0;
2140 var->root->rootvar = NULL;
2141 var->root->is_valid = 1;
2146 /* Free any allocated memory associated with VAR. */
2148 free_variable (struct varobj *var)
2151 if (var->dynamic->pretty_printer != NULL)
2153 struct cleanup *cleanup = varobj_ensure_python_env (var);
2155 Py_XDECREF (var->dynamic->constructor);
2156 Py_XDECREF (var->dynamic->pretty_printer);
2157 do_cleanups (cleanup);
2161 varobj_iter_delete (var->dynamic->child_iter);
2162 varobj_clear_saved_item (var->dynamic);
2163 value_free (var->value);
2165 /* Free the expression if this is a root variable. */
2166 if (is_root_p (var))
2168 xfree (var->root->exp);
2173 xfree (var->obj_name);
2174 xfree (var->print_value);
2175 xfree (var->path_expr);
2176 xfree (var->dynamic);
2181 do_free_variable_cleanup (void *var)
2183 free_variable (var);
2186 static struct cleanup *
2187 make_cleanup_free_variable (struct varobj *var)
2189 return make_cleanup (do_free_variable_cleanup, var);
2192 /* Return the type of the value that's stored in VAR,
2193 or that would have being stored there if the
2194 value were accessible.
2196 This differs from VAR->type in that VAR->type is always
2197 the true type of the expession in the source language.
2198 The return value of this function is the type we're
2199 actually storing in varobj, and using for displaying
2200 the values and for comparing previous and new values.
2202 For example, top-level references are always stripped. */
2204 varobj_get_value_type (struct varobj *var)
2209 type = value_type (var->value);
2213 type = check_typedef (type);
2215 if (TYPE_CODE (type) == TYPE_CODE_REF)
2216 type = get_target_type (type);
2218 type = check_typedef (type);
2223 /* What is the default display for this variable? We assume that
2224 everything is "natural". Any exceptions? */
2225 static enum varobj_display_formats
2226 variable_default_display (struct varobj *var)
2228 return FORMAT_NATURAL;
2231 /* FIXME: The following should be generic for any pointer. */
2233 cppush (struct cpstack **pstack, char *name)
2237 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2243 /* FIXME: The following should be generic for any pointer. */
2245 cppop (struct cpstack **pstack)
2250 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2255 *pstack = (*pstack)->next;
2262 * Language-dependencies
2265 /* Common entry points */
2267 /* Return the number of children for a given variable.
2268 The result of this function is defined by the language
2269 implementation. The number of children returned by this function
2270 is the number of children that the user will see in the variable
2273 number_of_children (struct varobj *var)
2275 return (*var->root->lang_ops->number_of_children) (var);
2278 /* What is the expression for the root varobj VAR? Returns a malloc'd
2281 name_of_variable (struct varobj *var)
2283 return (*var->root->lang_ops->name_of_variable) (var);
2286 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2289 name_of_child (struct varobj *var, int index)
2291 return (*var->root->lang_ops->name_of_child) (var, index);
2294 /* If frame associated with VAR can be found, switch
2295 to it and return 1. Otherwise, return 0. */
2298 check_scope (struct varobj *var)
2300 struct frame_info *fi;
2303 fi = frame_find_by_id (var->root->frame);
2308 CORE_ADDR pc = get_frame_pc (fi);
2310 if (pc < BLOCK_START (var->root->valid_block) ||
2311 pc >= BLOCK_END (var->root->valid_block))
2319 /* Helper function to value_of_root. */
2321 static struct value *
2322 value_of_root_1 (struct varobj **var_handle)
2324 struct value *new_val = NULL;
2325 struct varobj *var = *var_handle;
2326 int within_scope = 0;
2327 struct cleanup *back_to;
2329 /* Only root variables can be updated... */
2330 if (!is_root_p (var))
2331 /* Not a root var. */
2334 back_to = make_cleanup_restore_current_thread ();
2336 /* Determine whether the variable is still around. */
2337 if (var->root->valid_block == NULL || var->root->floating)
2339 else if (var->root->thread_id == 0)
2341 /* The program was single-threaded when the variable object was
2342 created. Technically, it's possible that the program became
2343 multi-threaded since then, but we don't support such
2345 within_scope = check_scope (var);
2349 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2350 if (in_thread_list (ptid))
2352 switch_to_thread (ptid);
2353 within_scope = check_scope (var);
2359 volatile struct gdb_exception except;
2361 /* We need to catch errors here, because if evaluate
2362 expression fails we want to just return NULL. */
2363 TRY_CATCH (except, RETURN_MASK_ERROR)
2365 new_val = evaluate_expression (var->root->exp);
2369 do_cleanups (back_to);
2374 /* What is the ``struct value *'' of the root variable VAR?
2375 For floating variable object, evaluation can get us a value
2376 of different type from what is stored in varobj already. In
2378 - *type_changed will be set to 1
2379 - old varobj will be freed, and new one will be
2380 created, with the same name.
2381 - *var_handle will be set to the new varobj
2382 Otherwise, *type_changed will be set to 0. */
2383 static struct value *
2384 value_of_root (struct varobj **var_handle, int *type_changed)
2388 if (var_handle == NULL)
2393 /* This should really be an exception, since this should
2394 only get called with a root variable. */
2396 if (!is_root_p (var))
2399 if (var->root->floating)
2401 struct varobj *tmp_var;
2402 char *old_type, *new_type;
2404 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2405 USE_SELECTED_FRAME);
2406 if (tmp_var == NULL)
2410 old_type = varobj_get_type (var);
2411 new_type = varobj_get_type (tmp_var);
2412 if (strcmp (old_type, new_type) == 0)
2414 /* The expression presently stored inside var->root->exp
2415 remembers the locations of local variables relatively to
2416 the frame where the expression was created (in DWARF location
2417 button, for example). Naturally, those locations are not
2418 correct in other frames, so update the expression. */
2420 struct expression *tmp_exp = var->root->exp;
2422 var->root->exp = tmp_var->root->exp;
2423 tmp_var->root->exp = tmp_exp;
2425 varobj_delete (tmp_var, NULL, 0);
2430 tmp_var->obj_name = xstrdup (var->obj_name);
2431 tmp_var->from = var->from;
2432 tmp_var->to = var->to;
2433 varobj_delete (var, NULL, 0);
2435 install_variable (tmp_var);
2436 *var_handle = tmp_var;
2449 struct value *value;
2451 value = value_of_root_1 (var_handle);
2452 if (var->value == NULL || value == NULL)
2454 /* For root varobj-s, a NULL value indicates a scoping issue.
2455 So, nothing to do in terms of checking for mutations. */
2457 else if (varobj_value_has_mutated (var, value, value_type (value)))
2459 /* The type has mutated, so the children are no longer valid.
2460 Just delete them, and tell our caller that the type has
2462 varobj_delete (var, NULL, 1 /* only_children */);
2463 var->num_children = -1;
2472 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2473 static struct value *
2474 value_of_child (struct varobj *parent, int index)
2476 struct value *value;
2478 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2483 /* GDB already has a command called "value_of_variable". Sigh. */
2485 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2487 if (var->root->is_valid)
2489 if (var->dynamic->pretty_printer != NULL)
2490 return varobj_value_get_print_value (var->value, var->format, var);
2491 return (*var->root->lang_ops->value_of_variable) (var, format);
2498 varobj_formatted_print_options (struct value_print_options *opts,
2499 enum varobj_display_formats format)
2501 get_formatted_print_options (opts, format_code[(int) format]);
2502 opts->deref_ref = 0;
2507 varobj_value_get_print_value (struct value *value,
2508 enum varobj_display_formats format,
2511 struct ui_file *stb;
2512 struct cleanup *old_chain;
2513 char *thevalue = NULL;
2514 struct value_print_options opts;
2515 struct type *type = NULL;
2517 char *encoding = NULL;
2518 struct gdbarch *gdbarch = NULL;
2519 /* Initialize it just to avoid a GCC false warning. */
2520 CORE_ADDR str_addr = 0;
2521 int string_print = 0;
2526 stb = mem_fileopen ();
2527 old_chain = make_cleanup_ui_file_delete (stb);
2529 gdbarch = get_type_arch (value_type (value));
2531 if (gdb_python_initialized)
2533 PyObject *value_formatter = var->dynamic->pretty_printer;
2535 varobj_ensure_python_env (var);
2537 if (value_formatter)
2539 /* First check to see if we have any children at all. If so,
2540 we simply return {...}. */
2541 if (dynamic_varobj_has_child_method (var))
2543 do_cleanups (old_chain);
2544 return xstrdup ("{...}");
2547 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2549 struct value *replacement;
2550 PyObject *output = NULL;
2552 output = apply_varobj_pretty_printer (value_formatter,
2556 /* If we have string like output ... */
2559 make_cleanup_py_decref (output);
2561 /* If this is a lazy string, extract it. For lazy
2562 strings we always print as a string, so set
2564 if (gdbpy_is_lazy_string (output))
2566 gdbpy_extract_lazy_string (output, &str_addr, &type,
2568 make_cleanup (free_current_contents, &encoding);
2573 /* If it is a regular (non-lazy) string, extract
2574 it and copy the contents into THEVALUE. If the
2575 hint says to print it as a string, set
2576 string_print. Otherwise just return the extracted
2577 string as a value. */
2579 char *s = python_string_to_target_string (output);
2585 hint = gdbpy_get_display_hint (value_formatter);
2588 if (!strcmp (hint, "string"))
2594 thevalue = xmemdup (s, len + 1, len + 1);
2595 type = builtin_type (gdbarch)->builtin_char;
2600 do_cleanups (old_chain);
2604 make_cleanup (xfree, thevalue);
2607 gdbpy_print_stack ();
2610 /* If the printer returned a replacement value, set VALUE
2611 to REPLACEMENT. If there is not a replacement value,
2612 just use the value passed to this function. */
2614 value = replacement;
2620 varobj_formatted_print_options (&opts, format);
2622 /* If the THEVALUE has contents, it is a regular string. */
2624 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2625 else if (string_print)
2626 /* Otherwise, if string_print is set, and it is not a regular
2627 string, it is a lazy string. */
2628 val_print_string (type, encoding, str_addr, len, stb, &opts);
2630 /* All other cases. */
2631 common_val_print (value, stb, 0, &opts, current_language);
2633 thevalue = ui_file_xstrdup (stb, NULL);
2635 do_cleanups (old_chain);
2640 varobj_editable_p (struct varobj *var)
2644 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2647 type = varobj_get_value_type (var);
2649 switch (TYPE_CODE (type))
2651 case TYPE_CODE_STRUCT:
2652 case TYPE_CODE_UNION:
2653 case TYPE_CODE_ARRAY:
2654 case TYPE_CODE_FUNC:
2655 case TYPE_CODE_METHOD:
2665 /* Call VAR's value_is_changeable_p language-specific callback. */
2668 varobj_value_is_changeable_p (struct varobj *var)
2670 return var->root->lang_ops->value_is_changeable_p (var);
2673 /* Return 1 if that varobj is floating, that is is always evaluated in the
2674 selected frame, and not bound to thread/frame. Such variable objects
2675 are created using '@' as frame specifier to -var-create. */
2677 varobj_floating_p (struct varobj *var)
2679 return var->root->floating;
2682 /* Implement the "value_is_changeable_p" varobj callback for most
2686 varobj_default_value_is_changeable_p (struct varobj *var)
2691 if (CPLUS_FAKE_CHILD (var))
2694 type = varobj_get_value_type (var);
2696 switch (TYPE_CODE (type))
2698 case TYPE_CODE_STRUCT:
2699 case TYPE_CODE_UNION:
2700 case TYPE_CODE_ARRAY:
2711 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2712 with an arbitrary caller supplied DATA pointer. */
2715 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2717 struct varobj_root *var_root, *var_root_next;
2719 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2721 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2723 var_root_next = var_root->next;
2725 (*func) (var_root->rootvar, data);
2729 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2730 defined on globals. It is a helper for varobj_invalidate.
2732 This function is called after changing the symbol file, in this case the
2733 pointers to "struct type" stored by the varobj are no longer valid. All
2734 varobj must be either re-evaluated, or marked as invalid here. */
2737 varobj_invalidate_iter (struct varobj *var, void *unused)
2739 /* global and floating var must be re-evaluated. */
2740 if (var->root->floating || var->root->valid_block == NULL)
2742 struct varobj *tmp_var;
2744 /* Try to create a varobj with same expression. If we succeed
2745 replace the old varobj, otherwise invalidate it. */
2746 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2748 if (tmp_var != NULL)
2750 tmp_var->obj_name = xstrdup (var->obj_name);
2751 varobj_delete (var, NULL, 0);
2752 install_variable (tmp_var);
2755 var->root->is_valid = 0;
2757 else /* locals must be invalidated. */
2758 var->root->is_valid = 0;
2761 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2762 are defined on globals.
2763 Invalidated varobjs will be always printed in_scope="invalid". */
2766 varobj_invalidate (void)
2768 all_root_varobjs (varobj_invalidate_iter, NULL);
2771 extern void _initialize_varobj (void);
2773 _initialize_varobj (void)
2775 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2777 varobj_table = xmalloc (sizeof_table);
2778 memset (varobj_table, 0, sizeof_table);
2780 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2782 _("Set varobj debugging."),
2783 _("Show varobj debugging."),
2784 _("When non-zero, varobj debugging is enabled."),
2785 NULL, show_varobjdebug,
2786 &setdebuglist, &showdebuglist);