1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
36 #include "python/python.h"
37 #include "python/python-internal.h"
38 #include "python/py-ref.h"
43 /* Non-zero if we want to see trace of varobj level stuff. */
45 unsigned int varobjdebug = 0;
47 show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 /* String representations of gdb's format codes. */
54 const char *varobj_format_string[] =
55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
57 /* True if we want to allow Python-based pretty-printing. */
58 static bool pretty_printing = false;
61 varobj_enable_pretty_printing (void)
63 pretty_printing = true;
68 /* Every root variable has one of these structures saved in its
72 /* The expression for this parent. */
75 /* Block for which this expression is valid. */
76 const struct block *valid_block = NULL;
78 /* The frame for this expression. This field is set iff valid_block is
80 struct frame_id frame = null_frame_id;
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
89 /* If true, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 bool floating = false;
94 /* Flag that indicates validity: set to false when this varobj_root refers
95 to symbols that do not exist anymore. */
98 /* Language-related operations for this variable and its
100 const struct lang_varobj_ops *lang_ops = NULL;
102 /* The varobj for this root node. */
103 struct varobj *rootvar = NULL;
105 /* Next root variable */
106 struct varobj_root *next = NULL;
109 /* Dynamic part of varobj. */
111 struct varobj_dynamic
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
117 bool children_requested = false;
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor = NULL;
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer = NULL;
128 /* The iterator returned by the printer's 'children' method, or NULL
130 struct varobj_iter *child_iter = NULL;
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item = NULL;
140 /* A list of varobjs */
148 /* Private function prototypes */
150 /* Helper functions for the above subcommands. */
152 static int delete_variable (struct varobj *, bool);
154 static void delete_variable_1 (int *, struct varobj *, bool, bool);
156 static bool install_variable (struct varobj *);
158 static void uninstall_variable (struct varobj *);
160 static struct varobj *create_child (struct varobj *, int, std::string &);
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
166 /* Utility routines */
168 static enum varobj_display_formats variable_default_display (struct varobj *);
170 static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
173 static bool install_new_value (struct varobj *var, struct value *value,
176 /* Language-specific routines. */
178 static int number_of_children (const struct varobj *);
180 static std::string name_of_variable (const struct varobj *);
182 static std::string name_of_child (struct varobj *, int);
184 static struct value *value_of_root (struct varobj **var_handle, bool *);
186 static struct value *value_of_child (const struct varobj *parent, int index);
188 static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
191 static bool is_root_p (const struct varobj *var);
193 static struct varobj *varobj_add_child (struct varobj *var,
194 struct varobj_item *item);
198 /* Mappings of varobj_display_formats enums to gdb's format codes. */
199 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
201 /* Header of the list of root variable objects. */
202 static struct varobj_root *rootlist;
204 /* Prime number indicating the number of buckets in the hash table. */
205 /* A prime large enough to avoid too many collisions. */
206 #define VAROBJ_TABLE_SIZE 227
208 /* Pointer to the varobj hash table (built at run time). */
209 static struct vlist **varobj_table;
213 /* API Implementation */
215 is_root_p (const struct varobj *var)
217 return (var->root->rootvar == var);
222 /* See python-internal.h. */
223 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
230 /* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
233 static struct frame_info *
234 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
236 struct frame_info *frame = NULL;
238 if (frame_addr == (CORE_ADDR) 0)
241 for (frame = get_current_frame ();
243 frame = get_prev_frame (frame))
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
255 if (frame_base == frame_addr)
262 /* Creates a varobj (not its children). */
265 varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
268 /* Fill out a varobj structure for the (root) variable being constructed. */
269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
271 if (expression != NULL)
273 struct frame_info *fi;
274 struct frame_id old_id = null_frame_id;
275 const struct block *block;
277 struct value *value = NULL;
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
283 if (has_stack_frames ())
285 /* Allow creator to specify context of variable. */
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
296 fi = find_frame_addr_in_frame_chain (frame);
301 /* frame = -2 means always use selected frame. */
302 if (type == USE_SELECTED_FRAME)
303 var->root->floating = true;
309 block = get_frame_block (fi, 0);
310 pc = get_frame_pc (fi);
314 innermost_block.reset ();
315 /* Wrap the call to parse expression, so we can
316 return a sensible error. */
319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
322 CATCH (except, RETURN_MASK_ERROR)
328 /* Don't allow variables to be created for types. */
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
338 var->format = variable_default_display (var.get ());
339 var->root->valid_block = innermost_block.block ();
340 var->name = expression;
341 /* For a root var, the name and the expr are the same. */
342 var->path_expr = expression;
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
347 Since select_frame is so benign, just call it for all cases. */
348 if (var->root->valid_block)
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
355 error (_("Failed to find the specified frame"));
357 var->root->frame = get_frame_id (fi);
358 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
359 old_id = get_frame_id (get_selected_frame (NULL));
363 /* We definitely need to catch errors here.
364 If evaluate_expression succeeds we got the value we wanted.
365 But if it fails, we still go on with a call to evaluate_type(). */
368 value = evaluate_expression (var->root->exp.get ());
370 CATCH (except, RETURN_MASK_ERROR)
372 /* Error getting the value. Try to at least get the
374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
376 var->type = value_type (type_only_value);
382 int real_type_found = 0;
384 var->type = value_actual_type (value, 0, &real_type_found);
386 value = value_cast (var->type, value);
389 /* Set language info */
390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
392 install_new_value (var.get (), value, 1 /* Initial assignment */);
394 /* Set ourselves as our root. */
395 var->root->rootvar = var.get ();
397 /* Reset the selected frame. */
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
402 /* If the variable object name is null, that means this
403 is a temporary variable, so don't install it. */
405 if ((var != NULL) && (objname != NULL))
407 var->obj_name = objname;
409 /* If a varobj name is duplicated, the install will fail so
411 if (!install_variable (var.get ()))
415 return var.release ();
418 /* Generates an unique name that can be used for a varobj. */
421 varobj_gen_name (void)
425 /* Generate a name for this object. */
427 return string_printf ("var%d", id);
430 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
434 varobj_get_handle (const char *objname)
438 unsigned int index = 0;
441 for (chp = objname; *chp; chp++)
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
446 cv = *(varobj_table + index);
447 while (cv != NULL && cv->var->obj_name != objname)
451 error (_("Variable object not found"));
456 /* Given the handle, return the name of the object. */
459 varobj_get_objname (const struct varobj *var)
461 return var->obj_name.c_str ();
464 /* Given the handle, return the expression represented by the
468 varobj_get_expression (const struct varobj *var)
470 return name_of_variable (var);
476 varobj_delete (struct varobj *var, bool only_children)
478 return delete_variable (var, only_children);
483 /* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
486 instantiate_pretty_printer (PyObject *constructor, struct value *value)
488 PyObject *val_obj = NULL;
491 val_obj = value_to_value_object (value);
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
502 /* Set/Get variable object display format. */
504 enum varobj_display_formats
505 varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
513 case FORMAT_HEXADECIMAL:
515 case FORMAT_ZHEXADECIMAL:
516 var->format = format;
520 var->format = variable_default_display (var);
523 if (varobj_value_is_changeable_p (var)
524 && var->value && !value_lazy (var->value))
526 var->print_value = varobj_value_get_print_value (var->value,
533 enum varobj_display_formats
534 varobj_get_display_format (const struct varobj *var)
539 gdb::unique_xmalloc_ptr<char>
540 varobj_get_display_hint (const struct varobj *var)
542 gdb::unique_xmalloc_ptr<char> result;
545 if (!gdb_python_initialized)
548 gdbpy_enter_varobj enter_py (var);
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
557 /* Return true if the varobj has items after TO, false otherwise. */
560 varobj_has_more (const struct varobj *var, int to)
562 if (var->children.size () > to)
565 return ((to == -1 || var->children.size () == to)
566 && (var->dynamic->saved_item != NULL));
569 /* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
572 is always positive. Otherwise, returns -1. */
574 varobj_get_thread_id (const struct varobj *var)
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
583 varobj_set_frozen (struct varobj *var, bool frozen)
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
596 varobj_get_frozen (const struct varobj *var)
601 /* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
607 varobj_restrict_range (const std::vector<varobj *> &children,
610 int len = children.size ();
612 if (*from < 0 || *to < 0)
628 /* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
632 install_dynamic_child (struct varobj *var,
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
639 struct varobj_item *item)
641 if (var->children.size () < index + 1)
643 /* There's no child yet. */
644 struct varobj *child = varobj_add_child (var, item);
648 newobj->push_back (child);
654 varobj *existing = var->children[index];
655 bool type_updated = update_type_if_necessary (existing, item->value);
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
662 if (install_new_value (existing, item->value, 0))
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
675 dynamic_varobj_has_child_method (const struct varobj *var)
677 PyObject *printer = var->dynamic->pretty_printer;
679 if (!gdb_python_initialized)
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
687 /* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
690 static struct varobj_iter *
691 varobj_get_iterator (struct varobj *var)
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
698 gdb_assert_not_reached (_("\
699 requested an iterator from a non-dynamic varobj"));
702 /* Release and clear VAR's saved item, if any. */
705 varobj_clear_saved_item (struct varobj_dynamic *var)
707 if (var->saved_item != NULL)
709 value_free (var->saved_item->value);
710 delete var->saved_item;
711 var->saved_item = NULL;
716 update_dynamic_varobj_children (struct varobj *var,
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
722 bool update_children,
730 if (update_children || var->dynamic->child_iter == NULL)
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
735 varobj_clear_saved_item (var->dynamic);
739 if (var->dynamic->child_iter == NULL)
743 i = var->children.size ();
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
751 /* See if there was a leftover from last time. */
752 if (var->dynamic->saved_item != NULL)
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
759 item = varobj_iter_next (var->dynamic->child_iter);
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
763 release_value_or_incref (item->value);
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
776 bool can_mention = from < 0 || i >= from;
778 install_dynamic_child (var, can_mention ? changed : NULL,
779 can_mention ? type_changed : NULL,
780 can_mention ? newobj : NULL,
781 can_mention ? unchanged : NULL,
782 can_mention ? cchanged : NULL, i,
789 var->dynamic->saved_item = item;
791 /* We want to truncate the child list just before this
797 if (i < var->children.size ())
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
803 var->children.resize (i);
806 /* If there are fewer children than requested, note that the list of
808 if (to >= 0 && var->children.size () < to)
811 var->num_children = var->children.size ();
817 varobj_get_num_children (struct varobj *var)
819 if (var->num_children == -1)
821 if (varobj_is_dynamic_p (var))
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
831 var->num_children = number_of_children (var);
834 return var->num_children >= 0 ? var->num_children : 0;
837 /* Creates a list of the immediate children of a variable object;
838 the return code is the number of such children or -1 on error. */
840 const std::vector<varobj *> &
841 varobj_list_children (struct varobj *var, int *from, int *to)
843 var->dynamic->children_requested = true;
845 if (varobj_is_dynamic_p (var))
847 bool children_changed;
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
853 &children_changed, false, 0, *to);
854 varobj_restrict_range (var->children, from, to);
855 return var->children;
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
861 /* If that failed, give up. */
862 if (var->num_children == -1)
863 return var->children;
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
870 for (int i = 0; i < var->num_children; i++)
872 if (var->children[i] == NULL)
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
877 std::string name = name_of_child (var, i);
878 var->children[i] = create_child (var, i, name);
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
886 static struct varobj *
887 varobj_add_child (struct varobj *var, struct varobj_item *item)
889 varobj *v = create_child_with_value (var, var->children.size (), item);
891 var->children.push_back (v);
896 /* Obtain the type of an object Variable as a string similar to the one gdb
897 prints on the console. The caller is responsible for freeing the string.
901 varobj_get_type (struct varobj *var)
903 /* For the "fake" variables, do not return a type. (Its type is
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
907 return std::string ();
909 return type_to_string (var->type);
912 /* Obtain the type of an object variable. */
915 varobj_get_gdb_type (const struct varobj *var)
920 /* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
924 is_path_expr_parent (const struct varobj *var)
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
930 /* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
935 varobj_default_is_path_expr_parent (const struct varobj *var)
940 /* Return the path expression parent for VAR. */
942 const struct varobj *
943 varobj_get_path_expr_parent (const struct varobj *var)
945 const struct varobj *parent = var;
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
953 /* Return a pointer to the full rooted expression of varobj VAR.
954 If it has not been computed yet, compute it. */
957 varobj_get_path_expr (const struct varobj *var)
959 if (var->path_expr.empty ())
961 /* For root varobjs, we initialize path_expr
962 when creating varobj, so here it should be
964 struct varobj *mutable_var = (struct varobj *) var;
965 gdb_assert (!is_root_p (var));
967 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
970 return var->path_expr.c_str ();
973 const struct language_defn *
974 varobj_get_language (const struct varobj *var)
976 return var->root->exp->language_defn;
980 varobj_get_attributes (const struct varobj *var)
984 if (varobj_editable_p (var))
985 /* FIXME: define masks for attributes. */
986 attributes |= 0x00000001; /* Editable */
991 /* Return true if VAR is a dynamic varobj. */
994 varobj_is_dynamic_p (const struct varobj *var)
996 return var->dynamic->pretty_printer != NULL;
1000 varobj_get_formatted_value (struct varobj *var,
1001 enum varobj_display_formats format)
1003 return my_value_of_variable (var, format);
1007 varobj_get_value (struct varobj *var)
1009 return my_value_of_variable (var, var->format);
1012 /* Set the value of an object variable (if it is editable) to the
1013 value of the given expression. */
1014 /* Note: Invokes functions that can call error(). */
1017 varobj_set_value (struct varobj *var, const char *expression)
1019 struct value *val = NULL; /* Initialize to keep gcc happy. */
1020 /* The argument "expression" contains the variable's new value.
1021 We need to first construct a legal expression for this -- ugh! */
1022 /* Does this cover all the bases? */
1023 struct value *value = NULL; /* Initialize to keep gcc happy. */
1024 int saved_input_radix = input_radix;
1025 const char *s = expression;
1027 gdb_assert (varobj_editable_p (var));
1029 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1030 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1033 value = evaluate_expression (exp.get ());
1036 CATCH (except, RETURN_MASK_ERROR)
1038 /* We cannot proceed without a valid expression. */
1043 /* All types that are editable must also be changeable. */
1044 gdb_assert (varobj_value_is_changeable_p (var));
1046 /* The value of a changeable variable object must not be lazy. */
1047 gdb_assert (!value_lazy (var->value));
1049 /* Need to coerce the input. We want to check if the
1050 value of the variable object will be different
1051 after assignment, and the first thing value_assign
1052 does is coerce the input.
1053 For example, if we are assigning an array to a pointer variable we
1054 should compare the pointer with the array's address, not with the
1056 value = coerce_array (value);
1058 /* The new value may be lazy. value_assign, or
1059 rather value_contents, will take care of this. */
1062 val = value_assign (var->value, value);
1065 CATCH (except, RETURN_MASK_ERROR)
1071 /* If the value has changed, record it, so that next -var-update can
1072 report this change. If a variable had a value of '1', we've set it
1073 to '333' and then set again to '1', when -var-update will report this
1074 variable as changed -- because the first assignment has set the
1075 'updated' flag. There's no need to optimize that, because return value
1076 of -var-update should be considered an approximation. */
1077 var->updated = install_new_value (var, val, false /* Compare values. */);
1078 input_radix = saved_input_radix;
1084 /* A helper function to install a constructor function and visualizer
1085 in a varobj_dynamic. */
1088 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1089 PyObject *visualizer)
1091 Py_XDECREF (var->constructor);
1092 var->constructor = constructor;
1094 Py_XDECREF (var->pretty_printer);
1095 var->pretty_printer = visualizer;
1097 varobj_iter_delete (var->child_iter);
1098 var->child_iter = NULL;
1101 /* Install the default visualizer for VAR. */
1104 install_default_visualizer (struct varobj *var)
1106 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1107 if (CPLUS_FAKE_CHILD (var))
1110 if (pretty_printing)
1112 PyObject *pretty_printer = NULL;
1116 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1117 if (! pretty_printer)
1119 gdbpy_print_stack ();
1120 error (_("Cannot instantiate printer for default visualizer"));
1124 if (pretty_printer == Py_None)
1126 Py_DECREF (pretty_printer);
1127 pretty_printer = NULL;
1130 install_visualizer (var->dynamic, NULL, pretty_printer);
1134 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1135 make a new object. */
1138 construct_visualizer (struct varobj *var, PyObject *constructor)
1140 PyObject *pretty_printer;
1142 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1143 if (CPLUS_FAKE_CHILD (var))
1146 Py_INCREF (constructor);
1147 if (constructor == Py_None)
1148 pretty_printer = NULL;
1151 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1152 if (! pretty_printer)
1154 gdbpy_print_stack ();
1155 Py_DECREF (constructor);
1156 constructor = Py_None;
1157 Py_INCREF (constructor);
1160 if (pretty_printer == Py_None)
1162 Py_DECREF (pretty_printer);
1163 pretty_printer = NULL;
1167 install_visualizer (var->dynamic, constructor, pretty_printer);
1170 #endif /* HAVE_PYTHON */
1172 /* A helper function for install_new_value. This creates and installs
1173 a visualizer for VAR, if appropriate. */
1176 install_new_value_visualizer (struct varobj *var)
1179 /* If the constructor is None, then we want the raw value. If VAR
1180 does not have a value, just skip this. */
1181 if (!gdb_python_initialized)
1184 if (var->dynamic->constructor != Py_None && var->value != NULL)
1186 gdbpy_enter_varobj enter_py (var);
1188 if (var->dynamic->constructor == NULL)
1189 install_default_visualizer (var);
1191 construct_visualizer (var, var->dynamic->constructor);
1198 /* When using RTTI to determine variable type it may be changed in runtime when
1199 the variable value is changed. This function checks whether type of varobj
1200 VAR will change when a new value NEW_VALUE is assigned and if it is so
1201 updates the type of VAR. */
1204 update_type_if_necessary (struct varobj *var, struct value *new_value)
1208 struct value_print_options opts;
1210 get_user_print_options (&opts);
1211 if (opts.objectprint)
1213 struct type *new_type = value_actual_type (new_value, 0, 0);
1214 std::string new_type_str = type_to_string (new_type);
1215 std::string curr_type_str = varobj_get_type (var);
1217 /* Did the type name change? */
1218 if (curr_type_str != new_type_str)
1220 var->type = new_type;
1222 /* This information may be not valid for a new type. */
1223 varobj_delete (var, 1);
1224 var->children.clear ();
1225 var->num_children = -1;
1234 /* Assign a new value to a variable object. If INITIAL is true,
1235 this is the first assignment after the variable object was just
1236 created, or changed type. In that case, just assign the value
1238 Otherwise, assign the new value, and return true if the value is
1239 different from the current one, false otherwise. The comparison is
1240 done on textual representation of value. Therefore, some types
1241 need not be compared. E.g. for structures the reported value is
1242 always "{...}", so no comparison is necessary here. If the old
1243 value was NULL and new one is not, or vice versa, we always return true.
1245 The VALUE parameter should not be released -- the function will
1246 take care of releasing it when needed. */
1248 install_new_value (struct varobj *var, struct value *value, bool initial)
1252 bool changed = false;
1253 bool intentionally_not_fetched = false;
1255 /* We need to know the varobj's type to decide if the value should
1256 be fetched or not. C++ fake children (public/protected/private)
1257 don't have a type. */
1258 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1259 changeable = varobj_value_is_changeable_p (var);
1261 /* If the type has custom visualizer, we consider it to be always
1262 changeable. FIXME: need to make sure this behaviour will not
1263 mess up read-sensitive values. */
1264 if (var->dynamic->pretty_printer != NULL)
1267 need_to_fetch = changeable;
1269 /* We are not interested in the address of references, and given
1270 that in C++ a reference is not rebindable, it cannot
1271 meaningfully change. So, get hold of the real value. */
1273 value = coerce_ref (value);
1275 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1276 /* For unions, we need to fetch the value implicitly because
1277 of implementation of union member fetch. When gdb
1278 creates a value for a field and the value of the enclosing
1279 structure is not lazy, it immediately copies the necessary
1280 bytes from the enclosing values. If the enclosing value is
1281 lazy, the call to value_fetch_lazy on the field will read
1282 the data from memory. For unions, that means we'll read the
1283 same memory more than once, which is not desirable. So
1285 need_to_fetch = true;
1287 /* The new value might be lazy. If the type is changeable,
1288 that is we'll be comparing values of this type, fetch the
1289 value now. Otherwise, on the next update the old value
1290 will be lazy, which means we've lost that old value. */
1291 if (need_to_fetch && value && value_lazy (value))
1293 const struct varobj *parent = var->parent;
1294 bool frozen = var->frozen;
1296 for (; !frozen && parent; parent = parent->parent)
1297 frozen |= parent->frozen;
1299 if (frozen && initial)
1301 /* For variables that are frozen, or are children of frozen
1302 variables, we don't do fetch on initial assignment.
1303 For non-initial assignemnt we do the fetch, since it means we're
1304 explicitly asked to compare the new value with the old one. */
1305 intentionally_not_fetched = true;
1312 value_fetch_lazy (value);
1315 CATCH (except, RETURN_MASK_ERROR)
1317 /* Set the value to NULL, so that for the next -var-update,
1318 we don't try to compare the new value with this value,
1319 that we couldn't even read. */
1326 /* Get a reference now, before possibly passing it to any Python
1327 code that might release it. */
1329 value_incref (value);
1331 /* Below, we'll be comparing string rendering of old and new
1332 values. Don't get string rendering if the value is
1333 lazy -- if it is, the code above has decided that the value
1334 should not be fetched. */
1335 std::string print_value;
1336 if (value != NULL && !value_lazy (value)
1337 && var->dynamic->pretty_printer == NULL)
1338 print_value = varobj_value_get_print_value (value, var->format, var);
1340 /* If the type is changeable, compare the old and the new values.
1341 If this is the initial assignment, we don't have any old value
1343 if (!initial && changeable)
1345 /* If the value of the varobj was changed by -var-set-value,
1346 then the value in the varobj and in the target is the same.
1347 However, that value is different from the value that the
1348 varobj had after the previous -var-update. So need to the
1349 varobj as changed. */
1352 else if (var->dynamic->pretty_printer == NULL)
1354 /* Try to compare the values. That requires that both
1355 values are non-lazy. */
1356 if (var->not_fetched && value_lazy (var->value))
1358 /* This is a frozen varobj and the value was never read.
1359 Presumably, UI shows some "never read" indicator.
1360 Now that we've fetched the real value, we need to report
1361 this varobj as changed so that UI can show the real
1365 else if (var->value == NULL && value == NULL)
1368 else if (var->value == NULL || value == NULL)
1374 gdb_assert (!value_lazy (var->value));
1375 gdb_assert (!value_lazy (value));
1377 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1378 if (var->print_value != print_value)
1384 if (!initial && !changeable)
1386 /* For values that are not changeable, we don't compare the values.
1387 However, we want to notice if a value was not NULL and now is NULL,
1388 or vise versa, so that we report when top-level varobjs come in scope
1389 and leave the scope. */
1390 changed = (var->value != NULL) != (value != NULL);
1393 /* We must always keep the new value, since children depend on it. */
1394 if (var->value != NULL && var->value != value)
1395 value_free (var->value);
1397 if (value && value_lazy (value) && intentionally_not_fetched)
1398 var->not_fetched = true;
1400 var->not_fetched = false;
1401 var->updated = false;
1403 install_new_value_visualizer (var);
1405 /* If we installed a pretty-printer, re-compare the printed version
1406 to see if the variable changed. */
1407 if (var->dynamic->pretty_printer != NULL)
1409 print_value = varobj_value_get_print_value (var->value, var->format,
1411 if ((var->print_value.empty () && !print_value.empty ())
1412 || (!var->print_value.empty () && print_value.empty ())
1413 || (!var->print_value.empty () && !print_value.empty ()
1414 && var->print_value != print_value))
1417 var->print_value = print_value;
1419 gdb_assert (!var->value || value_type (var->value));
1424 /* Return the requested range for a varobj. VAR is the varobj. FROM
1425 and TO are out parameters; *FROM and *TO will be set to the
1426 selected sub-range of VAR. If no range was selected using
1427 -var-set-update-range, then both will be -1. */
1429 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1435 /* Set the selected sub-range of children of VAR to start at index
1436 FROM and end at index TO. If either FROM or TO is less than zero,
1437 this is interpreted as a request for all children. */
1439 varobj_set_child_range (struct varobj *var, int from, int to)
1446 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1451 if (!gdb_python_initialized)
1454 gdbpy_enter_varobj enter_py (var);
1456 mainmod = PyImport_AddModule ("__main__");
1457 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
1458 Py_INCREF (globals.get ());
1460 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1461 globals.get (), globals.get ()));
1463 if (constructor == NULL)
1465 gdbpy_print_stack ();
1466 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1469 construct_visualizer (var, constructor.get ());
1471 /* If there are any children now, wipe them. */
1472 varobj_delete (var, 1 /* children only */);
1473 var->num_children = -1;
1475 error (_("Python support required"));
1479 /* If NEW_VALUE is the new value of the given varobj (var), return
1480 true if var has mutated. In other words, if the type of
1481 the new value is different from the type of the varobj's old
1484 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1487 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1488 struct type *new_type)
1490 /* If we haven't previously computed the number of children in var,
1491 it does not matter from the front-end's perspective whether
1492 the type has mutated or not. For all intents and purposes,
1493 it has not mutated. */
1494 if (var->num_children < 0)
1497 if (var->root->lang_ops->value_has_mutated != NULL)
1499 /* The varobj module, when installing new values, explicitly strips
1500 references, saying that we're not interested in those addresses.
1501 But detection of mutation happens before installing the new
1502 value, so our value may be a reference that we need to strip
1503 in order to remain consistent. */
1504 if (new_value != NULL)
1505 new_value = coerce_ref (new_value);
1506 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1512 /* Update the values for a variable and its children. This is a
1513 two-pronged attack. First, re-parse the value for the root's
1514 expression to see if it's changed. Then go all the way
1515 through its children, reconstructing them and noting if they've
1518 The IS_EXPLICIT parameter specifies if this call is result
1519 of MI request to update this specific variable, or
1520 result of implicit -var-update *. For implicit request, we don't
1521 update frozen variables.
1523 NOTE: This function may delete the caller's varobj. If it
1524 returns TYPE_CHANGED, then it has done this and VARP will be modified
1525 to point to the new varobj. */
1527 std::vector<varobj_update_result>
1528 varobj_update (struct varobj **varp, bool is_explicit)
1530 bool type_changed = false;
1531 struct value *newobj;
1532 std::vector<varobj_update_result> stack;
1533 std::vector<varobj_update_result> result;
1535 /* Frozen means frozen -- we don't check for any change in
1536 this varobj, including its going out of scope, or
1537 changing type. One use case for frozen varobjs is
1538 retaining previously evaluated expressions, and we don't
1539 want them to be reevaluated at all. */
1540 if (!is_explicit && (*varp)->frozen)
1543 if (!(*varp)->root->is_valid)
1545 result.emplace_back (*varp, VAROBJ_INVALID);
1549 if ((*varp)->root->rootvar == *varp)
1551 varobj_update_result r (*varp);
1553 /* Update the root variable. value_of_root can return NULL
1554 if the variable is no longer around, i.e. we stepped out of
1555 the frame in which a local existed. We are letting the
1556 value_of_root variable dispose of the varobj if the type
1558 newobj = value_of_root (varp, &type_changed);
1559 if (update_type_if_necessary (*varp, newobj))
1560 type_changed = true;
1562 r.type_changed = type_changed;
1563 if (install_new_value ((*varp), newobj, type_changed))
1567 r.status = VAROBJ_NOT_IN_SCOPE;
1568 r.value_installed = true;
1570 if (r.status == VAROBJ_NOT_IN_SCOPE)
1572 if (r.type_changed || r.changed)
1573 result.push_back (std::move (r));
1578 stack.push_back (std::move (r));
1581 stack.emplace_back (*varp);
1583 /* Walk through the children, reconstructing them all. */
1584 while (!stack.empty ())
1586 varobj_update_result r = std::move (stack.back ());
1588 struct varobj *v = r.varobj;
1590 /* Update this variable, unless it's a root, which is already
1592 if (!r.value_installed)
1594 struct type *new_type;
1596 newobj = value_of_child (v->parent, v->index);
1597 if (update_type_if_necessary (v, newobj))
1598 r.type_changed = true;
1600 new_type = value_type (newobj);
1602 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1604 if (varobj_value_has_mutated (v, newobj, new_type))
1606 /* The children are no longer valid; delete them now.
1607 Report the fact that its type changed as well. */
1608 varobj_delete (v, 1 /* only_children */);
1609 v->num_children = -1;
1613 r.type_changed = true;
1616 if (install_new_value (v, newobj, r.type_changed))
1623 /* We probably should not get children of a dynamic varobj, but
1624 for which -var-list-children was never invoked. */
1625 if (varobj_is_dynamic_p (v))
1627 std::vector<varobj *> changed, type_changed, unchanged, newobj;
1628 bool children_changed = false;
1633 if (!v->dynamic->children_requested)
1637 /* If we initially did not have potential children, but
1638 now we do, consider the varobj as changed.
1639 Otherwise, if children were never requested, consider
1640 it as unchanged -- presumably, such varobj is not yet
1641 expanded in the UI, so we need not bother getting
1643 if (!varobj_has_more (v, 0))
1645 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1646 &dummy, false, 0, 0);
1647 if (varobj_has_more (v, 0))
1652 result.push_back (std::move (r));
1657 /* If update_dynamic_varobj_children returns false, then we have
1658 a non-conforming pretty-printer, so we skip it. */
1659 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1660 &unchanged, &children_changed, true,
1663 if (children_changed || !newobj.empty ())
1665 r.children_changed = true;
1666 r.newobj = std::move (newobj);
1668 /* Push in reverse order so that the first child is
1669 popped from the work stack first, and so will be
1670 added to result first. This does not affect
1671 correctness, just "nicer". */
1672 for (int i = type_changed.size () - 1; i >= 0; --i)
1674 varobj_update_result r (type_changed[i]);
1676 /* Type may change only if value was changed. */
1678 r.type_changed = true;
1679 r.value_installed = true;
1681 stack.push_back (std::move (r));
1683 for (int i = changed.size () - 1; i >= 0; --i)
1685 varobj_update_result r (changed[i]);
1688 r.value_installed = true;
1690 stack.push_back (std::move (r));
1692 for (int i = unchanged.size () - 1; i >= 0; --i)
1694 if (!unchanged[i]->frozen)
1696 varobj_update_result r (unchanged[i]);
1698 r.value_installed = true;
1700 stack.push_back (std::move (r));
1703 if (r.changed || r.children_changed)
1704 result.push_back (std::move (r));
1710 /* Push any children. Use reverse order so that the first
1711 child is popped from the work stack first, and so
1712 will be added to result first. This does not
1713 affect correctness, just "nicer". */
1714 for (int i = v->children.size () - 1; i >= 0; --i)
1716 varobj *c = v->children[i];
1718 /* Child may be NULL if explicitly deleted by -var-delete. */
1719 if (c != NULL && !c->frozen)
1720 stack.emplace_back (c);
1723 if (r.changed || r.type_changed)
1724 result.push_back (std::move (r));
1730 /* Helper functions */
1733 * Variable object construction/destruction
1737 delete_variable (struct varobj *var, bool only_children_p)
1741 delete_variable_1 (&delcount, var, only_children_p,
1742 true /* remove_from_parent_p */ );
1747 /* Delete the variable object VAR and its children. */
1748 /* IMPORTANT NOTE: If we delete a variable which is a child
1749 and the parent is not removed we dump core. It must be always
1750 initially called with remove_from_parent_p set. */
1752 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1753 bool remove_from_parent_p)
1755 /* Delete any children of this variable, too. */
1756 for (varobj *child : var->children)
1761 if (!remove_from_parent_p)
1762 child->parent = NULL;
1764 delete_variable_1 (delcountp, child, false, only_children_p);
1766 var->children.clear ();
1768 /* if we were called to delete only the children we are done here. */
1769 if (only_children_p)
1772 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1773 /* If the name is empty, this is a temporary variable, that has not
1774 yet been installed, don't report it, it belongs to the caller... */
1775 if (!var->obj_name.empty ())
1777 *delcountp = *delcountp + 1;
1780 /* If this variable has a parent, remove it from its parent's list. */
1781 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1782 (as indicated by remove_from_parent_p) we don't bother doing an
1783 expensive list search to find the element to remove when we are
1784 discarding the list afterwards. */
1785 if ((remove_from_parent_p) && (var->parent != NULL))
1786 var->parent->children[var->index] = NULL;
1788 if (!var->obj_name.empty ())
1789 uninstall_variable (var);
1791 /* Free memory associated with this variable. */
1795 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1797 install_variable (struct varobj *var)
1800 struct vlist *newvl;
1802 unsigned int index = 0;
1805 for (chp = var->obj_name.c_str (); *chp; chp++)
1807 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1810 cv = *(varobj_table + index);
1811 while (cv != NULL && cv->var->obj_name != var->obj_name)
1815 error (_("Duplicate variable object name"));
1817 /* Add varobj to hash table. */
1818 newvl = XNEW (struct vlist);
1819 newvl->next = *(varobj_table + index);
1821 *(varobj_table + index) = newvl;
1823 /* If root, add varobj to root list. */
1824 if (is_root_p (var))
1826 /* Add to list of root variables. */
1827 if (rootlist == NULL)
1828 var->root->next = NULL;
1830 var->root->next = rootlist;
1831 rootlist = var->root;
1834 return true; /* OK */
1837 /* Unistall the object VAR. */
1839 uninstall_variable (struct varobj *var)
1843 struct varobj_root *cr;
1844 struct varobj_root *prer;
1846 unsigned int index = 0;
1849 /* Remove varobj from hash table. */
1850 for (chp = var->obj_name.c_str (); *chp; chp++)
1852 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1855 cv = *(varobj_table + index);
1857 while (cv != NULL && cv->var->obj_name != var->obj_name)
1864 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1869 ("Assertion failed: Could not find variable object \"%s\" to delete",
1870 var->obj_name.c_str ());
1875 *(varobj_table + index) = cv->next;
1877 prev->next = cv->next;
1881 /* If root, remove varobj from root list. */
1882 if (is_root_p (var))
1884 /* Remove from list of root variables. */
1885 if (rootlist == var->root)
1886 rootlist = var->root->next;
1891 while ((cr != NULL) && (cr->rootvar != var))
1898 warning (_("Assertion failed: Could not find "
1899 "varobj \"%s\" in root list"),
1900 var->obj_name.c_str ());
1906 prer->next = cr->next;
1912 /* Create and install a child of the parent of the given name.
1914 The created VAROBJ takes ownership of the allocated NAME. */
1916 static struct varobj *
1917 create_child (struct varobj *parent, int index, std::string &name)
1919 struct varobj_item item;
1921 std::swap (item.name, name);
1922 item.value = value_of_child (parent, index);
1924 return create_child_with_value (parent, index, &item);
1927 static struct varobj *
1928 create_child_with_value (struct varobj *parent, int index,
1929 struct varobj_item *item)
1931 varobj *child = new varobj (parent->root);
1933 /* NAME is allocated by caller. */
1934 std::swap (child->name, item->name);
1935 child->index = index;
1936 child->parent = parent;
1938 if (varobj_is_anonymous_child (child))
1939 child->obj_name = string_printf ("%s.%d_anonymous",
1940 parent->obj_name.c_str (), index);
1942 child->obj_name = string_printf ("%s.%s",
1943 parent->obj_name.c_str (),
1944 child->name.c_str ());
1946 install_variable (child);
1948 /* Compute the type of the child. Must do this before
1949 calling install_new_value. */
1950 if (item->value != NULL)
1951 /* If the child had no evaluation errors, var->value
1952 will be non-NULL and contain a valid type. */
1953 child->type = value_actual_type (item->value, 0, NULL);
1955 /* Otherwise, we must compute the type. */
1956 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1958 install_new_value (child, item->value, 1);
1965 * Miscellaneous utility functions.
1968 /* Allocate memory and initialize a new variable. */
1969 varobj::varobj (varobj_root *root_)
1970 : root (root_), dynamic (new varobj_dynamic)
1974 /* Free any allocated memory associated with VAR. */
1981 if (var->dynamic->pretty_printer != NULL)
1983 gdbpy_enter_varobj enter_py (var);
1985 Py_XDECREF (var->dynamic->constructor);
1986 Py_XDECREF (var->dynamic->pretty_printer);
1990 varobj_iter_delete (var->dynamic->child_iter);
1991 varobj_clear_saved_item (var->dynamic);
1992 value_free (var->value);
1994 if (is_root_p (var))
1997 delete var->dynamic;
2000 /* Return the type of the value that's stored in VAR,
2001 or that would have being stored there if the
2002 value were accessible.
2004 This differs from VAR->type in that VAR->type is always
2005 the true type of the expession in the source language.
2006 The return value of this function is the type we're
2007 actually storing in varobj, and using for displaying
2008 the values and for comparing previous and new values.
2010 For example, top-level references are always stripped. */
2012 varobj_get_value_type (const struct varobj *var)
2017 type = value_type (var->value);
2021 type = check_typedef (type);
2023 if (TYPE_IS_REFERENCE (type))
2024 type = get_target_type (type);
2026 type = check_typedef (type);
2031 /* What is the default display for this variable? We assume that
2032 everything is "natural". Any exceptions? */
2033 static enum varobj_display_formats
2034 variable_default_display (struct varobj *var)
2036 return FORMAT_NATURAL;
2040 * Language-dependencies
2043 /* Common entry points */
2045 /* Return the number of children for a given variable.
2046 The result of this function is defined by the language
2047 implementation. The number of children returned by this function
2048 is the number of children that the user will see in the variable
2051 number_of_children (const struct varobj *var)
2053 return (*var->root->lang_ops->number_of_children) (var);
2056 /* What is the expression for the root varobj VAR? */
2059 name_of_variable (const struct varobj *var)
2061 return (*var->root->lang_ops->name_of_variable) (var);
2064 /* What is the name of the INDEX'th child of VAR? */
2067 name_of_child (struct varobj *var, int index)
2069 return (*var->root->lang_ops->name_of_child) (var, index);
2072 /* If frame associated with VAR can be found, switch
2073 to it and return true. Otherwise, return false. */
2076 check_scope (const struct varobj *var)
2078 struct frame_info *fi;
2081 fi = frame_find_by_id (var->root->frame);
2086 CORE_ADDR pc = get_frame_pc (fi);
2088 if (pc < BLOCK_START (var->root->valid_block) ||
2089 pc >= BLOCK_END (var->root->valid_block))
2097 /* Helper function to value_of_root. */
2099 static struct value *
2100 value_of_root_1 (struct varobj **var_handle)
2102 struct value *new_val = NULL;
2103 struct varobj *var = *var_handle;
2104 bool within_scope = false;
2106 /* Only root variables can be updated... */
2107 if (!is_root_p (var))
2108 /* Not a root var. */
2111 scoped_restore_current_thread restore_thread;
2113 /* Determine whether the variable is still around. */
2114 if (var->root->valid_block == NULL || var->root->floating)
2115 within_scope = true;
2116 else if (var->root->thread_id == 0)
2118 /* The program was single-threaded when the variable object was
2119 created. Technically, it's possible that the program became
2120 multi-threaded since then, but we don't support such
2122 within_scope = check_scope (var);
2126 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2128 if (!ptid_equal (minus_one_ptid, ptid))
2130 switch_to_thread (ptid);
2131 within_scope = check_scope (var);
2138 /* We need to catch errors here, because if evaluate
2139 expression fails we want to just return NULL. */
2142 new_val = evaluate_expression (var->root->exp.get ());
2144 CATCH (except, RETURN_MASK_ERROR)
2153 /* What is the ``struct value *'' of the root variable VAR?
2154 For floating variable object, evaluation can get us a value
2155 of different type from what is stored in varobj already. In
2157 - *type_changed will be set to 1
2158 - old varobj will be freed, and new one will be
2159 created, with the same name.
2160 - *var_handle will be set to the new varobj
2161 Otherwise, *type_changed will be set to 0. */
2162 static struct value *
2163 value_of_root (struct varobj **var_handle, bool *type_changed)
2167 if (var_handle == NULL)
2172 /* This should really be an exception, since this should
2173 only get called with a root variable. */
2175 if (!is_root_p (var))
2178 if (var->root->floating)
2180 struct varobj *tmp_var;
2182 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2183 USE_SELECTED_FRAME);
2184 if (tmp_var == NULL)
2188 std::string old_type = varobj_get_type (var);
2189 std::string new_type = varobj_get_type (tmp_var);
2190 if (old_type == new_type)
2192 /* The expression presently stored inside var->root->exp
2193 remembers the locations of local variables relatively to
2194 the frame where the expression was created (in DWARF location
2195 button, for example). Naturally, those locations are not
2196 correct in other frames, so update the expression. */
2198 std::swap (var->root->exp, tmp_var->root->exp);
2200 varobj_delete (tmp_var, 0);
2205 tmp_var->obj_name = var->obj_name;
2206 tmp_var->from = var->from;
2207 tmp_var->to = var->to;
2208 varobj_delete (var, 0);
2210 install_variable (tmp_var);
2211 *var_handle = tmp_var;
2213 *type_changed = true;
2222 struct value *value;
2224 value = value_of_root_1 (var_handle);
2225 if (var->value == NULL || value == NULL)
2227 /* For root varobj-s, a NULL value indicates a scoping issue.
2228 So, nothing to do in terms of checking for mutations. */
2230 else if (varobj_value_has_mutated (var, value, value_type (value)))
2232 /* The type has mutated, so the children are no longer valid.
2233 Just delete them, and tell our caller that the type has
2235 varobj_delete (var, 1 /* only_children */);
2236 var->num_children = -1;
2239 *type_changed = true;
2245 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2246 static struct value *
2247 value_of_child (const struct varobj *parent, int index)
2249 struct value *value;
2251 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2256 /* GDB already has a command called "value_of_variable". Sigh. */
2258 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2260 if (var->root->is_valid)
2262 if (var->dynamic->pretty_printer != NULL)
2263 return varobj_value_get_print_value (var->value, var->format, var);
2264 return (*var->root->lang_ops->value_of_variable) (var, format);
2267 return std::string ();
2271 varobj_formatted_print_options (struct value_print_options *opts,
2272 enum varobj_display_formats format)
2274 get_formatted_print_options (opts, format_code[(int) format]);
2275 opts->deref_ref = 0;
2280 varobj_value_get_print_value (struct value *value,
2281 enum varobj_display_formats format,
2282 const struct varobj *var)
2284 struct value_print_options opts;
2285 struct type *type = NULL;
2287 gdb::unique_xmalloc_ptr<char> encoding;
2288 /* Initialize it just to avoid a GCC false warning. */
2289 CORE_ADDR str_addr = 0;
2290 bool string_print = false;
2293 return std::string ();
2296 std::string thevalue;
2299 if (gdb_python_initialized)
2301 PyObject *value_formatter = var->dynamic->pretty_printer;
2303 gdbpy_enter_varobj enter_py (var);
2305 if (value_formatter)
2307 /* First check to see if we have any children at all. If so,
2308 we simply return {...}. */
2309 if (dynamic_varobj_has_child_method (var))
2312 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2314 struct value *replacement;
2316 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2320 /* If we have string like output ... */
2323 /* If this is a lazy string, extract it. For lazy
2324 strings we always print as a string, so set
2326 if (gdbpy_is_lazy_string (output.get ()))
2328 gdbpy_extract_lazy_string (output.get (), &str_addr,
2329 &type, &len, &encoding);
2330 string_print = true;
2334 /* If it is a regular (non-lazy) string, extract
2335 it and copy the contents into THEVALUE. If the
2336 hint says to print it as a string, set
2337 string_print. Otherwise just return the extracted
2338 string as a value. */
2340 gdb::unique_xmalloc_ptr<char> s
2341 = python_string_to_target_string (output.get ());
2345 struct gdbarch *gdbarch;
2347 gdb::unique_xmalloc_ptr<char> hint
2348 = gdbpy_get_display_hint (value_formatter);
2351 if (!strcmp (hint.get (), "string"))
2352 string_print = true;
2355 thevalue = std::string (s.get ());
2356 len = thevalue.size ();
2357 gdbarch = get_type_arch (value_type (value));
2358 type = builtin_type (gdbarch)->builtin_char;
2364 gdbpy_print_stack ();
2367 /* If the printer returned a replacement value, set VALUE
2368 to REPLACEMENT. If there is not a replacement value,
2369 just use the value passed to this function. */
2371 value = replacement;
2377 varobj_formatted_print_options (&opts, format);
2379 /* If the THEVALUE has contents, it is a regular string. */
2380 if (!thevalue.empty ())
2381 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2382 len, encoding.get (), 0, &opts);
2383 else if (string_print)
2384 /* Otherwise, if string_print is set, and it is not a regular
2385 string, it is a lazy string. */
2386 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2388 /* All other cases. */
2389 common_val_print (value, &stb, 0, &opts, current_language);
2391 return std::move (stb.string ());
2395 varobj_editable_p (const struct varobj *var)
2399 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2402 type = varobj_get_value_type (var);
2404 switch (TYPE_CODE (type))
2406 case TYPE_CODE_STRUCT:
2407 case TYPE_CODE_UNION:
2408 case TYPE_CODE_ARRAY:
2409 case TYPE_CODE_FUNC:
2410 case TYPE_CODE_METHOD:
2420 /* Call VAR's value_is_changeable_p language-specific callback. */
2423 varobj_value_is_changeable_p (const struct varobj *var)
2425 return var->root->lang_ops->value_is_changeable_p (var);
2428 /* Return true if that varobj is floating, that is is always evaluated in the
2429 selected frame, and not bound to thread/frame. Such variable objects
2430 are created using '@' as frame specifier to -var-create. */
2432 varobj_floating_p (const struct varobj *var)
2434 return var->root->floating;
2437 /* Implement the "value_is_changeable_p" varobj callback for most
2441 varobj_default_value_is_changeable_p (const struct varobj *var)
2446 if (CPLUS_FAKE_CHILD (var))
2449 type = varobj_get_value_type (var);
2451 switch (TYPE_CODE (type))
2453 case TYPE_CODE_STRUCT:
2454 case TYPE_CODE_UNION:
2455 case TYPE_CODE_ARRAY:
2466 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2467 with an arbitrary caller supplied DATA pointer. */
2470 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2472 struct varobj_root *var_root, *var_root_next;
2474 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2476 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2478 var_root_next = var_root->next;
2480 (*func) (var_root->rootvar, data);
2484 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2485 defined on globals. It is a helper for varobj_invalidate.
2487 This function is called after changing the symbol file, in this case the
2488 pointers to "struct type" stored by the varobj are no longer valid. All
2489 varobj must be either re-evaluated, or marked as invalid here. */
2492 varobj_invalidate_iter (struct varobj *var, void *unused)
2494 /* global and floating var must be re-evaluated. */
2495 if (var->root->floating || var->root->valid_block == NULL)
2497 struct varobj *tmp_var;
2499 /* Try to create a varobj with same expression. If we succeed
2500 replace the old varobj, otherwise invalidate it. */
2501 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2503 if (tmp_var != NULL)
2505 tmp_var->obj_name = var->obj_name;
2506 varobj_delete (var, 0);
2507 install_variable (tmp_var);
2510 var->root->is_valid = false;
2512 else /* locals must be invalidated. */
2513 var->root->is_valid = false;
2516 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2517 are defined on globals.
2518 Invalidated varobjs will be always printed in_scope="invalid". */
2521 varobj_invalidate (void)
2523 all_root_varobjs (varobj_invalidate_iter, NULL);
2527 _initialize_varobj (void)
2529 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2531 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2533 _("Set varobj debugging."),
2534 _("Show varobj debugging."),
2535 _("When non-zero, varobj debugging is enabled."),
2536 NULL, show_varobjdebug,
2537 &setdebuglist, &showdebuglist);