1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include "exceptions.h"
21 #include "expression.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdb_regex.h"
34 #include "gdbthread.h"
38 #include "python/python.h"
39 #include "python/python-internal.h"
44 /* Non-zero if we want to see trace of varobj level stuff. */
46 unsigned int varobjdebug = 0;
48 show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 /* String representations of gdb's format codes. */
55 char *varobj_format_string[] =
56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58 /* String representations of gdb's known languages. */
59 char *varobj_language_string[] = { "C", "C++", "Java" };
61 /* True if we want to allow Python-based pretty-printing. */
62 static int pretty_printing = 0;
65 varobj_enable_pretty_printing (void)
72 /* Every root variable has one of these structures saved in its
73 varobj. Members which must be free'd are noted. */
77 /* Alloc'd expression for this parent. */
78 struct expression *exp;
80 /* Block for which this expression is valid. */
81 const struct block *valid_block;
83 /* The frame for this expression. This field is set iff valid_block is
85 struct frame_id frame;
87 /* The thread ID that this varobj_root belong to. This field
88 is only valid if valid_block is not NULL.
89 When not 0, indicates which thread 'frame' belongs to.
90 When 0, indicates that the thread list was empty when the varobj_root
94 /* If 1, the -var-update always recomputes the value in the
95 current thread and frame. Otherwise, variable object is
96 always updated in the specific scope/thread/frame. */
99 /* Flag that indicates validity: set to 0 when this varobj_root refers
100 to symbols that do not exist anymore. */
103 /* Language-related operations for this variable and its
105 const struct lang_varobj_ops *lang;
107 /* The varobj for this root node. */
108 struct varobj *rootvar;
110 /* Next root variable */
111 struct varobj_root *next;
114 /* Dynamic part of varobj. */
116 struct varobj_dynamic
118 /* Whether the children of this varobj were requested. This field is
119 used to decide if dynamic varobj should recompute their children.
120 In the event that the frontend never asked for the children, we
122 int children_requested;
124 /* The pretty-printer constructor. If NULL, then the default
125 pretty-printer will be looked up. If None, then no
126 pretty-printer will be installed. */
127 PyObject *constructor;
129 /* The pretty-printer that has been constructed. If NULL, then a
130 new printer object is needed, and one will be constructed. */
131 PyObject *pretty_printer;
133 /* The iterator returned by the printer's 'children' method, or NULL
135 PyObject *child_iter;
137 /* We request one extra item from the iterator, so that we can
138 report to the caller whether there are more items than we have
139 already reported. However, we don't want to install this value
140 when we read it, because that will mess up future updates. So,
141 we stash it here instead. */
142 PyObject *saved_item;
148 struct cpstack *next;
151 /* A list of varobjs */
159 /* Private function prototypes */
161 /* Helper functions for the above subcommands. */
163 static int delete_variable (struct cpstack **, struct varobj *, int);
165 static void delete_variable_1 (struct cpstack **, int *,
166 struct varobj *, int, int);
168 static int install_variable (struct varobj *);
170 static void uninstall_variable (struct varobj *);
172 static struct varobj *create_child (struct varobj *, int, char *);
174 static struct varobj *
175 create_child_with_value (struct varobj *parent, int index, char *name,
176 struct value *value);
178 /* Utility routines */
180 static struct varobj *new_variable (void);
182 static struct varobj *new_root_variable (void);
184 static void free_variable (struct varobj *var);
186 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
188 static enum varobj_display_formats variable_default_display (struct varobj *);
190 static void cppush (struct cpstack **pstack, char *name);
192 static char *cppop (struct cpstack **pstack);
194 static int update_type_if_necessary (struct varobj *var,
195 struct value *new_value);
197 static int install_new_value (struct varobj *var, struct value *value,
200 /* Language-specific routines. */
202 static enum varobj_languages variable_language (struct varobj *var);
204 static int number_of_children (struct varobj *);
206 static char *name_of_variable (struct varobj *);
208 static char *name_of_child (struct varobj *, int);
210 static struct value *value_of_root (struct varobj **var_handle, int *);
212 static struct value *value_of_child (struct varobj *parent, int index);
214 static char *my_value_of_variable (struct varobj *var,
215 enum varobj_display_formats format);
217 static int is_root_p (struct varobj *var);
221 static struct varobj *varobj_add_child (struct varobj *var,
223 struct value *value);
225 #endif /* HAVE_PYTHON */
227 /* Array of known source language routines. */
228 static const struct lang_varobj_ops *languages[vlang_end] = {
237 /* Mappings of varobj_display_formats enums to gdb's format codes. */
238 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
240 /* Header of the list of root variable objects. */
241 static struct varobj_root *rootlist;
243 /* Prime number indicating the number of buckets in the hash table. */
244 /* A prime large enough to avoid too many colisions. */
245 #define VAROBJ_TABLE_SIZE 227
247 /* Pointer to the varobj hash table (built at run time). */
248 static struct vlist **varobj_table;
252 /* API Implementation */
254 is_root_p (struct varobj *var)
256 return (var->root->rootvar == var);
260 /* Helper function to install a Python environment suitable for
261 use during operations on VAR. */
262 static struct cleanup *
263 varobj_ensure_python_env (struct varobj *var)
265 return ensure_python_env (var->root->exp->gdbarch,
266 var->root->exp->language_defn);
270 /* Creates a varobj (not its children). */
272 /* Return the full FRAME which corresponds to the given CORE_ADDR
273 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
275 static struct frame_info *
276 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
278 struct frame_info *frame = NULL;
280 if (frame_addr == (CORE_ADDR) 0)
283 for (frame = get_current_frame ();
285 frame = get_prev_frame (frame))
287 /* The CORE_ADDR we get as argument was parsed from a string GDB
288 output as $fp. This output got truncated to gdbarch_addr_bit.
289 Truncate the frame base address in the same manner before
290 comparing it against our argument. */
291 CORE_ADDR frame_base = get_frame_base_address (frame);
292 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
294 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
295 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
297 if (frame_base == frame_addr)
305 varobj_create (char *objname,
306 char *expression, CORE_ADDR frame, enum varobj_type type)
309 struct cleanup *old_chain;
311 /* Fill out a varobj structure for the (root) variable being constructed. */
312 var = new_root_variable ();
313 old_chain = make_cleanup_free_variable (var);
315 if (expression != NULL)
317 struct frame_info *fi;
318 struct frame_id old_id = null_frame_id;
321 enum varobj_languages lang;
322 struct value *value = NULL;
323 volatile struct gdb_exception except;
326 /* Parse and evaluate the expression, filling in as much of the
327 variable's data as possible. */
329 if (has_stack_frames ())
331 /* Allow creator to specify context of variable. */
332 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
333 fi = get_selected_frame (NULL);
335 /* FIXME: cagney/2002-11-23: This code should be doing a
336 lookup using the frame ID and not just the frame's
337 ``address''. This, of course, means an interface
338 change. However, with out that interface change ISAs,
339 such as the ia64 with its two stacks, won't work.
340 Similar goes for the case where there is a frameless
342 fi = find_frame_addr_in_frame_chain (frame);
347 /* frame = -2 means always use selected frame. */
348 if (type == USE_SELECTED_FRAME)
349 var->root->floating = 1;
355 block = get_frame_block (fi, 0);
356 pc = get_frame_pc (fi);
360 innermost_block = NULL;
361 /* Wrap the call to parse expression, so we can
362 return a sensible error. */
363 TRY_CATCH (except, RETURN_MASK_ERROR)
365 var->root->exp = parse_exp_1 (&p, pc, block, 0);
368 if (except.reason < 0)
370 do_cleanups (old_chain);
374 /* Don't allow variables to be created for types. */
375 if (var->root->exp->elts[0].opcode == OP_TYPE
376 || var->root->exp->elts[0].opcode == OP_TYPEOF
377 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
379 do_cleanups (old_chain);
380 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
381 " as an expression.\n");
385 var->format = variable_default_display (var);
386 var->root->valid_block = innermost_block;
387 var->name = xstrdup (expression);
388 /* For a root var, the name and the expr are the same. */
389 var->path_expr = xstrdup (expression);
391 /* When the frame is different from the current frame,
392 we must select the appropriate frame before parsing
393 the expression, otherwise the value will not be current.
394 Since select_frame is so benign, just call it for all cases. */
397 /* User could specify explicit FRAME-ADDR which was not found but
398 EXPRESSION is frame specific and we would not be able to evaluate
399 it correctly next time. With VALID_BLOCK set we must also set
400 FRAME and THREAD_ID. */
402 error (_("Failed to find the specified frame"));
404 var->root->frame = get_frame_id (fi);
405 var->root->thread_id = pid_to_thread_id (inferior_ptid);
406 old_id = get_frame_id (get_selected_frame (NULL));
410 /* We definitely need to catch errors here.
411 If evaluate_expression succeeds we got the value we wanted.
412 But if it fails, we still go on with a call to evaluate_type(). */
413 TRY_CATCH (except, RETURN_MASK_ERROR)
415 value = evaluate_expression (var->root->exp);
418 if (except.reason < 0)
420 /* Error getting the value. Try to at least get the
422 struct value *type_only_value = evaluate_type (var->root->exp);
424 var->type = value_type (type_only_value);
428 int real_type_found = 0;
430 var->type = value_actual_type (value, 0, &real_type_found);
432 value = value_cast (var->type, value);
435 /* Set language info */
436 lang = variable_language (var);
437 var->root->lang = languages[lang];
439 install_new_value (var, value, 1 /* Initial assignment */);
441 /* Set ourselves as our root. */
442 var->root->rootvar = var;
444 /* Reset the selected frame. */
445 if (frame_id_p (old_id))
446 select_frame (frame_find_by_id (old_id));
449 /* If the variable object name is null, that means this
450 is a temporary variable, so don't install it. */
452 if ((var != NULL) && (objname != NULL))
454 var->obj_name = xstrdup (objname);
456 /* If a varobj name is duplicated, the install will fail so
458 if (!install_variable (var))
460 do_cleanups (old_chain);
465 discard_cleanups (old_chain);
469 /* Generates an unique name that can be used for a varobj. */
472 varobj_gen_name (void)
477 /* Generate a name for this object. */
479 obj_name = xstrprintf ("var%d", id);
484 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
485 error if OBJNAME cannot be found. */
488 varobj_get_handle (char *objname)
492 unsigned int index = 0;
495 for (chp = objname; *chp; chp++)
497 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
500 cv = *(varobj_table + index);
501 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
505 error (_("Variable object not found"));
510 /* Given the handle, return the name of the object. */
513 varobj_get_objname (struct varobj *var)
515 return var->obj_name;
518 /* Given the handle, return the expression represented by the object. */
521 varobj_get_expression (struct varobj *var)
523 return name_of_variable (var);
526 /* Deletes a varobj and all its children if only_children == 0,
527 otherwise deletes only the children; returns a malloc'ed list of
528 all the (malloc'ed) names of the variables that have been deleted
529 (NULL terminated). */
532 varobj_delete (struct varobj *var, char ***dellist, int only_children)
536 struct cpstack *result = NULL;
539 /* Initialize a stack for temporary results. */
540 cppush (&result, NULL);
543 /* Delete only the variable children. */
544 delcount = delete_variable (&result, var, 1 /* only the children */ );
546 /* Delete the variable and all its children. */
547 delcount = delete_variable (&result, var, 0 /* parent+children */ );
549 /* We may have been asked to return a list of what has been deleted. */
552 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
556 *cp = cppop (&result);
557 while ((*cp != NULL) && (mycount > 0))
561 *cp = cppop (&result);
564 if (mycount || (*cp != NULL))
565 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
574 /* Convenience function for varobj_set_visualizer. Instantiate a
575 pretty-printer for a given value. */
577 instantiate_pretty_printer (PyObject *constructor, struct value *value)
579 PyObject *val_obj = NULL;
582 val_obj = value_to_value_object (value);
586 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
593 /* Set/Get variable object display format. */
595 enum varobj_display_formats
596 varobj_set_display_format (struct varobj *var,
597 enum varobj_display_formats format)
604 case FORMAT_HEXADECIMAL:
606 var->format = format;
610 var->format = variable_default_display (var);
613 if (varobj_value_is_changeable_p (var)
614 && var->value && !value_lazy (var->value))
616 xfree (var->print_value);
617 var->print_value = varobj_value_get_print_value (var->value,
624 enum varobj_display_formats
625 varobj_get_display_format (struct varobj *var)
631 varobj_get_display_hint (struct varobj *var)
636 struct cleanup *back_to;
638 if (!gdb_python_initialized)
641 back_to = varobj_ensure_python_env (var);
643 if (var->dynamic->pretty_printer != NULL)
644 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
646 do_cleanups (back_to);
652 /* Return true if the varobj has items after TO, false otherwise. */
655 varobj_has_more (struct varobj *var, int to)
657 if (VEC_length (varobj_p, var->children) > to)
659 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
660 && (var->dynamic->saved_item != NULL));
663 /* If the variable object is bound to a specific thread, that
664 is its evaluation can always be done in context of a frame
665 inside that thread, returns GDB id of the thread -- which
666 is always positive. Otherwise, returns -1. */
668 varobj_get_thread_id (struct varobj *var)
670 if (var->root->valid_block && var->root->thread_id > 0)
671 return var->root->thread_id;
677 varobj_set_frozen (struct varobj *var, int frozen)
679 /* When a variable is unfrozen, we don't fetch its value.
680 The 'not_fetched' flag remains set, so next -var-update
683 We don't fetch the value, because for structures the client
684 should do -var-update anyway. It would be bad to have different
685 client-size logic for structure and other types. */
686 var->frozen = frozen;
690 varobj_get_frozen (struct varobj *var)
695 /* A helper function that restricts a range to what is actually
696 available in a VEC. This follows the usual rules for the meaning
697 of FROM and TO -- if either is negative, the entire range is
701 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
703 if (*from < 0 || *to < 0)
706 *to = VEC_length (varobj_p, children);
710 if (*from > VEC_length (varobj_p, children))
711 *from = VEC_length (varobj_p, children);
712 if (*to > VEC_length (varobj_p, children))
713 *to = VEC_length (varobj_p, children);
721 /* A helper for update_dynamic_varobj_children that installs a new
722 child when needed. */
725 install_dynamic_child (struct varobj *var,
726 VEC (varobj_p) **changed,
727 VEC (varobj_p) **type_changed,
728 VEC (varobj_p) **new,
729 VEC (varobj_p) **unchanged,
735 if (VEC_length (varobj_p, var->children) < index + 1)
737 /* There's no child yet. */
738 struct varobj *child = varobj_add_child (var, name, value);
742 VEC_safe_push (varobj_p, *new, child);
748 varobj_p existing = VEC_index (varobj_p, var->children, index);
749 int type_updated = update_type_if_necessary (existing, value);
754 VEC_safe_push (varobj_p, *type_changed, existing);
756 if (install_new_value (existing, value, 0))
758 if (!type_updated && changed)
759 VEC_safe_push (varobj_p, *changed, existing);
761 else if (!type_updated && unchanged)
762 VEC_safe_push (varobj_p, *unchanged, existing);
767 dynamic_varobj_has_child_method (struct varobj *var)
769 struct cleanup *back_to;
770 PyObject *printer = var->dynamic->pretty_printer;
773 if (!gdb_python_initialized)
776 back_to = varobj_ensure_python_env (var);
777 result = PyObject_HasAttr (printer, gdbpy_children_cst);
778 do_cleanups (back_to);
785 update_dynamic_varobj_children (struct varobj *var,
786 VEC (varobj_p) **changed,
787 VEC (varobj_p) **type_changed,
788 VEC (varobj_p) **new,
789 VEC (varobj_p) **unchanged,
796 struct cleanup *back_to;
799 PyObject *printer = var->dynamic->pretty_printer;
801 if (!gdb_python_initialized)
804 back_to = varobj_ensure_python_env (var);
807 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
809 do_cleanups (back_to);
813 if (update_children || var->dynamic->child_iter == NULL)
815 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
820 gdbpy_print_stack ();
821 error (_("Null value returned for children"));
824 make_cleanup_py_decref (children);
826 Py_XDECREF (var->dynamic->child_iter);
827 var->dynamic->child_iter = PyObject_GetIter (children);
828 if (var->dynamic->child_iter == NULL)
830 gdbpy_print_stack ();
831 error (_("Could not get children iterator"));
834 Py_XDECREF (var->dynamic->saved_item);
835 var->dynamic->saved_item = NULL;
840 i = VEC_length (varobj_p, var->children);
842 /* We ask for one extra child, so that MI can report whether there
843 are more children. */
844 for (; to < 0 || i < to + 1; ++i)
849 /* See if there was a leftover from last time. */
850 if (var->dynamic->saved_item)
852 item = var->dynamic->saved_item;
853 var->dynamic->saved_item = NULL;
856 item = PyIter_Next (var->dynamic->child_iter);
860 /* Normal end of iteration. */
861 if (!PyErr_Occurred ())
864 /* If we got a memory error, just use the text as the
866 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
868 PyObject *type, *value, *trace;
869 char *name_str, *value_str;
871 PyErr_Fetch (&type, &value, &trace);
872 value_str = gdbpy_exception_to_string (type, value);
878 gdbpy_print_stack ();
882 name_str = xstrprintf ("<error at %d>", i);
883 item = Py_BuildValue ("(ss)", name_str, value_str);
888 gdbpy_print_stack ();
896 /* Any other kind of error. */
897 gdbpy_print_stack ();
902 /* We don't want to push the extra child on any report list. */
903 if (to < 0 || i < to)
908 struct cleanup *inner;
909 int can_mention = from < 0 || i >= from;
911 inner = make_cleanup_py_decref (item);
913 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
915 gdbpy_print_stack ();
916 error (_("Invalid item from the child list"));
919 v = convert_value_from_python (py_v);
921 gdbpy_print_stack ();
922 install_dynamic_child (var, can_mention ? changed : NULL,
923 can_mention ? type_changed : NULL,
924 can_mention ? new : NULL,
925 can_mention ? unchanged : NULL,
926 can_mention ? cchanged : NULL, i,
932 Py_XDECREF (var->dynamic->saved_item);
933 var->dynamic->saved_item = item;
935 /* We want to truncate the child list just before this
944 if (i < VEC_length (varobj_p, var->children))
949 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
950 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
951 VEC_truncate (varobj_p, var->children, i);
954 /* If there are fewer children than requested, note that the list of
956 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
959 var->num_children = VEC_length (varobj_p, var->children);
961 do_cleanups (back_to);
965 gdb_assert_not_reached ("should never be called if Python is not enabled");
970 varobj_get_num_children (struct varobj *var)
972 if (var->num_children == -1)
974 if (var->dynamic->pretty_printer != NULL)
978 /* If we have a dynamic varobj, don't report -1 children.
979 So, try to fetch some children first. */
980 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
984 var->num_children = number_of_children (var);
987 return var->num_children >= 0 ? var->num_children : 0;
990 /* Creates a list of the immediate children of a variable object;
991 the return code is the number of such children or -1 on error. */
994 varobj_list_children (struct varobj *var, int *from, int *to)
997 int i, children_changed;
999 var->dynamic->children_requested = 1;
1001 if (var->dynamic->pretty_printer != NULL)
1003 /* This, in theory, can result in the number of children changing without
1004 frontend noticing. But well, calling -var-list-children on the same
1005 varobj twice is not something a sane frontend would do. */
1006 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1007 &children_changed, 0, 0, *to);
1008 varobj_restrict_range (var->children, from, to);
1009 return var->children;
1012 if (var->num_children == -1)
1013 var->num_children = number_of_children (var);
1015 /* If that failed, give up. */
1016 if (var->num_children == -1)
1017 return var->children;
1019 /* If we're called when the list of children is not yet initialized,
1020 allocate enough elements in it. */
1021 while (VEC_length (varobj_p, var->children) < var->num_children)
1022 VEC_safe_push (varobj_p, var->children, NULL);
1024 for (i = 0; i < var->num_children; i++)
1026 varobj_p existing = VEC_index (varobj_p, var->children, i);
1028 if (existing == NULL)
1030 /* Either it's the first call to varobj_list_children for
1031 this variable object, and the child was never created,
1032 or it was explicitly deleted by the client. */
1033 name = name_of_child (var, i);
1034 existing = create_child (var, i, name);
1035 VEC_replace (varobj_p, var->children, i, existing);
1039 varobj_restrict_range (var->children, from, to);
1040 return var->children;
1045 static struct varobj *
1046 varobj_add_child (struct varobj *var, char *name, struct value *value)
1048 varobj_p v = create_child_with_value (var,
1049 VEC_length (varobj_p, var->children),
1052 VEC_safe_push (varobj_p, var->children, v);
1056 #endif /* HAVE_PYTHON */
1058 /* Obtain the type of an object Variable as a string similar to the one gdb
1059 prints on the console. */
1062 varobj_get_type (struct varobj *var)
1064 /* For the "fake" variables, do not return a type. (It's type is
1066 Do not return a type for invalid variables as well. */
1067 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1070 return type_to_string (var->type);
1073 /* Obtain the type of an object variable. */
1076 varobj_get_gdb_type (struct varobj *var)
1081 /* Is VAR a path expression parent, i.e., can it be used to construct
1082 a valid path expression? */
1085 is_path_expr_parent (struct varobj *var)
1089 /* "Fake" children are not path_expr parents. */
1090 if (CPLUS_FAKE_CHILD (var))
1093 type = varobj_get_value_type (var);
1095 /* Anonymous unions and structs are also not path_expr parents. */
1096 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1097 || TYPE_CODE (type) == TYPE_CODE_UNION)
1098 && TYPE_NAME (type) == NULL);
1101 /* Return the path expression parent for VAR. */
1104 varobj_get_path_expr_parent (struct varobj *var)
1106 struct varobj *parent = var;
1108 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1109 parent = parent->parent;
1114 /* Return a pointer to the full rooted expression of varobj VAR.
1115 If it has not been computed yet, compute it. */
1117 varobj_get_path_expr (struct varobj *var)
1119 if (var->path_expr != NULL)
1120 return var->path_expr;
1123 /* For root varobjs, we initialize path_expr
1124 when creating varobj, so here it should be
1126 gdb_assert (!is_root_p (var));
1127 return (*var->root->lang->path_expr_of_child) (var);
1131 enum varobj_languages
1132 varobj_get_language (struct varobj *var)
1134 return variable_language (var);
1138 varobj_get_attributes (struct varobj *var)
1142 if (varobj_editable_p (var))
1143 /* FIXME: define masks for attributes. */
1144 attributes |= 0x00000001; /* Editable */
1150 varobj_pretty_printed_p (struct varobj *var)
1152 return var->dynamic->pretty_printer != NULL;
1156 varobj_get_formatted_value (struct varobj *var,
1157 enum varobj_display_formats format)
1159 return my_value_of_variable (var, format);
1163 varobj_get_value (struct varobj *var)
1165 return my_value_of_variable (var, var->format);
1168 /* Set the value of an object variable (if it is editable) to the
1169 value of the given expression. */
1170 /* Note: Invokes functions that can call error(). */
1173 varobj_set_value (struct varobj *var, char *expression)
1175 struct value *val = NULL; /* Initialize to keep gcc happy. */
1176 /* The argument "expression" contains the variable's new value.
1177 We need to first construct a legal expression for this -- ugh! */
1178 /* Does this cover all the bases? */
1179 struct expression *exp;
1180 struct value *value = NULL; /* Initialize to keep gcc happy. */
1181 int saved_input_radix = input_radix;
1182 const char *s = expression;
1183 volatile struct gdb_exception except;
1185 gdb_assert (varobj_editable_p (var));
1187 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1188 exp = parse_exp_1 (&s, 0, 0, 0);
1189 TRY_CATCH (except, RETURN_MASK_ERROR)
1191 value = evaluate_expression (exp);
1194 if (except.reason < 0)
1196 /* We cannot proceed without a valid expression. */
1201 /* All types that are editable must also be changeable. */
1202 gdb_assert (varobj_value_is_changeable_p (var));
1204 /* The value of a changeable variable object must not be lazy. */
1205 gdb_assert (!value_lazy (var->value));
1207 /* Need to coerce the input. We want to check if the
1208 value of the variable object will be different
1209 after assignment, and the first thing value_assign
1210 does is coerce the input.
1211 For example, if we are assigning an array to a pointer variable we
1212 should compare the pointer with the array's address, not with the
1214 value = coerce_array (value);
1216 /* The new value may be lazy. value_assign, or
1217 rather value_contents, will take care of this. */
1218 TRY_CATCH (except, RETURN_MASK_ERROR)
1220 val = value_assign (var->value, value);
1223 if (except.reason < 0)
1226 /* If the value has changed, record it, so that next -var-update can
1227 report this change. If a variable had a value of '1', we've set it
1228 to '333' and then set again to '1', when -var-update will report this
1229 variable as changed -- because the first assignment has set the
1230 'updated' flag. There's no need to optimize that, because return value
1231 of -var-update should be considered an approximation. */
1232 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1233 input_radix = saved_input_radix;
1239 /* A helper function to install a constructor function and visualizer
1240 in a varobj_dynamic. */
1243 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1244 PyObject *visualizer)
1246 Py_XDECREF (var->constructor);
1247 var->constructor = constructor;
1249 Py_XDECREF (var->pretty_printer);
1250 var->pretty_printer = visualizer;
1252 Py_XDECREF (var->child_iter);
1253 var->child_iter = NULL;
1256 /* Install the default visualizer for VAR. */
1259 install_default_visualizer (struct varobj *var)
1261 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1262 if (CPLUS_FAKE_CHILD (var))
1265 if (pretty_printing)
1267 PyObject *pretty_printer = NULL;
1271 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1272 if (! pretty_printer)
1274 gdbpy_print_stack ();
1275 error (_("Cannot instantiate printer for default visualizer"));
1279 if (pretty_printer == Py_None)
1281 Py_DECREF (pretty_printer);
1282 pretty_printer = NULL;
1285 install_visualizer (var->dynamic, NULL, pretty_printer);
1289 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1290 make a new object. */
1293 construct_visualizer (struct varobj *var, PyObject *constructor)
1295 PyObject *pretty_printer;
1297 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1298 if (CPLUS_FAKE_CHILD (var))
1301 Py_INCREF (constructor);
1302 if (constructor == Py_None)
1303 pretty_printer = NULL;
1306 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1307 if (! pretty_printer)
1309 gdbpy_print_stack ();
1310 Py_DECREF (constructor);
1311 constructor = Py_None;
1312 Py_INCREF (constructor);
1315 if (pretty_printer == Py_None)
1317 Py_DECREF (pretty_printer);
1318 pretty_printer = NULL;
1322 install_visualizer (var->dynamic, constructor, pretty_printer);
1325 #endif /* HAVE_PYTHON */
1327 /* A helper function for install_new_value. This creates and installs
1328 a visualizer for VAR, if appropriate. */
1331 install_new_value_visualizer (struct varobj *var)
1334 /* If the constructor is None, then we want the raw value. If VAR
1335 does not have a value, just skip this. */
1336 if (!gdb_python_initialized)
1339 if (var->dynamic->constructor != Py_None && var->value != NULL)
1341 struct cleanup *cleanup;
1343 cleanup = varobj_ensure_python_env (var);
1345 if (var->dynamic->constructor == NULL)
1346 install_default_visualizer (var);
1348 construct_visualizer (var, var->dynamic->constructor);
1350 do_cleanups (cleanup);
1357 /* When using RTTI to determine variable type it may be changed in runtime when
1358 the variable value is changed. This function checks whether type of varobj
1359 VAR will change when a new value NEW_VALUE is assigned and if it is so
1360 updates the type of VAR. */
1363 update_type_if_necessary (struct varobj *var, struct value *new_value)
1367 struct value_print_options opts;
1369 get_user_print_options (&opts);
1370 if (opts.objectprint)
1372 struct type *new_type;
1373 char *curr_type_str, *new_type_str;
1375 new_type = value_actual_type (new_value, 0, 0);
1376 new_type_str = type_to_string (new_type);
1377 curr_type_str = varobj_get_type (var);
1378 if (strcmp (curr_type_str, new_type_str) != 0)
1380 var->type = new_type;
1382 /* This information may be not valid for a new type. */
1383 varobj_delete (var, NULL, 1);
1384 VEC_free (varobj_p, var->children);
1385 var->num_children = -1;
1394 /* Assign a new value to a variable object. If INITIAL is non-zero,
1395 this is the first assignement after the variable object was just
1396 created, or changed type. In that case, just assign the value
1398 Otherwise, assign the new value, and return 1 if the value is
1399 different from the current one, 0 otherwise. The comparison is
1400 done on textual representation of value. Therefore, some types
1401 need not be compared. E.g. for structures the reported value is
1402 always "{...}", so no comparison is necessary here. If the old
1403 value was NULL and new one is not, or vice versa, we always return 1.
1405 The VALUE parameter should not be released -- the function will
1406 take care of releasing it when needed. */
1408 install_new_value (struct varobj *var, struct value *value, int initial)
1413 int intentionally_not_fetched = 0;
1414 char *print_value = NULL;
1416 /* We need to know the varobj's type to decide if the value should
1417 be fetched or not. C++ fake children (public/protected/private)
1418 don't have a type. */
1419 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1420 changeable = varobj_value_is_changeable_p (var);
1422 /* If the type has custom visualizer, we consider it to be always
1423 changeable. FIXME: need to make sure this behaviour will not
1424 mess up read-sensitive values. */
1425 if (var->dynamic->pretty_printer != NULL)
1428 need_to_fetch = changeable;
1430 /* We are not interested in the address of references, and given
1431 that in C++ a reference is not rebindable, it cannot
1432 meaningfully change. So, get hold of the real value. */
1434 value = coerce_ref (value);
1436 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1437 /* For unions, we need to fetch the value implicitly because
1438 of implementation of union member fetch. When gdb
1439 creates a value for a field and the value of the enclosing
1440 structure is not lazy, it immediately copies the necessary
1441 bytes from the enclosing values. If the enclosing value is
1442 lazy, the call to value_fetch_lazy on the field will read
1443 the data from memory. For unions, that means we'll read the
1444 same memory more than once, which is not desirable. So
1448 /* The new value might be lazy. If the type is changeable,
1449 that is we'll be comparing values of this type, fetch the
1450 value now. Otherwise, on the next update the old value
1451 will be lazy, which means we've lost that old value. */
1452 if (need_to_fetch && value && value_lazy (value))
1454 struct varobj *parent = var->parent;
1455 int frozen = var->frozen;
1457 for (; !frozen && parent; parent = parent->parent)
1458 frozen |= parent->frozen;
1460 if (frozen && initial)
1462 /* For variables that are frozen, or are children of frozen
1463 variables, we don't do fetch on initial assignment.
1464 For non-initial assignemnt we do the fetch, since it means we're
1465 explicitly asked to compare the new value with the old one. */
1466 intentionally_not_fetched = 1;
1470 volatile struct gdb_exception except;
1472 TRY_CATCH (except, RETURN_MASK_ERROR)
1474 value_fetch_lazy (value);
1477 if (except.reason < 0)
1479 /* Set the value to NULL, so that for the next -var-update,
1480 we don't try to compare the new value with this value,
1481 that we couldn't even read. */
1487 /* Get a reference now, before possibly passing it to any Python
1488 code that might release it. */
1490 value_incref (value);
1492 /* Below, we'll be comparing string rendering of old and new
1493 values. Don't get string rendering if the value is
1494 lazy -- if it is, the code above has decided that the value
1495 should not be fetched. */
1496 if (value != NULL && !value_lazy (value)
1497 && var->dynamic->pretty_printer == NULL)
1498 print_value = varobj_value_get_print_value (value, var->format, var);
1500 /* If the type is changeable, compare the old and the new values.
1501 If this is the initial assignment, we don't have any old value
1503 if (!initial && changeable)
1505 /* If the value of the varobj was changed by -var-set-value,
1506 then the value in the varobj and in the target is the same.
1507 However, that value is different from the value that the
1508 varobj had after the previous -var-update. So need to the
1509 varobj as changed. */
1514 else if (var->dynamic->pretty_printer == NULL)
1516 /* Try to compare the values. That requires that both
1517 values are non-lazy. */
1518 if (var->not_fetched && value_lazy (var->value))
1520 /* This is a frozen varobj and the value was never read.
1521 Presumably, UI shows some "never read" indicator.
1522 Now that we've fetched the real value, we need to report
1523 this varobj as changed so that UI can show the real
1527 else if (var->value == NULL && value == NULL)
1530 else if (var->value == NULL || value == NULL)
1536 gdb_assert (!value_lazy (var->value));
1537 gdb_assert (!value_lazy (value));
1539 gdb_assert (var->print_value != NULL && print_value != NULL);
1540 if (strcmp (var->print_value, print_value) != 0)
1546 if (!initial && !changeable)
1548 /* For values that are not changeable, we don't compare the values.
1549 However, we want to notice if a value was not NULL and now is NULL,
1550 or vise versa, so that we report when top-level varobjs come in scope
1551 and leave the scope. */
1552 changed = (var->value != NULL) != (value != NULL);
1555 /* We must always keep the new value, since children depend on it. */
1556 if (var->value != NULL && var->value != value)
1557 value_free (var->value);
1559 if (value && value_lazy (value) && intentionally_not_fetched)
1560 var->not_fetched = 1;
1562 var->not_fetched = 0;
1565 install_new_value_visualizer (var);
1567 /* If we installed a pretty-printer, re-compare the printed version
1568 to see if the variable changed. */
1569 if (var->dynamic->pretty_printer != NULL)
1571 xfree (print_value);
1572 print_value = varobj_value_get_print_value (var->value, var->format,
1574 if ((var->print_value == NULL && print_value != NULL)
1575 || (var->print_value != NULL && print_value == NULL)
1576 || (var->print_value != NULL && print_value != NULL
1577 && strcmp (var->print_value, print_value) != 0))
1580 if (var->print_value)
1581 xfree (var->print_value);
1582 var->print_value = print_value;
1584 gdb_assert (!var->value || value_type (var->value));
1589 /* Return the requested range for a varobj. VAR is the varobj. FROM
1590 and TO are out parameters; *FROM and *TO will be set to the
1591 selected sub-range of VAR. If no range was selected using
1592 -var-set-update-range, then both will be -1. */
1594 varobj_get_child_range (struct varobj *var, int *from, int *to)
1600 /* Set the selected sub-range of children of VAR to start at index
1601 FROM and end at index TO. If either FROM or TO is less than zero,
1602 this is interpreted as a request for all children. */
1604 varobj_set_child_range (struct varobj *var, int from, int to)
1611 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1614 PyObject *mainmod, *globals, *constructor;
1615 struct cleanup *back_to;
1617 if (!gdb_python_initialized)
1620 back_to = varobj_ensure_python_env (var);
1622 mainmod = PyImport_AddModule ("__main__");
1623 globals = PyModule_GetDict (mainmod);
1624 Py_INCREF (globals);
1625 make_cleanup_py_decref (globals);
1627 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1631 gdbpy_print_stack ();
1632 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1635 construct_visualizer (var, constructor);
1636 Py_XDECREF (constructor);
1638 /* If there are any children now, wipe them. */
1639 varobj_delete (var, NULL, 1 /* children only */);
1640 var->num_children = -1;
1642 do_cleanups (back_to);
1644 error (_("Python support required"));
1648 /* If NEW_VALUE is the new value of the given varobj (var), return
1649 non-zero if var has mutated. In other words, if the type of
1650 the new value is different from the type of the varobj's old
1653 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1656 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1657 struct type *new_type)
1659 /* If we haven't previously computed the number of children in var,
1660 it does not matter from the front-end's perspective whether
1661 the type has mutated or not. For all intents and purposes,
1662 it has not mutated. */
1663 if (var->num_children < 0)
1666 if (var->root->lang->value_has_mutated)
1667 return var->root->lang->value_has_mutated (var, new_value, new_type);
1672 /* Update the values for a variable and its children. This is a
1673 two-pronged attack. First, re-parse the value for the root's
1674 expression to see if it's changed. Then go all the way
1675 through its children, reconstructing them and noting if they've
1678 The EXPLICIT parameter specifies if this call is result
1679 of MI request to update this specific variable, or
1680 result of implicit -var-update *. For implicit request, we don't
1681 update frozen variables.
1683 NOTE: This function may delete the caller's varobj. If it
1684 returns TYPE_CHANGED, then it has done this and VARP will be modified
1685 to point to the new varobj. */
1687 VEC(varobj_update_result) *
1688 varobj_update (struct varobj **varp, int explicit)
1690 int type_changed = 0;
1693 VEC (varobj_update_result) *stack = NULL;
1694 VEC (varobj_update_result) *result = NULL;
1696 /* Frozen means frozen -- we don't check for any change in
1697 this varobj, including its going out of scope, or
1698 changing type. One use case for frozen varobjs is
1699 retaining previously evaluated expressions, and we don't
1700 want them to be reevaluated at all. */
1701 if (!explicit && (*varp)->frozen)
1704 if (!(*varp)->root->is_valid)
1706 varobj_update_result r = {0};
1709 r.status = VAROBJ_INVALID;
1710 VEC_safe_push (varobj_update_result, result, &r);
1714 if ((*varp)->root->rootvar == *varp)
1716 varobj_update_result r = {0};
1719 r.status = VAROBJ_IN_SCOPE;
1721 /* Update the root variable. value_of_root can return NULL
1722 if the variable is no longer around, i.e. we stepped out of
1723 the frame in which a local existed. We are letting the
1724 value_of_root variable dispose of the varobj if the type
1726 new = value_of_root (varp, &type_changed);
1727 if (update_type_if_necessary(*varp, new))
1730 r.type_changed = type_changed;
1731 if (install_new_value ((*varp), new, type_changed))
1735 r.status = VAROBJ_NOT_IN_SCOPE;
1736 r.value_installed = 1;
1738 if (r.status == VAROBJ_NOT_IN_SCOPE)
1740 if (r.type_changed || r.changed)
1741 VEC_safe_push (varobj_update_result, result, &r);
1745 VEC_safe_push (varobj_update_result, stack, &r);
1749 varobj_update_result r = {0};
1752 VEC_safe_push (varobj_update_result, stack, &r);
1755 /* Walk through the children, reconstructing them all. */
1756 while (!VEC_empty (varobj_update_result, stack))
1758 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1759 struct varobj *v = r.varobj;
1761 VEC_pop (varobj_update_result, stack);
1763 /* Update this variable, unless it's a root, which is already
1765 if (!r.value_installed)
1767 struct type *new_type;
1769 new = value_of_child (v->parent, v->index);
1770 if (update_type_if_necessary(v, new))
1773 new_type = value_type (new);
1775 new_type = v->root->lang->type_of_child (v->parent, v->index);
1777 if (varobj_value_has_mutated (v, new, new_type))
1779 /* The children are no longer valid; delete them now.
1780 Report the fact that its type changed as well. */
1781 varobj_delete (v, NULL, 1 /* only_children */);
1782 v->num_children = -1;
1789 if (install_new_value (v, new, r.type_changed))
1796 /* We probably should not get children of a varobj that has a
1797 pretty-printer, but for which -var-list-children was never
1799 if (v->dynamic->pretty_printer != NULL)
1801 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1802 VEC (varobj_p) *new = 0;
1803 int i, children_changed = 0;
1808 if (!v->dynamic->children_requested)
1812 /* If we initially did not have potential children, but
1813 now we do, consider the varobj as changed.
1814 Otherwise, if children were never requested, consider
1815 it as unchanged -- presumably, such varobj is not yet
1816 expanded in the UI, so we need not bother getting
1818 if (!varobj_has_more (v, 0))
1820 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1822 if (varobj_has_more (v, 0))
1827 VEC_safe_push (varobj_update_result, result, &r);
1832 /* If update_dynamic_varobj_children returns 0, then we have
1833 a non-conforming pretty-printer, so we skip it. */
1834 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1835 &unchanged, &children_changed, 1,
1838 if (children_changed || new)
1840 r.children_changed = 1;
1843 /* Push in reverse order so that the first child is
1844 popped from the work stack first, and so will be
1845 added to result first. This does not affect
1846 correctness, just "nicer". */
1847 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1849 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1850 varobj_update_result r = {0};
1852 /* Type may change only if value was changed. */
1856 r.value_installed = 1;
1857 VEC_safe_push (varobj_update_result, stack, &r);
1859 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1861 varobj_p tmp = VEC_index (varobj_p, changed, i);
1862 varobj_update_result r = {0};
1866 r.value_installed = 1;
1867 VEC_safe_push (varobj_update_result, stack, &r);
1869 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1871 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1875 varobj_update_result r = {0};
1878 r.value_installed = 1;
1879 VEC_safe_push (varobj_update_result, stack, &r);
1882 if (r.changed || r.children_changed)
1883 VEC_safe_push (varobj_update_result, result, &r);
1885 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1886 because NEW has been put into the result vector. */
1887 VEC_free (varobj_p, changed);
1888 VEC_free (varobj_p, type_changed);
1889 VEC_free (varobj_p, unchanged);
1895 /* Push any children. Use reverse order so that the first
1896 child is popped from the work stack first, and so
1897 will be added to result first. This does not
1898 affect correctness, just "nicer". */
1899 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1901 varobj_p c = VEC_index (varobj_p, v->children, i);
1903 /* Child may be NULL if explicitly deleted by -var-delete. */
1904 if (c != NULL && !c->frozen)
1906 varobj_update_result r = {0};
1909 VEC_safe_push (varobj_update_result, stack, &r);
1913 if (r.changed || r.type_changed)
1914 VEC_safe_push (varobj_update_result, result, &r);
1917 VEC_free (varobj_update_result, stack);
1923 /* Helper functions */
1926 * Variable object construction/destruction
1930 delete_variable (struct cpstack **resultp, struct varobj *var,
1931 int only_children_p)
1935 delete_variable_1 (resultp, &delcount, var,
1936 only_children_p, 1 /* remove_from_parent_p */ );
1941 /* Delete the variable object VAR and its children. */
1942 /* IMPORTANT NOTE: If we delete a variable which is a child
1943 and the parent is not removed we dump core. It must be always
1944 initially called with remove_from_parent_p set. */
1946 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1947 struct varobj *var, int only_children_p,
1948 int remove_from_parent_p)
1952 /* Delete any children of this variable, too. */
1953 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1955 varobj_p child = VEC_index (varobj_p, var->children, i);
1959 if (!remove_from_parent_p)
1960 child->parent = NULL;
1961 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1963 VEC_free (varobj_p, var->children);
1965 /* if we were called to delete only the children we are done here. */
1966 if (only_children_p)
1969 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1970 /* If the name is null, this is a temporary variable, that has not
1971 yet been installed, don't report it, it belongs to the caller... */
1972 if (var->obj_name != NULL)
1974 cppush (resultp, xstrdup (var->obj_name));
1975 *delcountp = *delcountp + 1;
1978 /* If this variable has a parent, remove it from its parent's list. */
1979 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1980 (as indicated by remove_from_parent_p) we don't bother doing an
1981 expensive list search to find the element to remove when we are
1982 discarding the list afterwards. */
1983 if ((remove_from_parent_p) && (var->parent != NULL))
1985 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1988 if (var->obj_name != NULL)
1989 uninstall_variable (var);
1991 /* Free memory associated with this variable. */
1992 free_variable (var);
1995 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1997 install_variable (struct varobj *var)
2000 struct vlist *newvl;
2002 unsigned int index = 0;
2005 for (chp = var->obj_name; *chp; chp++)
2007 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2010 cv = *(varobj_table + index);
2011 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2015 error (_("Duplicate variable object name"));
2017 /* Add varobj to hash table. */
2018 newvl = xmalloc (sizeof (struct vlist));
2019 newvl->next = *(varobj_table + index);
2021 *(varobj_table + index) = newvl;
2023 /* If root, add varobj to root list. */
2024 if (is_root_p (var))
2026 /* Add to list of root variables. */
2027 if (rootlist == NULL)
2028 var->root->next = NULL;
2030 var->root->next = rootlist;
2031 rootlist = var->root;
2037 /* Unistall the object VAR. */
2039 uninstall_variable (struct varobj *var)
2043 struct varobj_root *cr;
2044 struct varobj_root *prer;
2046 unsigned int index = 0;
2049 /* Remove varobj from hash table. */
2050 for (chp = var->obj_name; *chp; chp++)
2052 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2055 cv = *(varobj_table + index);
2057 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2064 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2069 ("Assertion failed: Could not find variable object \"%s\" to delete",
2075 *(varobj_table + index) = cv->next;
2077 prev->next = cv->next;
2081 /* If root, remove varobj from root list. */
2082 if (is_root_p (var))
2084 /* Remove from list of root variables. */
2085 if (rootlist == var->root)
2086 rootlist = var->root->next;
2091 while ((cr != NULL) && (cr->rootvar != var))
2098 warning (_("Assertion failed: Could not find "
2099 "varobj \"%s\" in root list"),
2106 prer->next = cr->next;
2112 /* Create and install a child of the parent of the given name. */
2113 static struct varobj *
2114 create_child (struct varobj *parent, int index, char *name)
2116 return create_child_with_value (parent, index, name,
2117 value_of_child (parent, index));
2120 static struct varobj *
2121 create_child_with_value (struct varobj *parent, int index, char *name,
2122 struct value *value)
2124 struct varobj *child;
2127 child = new_variable ();
2129 /* NAME is allocated by caller. */
2131 child->index = index;
2132 child->parent = parent;
2133 child->root = parent->root;
2135 if (varobj_is_anonymous_child (child))
2136 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2138 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2139 child->obj_name = childs_name;
2141 install_variable (child);
2143 /* Compute the type of the child. Must do this before
2144 calling install_new_value. */
2146 /* If the child had no evaluation errors, var->value
2147 will be non-NULL and contain a valid type. */
2148 child->type = value_actual_type (value, 0, NULL);
2150 /* Otherwise, we must compute the type. */
2151 child->type = (*child->root->lang->type_of_child) (child->parent,
2153 install_new_value (child, value, 1);
2160 * Miscellaneous utility functions.
2163 /* Allocate memory and initialize a new variable. */
2164 static struct varobj *
2169 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2171 var->path_expr = NULL;
2172 var->obj_name = NULL;
2176 var->num_children = -1;
2178 var->children = NULL;
2182 var->print_value = NULL;
2184 var->not_fetched = 0;
2186 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2187 var->dynamic->children_requested = 0;
2190 var->dynamic->constructor = 0;
2191 var->dynamic->pretty_printer = 0;
2192 var->dynamic->child_iter = 0;
2193 var->dynamic->saved_item = 0;
2198 /* Allocate memory and initialize a new root variable. */
2199 static struct varobj *
2200 new_root_variable (void)
2202 struct varobj *var = new_variable ();
2204 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2205 var->root->lang = NULL;
2206 var->root->exp = NULL;
2207 var->root->valid_block = NULL;
2208 var->root->frame = null_frame_id;
2209 var->root->floating = 0;
2210 var->root->rootvar = NULL;
2211 var->root->is_valid = 1;
2216 /* Free any allocated memory associated with VAR. */
2218 free_variable (struct varobj *var)
2221 if (var->dynamic->pretty_printer != NULL)
2223 struct cleanup *cleanup = varobj_ensure_python_env (var);
2225 Py_XDECREF (var->dynamic->constructor);
2226 Py_XDECREF (var->dynamic->pretty_printer);
2227 Py_XDECREF (var->dynamic->child_iter);
2228 Py_XDECREF (var->dynamic->saved_item);
2229 do_cleanups (cleanup);
2233 value_free (var->value);
2235 /* Free the expression if this is a root variable. */
2236 if (is_root_p (var))
2238 xfree (var->root->exp);
2243 xfree (var->obj_name);
2244 xfree (var->print_value);
2245 xfree (var->path_expr);
2246 xfree (var->dynamic);
2251 do_free_variable_cleanup (void *var)
2253 free_variable (var);
2256 static struct cleanup *
2257 make_cleanup_free_variable (struct varobj *var)
2259 return make_cleanup (do_free_variable_cleanup, var);
2262 /* Return the type of the value that's stored in VAR,
2263 or that would have being stored there if the
2264 value were accessible.
2266 This differs from VAR->type in that VAR->type is always
2267 the true type of the expession in the source language.
2268 The return value of this function is the type we're
2269 actually storing in varobj, and using for displaying
2270 the values and for comparing previous and new values.
2272 For example, top-level references are always stripped. */
2274 varobj_get_value_type (struct varobj *var)
2279 type = value_type (var->value);
2283 type = check_typedef (type);
2285 if (TYPE_CODE (type) == TYPE_CODE_REF)
2286 type = get_target_type (type);
2288 type = check_typedef (type);
2293 /* What is the default display for this variable? We assume that
2294 everything is "natural". Any exceptions? */
2295 static enum varobj_display_formats
2296 variable_default_display (struct varobj *var)
2298 return FORMAT_NATURAL;
2301 /* FIXME: The following should be generic for any pointer. */
2303 cppush (struct cpstack **pstack, char *name)
2307 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2313 /* FIXME: The following should be generic for any pointer. */
2315 cppop (struct cpstack **pstack)
2320 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2325 *pstack = (*pstack)->next;
2332 * Language-dependencies
2335 /* Common entry points */
2337 /* Get the language of variable VAR. */
2338 static enum varobj_languages
2339 variable_language (struct varobj *var)
2341 enum varobj_languages lang;
2343 switch (var->root->exp->language_defn->la_language)
2349 case language_cplus:
2363 /* Return the number of children for a given variable.
2364 The result of this function is defined by the language
2365 implementation. The number of children returned by this function
2366 is the number of children that the user will see in the variable
2369 number_of_children (struct varobj *var)
2371 return (*var->root->lang->number_of_children) (var);
2374 /* What is the expression for the root varobj VAR? Returns a malloc'd
2377 name_of_variable (struct varobj *var)
2379 return (*var->root->lang->name_of_variable) (var);
2382 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2385 name_of_child (struct varobj *var, int index)
2387 return (*var->root->lang->name_of_child) (var, index);
2390 /* If frame associated with VAR can be found, switch
2391 to it and return 1. Otherwise, return 0. */
2394 check_scope (struct varobj *var)
2396 struct frame_info *fi;
2399 fi = frame_find_by_id (var->root->frame);
2404 CORE_ADDR pc = get_frame_pc (fi);
2406 if (pc < BLOCK_START (var->root->valid_block) ||
2407 pc >= BLOCK_END (var->root->valid_block))
2415 /* Helper function to value_of_root. */
2417 static struct value *
2418 value_of_root_1 (struct varobj **var_handle)
2420 struct value *new_val = NULL;
2421 struct varobj *var = *var_handle;
2422 int within_scope = 0;
2423 struct cleanup *back_to;
2425 /* Only root variables can be updated... */
2426 if (!is_root_p (var))
2427 /* Not a root var. */
2430 back_to = make_cleanup_restore_current_thread ();
2432 /* Determine whether the variable is still around. */
2433 if (var->root->valid_block == NULL || var->root->floating)
2435 else if (var->root->thread_id == 0)
2437 /* The program was single-threaded when the variable object was
2438 created. Technically, it's possible that the program became
2439 multi-threaded since then, but we don't support such
2441 within_scope = check_scope (var);
2445 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2446 if (in_thread_list (ptid))
2448 switch_to_thread (ptid);
2449 within_scope = check_scope (var);
2455 volatile struct gdb_exception except;
2457 /* We need to catch errors here, because if evaluate
2458 expression fails we want to just return NULL. */
2459 TRY_CATCH (except, RETURN_MASK_ERROR)
2461 new_val = evaluate_expression (var->root->exp);
2465 do_cleanups (back_to);
2470 /* What is the ``struct value *'' of the root variable VAR?
2471 For floating variable object, evaluation can get us a value
2472 of different type from what is stored in varobj already. In
2474 - *type_changed will be set to 1
2475 - old varobj will be freed, and new one will be
2476 created, with the same name.
2477 - *var_handle will be set to the new varobj
2478 Otherwise, *type_changed will be set to 0. */
2479 static struct value *
2480 value_of_root (struct varobj **var_handle, int *type_changed)
2484 if (var_handle == NULL)
2489 /* This should really be an exception, since this should
2490 only get called with a root variable. */
2492 if (!is_root_p (var))
2495 if (var->root->floating)
2497 struct varobj *tmp_var;
2498 char *old_type, *new_type;
2500 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2501 USE_SELECTED_FRAME);
2502 if (tmp_var == NULL)
2506 old_type = varobj_get_type (var);
2507 new_type = varobj_get_type (tmp_var);
2508 if (strcmp (old_type, new_type) == 0)
2510 /* The expression presently stored inside var->root->exp
2511 remembers the locations of local variables relatively to
2512 the frame where the expression was created (in DWARF location
2513 button, for example). Naturally, those locations are not
2514 correct in other frames, so update the expression. */
2516 struct expression *tmp_exp = var->root->exp;
2518 var->root->exp = tmp_var->root->exp;
2519 tmp_var->root->exp = tmp_exp;
2521 varobj_delete (tmp_var, NULL, 0);
2526 tmp_var->obj_name = xstrdup (var->obj_name);
2527 tmp_var->from = var->from;
2528 tmp_var->to = var->to;
2529 varobj_delete (var, NULL, 0);
2531 install_variable (tmp_var);
2532 *var_handle = tmp_var;
2545 struct value *value;
2547 value = value_of_root_1 (var_handle);
2548 if (var->value == NULL || value == NULL)
2550 /* For root varobj-s, a NULL value indicates a scoping issue.
2551 So, nothing to do in terms of checking for mutations. */
2553 else if (varobj_value_has_mutated (var, value, value_type (value)))
2555 /* The type has mutated, so the children are no longer valid.
2556 Just delete them, and tell our caller that the type has
2558 varobj_delete (var, NULL, 1 /* only_children */);
2559 var->num_children = -1;
2568 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2569 static struct value *
2570 value_of_child (struct varobj *parent, int index)
2572 struct value *value;
2574 value = (*parent->root->lang->value_of_child) (parent, index);
2579 /* GDB already has a command called "value_of_variable". Sigh. */
2581 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2583 if (var->root->is_valid)
2585 if (var->dynamic->pretty_printer != NULL)
2586 return varobj_value_get_print_value (var->value, var->format, var);
2587 return (*var->root->lang->value_of_variable) (var, format);
2594 varobj_formatted_print_options (struct value_print_options *opts,
2595 enum varobj_display_formats format)
2597 get_formatted_print_options (opts, format_code[(int) format]);
2598 opts->deref_ref = 0;
2603 varobj_value_get_print_value (struct value *value,
2604 enum varobj_display_formats format,
2607 struct ui_file *stb;
2608 struct cleanup *old_chain;
2609 char *thevalue = NULL;
2610 struct value_print_options opts;
2611 struct type *type = NULL;
2613 char *encoding = NULL;
2614 struct gdbarch *gdbarch = NULL;
2615 /* Initialize it just to avoid a GCC false warning. */
2616 CORE_ADDR str_addr = 0;
2617 int string_print = 0;
2622 stb = mem_fileopen ();
2623 old_chain = make_cleanup_ui_file_delete (stb);
2625 gdbarch = get_type_arch (value_type (value));
2627 if (gdb_python_initialized)
2629 PyObject *value_formatter = var->dynamic->pretty_printer;
2631 varobj_ensure_python_env (var);
2633 if (value_formatter)
2635 /* First check to see if we have any children at all. If so,
2636 we simply return {...}. */
2637 if (dynamic_varobj_has_child_method (var))
2639 do_cleanups (old_chain);
2640 return xstrdup ("{...}");
2643 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2645 struct value *replacement;
2646 PyObject *output = NULL;
2648 output = apply_varobj_pretty_printer (value_formatter,
2652 /* If we have string like output ... */
2655 make_cleanup_py_decref (output);
2657 /* If this is a lazy string, extract it. For lazy
2658 strings we always print as a string, so set
2660 if (gdbpy_is_lazy_string (output))
2662 gdbpy_extract_lazy_string (output, &str_addr, &type,
2664 make_cleanup (free_current_contents, &encoding);
2669 /* If it is a regular (non-lazy) string, extract
2670 it and copy the contents into THEVALUE. If the
2671 hint says to print it as a string, set
2672 string_print. Otherwise just return the extracted
2673 string as a value. */
2675 char *s = python_string_to_target_string (output);
2681 hint = gdbpy_get_display_hint (value_formatter);
2684 if (!strcmp (hint, "string"))
2690 thevalue = xmemdup (s, len + 1, len + 1);
2691 type = builtin_type (gdbarch)->builtin_char;
2696 do_cleanups (old_chain);
2700 make_cleanup (xfree, thevalue);
2703 gdbpy_print_stack ();
2706 /* If the printer returned a replacement value, set VALUE
2707 to REPLACEMENT. If there is not a replacement value,
2708 just use the value passed to this function. */
2710 value = replacement;
2716 varobj_formatted_print_options (&opts, format);
2718 /* If the THEVALUE has contents, it is a regular string. */
2720 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2721 else if (string_print)
2722 /* Otherwise, if string_print is set, and it is not a regular
2723 string, it is a lazy string. */
2724 val_print_string (type, encoding, str_addr, len, stb, &opts);
2726 /* All other cases. */
2727 common_val_print (value, stb, 0, &opts, current_language);
2729 thevalue = ui_file_xstrdup (stb, NULL);
2731 do_cleanups (old_chain);
2736 varobj_editable_p (struct varobj *var)
2740 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2743 type = varobj_get_value_type (var);
2745 switch (TYPE_CODE (type))
2747 case TYPE_CODE_STRUCT:
2748 case TYPE_CODE_UNION:
2749 case TYPE_CODE_ARRAY:
2750 case TYPE_CODE_FUNC:
2751 case TYPE_CODE_METHOD:
2761 /* Call VAR's value_is_changeable_p language-specific callback. */
2764 varobj_value_is_changeable_p (struct varobj *var)
2766 return var->root->lang->value_is_changeable_p (var);
2769 /* Return 1 if that varobj is floating, that is is always evaluated in the
2770 selected frame, and not bound to thread/frame. Such variable objects
2771 are created using '@' as frame specifier to -var-create. */
2773 varobj_floating_p (struct varobj *var)
2775 return var->root->floating;
2778 /* Implement the "value_is_changeable_p" varobj callback for most
2782 varobj_default_value_is_changeable_p (struct varobj *var)
2787 if (CPLUS_FAKE_CHILD (var))
2790 type = varobj_get_value_type (var);
2792 switch (TYPE_CODE (type))
2794 case TYPE_CODE_STRUCT:
2795 case TYPE_CODE_UNION:
2796 case TYPE_CODE_ARRAY:
2807 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2808 with an arbitrary caller supplied DATA pointer. */
2811 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2813 struct varobj_root *var_root, *var_root_next;
2815 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2817 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2819 var_root_next = var_root->next;
2821 (*func) (var_root->rootvar, data);
2825 extern void _initialize_varobj (void);
2827 _initialize_varobj (void)
2829 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2831 varobj_table = xmalloc (sizeof_table);
2832 memset (varobj_table, 0, sizeof_table);
2834 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
2836 _("Set varobj debugging."),
2837 _("Show varobj debugging."),
2838 _("When non-zero, varobj debugging is enabled."),
2839 NULL, show_varobjdebug,
2840 &setlist, &showlist);
2843 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2844 defined on globals. It is a helper for varobj_invalidate.
2846 This function is called after changing the symbol file, in this case the
2847 pointers to "struct type" stored by the varobj are no longer valid. All
2848 varobj must be either re-evaluated, or marked as invalid here. */
2851 varobj_invalidate_iter (struct varobj *var, void *unused)
2853 /* global and floating var must be re-evaluated. */
2854 if (var->root->floating || var->root->valid_block == NULL)
2856 struct varobj *tmp_var;
2858 /* Try to create a varobj with same expression. If we succeed
2859 replace the old varobj, otherwise invalidate it. */
2860 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2862 if (tmp_var != NULL)
2864 tmp_var->obj_name = xstrdup (var->obj_name);
2865 varobj_delete (var, NULL, 0);
2866 install_variable (tmp_var);
2869 var->root->is_valid = 0;
2871 else /* locals must be invalidated. */
2872 var->root->is_valid = 0;
2875 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2876 are defined on globals.
2877 Invalidated varobjs will be always printed in_scope="invalid". */
2880 varobj_invalidate (void)
2882 all_root_varobjs (varobj_invalidate_iter, NULL);