1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "exceptions.h"
22 #include "expression.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
36 #include "gdbthread.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
44 /* Non-zero if we want to see trace of varobj level stuff. */
48 show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 /* String representations of gdb's format codes */
55 char *varobj_format_string[] =
56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58 /* String representations of gdb's known languages */
59 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
61 /* True if we want to allow Python-based pretty-printing. */
62 static int pretty_printing = 0;
65 varobj_enable_pretty_printing (void)
72 /* Every root variable has one of these structures saved in its
73 varobj. Members which must be free'd are noted. */
77 /* Alloc'd expression for this parent. */
78 struct expression *exp;
80 /* Block for which this expression is valid */
81 struct block *valid_block;
83 /* The frame for this expression. This field is set iff valid_block is
85 struct frame_id frame;
87 /* The thread ID that this varobj_root belong to. This field
88 is only valid if valid_block is not NULL.
89 When not 0, indicates which thread 'frame' belongs to.
90 When 0, indicates that the thread list was empty when the varobj_root
94 /* If 1, the -var-update always recomputes the value in the
95 current thread and frame. Otherwise, variable object is
96 always updated in the specific scope/thread/frame */
99 /* Flag that indicates validity: set to 0 when this varobj_root refers
100 to symbols that do not exist anymore. */
103 /* Language info for this variable and its children */
104 struct language_specific *lang;
106 /* The varobj for this root node. */
107 struct varobj *rootvar;
109 /* Next root variable */
110 struct varobj_root *next;
113 /* Every variable in the system has a structure of this type defined
114 for it. This structure holds all information necessary to manipulate
115 a particular object variable. Members which must be freed are noted. */
119 /* Alloc'd name of the variable for this object.. If this variable is a
120 child, then this name will be the child's source name.
121 (bar, not foo.bar) */
122 /* NOTE: This is the "expression" */
125 /* Alloc'd expression for this child. Can be used to create a
126 root variable corresponding to this child. */
129 /* The alloc'd name for this variable's object. This is here for
130 convenience when constructing this object's children. */
133 /* Index of this variable in its parent or -1 */
136 /* The type of this variable. This can be NULL
137 for artifial variable objects -- currently, the "accessibility"
138 variable objects in C++. */
141 /* The value of this expression or subexpression. A NULL value
142 indicates there was an error getting this value.
143 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
144 the value is either NULL, or not lazy. */
147 /* The number of (immediate) children this variable has */
150 /* If this object is a child, this points to its immediate parent. */
151 struct varobj *parent;
153 /* Children of this object. */
154 VEC (varobj_p) *children;
156 /* Whether the children of this varobj were requested. This field is
157 used to decide if dynamic varobj should recompute their children.
158 In the event that the frontend never asked for the children, we
160 int children_requested;
162 /* Description of the root variable. Points to root variable for children. */
163 struct varobj_root *root;
165 /* The format of the output for this object */
166 enum varobj_display_formats format;
168 /* Was this variable updated via a varobj_set_value operation */
171 /* Last print value. */
174 /* Is this variable frozen. Frozen variables are never implicitly
175 updated by -var-update *
176 or -var-update <direct-or-indirect-parent>. */
179 /* Is the value of this variable intentionally not fetched? It is
180 not fetched if either the variable is frozen, or any parents is
184 /* Sub-range of children which the MI consumer has requested. If
185 FROM < 0 or TO < 0, means that all children have been
190 /* The pretty-printer constructor. If NULL, then the default
191 pretty-printer will be looked up. If None, then no
192 pretty-printer will be installed. */
193 PyObject *constructor;
195 /* The pretty-printer that has been constructed. If NULL, then a
196 new printer object is needed, and one will be constructed. */
197 PyObject *pretty_printer;
199 /* The iterator returned by the printer's 'children' method, or NULL
201 PyObject *child_iter;
203 /* We request one extra item from the iterator, so that we can
204 report to the caller whether there are more items than we have
205 already reported. However, we don't want to install this value
206 when we read it, because that will mess up future updates. So,
207 we stash it here instead. */
208 PyObject *saved_item;
214 struct cpstack *next;
217 /* A list of varobjs */
225 /* Private function prototypes */
227 /* Helper functions for the above subcommands. */
229 static int delete_variable (struct cpstack **, struct varobj *, int);
231 static void delete_variable_1 (struct cpstack **, int *,
232 struct varobj *, int, int);
234 static int install_variable (struct varobj *);
236 static void uninstall_variable (struct varobj *);
238 static struct varobj *create_child (struct varobj *, int, char *);
240 static struct varobj *
241 create_child_with_value (struct varobj *parent, int index, const char *name,
242 struct value *value);
244 /* Utility routines */
246 static struct varobj *new_variable (void);
248 static struct varobj *new_root_variable (void);
250 static void free_variable (struct varobj *var);
252 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
254 static struct type *get_type (struct varobj *var);
256 static struct type *get_value_type (struct varobj *var);
258 static struct type *get_target_type (struct type *);
260 static enum varobj_display_formats variable_default_display (struct varobj *);
262 static void cppush (struct cpstack **pstack, char *name);
264 static char *cppop (struct cpstack **pstack);
266 static int install_new_value (struct varobj *var, struct value *value,
269 /* Language-specific routines. */
271 static enum varobj_languages variable_language (struct varobj *var);
273 static int number_of_children (struct varobj *);
275 static char *name_of_variable (struct varobj *);
277 static char *name_of_child (struct varobj *, int);
279 static struct value *value_of_root (struct varobj **var_handle, int *);
281 static struct value *value_of_child (struct varobj *parent, int index);
283 static char *my_value_of_variable (struct varobj *var,
284 enum varobj_display_formats format);
286 static char *value_get_print_value (struct value *value,
287 enum varobj_display_formats format,
290 static int varobj_value_is_changeable_p (struct varobj *var);
292 static int is_root_p (struct varobj *var);
296 static struct varobj *
297 varobj_add_child (struct varobj *var, const char *name, struct value *value);
299 #endif /* HAVE_PYTHON */
301 /* C implementation */
303 static int c_number_of_children (struct varobj *var);
305 static char *c_name_of_variable (struct varobj *parent);
307 static char *c_name_of_child (struct varobj *parent, int index);
309 static char *c_path_expr_of_child (struct varobj *child);
311 static struct value *c_value_of_root (struct varobj **var_handle);
313 static struct value *c_value_of_child (struct varobj *parent, int index);
315 static struct type *c_type_of_child (struct varobj *parent, int index);
317 static char *c_value_of_variable (struct varobj *var,
318 enum varobj_display_formats format);
320 /* C++ implementation */
322 static int cplus_number_of_children (struct varobj *var);
324 static void cplus_class_num_children (struct type *type, int children[3]);
326 static char *cplus_name_of_variable (struct varobj *parent);
328 static char *cplus_name_of_child (struct varobj *parent, int index);
330 static char *cplus_path_expr_of_child (struct varobj *child);
332 static struct value *cplus_value_of_root (struct varobj **var_handle);
334 static struct value *cplus_value_of_child (struct varobj *parent, int index);
336 static struct type *cplus_type_of_child (struct varobj *parent, int index);
338 static char *cplus_value_of_variable (struct varobj *var,
339 enum varobj_display_formats format);
341 /* Java implementation */
343 static int java_number_of_children (struct varobj *var);
345 static char *java_name_of_variable (struct varobj *parent);
347 static char *java_name_of_child (struct varobj *parent, int index);
349 static char *java_path_expr_of_child (struct varobj *child);
351 static struct value *java_value_of_root (struct varobj **var_handle);
353 static struct value *java_value_of_child (struct varobj *parent, int index);
355 static struct type *java_type_of_child (struct varobj *parent, int index);
357 static char *java_value_of_variable (struct varobj *var,
358 enum varobj_display_formats format);
360 /* The language specific vector */
362 struct language_specific
365 /* The language of this variable */
366 enum varobj_languages language;
368 /* The number of children of PARENT. */
369 int (*number_of_children) (struct varobj * parent);
371 /* The name (expression) of a root varobj. */
372 char *(*name_of_variable) (struct varobj * parent);
374 /* The name of the INDEX'th child of PARENT. */
375 char *(*name_of_child) (struct varobj * parent, int index);
377 /* Returns the rooted expression of CHILD, which is a variable
378 obtain that has some parent. */
379 char *(*path_expr_of_child) (struct varobj * child);
381 /* The ``struct value *'' of the root variable ROOT. */
382 struct value *(*value_of_root) (struct varobj ** root_handle);
384 /* The ``struct value *'' of the INDEX'th child of PARENT. */
385 struct value *(*value_of_child) (struct varobj * parent, int index);
387 /* The type of the INDEX'th child of PARENT. */
388 struct type *(*type_of_child) (struct varobj * parent, int index);
390 /* The current value of VAR. */
391 char *(*value_of_variable) (struct varobj * var,
392 enum varobj_display_formats format);
395 /* Array of known source language routines. */
396 static struct language_specific languages[vlang_end] = {
397 /* Unknown (try treating as C */
400 c_number_of_children,
403 c_path_expr_of_child,
412 c_number_of_children,
415 c_path_expr_of_child,
424 cplus_number_of_children,
425 cplus_name_of_variable,
427 cplus_path_expr_of_child,
429 cplus_value_of_child,
431 cplus_value_of_variable}
436 java_number_of_children,
437 java_name_of_variable,
439 java_path_expr_of_child,
443 java_value_of_variable}
446 /* A little convenience enum for dealing with C++/Java */
449 v_public = 0, v_private, v_protected
454 /* Mappings of varobj_display_formats enums to gdb's format codes */
455 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
457 /* Header of the list of root variable objects */
458 static struct varobj_root *rootlist;
460 /* Prime number indicating the number of buckets in the hash table */
461 /* A prime large enough to avoid too many colisions */
462 #define VAROBJ_TABLE_SIZE 227
464 /* Pointer to the varobj hash table (built at run time) */
465 static struct vlist **varobj_table;
467 /* Is the variable X one of our "fake" children? */
468 #define CPLUS_FAKE_CHILD(x) \
469 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472 /* API Implementation */
474 is_root_p (struct varobj *var)
476 return (var->root->rootvar == var);
480 /* Helper function to install a Python environment suitable for
481 use during operations on VAR. */
483 varobj_ensure_python_env (struct varobj *var)
485 return ensure_python_env (var->root->exp->gdbarch,
486 var->root->exp->language_defn);
490 /* Creates a varobj (not its children) */
492 /* Return the full FRAME which corresponds to the given CORE_ADDR
493 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
495 static struct frame_info *
496 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
498 struct frame_info *frame = NULL;
500 if (frame_addr == (CORE_ADDR) 0)
503 for (frame = get_current_frame ();
505 frame = get_prev_frame (frame))
507 /* The CORE_ADDR we get as argument was parsed from a string GDB
508 output as $fp. This output got truncated to gdbarch_addr_bit.
509 Truncate the frame base address in the same manner before
510 comparing it against our argument. */
511 CORE_ADDR frame_base = get_frame_base_address (frame);
512 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
514 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
515 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
517 if (frame_base == frame_addr)
525 varobj_create (char *objname,
526 char *expression, CORE_ADDR frame, enum varobj_type type)
529 struct cleanup *old_chain;
531 /* Fill out a varobj structure for the (root) variable being constructed. */
532 var = new_root_variable ();
533 old_chain = make_cleanup_free_variable (var);
535 if (expression != NULL)
537 struct frame_info *fi;
538 struct frame_id old_id = null_frame_id;
541 enum varobj_languages lang;
542 struct value *value = NULL;
544 /* Parse and evaluate the expression, filling in as much of the
545 variable's data as possible. */
547 if (has_stack_frames ())
549 /* Allow creator to specify context of variable */
550 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
551 fi = get_selected_frame (NULL);
553 /* FIXME: cagney/2002-11-23: This code should be doing a
554 lookup using the frame ID and not just the frame's
555 ``address''. This, of course, means an interface
556 change. However, with out that interface change ISAs,
557 such as the ia64 with its two stacks, won't work.
558 Similar goes for the case where there is a frameless
560 fi = find_frame_addr_in_frame_chain (frame);
565 /* frame = -2 means always use selected frame */
566 if (type == USE_SELECTED_FRAME)
567 var->root->floating = 1;
571 block = get_frame_block (fi, 0);
574 innermost_block = NULL;
575 /* Wrap the call to parse expression, so we can
576 return a sensible error. */
577 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
582 /* Don't allow variables to be created for types. */
583 if (var->root->exp->elts[0].opcode == OP_TYPE)
585 do_cleanups (old_chain);
586 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
587 " as an expression.\n");
591 var->format = variable_default_display (var);
592 var->root->valid_block = innermost_block;
593 var->name = xstrdup (expression);
594 /* For a root var, the name and the expr are the same. */
595 var->path_expr = xstrdup (expression);
597 /* When the frame is different from the current frame,
598 we must select the appropriate frame before parsing
599 the expression, otherwise the value will not be current.
600 Since select_frame is so benign, just call it for all cases. */
603 /* User could specify explicit FRAME-ADDR which was not found but
604 EXPRESSION is frame specific and we would not be able to evaluate
605 it correctly next time. With VALID_BLOCK set we must also set
606 FRAME and THREAD_ID. */
608 error (_("Failed to find the specified frame"));
610 var->root->frame = get_frame_id (fi);
611 var->root->thread_id = pid_to_thread_id (inferior_ptid);
612 old_id = get_frame_id (get_selected_frame (NULL));
616 /* We definitely need to catch errors here.
617 If evaluate_expression succeeds we got the value we wanted.
618 But if it fails, we still go on with a call to evaluate_type() */
619 if (!gdb_evaluate_expression (var->root->exp, &value))
621 /* Error getting the value. Try to at least get the
623 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
628 var->type = value_type (value);
630 install_new_value (var, value, 1 /* Initial assignment */);
632 /* Set language info */
633 lang = variable_language (var);
634 var->root->lang = &languages[lang];
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
639 /* Reset the selected frame */
640 if (frame_id_p (old_id))
641 select_frame (frame_find_by_id (old_id));
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
647 if ((var != NULL) && (objname != NULL))
649 var->obj_name = xstrdup (objname);
651 /* If a varobj name is duplicated, the install will fail so
653 if (!install_variable (var))
655 do_cleanups (old_chain);
660 discard_cleanups (old_chain);
664 /* Generates an unique name that can be used for a varobj */
667 varobj_gen_name (void)
672 /* generate a name for this object */
674 obj_name = xstrprintf ("var%d", id);
679 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
683 varobj_get_handle (char *objname)
687 unsigned int index = 0;
690 for (chp = objname; *chp; chp++)
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
700 error (_("Variable object not found"));
705 /* Given the handle, return the name of the object */
708 varobj_get_objname (struct varobj *var)
710 return var->obj_name;
713 /* Given the handle, return the expression represented by the object */
716 varobj_get_expression (struct varobj *var)
718 return name_of_variable (var);
721 /* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
726 varobj_delete (struct varobj *var, char ***dellist, int only_children)
730 struct cpstack *result = NULL;
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
743 /* We may have been asked to return a list of what has been deleted */
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
755 *cp = cppop (&result);
758 if (mycount || (*cp != NULL))
759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
768 /* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
771 instantiate_pretty_printer (PyObject *constructor, struct value *value)
773 PyObject *val_obj = NULL;
776 val_obj = value_to_value_object (value);
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
788 /* Set/Get variable object display format */
790 enum varobj_display_formats
791 varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
799 case FORMAT_HEXADECIMAL:
801 var->format = format;
805 var->format = variable_default_display (var);
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
811 xfree (var->print_value);
812 var->print_value = value_get_print_value (var->value, var->format, var);
818 enum varobj_display_formats
819 varobj_get_display_format (struct varobj *var)
825 varobj_get_display_hint (struct varobj *var)
830 struct cleanup *back_to = varobj_ensure_python_env (var);
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
835 do_cleanups (back_to);
841 /* Return true if the varobj has items after TO, false otherwise. */
844 varobj_has_more (struct varobj *var, int to)
846 if (VEC_length (varobj_p, var->children) > to)
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
852 /* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
857 varobj_get_thread_id (struct varobj *var)
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
866 varobj_set_frozen (struct varobj *var, int frozen)
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
879 varobj_get_frozen (struct varobj *var)
884 /* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
890 restrict_range (VEC (varobj_p) *children, int *from, int *to)
892 if (*from < 0 || *to < 0)
895 *to = VEC_length (varobj_p, children);
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
910 /* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
914 install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
923 if (VEC_length (varobj_p, var->children) < index + 1)
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
930 VEC_safe_push (varobj_p, *new, child);
936 varobj_p existing = VEC_index (varobj_p, var->children, index);
938 if (install_new_value (existing, value, 0))
941 VEC_safe_push (varobj_p, *changed, existing);
944 VEC_safe_push (varobj_p, *unchanged, existing);
949 dynamic_varobj_has_child_method (struct varobj *var)
951 struct cleanup *back_to;
952 PyObject *printer = var->pretty_printer;
955 back_to = varobj_ensure_python_env (var);
956 result = PyObject_HasAttr (printer, gdbpy_children_cst);
957 do_cleanups (back_to);
964 update_dynamic_varobj_children (struct varobj *var,
965 VEC (varobj_p) **changed,
966 VEC (varobj_p) **new,
967 VEC (varobj_p) **unchanged,
974 struct cleanup *back_to;
977 PyObject *printer = var->pretty_printer;
979 back_to = varobj_ensure_python_env (var);
982 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
984 do_cleanups (back_to);
988 if (update_children || !var->child_iter)
990 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
995 gdbpy_print_stack ();
996 error (_("Null value returned for children"));
999 make_cleanup_py_decref (children);
1001 if (!PyIter_Check (children))
1002 error (_("Returned value is not iterable"));
1004 Py_XDECREF (var->child_iter);
1005 var->child_iter = PyObject_GetIter (children);
1006 if (!var->child_iter)
1008 gdbpy_print_stack ();
1009 error (_("Could not get children iterator"));
1012 Py_XDECREF (var->saved_item);
1013 var->saved_item = NULL;
1018 i = VEC_length (varobj_p, var->children);
1020 /* We ask for one extra child, so that MI can report whether there
1021 are more children. */
1022 for (; to < 0 || i < to + 1; ++i)
1026 /* See if there was a leftover from last time. */
1027 if (var->saved_item)
1029 item = var->saved_item;
1030 var->saved_item = NULL;
1033 item = PyIter_Next (var->child_iter);
1038 /* We don't want to push the extra child on any report list. */
1039 if (to < 0 || i < to)
1044 struct cleanup *inner;
1045 int can_mention = from < 0 || i >= from;
1047 inner = make_cleanup_py_decref (item);
1049 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1050 error (_("Invalid item from the child list"));
1052 v = convert_value_from_python (py_v);
1054 gdbpy_print_stack ();
1055 install_dynamic_child (var, can_mention ? changed : NULL,
1056 can_mention ? new : NULL,
1057 can_mention ? unchanged : NULL,
1058 can_mention ? cchanged : NULL, i, name, v);
1059 do_cleanups (inner);
1063 Py_XDECREF (var->saved_item);
1064 var->saved_item = item;
1066 /* We want to truncate the child list just before this
1072 if (i < VEC_length (varobj_p, var->children))
1077 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1078 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1079 VEC_truncate (varobj_p, var->children, i);
1082 /* If there are fewer children than requested, note that the list of
1083 children changed. */
1084 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1087 var->num_children = VEC_length (varobj_p, var->children);
1089 do_cleanups (back_to);
1093 gdb_assert (0 && "should never be called if Python is not enabled");
1098 varobj_get_num_children (struct varobj *var)
1100 if (var->num_children == -1)
1102 if (var->pretty_printer)
1106 /* If we have a dynamic varobj, don't report -1 children.
1107 So, try to fetch some children first. */
1108 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1112 var->num_children = number_of_children (var);
1115 return var->num_children >= 0 ? var->num_children : 0;
1118 /* Creates a list of the immediate children of a variable object;
1119 the return code is the number of such children or -1 on error */
1122 varobj_list_children (struct varobj *var, int *from, int *to)
1125 int i, children_changed;
1127 var->children_requested = 1;
1129 if (var->pretty_printer)
1131 /* This, in theory, can result in the number of children changing without
1132 frontend noticing. But well, calling -var-list-children on the same
1133 varobj twice is not something a sane frontend would do. */
1134 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1136 restrict_range (var->children, from, to);
1137 return var->children;
1140 if (var->num_children == -1)
1141 var->num_children = number_of_children (var);
1143 /* If that failed, give up. */
1144 if (var->num_children == -1)
1145 return var->children;
1147 /* If we're called when the list of children is not yet initialized,
1148 allocate enough elements in it. */
1149 while (VEC_length (varobj_p, var->children) < var->num_children)
1150 VEC_safe_push (varobj_p, var->children, NULL);
1152 for (i = 0; i < var->num_children; i++)
1154 varobj_p existing = VEC_index (varobj_p, var->children, i);
1156 if (existing == NULL)
1158 /* Either it's the first call to varobj_list_children for
1159 this variable object, and the child was never created,
1160 or it was explicitly deleted by the client. */
1161 name = name_of_child (var, i);
1162 existing = create_child (var, i, name);
1163 VEC_replace (varobj_p, var->children, i, existing);
1167 restrict_range (var->children, from, to);
1168 return var->children;
1173 static struct varobj *
1174 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1176 varobj_p v = create_child_with_value (var,
1177 VEC_length (varobj_p, var->children),
1180 VEC_safe_push (varobj_p, var->children, v);
1184 #endif /* HAVE_PYTHON */
1186 /* Obtain the type of an object Variable as a string similar to the one gdb
1187 prints on the console */
1190 varobj_get_type (struct varobj *var)
1192 /* For the "fake" variables, do not return a type. (It's type is
1194 Do not return a type for invalid variables as well. */
1195 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1198 return type_to_string (var->type);
1201 /* Obtain the type of an object variable. */
1204 varobj_get_gdb_type (struct varobj *var)
1209 /* Return a pointer to the full rooted expression of varobj VAR.
1210 If it has not been computed yet, compute it. */
1212 varobj_get_path_expr (struct varobj *var)
1214 if (var->path_expr != NULL)
1215 return var->path_expr;
1218 /* For root varobjs, we initialize path_expr
1219 when creating varobj, so here it should be
1221 gdb_assert (!is_root_p (var));
1222 return (*var->root->lang->path_expr_of_child) (var);
1226 enum varobj_languages
1227 varobj_get_language (struct varobj *var)
1229 return variable_language (var);
1233 varobj_get_attributes (struct varobj *var)
1237 if (varobj_editable_p (var))
1238 /* FIXME: define masks for attributes */
1239 attributes |= 0x00000001; /* Editable */
1245 varobj_pretty_printed_p (struct varobj *var)
1247 return var->pretty_printer != NULL;
1251 varobj_get_formatted_value (struct varobj *var,
1252 enum varobj_display_formats format)
1254 return my_value_of_variable (var, format);
1258 varobj_get_value (struct varobj *var)
1260 return my_value_of_variable (var, var->format);
1263 /* Set the value of an object variable (if it is editable) to the
1264 value of the given expression */
1265 /* Note: Invokes functions that can call error() */
1268 varobj_set_value (struct varobj *var, char *expression)
1272 /* The argument "expression" contains the variable's new value.
1273 We need to first construct a legal expression for this -- ugh! */
1274 /* Does this cover all the bases? */
1275 struct expression *exp;
1276 struct value *value;
1277 int saved_input_radix = input_radix;
1278 char *s = expression;
1280 gdb_assert (varobj_editable_p (var));
1282 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1283 exp = parse_exp_1 (&s, 0, 0);
1284 if (!gdb_evaluate_expression (exp, &value))
1286 /* We cannot proceed without a valid expression. */
1291 /* All types that are editable must also be changeable. */
1292 gdb_assert (varobj_value_is_changeable_p (var));
1294 /* The value of a changeable variable object must not be lazy. */
1295 gdb_assert (!value_lazy (var->value));
1297 /* Need to coerce the input. We want to check if the
1298 value of the variable object will be different
1299 after assignment, and the first thing value_assign
1300 does is coerce the input.
1301 For example, if we are assigning an array to a pointer variable we
1302 should compare the pointer with the the array's address, not with the
1304 value = coerce_array (value);
1306 /* The new value may be lazy. gdb_value_assign, or
1307 rather value_contents, will take care of this.
1308 If fetching of the new value will fail, gdb_value_assign
1309 with catch the exception. */
1310 if (!gdb_value_assign (var->value, value, &val))
1313 /* If the value has changed, record it, so that next -var-update can
1314 report this change. If a variable had a value of '1', we've set it
1315 to '333' and then set again to '1', when -var-update will report this
1316 variable as changed -- because the first assignment has set the
1317 'updated' flag. There's no need to optimize that, because return value
1318 of -var-update should be considered an approximation. */
1319 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1320 input_radix = saved_input_radix;
1326 /* A helper function to install a constructor function and visualizer
1330 install_visualizer (struct varobj *var, PyObject *constructor,
1331 PyObject *visualizer)
1333 Py_XDECREF (var->constructor);
1334 var->constructor = constructor;
1336 Py_XDECREF (var->pretty_printer);
1337 var->pretty_printer = visualizer;
1339 Py_XDECREF (var->child_iter);
1340 var->child_iter = NULL;
1343 /* Install the default visualizer for VAR. */
1346 install_default_visualizer (struct varobj *var)
1348 if (pretty_printing)
1350 PyObject *pretty_printer = NULL;
1354 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1355 if (! pretty_printer)
1357 gdbpy_print_stack ();
1358 error (_("Cannot instantiate printer for default visualizer"));
1362 if (pretty_printer == Py_None)
1364 Py_DECREF (pretty_printer);
1365 pretty_printer = NULL;
1368 install_visualizer (var, NULL, pretty_printer);
1372 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1373 make a new object. */
1376 construct_visualizer (struct varobj *var, PyObject *constructor)
1378 PyObject *pretty_printer;
1380 Py_INCREF (constructor);
1381 if (constructor == Py_None)
1382 pretty_printer = NULL;
1385 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1386 if (! pretty_printer)
1388 gdbpy_print_stack ();
1389 Py_DECREF (constructor);
1390 constructor = Py_None;
1391 Py_INCREF (constructor);
1394 if (pretty_printer == Py_None)
1396 Py_DECREF (pretty_printer);
1397 pretty_printer = NULL;
1401 install_visualizer (var, constructor, pretty_printer);
1404 #endif /* HAVE_PYTHON */
1406 /* A helper function for install_new_value. This creates and installs
1407 a visualizer for VAR, if appropriate. */
1410 install_new_value_visualizer (struct varobj *var)
1413 /* If the constructor is None, then we want the raw value. If VAR
1414 does not have a value, just skip this. */
1415 if (var->constructor != Py_None && var->value)
1417 struct cleanup *cleanup;
1419 cleanup = varobj_ensure_python_env (var);
1421 if (!var->constructor)
1422 install_default_visualizer (var);
1424 construct_visualizer (var, var->constructor);
1426 do_cleanups (cleanup);
1433 /* Assign a new value to a variable object. If INITIAL is non-zero,
1434 this is the first assignement after the variable object was just
1435 created, or changed type. In that case, just assign the value
1437 Otherwise, assign the new value, and return 1 if the value is different
1438 from the current one, 0 otherwise. The comparison is done on textual
1439 representation of value. Therefore, some types need not be compared. E.g.
1440 for structures the reported value is always "{...}", so no comparison is
1441 necessary here. If the old value was NULL and new one is not, or vice versa,
1444 The VALUE parameter should not be released -- the function will
1445 take care of releasing it when needed. */
1447 install_new_value (struct varobj *var, struct value *value, int initial)
1452 int intentionally_not_fetched = 0;
1453 char *print_value = NULL;
1455 /* We need to know the varobj's type to decide if the value should
1456 be fetched or not. C++ fake children (public/protected/private) don't have
1458 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1459 changeable = varobj_value_is_changeable_p (var);
1461 /* If the type has custom visualizer, we consider it to be always
1462 changeable. FIXME: need to make sure this behaviour will not
1463 mess up read-sensitive values. */
1464 if (var->pretty_printer)
1467 need_to_fetch = changeable;
1469 /* We are not interested in the address of references, and given
1470 that in C++ a reference is not rebindable, it cannot
1471 meaningfully change. So, get hold of the real value. */
1473 value = coerce_ref (value);
1475 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1476 /* For unions, we need to fetch the value implicitly because
1477 of implementation of union member fetch. When gdb
1478 creates a value for a field and the value of the enclosing
1479 structure is not lazy, it immediately copies the necessary
1480 bytes from the enclosing values. If the enclosing value is
1481 lazy, the call to value_fetch_lazy on the field will read
1482 the data from memory. For unions, that means we'll read the
1483 same memory more than once, which is not desirable. So
1487 /* The new value might be lazy. If the type is changeable,
1488 that is we'll be comparing values of this type, fetch the
1489 value now. Otherwise, on the next update the old value
1490 will be lazy, which means we've lost that old value. */
1491 if (need_to_fetch && value && value_lazy (value))
1493 struct varobj *parent = var->parent;
1494 int frozen = var->frozen;
1496 for (; !frozen && parent; parent = parent->parent)
1497 frozen |= parent->frozen;
1499 if (frozen && initial)
1501 /* For variables that are frozen, or are children of frozen
1502 variables, we don't do fetch on initial assignment.
1503 For non-initial assignemnt we do the fetch, since it means we're
1504 explicitly asked to compare the new value with the old one. */
1505 intentionally_not_fetched = 1;
1507 else if (!gdb_value_fetch_lazy (value))
1509 /* Set the value to NULL, so that for the next -var-update,
1510 we don't try to compare the new value with this value,
1511 that we couldn't even read. */
1517 /* Below, we'll be comparing string rendering of old and new
1518 values. Don't get string rendering if the value is
1519 lazy -- if it is, the code above has decided that the value
1520 should not be fetched. */
1521 if (value && !value_lazy (value) && !var->pretty_printer)
1522 print_value = value_get_print_value (value, var->format, var);
1524 /* If the type is changeable, compare the old and the new values.
1525 If this is the initial assignment, we don't have any old value
1527 if (!initial && changeable)
1529 /* If the value of the varobj was changed by -var-set-value, then the
1530 value in the varobj and in the target is the same. However, that value
1531 is different from the value that the varobj had after the previous
1532 -var-update. So need to the varobj as changed. */
1537 else if (! var->pretty_printer)
1539 /* Try to compare the values. That requires that both
1540 values are non-lazy. */
1541 if (var->not_fetched && value_lazy (var->value))
1543 /* This is a frozen varobj and the value was never read.
1544 Presumably, UI shows some "never read" indicator.
1545 Now that we've fetched the real value, we need to report
1546 this varobj as changed so that UI can show the real
1550 else if (var->value == NULL && value == NULL)
1553 else if (var->value == NULL || value == NULL)
1559 gdb_assert (!value_lazy (var->value));
1560 gdb_assert (!value_lazy (value));
1562 gdb_assert (var->print_value != NULL && print_value != NULL);
1563 if (strcmp (var->print_value, print_value) != 0)
1569 if (!initial && !changeable)
1571 /* For values that are not changeable, we don't compare the values.
1572 However, we want to notice if a value was not NULL and now is NULL,
1573 or vise versa, so that we report when top-level varobjs come in scope
1574 and leave the scope. */
1575 changed = (var->value != NULL) != (value != NULL);
1578 /* We must always keep the new value, since children depend on it. */
1579 if (var->value != NULL && var->value != value)
1580 value_free (var->value);
1583 value_incref (value);
1584 if (value && value_lazy (value) && intentionally_not_fetched)
1585 var->not_fetched = 1;
1587 var->not_fetched = 0;
1590 install_new_value_visualizer (var);
1592 /* If we installed a pretty-printer, re-compare the printed version
1593 to see if the variable changed. */
1594 if (var->pretty_printer)
1596 xfree (print_value);
1597 print_value = value_get_print_value (var->value, var->format, var);
1598 if ((var->print_value == NULL && print_value != NULL)
1599 || (var->print_value != NULL && print_value == NULL)
1600 || (var->print_value != NULL && print_value != NULL
1601 && strcmp (var->print_value, print_value) != 0))
1604 if (var->print_value)
1605 xfree (var->print_value);
1606 var->print_value = print_value;
1608 gdb_assert (!var->value || value_type (var->value));
1613 /* Return the requested range for a varobj. VAR is the varobj. FROM
1614 and TO are out parameters; *FROM and *TO will be set to the
1615 selected sub-range of VAR. If no range was selected using
1616 -var-set-update-range, then both will be -1. */
1618 varobj_get_child_range (struct varobj *var, int *from, int *to)
1624 /* Set the selected sub-range of children of VAR to start at index
1625 FROM and end at index TO. If either FROM or TO is less than zero,
1626 this is interpreted as a request for all children. */
1628 varobj_set_child_range (struct varobj *var, int from, int to)
1635 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1638 PyObject *mainmod, *globals, *constructor;
1639 struct cleanup *back_to;
1641 back_to = varobj_ensure_python_env (var);
1643 mainmod = PyImport_AddModule ("__main__");
1644 globals = PyModule_GetDict (mainmod);
1645 Py_INCREF (globals);
1646 make_cleanup_py_decref (globals);
1648 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1652 gdbpy_print_stack ();
1653 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1656 construct_visualizer (var, constructor);
1657 Py_XDECREF (constructor);
1659 /* If there are any children now, wipe them. */
1660 varobj_delete (var, NULL, 1 /* children only */);
1661 var->num_children = -1;
1663 do_cleanups (back_to);
1665 error (_("Python support required"));
1669 /* Update the values for a variable and its children. This is a
1670 two-pronged attack. First, re-parse the value for the root's
1671 expression to see if it's changed. Then go all the way
1672 through its children, reconstructing them and noting if they've
1675 The EXPLICIT parameter specifies if this call is result
1676 of MI request to update this specific variable, or
1677 result of implicit -var-update *. For implicit request, we don't
1678 update frozen variables.
1680 NOTE: This function may delete the caller's varobj. If it
1681 returns TYPE_CHANGED, then it has done this and VARP will be modified
1682 to point to the new varobj. */
1684 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1687 int type_changed = 0;
1690 VEC (varobj_update_result) *stack = NULL;
1691 VEC (varobj_update_result) *result = NULL;
1693 /* Frozen means frozen -- we don't check for any change in
1694 this varobj, including its going out of scope, or
1695 changing type. One use case for frozen varobjs is
1696 retaining previously evaluated expressions, and we don't
1697 want them to be reevaluated at all. */
1698 if (!explicit && (*varp)->frozen)
1701 if (!(*varp)->root->is_valid)
1703 varobj_update_result r = {0};
1706 r.status = VAROBJ_INVALID;
1707 VEC_safe_push (varobj_update_result, result, &r);
1711 if ((*varp)->root->rootvar == *varp)
1713 varobj_update_result r = {0};
1716 r.status = VAROBJ_IN_SCOPE;
1718 /* Update the root variable. value_of_root can return NULL
1719 if the variable is no longer around, i.e. we stepped out of
1720 the frame in which a local existed. We are letting the
1721 value_of_root variable dispose of the varobj if the type
1723 new = value_of_root (varp, &type_changed);
1726 r.type_changed = type_changed;
1727 if (install_new_value ((*varp), new, type_changed))
1731 r.status = VAROBJ_NOT_IN_SCOPE;
1732 r.value_installed = 1;
1734 if (r.status == VAROBJ_NOT_IN_SCOPE)
1736 if (r.type_changed || r.changed)
1737 VEC_safe_push (varobj_update_result, result, &r);
1741 VEC_safe_push (varobj_update_result, stack, &r);
1745 varobj_update_result r = {0};
1748 VEC_safe_push (varobj_update_result, stack, &r);
1751 /* Walk through the children, reconstructing them all. */
1752 while (!VEC_empty (varobj_update_result, stack))
1754 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1755 struct varobj *v = r.varobj;
1757 VEC_pop (varobj_update_result, stack);
1759 /* Update this variable, unless it's a root, which is already
1761 if (!r.value_installed)
1763 new = value_of_child (v->parent, v->index);
1764 if (install_new_value (v, new, 0 /* type not changed */))
1771 /* We probably should not get children of a varobj that has a
1772 pretty-printer, but for which -var-list-children was never
1774 if (v->pretty_printer)
1776 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1777 int i, children_changed = 0;
1782 if (!v->children_requested)
1786 /* If we initially did not have potential children, but
1787 now we do, consider the varobj as changed.
1788 Otherwise, if children were never requested, consider
1789 it as unchanged -- presumably, such varobj is not yet
1790 expanded in the UI, so we need not bother getting
1792 if (!varobj_has_more (v, 0))
1794 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1796 if (varobj_has_more (v, 0))
1801 VEC_safe_push (varobj_update_result, result, &r);
1806 /* If update_dynamic_varobj_children returns 0, then we have
1807 a non-conforming pretty-printer, so we skip it. */
1808 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1809 &children_changed, 1,
1812 if (children_changed || new)
1814 r.children_changed = 1;
1817 /* Push in reverse order so that the first child is
1818 popped from the work stack first, and so will be
1819 added to result first. This does not affect
1820 correctness, just "nicer". */
1821 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1823 varobj_p tmp = VEC_index (varobj_p, changed, i);
1824 varobj_update_result r = {0};
1828 r.value_installed = 1;
1829 VEC_safe_push (varobj_update_result, stack, &r);
1831 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1833 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1837 varobj_update_result r = {0};
1840 r.value_installed = 1;
1841 VEC_safe_push (varobj_update_result, stack, &r);
1844 if (r.changed || r.children_changed)
1845 VEC_safe_push (varobj_update_result, result, &r);
1847 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1848 has been put into the result vector. */
1849 VEC_free (varobj_p, changed);
1850 VEC_free (varobj_p, unchanged);
1856 /* Push any children. Use reverse order so that the first
1857 child is popped from the work stack first, and so
1858 will be added to result first. This does not
1859 affect correctness, just "nicer". */
1860 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1862 varobj_p c = VEC_index (varobj_p, v->children, i);
1864 /* Child may be NULL if explicitly deleted by -var-delete. */
1865 if (c != NULL && !c->frozen)
1867 varobj_update_result r = {0};
1870 VEC_safe_push (varobj_update_result, stack, &r);
1874 if (r.changed || r.type_changed)
1875 VEC_safe_push (varobj_update_result, result, &r);
1878 VEC_free (varobj_update_result, stack);
1884 /* Helper functions */
1887 * Variable object construction/destruction
1891 delete_variable (struct cpstack **resultp, struct varobj *var,
1892 int only_children_p)
1896 delete_variable_1 (resultp, &delcount, var,
1897 only_children_p, 1 /* remove_from_parent_p */ );
1902 /* Delete the variable object VAR and its children */
1903 /* IMPORTANT NOTE: If we delete a variable which is a child
1904 and the parent is not removed we dump core. It must be always
1905 initially called with remove_from_parent_p set */
1907 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1908 struct varobj *var, int only_children_p,
1909 int remove_from_parent_p)
1913 /* Delete any children of this variable, too. */
1914 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1916 varobj_p child = VEC_index (varobj_p, var->children, i);
1920 if (!remove_from_parent_p)
1921 child->parent = NULL;
1922 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1924 VEC_free (varobj_p, var->children);
1926 /* if we were called to delete only the children we are done here */
1927 if (only_children_p)
1930 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1931 /* If the name is null, this is a temporary variable, that has not
1932 yet been installed, don't report it, it belongs to the caller... */
1933 if (var->obj_name != NULL)
1935 cppush (resultp, xstrdup (var->obj_name));
1936 *delcountp = *delcountp + 1;
1939 /* If this variable has a parent, remove it from its parent's list */
1940 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1941 (as indicated by remove_from_parent_p) we don't bother doing an
1942 expensive list search to find the element to remove when we are
1943 discarding the list afterwards */
1944 if ((remove_from_parent_p) && (var->parent != NULL))
1946 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1949 if (var->obj_name != NULL)
1950 uninstall_variable (var);
1952 /* Free memory associated with this variable */
1953 free_variable (var);
1956 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1958 install_variable (struct varobj *var)
1961 struct vlist *newvl;
1963 unsigned int index = 0;
1966 for (chp = var->obj_name; *chp; chp++)
1968 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1971 cv = *(varobj_table + index);
1972 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1976 error (_("Duplicate variable object name"));
1978 /* Add varobj to hash table */
1979 newvl = xmalloc (sizeof (struct vlist));
1980 newvl->next = *(varobj_table + index);
1982 *(varobj_table + index) = newvl;
1984 /* If root, add varobj to root list */
1985 if (is_root_p (var))
1987 /* Add to list of root variables */
1988 if (rootlist == NULL)
1989 var->root->next = NULL;
1991 var->root->next = rootlist;
1992 rootlist = var->root;
1998 /* Unistall the object VAR. */
2000 uninstall_variable (struct varobj *var)
2004 struct varobj_root *cr;
2005 struct varobj_root *prer;
2007 unsigned int index = 0;
2010 /* Remove varobj from hash table */
2011 for (chp = var->obj_name; *chp; chp++)
2013 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2016 cv = *(varobj_table + index);
2018 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2025 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2030 ("Assertion failed: Could not find variable object \"%s\" to delete",
2036 *(varobj_table + index) = cv->next;
2038 prev->next = cv->next;
2042 /* If root, remove varobj from root list */
2043 if (is_root_p (var))
2045 /* Remove from list of root variables */
2046 if (rootlist == var->root)
2047 rootlist = var->root->next;
2052 while ((cr != NULL) && (cr->rootvar != var))
2060 ("Assertion failed: Could not find varobj \"%s\" in root list",
2067 prer->next = cr->next;
2073 /* Create and install a child of the parent of the given name */
2074 static struct varobj *
2075 create_child (struct varobj *parent, int index, char *name)
2077 return create_child_with_value (parent, index, name,
2078 value_of_child (parent, index));
2081 static struct varobj *
2082 create_child_with_value (struct varobj *parent, int index, const char *name,
2083 struct value *value)
2085 struct varobj *child;
2088 child = new_variable ();
2090 /* name is allocated by name_of_child */
2091 /* FIXME: xstrdup should not be here. */
2092 child->name = xstrdup (name);
2093 child->index = index;
2094 child->parent = parent;
2095 child->root = parent->root;
2096 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2097 child->obj_name = childs_name;
2098 install_variable (child);
2100 /* Compute the type of the child. Must do this before
2101 calling install_new_value. */
2103 /* If the child had no evaluation errors, var->value
2104 will be non-NULL and contain a valid type. */
2105 child->type = value_type (value);
2107 /* Otherwise, we must compute the type. */
2108 child->type = (*child->root->lang->type_of_child) (child->parent,
2110 install_new_value (child, value, 1);
2117 * Miscellaneous utility functions.
2120 /* Allocate memory and initialize a new variable */
2121 static struct varobj *
2126 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2128 var->path_expr = NULL;
2129 var->obj_name = NULL;
2133 var->num_children = -1;
2135 var->children = NULL;
2139 var->print_value = NULL;
2141 var->not_fetched = 0;
2142 var->children_requested = 0;
2145 var->constructor = 0;
2146 var->pretty_printer = 0;
2147 var->child_iter = 0;
2148 var->saved_item = 0;
2153 /* Allocate memory and initialize a new root variable */
2154 static struct varobj *
2155 new_root_variable (void)
2157 struct varobj *var = new_variable ();
2159 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2160 var->root->lang = NULL;
2161 var->root->exp = NULL;
2162 var->root->valid_block = NULL;
2163 var->root->frame = null_frame_id;
2164 var->root->floating = 0;
2165 var->root->rootvar = NULL;
2166 var->root->is_valid = 1;
2171 /* Free any allocated memory associated with VAR. */
2173 free_variable (struct varobj *var)
2176 if (var->pretty_printer)
2178 struct cleanup *cleanup = varobj_ensure_python_env (var);
2179 Py_XDECREF (var->constructor);
2180 Py_XDECREF (var->pretty_printer);
2181 Py_XDECREF (var->child_iter);
2182 Py_XDECREF (var->saved_item);
2183 do_cleanups (cleanup);
2187 value_free (var->value);
2189 /* Free the expression if this is a root variable. */
2190 if (is_root_p (var))
2192 xfree (var->root->exp);
2197 xfree (var->obj_name);
2198 xfree (var->print_value);
2199 xfree (var->path_expr);
2204 do_free_variable_cleanup (void *var)
2206 free_variable (var);
2209 static struct cleanup *
2210 make_cleanup_free_variable (struct varobj *var)
2212 return make_cleanup (do_free_variable_cleanup, var);
2215 /* This returns the type of the variable. It also skips past typedefs
2216 to return the real type of the variable.
2218 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2219 except within get_target_type and get_type. */
2220 static struct type *
2221 get_type (struct varobj *var)
2227 type = check_typedef (type);
2232 /* Return the type of the value that's stored in VAR,
2233 or that would have being stored there if the
2234 value were accessible.
2236 This differs from VAR->type in that VAR->type is always
2237 the true type of the expession in the source language.
2238 The return value of this function is the type we're
2239 actually storing in varobj, and using for displaying
2240 the values and for comparing previous and new values.
2242 For example, top-level references are always stripped. */
2243 static struct type *
2244 get_value_type (struct varobj *var)
2249 type = value_type (var->value);
2253 type = check_typedef (type);
2255 if (TYPE_CODE (type) == TYPE_CODE_REF)
2256 type = get_target_type (type);
2258 type = check_typedef (type);
2263 /* This returns the target type (or NULL) of TYPE, also skipping
2264 past typedefs, just like get_type ().
2266 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2267 except within get_target_type and get_type. */
2268 static struct type *
2269 get_target_type (struct type *type)
2273 type = TYPE_TARGET_TYPE (type);
2275 type = check_typedef (type);
2281 /* What is the default display for this variable? We assume that
2282 everything is "natural". Any exceptions? */
2283 static enum varobj_display_formats
2284 variable_default_display (struct varobj *var)
2286 return FORMAT_NATURAL;
2289 /* FIXME: The following should be generic for any pointer */
2291 cppush (struct cpstack **pstack, char *name)
2295 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2301 /* FIXME: The following should be generic for any pointer */
2303 cppop (struct cpstack **pstack)
2308 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2313 *pstack = (*pstack)->next;
2320 * Language-dependencies
2323 /* Common entry points */
2325 /* Get the language of variable VAR. */
2326 static enum varobj_languages
2327 variable_language (struct varobj *var)
2329 enum varobj_languages lang;
2331 switch (var->root->exp->language_defn->la_language)
2337 case language_cplus:
2348 /* Return the number of children for a given variable.
2349 The result of this function is defined by the language
2350 implementation. The number of children returned by this function
2351 is the number of children that the user will see in the variable
2354 number_of_children (struct varobj *var)
2356 return (*var->root->lang->number_of_children) (var);;
2359 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2361 name_of_variable (struct varobj *var)
2363 return (*var->root->lang->name_of_variable) (var);
2366 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2368 name_of_child (struct varobj *var, int index)
2370 return (*var->root->lang->name_of_child) (var, index);
2373 /* What is the ``struct value *'' of the root variable VAR?
2374 For floating variable object, evaluation can get us a value
2375 of different type from what is stored in varobj already. In
2377 - *type_changed will be set to 1
2378 - old varobj will be freed, and new one will be
2379 created, with the same name.
2380 - *var_handle will be set to the new varobj
2381 Otherwise, *type_changed will be set to 0. */
2382 static struct value *
2383 value_of_root (struct varobj **var_handle, int *type_changed)
2387 if (var_handle == NULL)
2392 /* This should really be an exception, since this should
2393 only get called with a root variable. */
2395 if (!is_root_p (var))
2398 if (var->root->floating)
2400 struct varobj *tmp_var;
2401 char *old_type, *new_type;
2403 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2404 USE_SELECTED_FRAME);
2405 if (tmp_var == NULL)
2409 old_type = varobj_get_type (var);
2410 new_type = varobj_get_type (tmp_var);
2411 if (strcmp (old_type, new_type) == 0)
2413 /* The expression presently stored inside var->root->exp
2414 remembers the locations of local variables relatively to
2415 the frame where the expression was created (in DWARF location
2416 button, for example). Naturally, those locations are not
2417 correct in other frames, so update the expression. */
2419 struct expression *tmp_exp = var->root->exp;
2421 var->root->exp = tmp_var->root->exp;
2422 tmp_var->root->exp = tmp_exp;
2424 varobj_delete (tmp_var, NULL, 0);
2429 tmp_var->obj_name = xstrdup (var->obj_name);
2430 tmp_var->from = var->from;
2431 tmp_var->to = var->to;
2432 varobj_delete (var, NULL, 0);
2434 install_variable (tmp_var);
2435 *var_handle = tmp_var;
2447 return (*var->root->lang->value_of_root) (var_handle);
2450 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2451 static struct value *
2452 value_of_child (struct varobj *parent, int index)
2454 struct value *value;
2456 value = (*parent->root->lang->value_of_child) (parent, index);
2461 /* GDB already has a command called "value_of_variable". Sigh. */
2463 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2465 if (var->root->is_valid)
2467 if (var->pretty_printer)
2468 return value_get_print_value (var->value, var->format, var);
2469 return (*var->root->lang->value_of_variable) (var, format);
2476 value_get_print_value (struct value *value, enum varobj_display_formats format,
2479 struct ui_file *stb;
2480 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2481 gdb_byte *thevalue = NULL;
2482 struct value_print_options opts;
2483 struct type *type = NULL;
2485 char *encoding = NULL;
2486 struct gdbarch *gdbarch = NULL;
2487 /* Initialize it just to avoid a GCC false warning. */
2488 CORE_ADDR str_addr = 0;
2489 int string_print = 0;
2494 gdbarch = get_type_arch (value_type (value));
2497 PyObject *value_formatter = var->pretty_printer;
2499 varobj_ensure_python_env (var);
2501 if (value_formatter)
2503 /* First check to see if we have any children at all. If so,
2504 we simply return {...}. */
2505 if (dynamic_varobj_has_child_method (var))
2506 return xstrdup ("{...}");
2508 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2511 struct value *replacement;
2512 PyObject *output = NULL;
2514 hint = gdbpy_get_display_hint (value_formatter);
2517 if (!strcmp (hint, "string"))
2522 output = apply_varobj_pretty_printer (value_formatter,
2526 make_cleanup_py_decref (output);
2528 if (gdbpy_is_lazy_string (output))
2530 gdbpy_extract_lazy_string (output, &str_addr, &type,
2532 make_cleanup (free_current_contents, &encoding);
2538 = python_string_to_target_python_string (output);
2542 char *s = PyString_AsString (py_str);
2544 len = PyString_Size (py_str);
2545 thevalue = xmemdup (s, len + 1, len + 1);
2546 type = builtin_type (gdbarch)->builtin_char;
2551 do_cleanups (old_chain);
2555 make_cleanup (xfree, thevalue);
2558 gdbpy_print_stack ();
2562 value = replacement;
2568 stb = mem_fileopen ();
2569 make_cleanup_ui_file_delete (stb);
2571 get_formatted_print_options (&opts, format_code[(int) format]);
2575 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2576 else if (string_print)
2577 val_print_string (type, encoding, str_addr, len, stb, &opts);
2579 common_val_print (value, stb, 0, &opts, current_language);
2580 thevalue = ui_file_xstrdup (stb, NULL);
2582 do_cleanups (old_chain);
2587 varobj_editable_p (struct varobj *var)
2591 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2594 type = get_value_type (var);
2596 switch (TYPE_CODE (type))
2598 case TYPE_CODE_STRUCT:
2599 case TYPE_CODE_UNION:
2600 case TYPE_CODE_ARRAY:
2601 case TYPE_CODE_FUNC:
2602 case TYPE_CODE_METHOD:
2612 /* Return non-zero if changes in value of VAR
2613 must be detected and reported by -var-update.
2614 Return zero is -var-update should never report
2615 changes of such values. This makes sense for structures
2616 (since the changes in children values will be reported separately),
2617 or for artifical objects (like 'public' pseudo-field in C++).
2619 Return value of 0 means that gdb need not call value_fetch_lazy
2620 for the value of this variable object. */
2622 varobj_value_is_changeable_p (struct varobj *var)
2627 if (CPLUS_FAKE_CHILD (var))
2630 type = get_value_type (var);
2632 switch (TYPE_CODE (type))
2634 case TYPE_CODE_STRUCT:
2635 case TYPE_CODE_UNION:
2636 case TYPE_CODE_ARRAY:
2647 /* Return 1 if that varobj is floating, that is is always evaluated in the
2648 selected frame, and not bound to thread/frame. Such variable objects
2649 are created using '@' as frame specifier to -var-create. */
2651 varobj_floating_p (struct varobj *var)
2653 return var->root->floating;
2656 /* Given the value and the type of a variable object,
2657 adjust the value and type to those necessary
2658 for getting children of the variable object.
2659 This includes dereferencing top-level references
2660 to all types and dereferencing pointers to
2663 Both TYPE and *TYPE should be non-null. VALUE
2664 can be null if we want to only translate type.
2665 *VALUE can be null as well -- if the parent
2668 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2669 depending on whether pointer was dereferenced
2670 in this function. */
2672 adjust_value_for_child_access (struct value **value,
2676 gdb_assert (type && *type);
2681 *type = check_typedef (*type);
2683 /* The type of value stored in varobj, that is passed
2684 to us, is already supposed to be
2685 reference-stripped. */
2687 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2689 /* Pointers to structures are treated just like
2690 structures when accessing children. Don't
2691 dererences pointers to other types. */
2692 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2694 struct type *target_type = get_target_type (*type);
2695 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2696 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2698 if (value && *value)
2700 int success = gdb_value_ind (*value, value);
2705 *type = target_type;
2711 /* The 'get_target_type' function calls check_typedef on
2712 result, so we can immediately check type code. No
2713 need to call check_typedef here. */
2718 c_number_of_children (struct varobj *var)
2720 struct type *type = get_value_type (var);
2722 struct type *target;
2724 adjust_value_for_child_access (NULL, &type, NULL);
2725 target = get_target_type (type);
2727 switch (TYPE_CODE (type))
2729 case TYPE_CODE_ARRAY:
2730 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2731 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2732 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2734 /* If we don't know how many elements there are, don't display
2739 case TYPE_CODE_STRUCT:
2740 case TYPE_CODE_UNION:
2741 children = TYPE_NFIELDS (type);
2745 /* The type here is a pointer to non-struct. Typically, pointers
2746 have one child, except for function ptrs, which have no children,
2747 and except for void*, as we don't know what to show.
2749 We can show char* so we allow it to be dereferenced. If you decide
2750 to test for it, please mind that a little magic is necessary to
2751 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2752 TYPE_NAME == "char" */
2753 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2754 || TYPE_CODE (target) == TYPE_CODE_VOID)
2761 /* Other types have no children */
2769 c_name_of_variable (struct varobj *parent)
2771 return xstrdup (parent->name);
2774 /* Return the value of element TYPE_INDEX of a structure
2775 value VALUE. VALUE's type should be a structure,
2776 or union, or a typedef to struct/union.
2778 Returns NULL if getting the value fails. Never throws. */
2779 static struct value *
2780 value_struct_element_index (struct value *value, int type_index)
2782 struct value *result = NULL;
2783 volatile struct gdb_exception e;
2784 struct type *type = value_type (value);
2786 type = check_typedef (type);
2788 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2789 || TYPE_CODE (type) == TYPE_CODE_UNION);
2791 TRY_CATCH (e, RETURN_MASK_ERROR)
2793 if (field_is_static (&TYPE_FIELD (type, type_index)))
2794 result = value_static_field (type, type_index);
2796 result = value_primitive_field (value, 0, type_index, type);
2808 /* Obtain the information about child INDEX of the variable
2810 If CNAME is not null, sets *CNAME to the name of the child relative
2812 If CVALUE is not null, sets *CVALUE to the value of the child.
2813 If CTYPE is not null, sets *CTYPE to the type of the child.
2815 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2816 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2819 c_describe_child (struct varobj *parent, int index,
2820 char **cname, struct value **cvalue, struct type **ctype,
2821 char **cfull_expression)
2823 struct value *value = parent->value;
2824 struct type *type = get_value_type (parent);
2825 char *parent_expression = NULL;
2834 if (cfull_expression)
2836 *cfull_expression = NULL;
2837 parent_expression = varobj_get_path_expr (parent);
2839 adjust_value_for_child_access (&value, &type, &was_ptr);
2841 switch (TYPE_CODE (type))
2843 case TYPE_CODE_ARRAY:
2845 *cname = xstrdup (int_string (index
2846 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2849 if (cvalue && value)
2851 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2853 gdb_value_subscript (value, real_index, cvalue);
2857 *ctype = get_target_type (type);
2859 if (cfull_expression)
2861 xstrprintf ("(%s)[%s]", parent_expression,
2863 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2869 case TYPE_CODE_STRUCT:
2870 case TYPE_CODE_UNION:
2872 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2874 if (cvalue && value)
2876 /* For C, varobj index is the same as type index. */
2877 *cvalue = value_struct_element_index (value, index);
2881 *ctype = TYPE_FIELD_TYPE (type, index);
2883 if (cfull_expression)
2885 char *join = was_ptr ? "->" : ".";
2887 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2888 TYPE_FIELD_NAME (type, index));
2895 *cname = xstrprintf ("*%s", parent->name);
2897 if (cvalue && value)
2899 int success = gdb_value_ind (value, cvalue);
2905 /* Don't use get_target_type because it calls
2906 check_typedef and here, we want to show the true
2907 declared type of the variable. */
2909 *ctype = TYPE_TARGET_TYPE (type);
2911 if (cfull_expression)
2912 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2917 /* This should not happen */
2919 *cname = xstrdup ("???");
2920 if (cfull_expression)
2921 *cfull_expression = xstrdup ("???");
2922 /* Don't set value and type, we don't know then. */
2927 c_name_of_child (struct varobj *parent, int index)
2931 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2936 c_path_expr_of_child (struct varobj *child)
2938 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2940 return child->path_expr;
2943 /* If frame associated with VAR can be found, switch
2944 to it and return 1. Otherwise, return 0. */
2946 check_scope (struct varobj *var)
2948 struct frame_info *fi;
2951 fi = frame_find_by_id (var->root->frame);
2956 CORE_ADDR pc = get_frame_pc (fi);
2958 if (pc < BLOCK_START (var->root->valid_block) ||
2959 pc >= BLOCK_END (var->root->valid_block))
2967 static struct value *
2968 c_value_of_root (struct varobj **var_handle)
2970 struct value *new_val = NULL;
2971 struct varobj *var = *var_handle;
2972 int within_scope = 0;
2973 struct cleanup *back_to;
2975 /* Only root variables can be updated... */
2976 if (!is_root_p (var))
2977 /* Not a root var */
2980 back_to = make_cleanup_restore_current_thread ();
2982 /* Determine whether the variable is still around. */
2983 if (var->root->valid_block == NULL || var->root->floating)
2985 else if (var->root->thread_id == 0)
2987 /* The program was single-threaded when the variable object was
2988 created. Technically, it's possible that the program became
2989 multi-threaded since then, but we don't support such
2991 within_scope = check_scope (var);
2995 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2996 if (in_thread_list (ptid))
2998 switch_to_thread (ptid);
2999 within_scope = check_scope (var);
3005 /* We need to catch errors here, because if evaluate
3006 expression fails we want to just return NULL. */
3007 gdb_evaluate_expression (var->root->exp, &new_val);
3011 do_cleanups (back_to);
3016 static struct value *
3017 c_value_of_child (struct varobj *parent, int index)
3019 struct value *value = NULL;
3021 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3025 static struct type *
3026 c_type_of_child (struct varobj *parent, int index)
3028 struct type *type = NULL;
3030 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3035 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3037 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3038 it will print out its children instead of "{...}". So we need to
3039 catch that case explicitly. */
3040 struct type *type = get_type (var);
3042 /* If we have a custom formatter, return whatever string it has
3044 if (var->pretty_printer && var->print_value)
3045 return xstrdup (var->print_value);
3047 /* Strip top-level references. */
3048 while (TYPE_CODE (type) == TYPE_CODE_REF)
3049 type = check_typedef (TYPE_TARGET_TYPE (type));
3051 switch (TYPE_CODE (type))
3053 case TYPE_CODE_STRUCT:
3054 case TYPE_CODE_UNION:
3055 return xstrdup ("{...}");
3058 case TYPE_CODE_ARRAY:
3062 number = xstrprintf ("[%d]", var->num_children);
3069 if (var->value == NULL)
3071 /* This can happen if we attempt to get the value of a struct
3072 member when the parent is an invalid pointer. This is an
3073 error condition, so we should tell the caller. */
3078 if (var->not_fetched && value_lazy (var->value))
3079 /* Frozen variable and no value yet. We don't
3080 implicitly fetch the value. MI response will
3081 use empty string for the value, which is OK. */
3084 gdb_assert (varobj_value_is_changeable_p (var));
3085 gdb_assert (!value_lazy (var->value));
3087 /* If the specified format is the current one,
3088 we can reuse print_value */
3089 if (format == var->format)
3090 return xstrdup (var->print_value);
3092 return value_get_print_value (var->value, format, var);
3102 cplus_number_of_children (struct varobj *var)
3105 int children, dont_know;
3110 if (!CPLUS_FAKE_CHILD (var))
3112 type = get_value_type (var);
3113 adjust_value_for_child_access (NULL, &type, NULL);
3115 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3116 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3120 cplus_class_num_children (type, kids);
3121 if (kids[v_public] != 0)
3123 if (kids[v_private] != 0)
3125 if (kids[v_protected] != 0)
3128 /* Add any baseclasses */
3129 children += TYPE_N_BASECLASSES (type);
3132 /* FIXME: save children in var */
3139 type = get_value_type (var->parent);
3140 adjust_value_for_child_access (NULL, &type, NULL);
3142 cplus_class_num_children (type, kids);
3143 if (strcmp (var->name, "public") == 0)
3144 children = kids[v_public];
3145 else if (strcmp (var->name, "private") == 0)
3146 children = kids[v_private];
3148 children = kids[v_protected];
3153 children = c_number_of_children (var);
3158 /* Compute # of public, private, and protected variables in this class.
3159 That means we need to descend into all baseclasses and find out
3160 how many are there, too. */
3162 cplus_class_num_children (struct type *type, int children[3])
3164 int i, vptr_fieldno;
3165 struct type *basetype = NULL;
3167 children[v_public] = 0;
3168 children[v_private] = 0;
3169 children[v_protected] = 0;
3171 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3172 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3174 /* If we have a virtual table pointer, omit it. Even if virtual
3175 table pointers are not specifically marked in the debug info,
3176 they should be artificial. */
3177 if ((type == basetype && i == vptr_fieldno)
3178 || TYPE_FIELD_ARTIFICIAL (type, i))
3181 if (TYPE_FIELD_PROTECTED (type, i))
3182 children[v_protected]++;
3183 else if (TYPE_FIELD_PRIVATE (type, i))
3184 children[v_private]++;
3186 children[v_public]++;
3191 cplus_name_of_variable (struct varobj *parent)
3193 return c_name_of_variable (parent);
3196 enum accessibility { private_field, protected_field, public_field };
3198 /* Check if field INDEX of TYPE has the specified accessibility.
3199 Return 0 if so and 1 otherwise. */
3201 match_accessibility (struct type *type, int index, enum accessibility acc)
3203 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3205 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3207 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3208 && !TYPE_FIELD_PROTECTED (type, index))
3215 cplus_describe_child (struct varobj *parent, int index,
3216 char **cname, struct value **cvalue, struct type **ctype,
3217 char **cfull_expression)
3219 struct value *value;
3222 char *parent_expression = NULL;
3230 if (cfull_expression)
3231 *cfull_expression = NULL;
3233 if (CPLUS_FAKE_CHILD (parent))
3235 value = parent->parent->value;
3236 type = get_value_type (parent->parent);
3237 if (cfull_expression)
3238 parent_expression = varobj_get_path_expr (parent->parent);
3242 value = parent->value;
3243 type = get_value_type (parent);
3244 if (cfull_expression)
3245 parent_expression = varobj_get_path_expr (parent);
3248 adjust_value_for_child_access (&value, &type, &was_ptr);
3250 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3251 || TYPE_CODE (type) == TYPE_CODE_UNION)
3253 char *join = was_ptr ? "->" : ".";
3255 if (CPLUS_FAKE_CHILD (parent))
3257 /* The fields of the class type are ordered as they
3258 appear in the class. We are given an index for a
3259 particular access control type ("public","protected",
3260 or "private"). We must skip over fields that don't
3261 have the access control we are looking for to properly
3262 find the indexed field. */
3263 int type_index = TYPE_N_BASECLASSES (type);
3264 enum accessibility acc = public_field;
3266 struct type *basetype = NULL;
3268 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3269 if (strcmp (parent->name, "private") == 0)
3270 acc = private_field;
3271 else if (strcmp (parent->name, "protected") == 0)
3272 acc = protected_field;
3276 if ((type == basetype && type_index == vptr_fieldno)
3277 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3279 else if (match_accessibility (type, type_index, acc))
3286 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3288 if (cvalue && value)
3289 *cvalue = value_struct_element_index (value, type_index);
3292 *ctype = TYPE_FIELD_TYPE (type, type_index);
3294 if (cfull_expression)
3295 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3297 TYPE_FIELD_NAME (type, type_index));
3299 else if (index < TYPE_N_BASECLASSES (type))
3301 /* This is a baseclass. */
3303 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3305 if (cvalue && value)
3306 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3310 *ctype = TYPE_FIELD_TYPE (type, index);
3313 if (cfull_expression)
3315 char *ptr = was_ptr ? "*" : "";
3317 /* Cast the parent to the base' type. Note that in gdb,
3320 will create an lvalue, for all appearences, so we don't
3321 need to use more fancy:
3324 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3326 TYPE_FIELD_NAME (type, index),
3333 char *access = NULL;
3336 cplus_class_num_children (type, children);
3338 /* Everything beyond the baseclasses can
3339 only be "public", "private", or "protected"
3341 The special "fake" children are always output by varobj in
3342 this order. So if INDEX == 2, it MUST be "protected". */
3343 index -= TYPE_N_BASECLASSES (type);
3347 if (children[v_public] > 0)
3349 else if (children[v_private] > 0)
3352 access = "protected";
3355 if (children[v_public] > 0)
3357 if (children[v_private] > 0)
3360 access = "protected";
3362 else if (children[v_private] > 0)
3363 access = "protected";
3366 /* Must be protected */
3367 access = "protected";
3374 gdb_assert (access);
3376 *cname = xstrdup (access);
3378 /* Value and type and full expression are null here. */
3383 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3388 cplus_name_of_child (struct varobj *parent, int index)
3392 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3397 cplus_path_expr_of_child (struct varobj *child)
3399 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3401 return child->path_expr;
3404 static struct value *
3405 cplus_value_of_root (struct varobj **var_handle)
3407 return c_value_of_root (var_handle);
3410 static struct value *
3411 cplus_value_of_child (struct varobj *parent, int index)
3413 struct value *value = NULL;
3415 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3419 static struct type *
3420 cplus_type_of_child (struct varobj *parent, int index)
3422 struct type *type = NULL;
3424 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3429 cplus_value_of_variable (struct varobj *var,
3430 enum varobj_display_formats format)
3433 /* If we have one of our special types, don't print out
3435 if (CPLUS_FAKE_CHILD (var))
3436 return xstrdup ("");
3438 return c_value_of_variable (var, format);
3444 java_number_of_children (struct varobj *var)
3446 return cplus_number_of_children (var);
3450 java_name_of_variable (struct varobj *parent)
3454 name = cplus_name_of_variable (parent);
3455 /* If the name has "-" in it, it is because we
3456 needed to escape periods in the name... */
3459 while (*p != '\000')
3470 java_name_of_child (struct varobj *parent, int index)
3474 name = cplus_name_of_child (parent, index);
3475 /* Escape any periods in the name... */
3478 while (*p != '\000')
3489 java_path_expr_of_child (struct varobj *child)
3494 static struct value *
3495 java_value_of_root (struct varobj **var_handle)
3497 return cplus_value_of_root (var_handle);
3500 static struct value *
3501 java_value_of_child (struct varobj *parent, int index)
3503 return cplus_value_of_child (parent, index);
3506 static struct type *
3507 java_type_of_child (struct varobj *parent, int index)
3509 return cplus_type_of_child (parent, index);
3513 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3515 return cplus_value_of_variable (var, format);
3518 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3519 with an arbitrary caller supplied DATA pointer. */
3522 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3524 struct varobj_root *var_root, *var_root_next;
3526 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3528 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3530 var_root_next = var_root->next;
3532 (*func) (var_root->rootvar, data);
3536 extern void _initialize_varobj (void);
3538 _initialize_varobj (void)
3540 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3542 varobj_table = xmalloc (sizeof_table);
3543 memset (varobj_table, 0, sizeof_table);
3545 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3547 Set varobj debugging."), _("\
3548 Show varobj debugging."), _("\
3549 When non-zero, varobj debugging is enabled."),
3552 &setlist, &showlist);
3555 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3556 defined on globals. It is a helper for varobj_invalidate. */
3559 varobj_invalidate_iter (struct varobj *var, void *unused)
3561 /* Floating varobjs are reparsed on each stop, so we don't care if the
3562 presently parsed expression refers to something that's gone. */
3563 if (var->root->floating)
3566 /* global var must be re-evaluated. */
3567 if (var->root->valid_block == NULL)
3569 struct varobj *tmp_var;
3571 /* Try to create a varobj with same expression. If we succeed
3572 replace the old varobj, otherwise invalidate it. */
3573 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3575 if (tmp_var != NULL)
3577 tmp_var->obj_name = xstrdup (var->obj_name);
3578 varobj_delete (var, NULL, 0);
3579 install_variable (tmp_var);
3582 var->root->is_valid = 0;
3584 else /* locals must be invalidated. */
3585 var->root->is_valid = 0;
3588 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3589 are defined on globals.
3590 Invalidated varobjs will be always printed in_scope="invalid". */
3593 varobj_invalidate (void)
3595 all_root_varobjs (varobj_invalidate_iter, NULL);