1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2012 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include "exceptions.h"
21 #include "expression.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdb_regex.h"
34 #include "gdbthread.h"
36 #include "ada-varobj.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
46 /* The names of varobjs representing anonymous structs or unions. */
47 #define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48 #define ANONYMOUS_UNION_NAME _("<anonymous union>")
50 /* Non-zero if we want to see trace of varobj level stuff. */
54 show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
60 /* String representations of gdb's format codes. */
61 char *varobj_format_string[] =
62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
64 /* String representations of gdb's known languages. */
65 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
67 /* True if we want to allow Python-based pretty-printing. */
68 static int pretty_printing = 0;
71 varobj_enable_pretty_printing (void)
78 /* Every root variable has one of these structures saved in its
79 varobj. Members which must be free'd are noted. */
83 /* Alloc'd expression for this parent. */
84 struct expression *exp;
86 /* Block for which this expression is valid. */
87 struct block *valid_block;
89 /* The frame for this expression. This field is set iff valid_block is
91 struct frame_id frame;
93 /* The thread ID that this varobj_root belong to. This field
94 is only valid if valid_block is not NULL.
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
102 always updated in the specific scope/thread/frame. */
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
109 /* Language info for this variable and its children. */
110 struct language_specific *lang;
112 /* The varobj for this root node. */
113 struct varobj *rootvar;
115 /* Next root variable */
116 struct varobj_root *next;
119 /* Every variable in the system has a structure of this type defined
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
125 /* Alloc'd name of the variable for this object. If this variable is a
126 child, then this name will be the child's source name.
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
139 /* Index of this variable in its parent or -1. */
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
153 /* The number of (immediate) children this variable has. */
156 /* If this object is a child, this points to its immediate parent. */
157 struct varobj *parent;
159 /* Children of this object. */
160 VEC (varobj_p) *children;
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
166 int children_requested;
168 /* Description of the root variable. Points to root variable for
170 struct varobj_root *root;
172 /* The format of the output for this object. */
173 enum varobj_display_formats format;
175 /* Was this variable updated via a varobj_set_value operation. */
178 /* Last print value. */
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
206 /* The iterator returned by the printer's 'children' method, or NULL
208 PyObject *child_iter;
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
221 struct cpstack *next;
224 /* A list of varobjs */
232 /* Private function prototypes */
234 /* Helper functions for the above subcommands. */
236 static int delete_variable (struct cpstack **, struct varobj *, int);
238 static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
241 static int install_variable (struct varobj *);
243 static void uninstall_variable (struct varobj *);
245 static struct varobj *create_child (struct varobj *, int, char *);
247 static struct varobj *
248 create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
251 /* Utility routines */
253 static struct varobj *new_variable (void);
255 static struct varobj *new_root_variable (void);
257 static void free_variable (struct varobj *var);
259 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
261 static struct type *get_type (struct varobj *var);
263 static struct type *get_value_type (struct varobj *var);
265 static struct type *get_target_type (struct type *);
267 static enum varobj_display_formats variable_default_display (struct varobj *);
269 static void cppush (struct cpstack **pstack, char *name);
271 static char *cppop (struct cpstack **pstack);
273 static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
276 static int install_new_value (struct varobj *var, struct value *value,
279 /* Language-specific routines. */
281 static enum varobj_languages variable_language (struct varobj *var);
283 static int number_of_children (struct varobj *);
285 static char *name_of_variable (struct varobj *);
287 static char *name_of_child (struct varobj *, int);
289 static struct value *value_of_root (struct varobj **var_handle, int *);
291 static struct value *value_of_child (struct varobj *parent, int index);
293 static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
296 static char *value_get_print_value (struct value *value,
297 enum varobj_display_formats format,
300 static int varobj_value_is_changeable_p (struct varobj *var);
302 static int is_root_p (struct varobj *var);
306 static struct varobj *varobj_add_child (struct varobj *var,
308 struct value *value);
310 #endif /* HAVE_PYTHON */
312 static int default_value_is_changeable_p (struct varobj *var);
314 /* C implementation */
316 static int c_number_of_children (struct varobj *var);
318 static char *c_name_of_variable (struct varobj *parent);
320 static char *c_name_of_child (struct varobj *parent, int index);
322 static char *c_path_expr_of_child (struct varobj *child);
324 static struct value *c_value_of_root (struct varobj **var_handle);
326 static struct value *c_value_of_child (struct varobj *parent, int index);
328 static struct type *c_type_of_child (struct varobj *parent, int index);
330 static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
333 /* C++ implementation */
335 static int cplus_number_of_children (struct varobj *var);
337 static void cplus_class_num_children (struct type *type, int children[3]);
339 static char *cplus_name_of_variable (struct varobj *parent);
341 static char *cplus_name_of_child (struct varobj *parent, int index);
343 static char *cplus_path_expr_of_child (struct varobj *child);
345 static struct value *cplus_value_of_root (struct varobj **var_handle);
347 static struct value *cplus_value_of_child (struct varobj *parent, int index);
349 static struct type *cplus_type_of_child (struct varobj *parent, int index);
351 static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
354 /* Java implementation */
356 static int java_number_of_children (struct varobj *var);
358 static char *java_name_of_variable (struct varobj *parent);
360 static char *java_name_of_child (struct varobj *parent, int index);
362 static char *java_path_expr_of_child (struct varobj *child);
364 static struct value *java_value_of_root (struct varobj **var_handle);
366 static struct value *java_value_of_child (struct varobj *parent, int index);
368 static struct type *java_type_of_child (struct varobj *parent, int index);
370 static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
373 /* Ada implementation */
375 static int ada_number_of_children (struct varobj *var);
377 static char *ada_name_of_variable (struct varobj *parent);
379 static char *ada_name_of_child (struct varobj *parent, int index);
381 static char *ada_path_expr_of_child (struct varobj *child);
383 static struct value *ada_value_of_root (struct varobj **var_handle);
385 static struct value *ada_value_of_child (struct varobj *parent, int index);
387 static struct type *ada_type_of_child (struct varobj *parent, int index);
389 static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
392 static int ada_value_is_changeable_p (struct varobj *var);
394 static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
397 /* The language specific vector */
399 struct language_specific
402 /* The language of this variable. */
403 enum varobj_languages language;
405 /* The number of children of PARENT. */
406 int (*number_of_children) (struct varobj * parent);
408 /* The name (expression) of a root varobj. */
409 char *(*name_of_variable) (struct varobj * parent);
411 /* The name of the INDEX'th child of PARENT. */
412 char *(*name_of_child) (struct varobj * parent, int index);
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
418 /* The ``struct value *'' of the root variable ROOT. */
419 struct value *(*value_of_root) (struct varobj ** root_handle);
421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
422 struct value *(*value_of_child) (struct varobj * parent, int index);
424 /* The type of the INDEX'th child of PARENT. */
425 struct type *(*type_of_child) (struct varobj * parent, int index);
427 /* The current value of VAR. */
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
441 /* Return nonzero if the type of VAR has mutated.
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
457 /* Array of known source language routines. */
458 static struct language_specific languages[vlang_end] = {
459 /* Unknown (try treating as C). */
462 c_number_of_children,
465 c_path_expr_of_child,
470 default_value_is_changeable_p,
471 NULL /* value_has_mutated */}
476 c_number_of_children,
479 c_path_expr_of_child,
484 default_value_is_changeable_p,
485 NULL /* value_has_mutated */}
490 cplus_number_of_children,
491 cplus_name_of_variable,
493 cplus_path_expr_of_child,
495 cplus_value_of_child,
497 cplus_value_of_variable,
498 default_value_is_changeable_p,
499 NULL /* value_has_mutated */}
504 java_number_of_children,
505 java_name_of_variable,
507 java_path_expr_of_child,
511 java_value_of_variable,
512 default_value_is_changeable_p,
513 NULL /* value_has_mutated */},
517 ada_number_of_children,
518 ada_name_of_variable,
520 ada_path_expr_of_child,
524 ada_value_of_variable,
525 ada_value_is_changeable_p,
526 ada_value_has_mutated}
529 /* A little convenience enum for dealing with C++/Java. */
532 v_public = 0, v_private, v_protected
537 /* Mappings of varobj_display_formats enums to gdb's format codes. */
538 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
540 /* Header of the list of root variable objects. */
541 static struct varobj_root *rootlist;
543 /* Prime number indicating the number of buckets in the hash table. */
544 /* A prime large enough to avoid too many colisions. */
545 #define VAROBJ_TABLE_SIZE 227
547 /* Pointer to the varobj hash table (built at run time). */
548 static struct vlist **varobj_table;
550 /* Is the variable X one of our "fake" children? */
551 #define CPLUS_FAKE_CHILD(x) \
552 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
555 /* API Implementation */
557 is_root_p (struct varobj *var)
559 return (var->root->rootvar == var);
563 /* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
565 static struct cleanup *
566 varobj_ensure_python_env (struct varobj *var)
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
573 /* Creates a varobj (not its children). */
575 /* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
578 static struct frame_info *
579 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
581 struct frame_info *frame = NULL;
583 if (frame_addr == (CORE_ADDR) 0)
586 for (frame = get_current_frame ();
588 frame = get_prev_frame (frame))
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
600 if (frame_base == frame_addr)
608 varobj_create (char *objname,
609 char *expression, CORE_ADDR frame, enum varobj_type type)
612 struct cleanup *old_chain;
614 /* Fill out a varobj structure for the (root) variable being constructed. */
615 var = new_root_variable ();
616 old_chain = make_cleanup_free_variable (var);
618 if (expression != NULL)
620 struct frame_info *fi;
621 struct frame_id old_id = null_frame_id;
624 enum varobj_languages lang;
625 struct value *value = NULL;
626 volatile struct gdb_exception except;
629 /* Parse and evaluate the expression, filling in as much of the
630 variable's data as possible. */
632 if (has_stack_frames ())
634 /* Allow creator to specify context of variable. */
635 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
636 fi = get_selected_frame (NULL);
638 /* FIXME: cagney/2002-11-23: This code should be doing a
639 lookup using the frame ID and not just the frame's
640 ``address''. This, of course, means an interface
641 change. However, with out that interface change ISAs,
642 such as the ia64 with its two stacks, won't work.
643 Similar goes for the case where there is a frameless
645 fi = find_frame_addr_in_frame_chain (frame);
650 /* frame = -2 means always use selected frame. */
651 if (type == USE_SELECTED_FRAME)
652 var->root->floating = 1;
658 block = get_frame_block (fi, 0);
659 pc = get_frame_pc (fi);
663 innermost_block = NULL;
664 /* Wrap the call to parse expression, so we can
665 return a sensible error. */
666 TRY_CATCH (except, RETURN_MASK_ERROR)
668 var->root->exp = parse_exp_1 (&p, pc, block, 0);
671 if (except.reason < 0)
673 do_cleanups (old_chain);
677 /* Don't allow variables to be created for types. */
678 if (var->root->exp->elts[0].opcode == OP_TYPE
679 || var->root->exp->elts[0].opcode == OP_TYPEOF
680 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
682 do_cleanups (old_chain);
683 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
684 " as an expression.\n");
688 var->format = variable_default_display (var);
689 var->root->valid_block = innermost_block;
690 var->name = xstrdup (expression);
691 /* For a root var, the name and the expr are the same. */
692 var->path_expr = xstrdup (expression);
694 /* When the frame is different from the current frame,
695 we must select the appropriate frame before parsing
696 the expression, otherwise the value will not be current.
697 Since select_frame is so benign, just call it for all cases. */
700 /* User could specify explicit FRAME-ADDR which was not found but
701 EXPRESSION is frame specific and we would not be able to evaluate
702 it correctly next time. With VALID_BLOCK set we must also set
703 FRAME and THREAD_ID. */
705 error (_("Failed to find the specified frame"));
707 var->root->frame = get_frame_id (fi);
708 var->root->thread_id = pid_to_thread_id (inferior_ptid);
709 old_id = get_frame_id (get_selected_frame (NULL));
713 /* We definitely need to catch errors here.
714 If evaluate_expression succeeds we got the value we wanted.
715 But if it fails, we still go on with a call to evaluate_type(). */
716 TRY_CATCH (except, RETURN_MASK_ERROR)
718 value = evaluate_expression (var->root->exp);
721 if (except.reason < 0)
723 /* Error getting the value. Try to at least get the
725 struct value *type_only_value = evaluate_type (var->root->exp);
727 var->type = value_type (type_only_value);
731 int real_type_found = 0;
733 var->type = value_actual_type (value, 0, &real_type_found);
735 value = value_cast (var->type, value);
738 /* Set language info */
739 lang = variable_language (var);
740 var->root->lang = &languages[lang];
742 install_new_value (var, value, 1 /* Initial assignment */);
744 /* Set ourselves as our root. */
745 var->root->rootvar = var;
747 /* Reset the selected frame. */
748 if (frame_id_p (old_id))
749 select_frame (frame_find_by_id (old_id));
752 /* If the variable object name is null, that means this
753 is a temporary variable, so don't install it. */
755 if ((var != NULL) && (objname != NULL))
757 var->obj_name = xstrdup (objname);
759 /* If a varobj name is duplicated, the install will fail so
761 if (!install_variable (var))
763 do_cleanups (old_chain);
768 discard_cleanups (old_chain);
772 /* Generates an unique name that can be used for a varobj. */
775 varobj_gen_name (void)
780 /* Generate a name for this object. */
782 obj_name = xstrprintf ("var%d", id);
787 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
788 error if OBJNAME cannot be found. */
791 varobj_get_handle (char *objname)
795 unsigned int index = 0;
798 for (chp = objname; *chp; chp++)
800 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
803 cv = *(varobj_table + index);
804 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
808 error (_("Variable object not found"));
813 /* Given the handle, return the name of the object. */
816 varobj_get_objname (struct varobj *var)
818 return var->obj_name;
821 /* Given the handle, return the expression represented by the object. */
824 varobj_get_expression (struct varobj *var)
826 return name_of_variable (var);
829 /* Deletes a varobj and all its children if only_children == 0,
830 otherwise deletes only the children; returns a malloc'ed list of
831 all the (malloc'ed) names of the variables that have been deleted
832 (NULL terminated). */
835 varobj_delete (struct varobj *var, char ***dellist, int only_children)
839 struct cpstack *result = NULL;
842 /* Initialize a stack for temporary results. */
843 cppush (&result, NULL);
846 /* Delete only the variable children. */
847 delcount = delete_variable (&result, var, 1 /* only the children */ );
849 /* Delete the variable and all its children. */
850 delcount = delete_variable (&result, var, 0 /* parent+children */ );
852 /* We may have been asked to return a list of what has been deleted. */
855 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
859 *cp = cppop (&result);
860 while ((*cp != NULL) && (mycount > 0))
864 *cp = cppop (&result);
867 if (mycount || (*cp != NULL))
868 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
877 /* Convenience function for varobj_set_visualizer. Instantiate a
878 pretty-printer for a given value. */
880 instantiate_pretty_printer (PyObject *constructor, struct value *value)
882 PyObject *val_obj = NULL;
885 val_obj = value_to_value_object (value);
889 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
896 /* Set/Get variable object display format. */
898 enum varobj_display_formats
899 varobj_set_display_format (struct varobj *var,
900 enum varobj_display_formats format)
907 case FORMAT_HEXADECIMAL:
909 var->format = format;
913 var->format = variable_default_display (var);
916 if (varobj_value_is_changeable_p (var)
917 && var->value && !value_lazy (var->value))
919 xfree (var->print_value);
920 var->print_value = value_get_print_value (var->value, var->format, var);
926 enum varobj_display_formats
927 varobj_get_display_format (struct varobj *var)
933 varobj_get_display_hint (struct varobj *var)
938 struct cleanup *back_to = varobj_ensure_python_env (var);
940 if (var->pretty_printer)
941 result = gdbpy_get_display_hint (var->pretty_printer);
943 do_cleanups (back_to);
949 /* Return true if the varobj has items after TO, false otherwise. */
952 varobj_has_more (struct varobj *var, int to)
954 if (VEC_length (varobj_p, var->children) > to)
956 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
957 && var->saved_item != NULL);
960 /* If the variable object is bound to a specific thread, that
961 is its evaluation can always be done in context of a frame
962 inside that thread, returns GDB id of the thread -- which
963 is always positive. Otherwise, returns -1. */
965 varobj_get_thread_id (struct varobj *var)
967 if (var->root->valid_block && var->root->thread_id > 0)
968 return var->root->thread_id;
974 varobj_set_frozen (struct varobj *var, int frozen)
976 /* When a variable is unfrozen, we don't fetch its value.
977 The 'not_fetched' flag remains set, so next -var-update
980 We don't fetch the value, because for structures the client
981 should do -var-update anyway. It would be bad to have different
982 client-size logic for structure and other types. */
983 var->frozen = frozen;
987 varobj_get_frozen (struct varobj *var)
992 /* A helper function that restricts a range to what is actually
993 available in a VEC. This follows the usual rules for the meaning
994 of FROM and TO -- if either is negative, the entire range is
998 restrict_range (VEC (varobj_p) *children, int *from, int *to)
1000 if (*from < 0 || *to < 0)
1003 *to = VEC_length (varobj_p, children);
1007 if (*from > VEC_length (varobj_p, children))
1008 *from = VEC_length (varobj_p, children);
1009 if (*to > VEC_length (varobj_p, children))
1010 *to = VEC_length (varobj_p, children);
1018 /* A helper for update_dynamic_varobj_children that installs a new
1019 child when needed. */
1022 install_dynamic_child (struct varobj *var,
1023 VEC (varobj_p) **changed,
1024 VEC (varobj_p) **type_changed,
1025 VEC (varobj_p) **new,
1026 VEC (varobj_p) **unchanged,
1030 struct value *value)
1032 if (VEC_length (varobj_p, var->children) < index + 1)
1034 /* There's no child yet. */
1035 struct varobj *child = varobj_add_child (var, name, value);
1039 VEC_safe_push (varobj_p, *new, child);
1045 varobj_p existing = VEC_index (varobj_p, var->children, index);
1047 int type_updated = update_type_if_necessary (existing, value);
1051 VEC_safe_push (varobj_p, *type_changed, existing);
1053 if (install_new_value (existing, value, 0))
1055 if (!type_updated && changed)
1056 VEC_safe_push (varobj_p, *changed, existing);
1058 else if (!type_updated && unchanged)
1059 VEC_safe_push (varobj_p, *unchanged, existing);
1064 dynamic_varobj_has_child_method (struct varobj *var)
1066 struct cleanup *back_to;
1067 PyObject *printer = var->pretty_printer;
1070 back_to = varobj_ensure_python_env (var);
1071 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1072 do_cleanups (back_to);
1079 update_dynamic_varobj_children (struct varobj *var,
1080 VEC (varobj_p) **changed,
1081 VEC (varobj_p) **type_changed,
1082 VEC (varobj_p) **new,
1083 VEC (varobj_p) **unchanged,
1085 int update_children,
1090 struct cleanup *back_to;
1093 PyObject *printer = var->pretty_printer;
1095 back_to = varobj_ensure_python_env (var);
1098 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1100 do_cleanups (back_to);
1104 if (update_children || !var->child_iter)
1106 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1111 gdbpy_print_stack ();
1112 error (_("Null value returned for children"));
1115 make_cleanup_py_decref (children);
1117 if (!PyIter_Check (children))
1118 error (_("Returned value is not iterable"));
1120 Py_XDECREF (var->child_iter);
1121 var->child_iter = PyObject_GetIter (children);
1122 if (!var->child_iter)
1124 gdbpy_print_stack ();
1125 error (_("Could not get children iterator"));
1128 Py_XDECREF (var->saved_item);
1129 var->saved_item = NULL;
1134 i = VEC_length (varobj_p, var->children);
1136 /* We ask for one extra child, so that MI can report whether there
1137 are more children. */
1138 for (; to < 0 || i < to + 1; ++i)
1143 /* See if there was a leftover from last time. */
1144 if (var->saved_item)
1146 item = var->saved_item;
1147 var->saved_item = NULL;
1150 item = PyIter_Next (var->child_iter);
1154 /* Normal end of iteration. */
1155 if (!PyErr_Occurred ())
1158 /* If we got a memory error, just use the text as the
1160 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1162 PyObject *type, *value, *trace;
1163 char *name_str, *value_str;
1165 PyErr_Fetch (&type, &value, &trace);
1166 value_str = gdbpy_exception_to_string (type, value);
1172 gdbpy_print_stack ();
1176 name_str = xstrprintf ("<error at %d>", i);
1177 item = Py_BuildValue ("(ss)", name_str, value_str);
1182 gdbpy_print_stack ();
1190 /* Any other kind of error. */
1191 gdbpy_print_stack ();
1196 /* We don't want to push the extra child on any report list. */
1197 if (to < 0 || i < to)
1202 struct cleanup *inner;
1203 int can_mention = from < 0 || i >= from;
1205 inner = make_cleanup_py_decref (item);
1207 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1209 gdbpy_print_stack ();
1210 error (_("Invalid item from the child list"));
1213 v = convert_value_from_python (py_v);
1215 gdbpy_print_stack ();
1216 install_dynamic_child (var, can_mention ? changed : NULL,
1217 can_mention ? type_changed : NULL,
1218 can_mention ? new : NULL,
1219 can_mention ? unchanged : NULL,
1220 can_mention ? cchanged : NULL, i, name, v);
1221 do_cleanups (inner);
1225 Py_XDECREF (var->saved_item);
1226 var->saved_item = item;
1228 /* We want to truncate the child list just before this
1237 if (i < VEC_length (varobj_p, var->children))
1242 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1243 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1244 VEC_truncate (varobj_p, var->children, i);
1247 /* If there are fewer children than requested, note that the list of
1248 children changed. */
1249 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1252 var->num_children = VEC_length (varobj_p, var->children);
1254 do_cleanups (back_to);
1258 gdb_assert (0 && "should never be called if Python is not enabled");
1263 varobj_get_num_children (struct varobj *var)
1265 if (var->num_children == -1)
1267 if (var->pretty_printer)
1271 /* If we have a dynamic varobj, don't report -1 children.
1272 So, try to fetch some children first. */
1273 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
1277 var->num_children = number_of_children (var);
1280 return var->num_children >= 0 ? var->num_children : 0;
1283 /* Creates a list of the immediate children of a variable object;
1284 the return code is the number of such children or -1 on error. */
1287 varobj_list_children (struct varobj *var, int *from, int *to)
1290 int i, children_changed;
1292 var->children_requested = 1;
1294 if (var->pretty_printer)
1296 /* This, in theory, can result in the number of children changing without
1297 frontend noticing. But well, calling -var-list-children on the same
1298 varobj twice is not something a sane frontend would do. */
1299 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1300 &children_changed, 0, 0, *to);
1301 restrict_range (var->children, from, to);
1302 return var->children;
1305 if (var->num_children == -1)
1306 var->num_children = number_of_children (var);
1308 /* If that failed, give up. */
1309 if (var->num_children == -1)
1310 return var->children;
1312 /* If we're called when the list of children is not yet initialized,
1313 allocate enough elements in it. */
1314 while (VEC_length (varobj_p, var->children) < var->num_children)
1315 VEC_safe_push (varobj_p, var->children, NULL);
1317 for (i = 0; i < var->num_children; i++)
1319 varobj_p existing = VEC_index (varobj_p, var->children, i);
1321 if (existing == NULL)
1323 /* Either it's the first call to varobj_list_children for
1324 this variable object, and the child was never created,
1325 or it was explicitly deleted by the client. */
1326 name = name_of_child (var, i);
1327 existing = create_child (var, i, name);
1328 VEC_replace (varobj_p, var->children, i, existing);
1332 restrict_range (var->children, from, to);
1333 return var->children;
1338 static struct varobj *
1339 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1341 varobj_p v = create_child_with_value (var,
1342 VEC_length (varobj_p, var->children),
1345 VEC_safe_push (varobj_p, var->children, v);
1349 #endif /* HAVE_PYTHON */
1351 /* Obtain the type of an object Variable as a string similar to the one gdb
1352 prints on the console. */
1355 varobj_get_type (struct varobj *var)
1357 /* For the "fake" variables, do not return a type. (It's type is
1359 Do not return a type for invalid variables as well. */
1360 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1363 return type_to_string (var->type);
1366 /* Obtain the type of an object variable. */
1369 varobj_get_gdb_type (struct varobj *var)
1374 /* Is VAR a path expression parent, i.e., can it be used to construct
1375 a valid path expression? */
1378 is_path_expr_parent (struct varobj *var)
1382 /* "Fake" children are not path_expr parents. */
1383 if (CPLUS_FAKE_CHILD (var))
1386 type = get_value_type (var);
1388 /* Anonymous unions and structs are also not path_expr parents. */
1389 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1390 || TYPE_CODE (type) == TYPE_CODE_UNION)
1391 && TYPE_NAME (type) == NULL);
1394 /* Return the path expression parent for VAR. */
1396 static struct varobj *
1397 get_path_expr_parent (struct varobj *var)
1399 struct varobj *parent = var;
1401 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1402 parent = parent->parent;
1407 /* Return a pointer to the full rooted expression of varobj VAR.
1408 If it has not been computed yet, compute it. */
1410 varobj_get_path_expr (struct varobj *var)
1412 if (var->path_expr != NULL)
1413 return var->path_expr;
1416 /* For root varobjs, we initialize path_expr
1417 when creating varobj, so here it should be
1419 gdb_assert (!is_root_p (var));
1420 return (*var->root->lang->path_expr_of_child) (var);
1424 enum varobj_languages
1425 varobj_get_language (struct varobj *var)
1427 return variable_language (var);
1431 varobj_get_attributes (struct varobj *var)
1435 if (varobj_editable_p (var))
1436 /* FIXME: define masks for attributes. */
1437 attributes |= 0x00000001; /* Editable */
1443 varobj_pretty_printed_p (struct varobj *var)
1445 return var->pretty_printer != NULL;
1449 varobj_get_formatted_value (struct varobj *var,
1450 enum varobj_display_formats format)
1452 return my_value_of_variable (var, format);
1456 varobj_get_value (struct varobj *var)
1458 return my_value_of_variable (var, var->format);
1461 /* Set the value of an object variable (if it is editable) to the
1462 value of the given expression. */
1463 /* Note: Invokes functions that can call error(). */
1466 varobj_set_value (struct varobj *var, char *expression)
1468 struct value *val = NULL; /* Initialize to keep gcc happy. */
1469 /* The argument "expression" contains the variable's new value.
1470 We need to first construct a legal expression for this -- ugh! */
1471 /* Does this cover all the bases? */
1472 struct expression *exp;
1473 struct value *value = NULL; /* Initialize to keep gcc happy. */
1474 int saved_input_radix = input_radix;
1475 char *s = expression;
1476 volatile struct gdb_exception except;
1478 gdb_assert (varobj_editable_p (var));
1480 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1481 exp = parse_exp_1 (&s, 0, 0, 0);
1482 TRY_CATCH (except, RETURN_MASK_ERROR)
1484 value = evaluate_expression (exp);
1487 if (except.reason < 0)
1489 /* We cannot proceed without a valid expression. */
1494 /* All types that are editable must also be changeable. */
1495 gdb_assert (varobj_value_is_changeable_p (var));
1497 /* The value of a changeable variable object must not be lazy. */
1498 gdb_assert (!value_lazy (var->value));
1500 /* Need to coerce the input. We want to check if the
1501 value of the variable object will be different
1502 after assignment, and the first thing value_assign
1503 does is coerce the input.
1504 For example, if we are assigning an array to a pointer variable we
1505 should compare the pointer with the array's address, not with the
1507 value = coerce_array (value);
1509 /* The new value may be lazy. value_assign, or
1510 rather value_contents, will take care of this. */
1511 TRY_CATCH (except, RETURN_MASK_ERROR)
1513 val = value_assign (var->value, value);
1516 if (except.reason < 0)
1519 /* If the value has changed, record it, so that next -var-update can
1520 report this change. If a variable had a value of '1', we've set it
1521 to '333' and then set again to '1', when -var-update will report this
1522 variable as changed -- because the first assignment has set the
1523 'updated' flag. There's no need to optimize that, because return value
1524 of -var-update should be considered an approximation. */
1525 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1526 input_radix = saved_input_radix;
1532 /* A helper function to install a constructor function and visualizer
1536 install_visualizer (struct varobj *var, PyObject *constructor,
1537 PyObject *visualizer)
1539 Py_XDECREF (var->constructor);
1540 var->constructor = constructor;
1542 Py_XDECREF (var->pretty_printer);
1543 var->pretty_printer = visualizer;
1545 Py_XDECREF (var->child_iter);
1546 var->child_iter = NULL;
1549 /* Install the default visualizer for VAR. */
1552 install_default_visualizer (struct varobj *var)
1554 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1555 if (CPLUS_FAKE_CHILD (var))
1558 if (pretty_printing)
1560 PyObject *pretty_printer = NULL;
1564 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1565 if (! pretty_printer)
1567 gdbpy_print_stack ();
1568 error (_("Cannot instantiate printer for default visualizer"));
1572 if (pretty_printer == Py_None)
1574 Py_DECREF (pretty_printer);
1575 pretty_printer = NULL;
1578 install_visualizer (var, NULL, pretty_printer);
1582 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1583 make a new object. */
1586 construct_visualizer (struct varobj *var, PyObject *constructor)
1588 PyObject *pretty_printer;
1590 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1591 if (CPLUS_FAKE_CHILD (var))
1594 Py_INCREF (constructor);
1595 if (constructor == Py_None)
1596 pretty_printer = NULL;
1599 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1600 if (! pretty_printer)
1602 gdbpy_print_stack ();
1603 Py_DECREF (constructor);
1604 constructor = Py_None;
1605 Py_INCREF (constructor);
1608 if (pretty_printer == Py_None)
1610 Py_DECREF (pretty_printer);
1611 pretty_printer = NULL;
1615 install_visualizer (var, constructor, pretty_printer);
1618 #endif /* HAVE_PYTHON */
1620 /* A helper function for install_new_value. This creates and installs
1621 a visualizer for VAR, if appropriate. */
1624 install_new_value_visualizer (struct varobj *var)
1627 /* If the constructor is None, then we want the raw value. If VAR
1628 does not have a value, just skip this. */
1629 if (var->constructor != Py_None && var->value)
1631 struct cleanup *cleanup;
1633 cleanup = varobj_ensure_python_env (var);
1635 if (!var->constructor)
1636 install_default_visualizer (var);
1638 construct_visualizer (var, var->constructor);
1640 do_cleanups (cleanup);
1647 /* When using RTTI to determine variable type it may be changed in runtime when
1648 the variable value is changed. This function checks whether type of varobj
1649 VAR will change when a new value NEW_VALUE is assigned and if it is so
1650 updates the type of VAR. */
1653 update_type_if_necessary (struct varobj *var, struct value *new_value)
1657 struct value_print_options opts;
1659 get_user_print_options (&opts);
1660 if (opts.objectprint)
1662 struct type *new_type;
1663 char *curr_type_str, *new_type_str;
1665 new_type = value_actual_type (new_value, 0, 0);
1666 new_type_str = type_to_string (new_type);
1667 curr_type_str = varobj_get_type (var);
1668 if (strcmp (curr_type_str, new_type_str) != 0)
1670 var->type = new_type;
1672 /* This information may be not valid for a new type. */
1673 varobj_delete (var, NULL, 1);
1674 VEC_free (varobj_p, var->children);
1675 var->num_children = -1;
1684 /* Assign a new value to a variable object. If INITIAL is non-zero,
1685 this is the first assignement after the variable object was just
1686 created, or changed type. In that case, just assign the value
1688 Otherwise, assign the new value, and return 1 if the value is
1689 different from the current one, 0 otherwise. The comparison is
1690 done on textual representation of value. Therefore, some types
1691 need not be compared. E.g. for structures the reported value is
1692 always "{...}", so no comparison is necessary here. If the old
1693 value was NULL and new one is not, or vice versa, we always return 1.
1695 The VALUE parameter should not be released -- the function will
1696 take care of releasing it when needed. */
1698 install_new_value (struct varobj *var, struct value *value, int initial)
1703 int intentionally_not_fetched = 0;
1704 char *print_value = NULL;
1706 /* We need to know the varobj's type to decide if the value should
1707 be fetched or not. C++ fake children (public/protected/private)
1708 don't have a type. */
1709 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1710 changeable = varobj_value_is_changeable_p (var);
1712 /* If the type has custom visualizer, we consider it to be always
1713 changeable. FIXME: need to make sure this behaviour will not
1714 mess up read-sensitive values. */
1715 if (var->pretty_printer)
1718 need_to_fetch = changeable;
1720 /* We are not interested in the address of references, and given
1721 that in C++ a reference is not rebindable, it cannot
1722 meaningfully change. So, get hold of the real value. */
1724 value = coerce_ref (value);
1726 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1727 /* For unions, we need to fetch the value implicitly because
1728 of implementation of union member fetch. When gdb
1729 creates a value for a field and the value of the enclosing
1730 structure is not lazy, it immediately copies the necessary
1731 bytes from the enclosing values. If the enclosing value is
1732 lazy, the call to value_fetch_lazy on the field will read
1733 the data from memory. For unions, that means we'll read the
1734 same memory more than once, which is not desirable. So
1738 /* The new value might be lazy. If the type is changeable,
1739 that is we'll be comparing values of this type, fetch the
1740 value now. Otherwise, on the next update the old value
1741 will be lazy, which means we've lost that old value. */
1742 if (need_to_fetch && value && value_lazy (value))
1744 struct varobj *parent = var->parent;
1745 int frozen = var->frozen;
1747 for (; !frozen && parent; parent = parent->parent)
1748 frozen |= parent->frozen;
1750 if (frozen && initial)
1752 /* For variables that are frozen, or are children of frozen
1753 variables, we don't do fetch on initial assignment.
1754 For non-initial assignemnt we do the fetch, since it means we're
1755 explicitly asked to compare the new value with the old one. */
1756 intentionally_not_fetched = 1;
1760 volatile struct gdb_exception except;
1762 TRY_CATCH (except, RETURN_MASK_ERROR)
1764 value_fetch_lazy (value);
1767 if (except.reason < 0)
1769 /* Set the value to NULL, so that for the next -var-update,
1770 we don't try to compare the new value with this value,
1771 that we couldn't even read. */
1777 /* Get a reference now, before possibly passing it to any Python
1778 code that might release it. */
1780 value_incref (value);
1782 /* Below, we'll be comparing string rendering of old and new
1783 values. Don't get string rendering if the value is
1784 lazy -- if it is, the code above has decided that the value
1785 should not be fetched. */
1786 if (value && !value_lazy (value) && !var->pretty_printer)
1787 print_value = value_get_print_value (value, var->format, var);
1789 /* If the type is changeable, compare the old and the new values.
1790 If this is the initial assignment, we don't have any old value
1792 if (!initial && changeable)
1794 /* If the value of the varobj was changed by -var-set-value,
1795 then the value in the varobj and in the target is the same.
1796 However, that value is different from the value that the
1797 varobj had after the previous -var-update. So need to the
1798 varobj as changed. */
1803 else if (! var->pretty_printer)
1805 /* Try to compare the values. That requires that both
1806 values are non-lazy. */
1807 if (var->not_fetched && value_lazy (var->value))
1809 /* This is a frozen varobj and the value was never read.
1810 Presumably, UI shows some "never read" indicator.
1811 Now that we've fetched the real value, we need to report
1812 this varobj as changed so that UI can show the real
1816 else if (var->value == NULL && value == NULL)
1819 else if (var->value == NULL || value == NULL)
1825 gdb_assert (!value_lazy (var->value));
1826 gdb_assert (!value_lazy (value));
1828 gdb_assert (var->print_value != NULL && print_value != NULL);
1829 if (strcmp (var->print_value, print_value) != 0)
1835 if (!initial && !changeable)
1837 /* For values that are not changeable, we don't compare the values.
1838 However, we want to notice if a value was not NULL and now is NULL,
1839 or vise versa, so that we report when top-level varobjs come in scope
1840 and leave the scope. */
1841 changed = (var->value != NULL) != (value != NULL);
1844 /* We must always keep the new value, since children depend on it. */
1845 if (var->value != NULL && var->value != value)
1846 value_free (var->value);
1848 if (value && value_lazy (value) && intentionally_not_fetched)
1849 var->not_fetched = 1;
1851 var->not_fetched = 0;
1854 install_new_value_visualizer (var);
1856 /* If we installed a pretty-printer, re-compare the printed version
1857 to see if the variable changed. */
1858 if (var->pretty_printer)
1860 xfree (print_value);
1861 print_value = value_get_print_value (var->value, var->format, var);
1862 if ((var->print_value == NULL && print_value != NULL)
1863 || (var->print_value != NULL && print_value == NULL)
1864 || (var->print_value != NULL && print_value != NULL
1865 && strcmp (var->print_value, print_value) != 0))
1868 if (var->print_value)
1869 xfree (var->print_value);
1870 var->print_value = print_value;
1872 gdb_assert (!var->value || value_type (var->value));
1877 /* Return the requested range for a varobj. VAR is the varobj. FROM
1878 and TO are out parameters; *FROM and *TO will be set to the
1879 selected sub-range of VAR. If no range was selected using
1880 -var-set-update-range, then both will be -1. */
1882 varobj_get_child_range (struct varobj *var, int *from, int *to)
1888 /* Set the selected sub-range of children of VAR to start at index
1889 FROM and end at index TO. If either FROM or TO is less than zero,
1890 this is interpreted as a request for all children. */
1892 varobj_set_child_range (struct varobj *var, int from, int to)
1899 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1902 PyObject *mainmod, *globals, *constructor;
1903 struct cleanup *back_to;
1905 back_to = varobj_ensure_python_env (var);
1907 mainmod = PyImport_AddModule ("__main__");
1908 globals = PyModule_GetDict (mainmod);
1909 Py_INCREF (globals);
1910 make_cleanup_py_decref (globals);
1912 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1916 gdbpy_print_stack ();
1917 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1920 construct_visualizer (var, constructor);
1921 Py_XDECREF (constructor);
1923 /* If there are any children now, wipe them. */
1924 varobj_delete (var, NULL, 1 /* children only */);
1925 var->num_children = -1;
1927 do_cleanups (back_to);
1929 error (_("Python support required"));
1933 /* If NEW_VALUE is the new value of the given varobj (var), return
1934 non-zero if var has mutated. In other words, if the type of
1935 the new value is different from the type of the varobj's old
1938 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1941 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1942 struct type *new_type)
1944 /* If we haven't previously computed the number of children in var,
1945 it does not matter from the front-end's perspective whether
1946 the type has mutated or not. For all intents and purposes,
1947 it has not mutated. */
1948 if (var->num_children < 0)
1951 if (var->root->lang->value_has_mutated)
1952 return var->root->lang->value_has_mutated (var, new_value, new_type);
1957 /* Update the values for a variable and its children. This is a
1958 two-pronged attack. First, re-parse the value for the root's
1959 expression to see if it's changed. Then go all the way
1960 through its children, reconstructing them and noting if they've
1963 The EXPLICIT parameter specifies if this call is result
1964 of MI request to update this specific variable, or
1965 result of implicit -var-update *. For implicit request, we don't
1966 update frozen variables.
1968 NOTE: This function may delete the caller's varobj. If it
1969 returns TYPE_CHANGED, then it has done this and VARP will be modified
1970 to point to the new varobj. */
1972 VEC(varobj_update_result) *
1973 varobj_update (struct varobj **varp, int explicit)
1976 int type_changed = 0;
1979 VEC (varobj_update_result) *stack = NULL;
1980 VEC (varobj_update_result) *result = NULL;
1982 /* Frozen means frozen -- we don't check for any change in
1983 this varobj, including its going out of scope, or
1984 changing type. One use case for frozen varobjs is
1985 retaining previously evaluated expressions, and we don't
1986 want them to be reevaluated at all. */
1987 if (!explicit && (*varp)->frozen)
1990 if (!(*varp)->root->is_valid)
1992 varobj_update_result r = {0};
1995 r.status = VAROBJ_INVALID;
1996 VEC_safe_push (varobj_update_result, result, &r);
2000 if ((*varp)->root->rootvar == *varp)
2002 varobj_update_result r = {0};
2005 r.status = VAROBJ_IN_SCOPE;
2007 /* Update the root variable. value_of_root can return NULL
2008 if the variable is no longer around, i.e. we stepped out of
2009 the frame in which a local existed. We are letting the
2010 value_of_root variable dispose of the varobj if the type
2012 new = value_of_root (varp, &type_changed);
2013 if (update_type_if_necessary(*varp, new))
2016 r.type_changed = type_changed;
2017 if (install_new_value ((*varp), new, type_changed))
2021 r.status = VAROBJ_NOT_IN_SCOPE;
2022 r.value_installed = 1;
2024 if (r.status == VAROBJ_NOT_IN_SCOPE)
2026 if (r.type_changed || r.changed)
2027 VEC_safe_push (varobj_update_result, result, &r);
2031 VEC_safe_push (varobj_update_result, stack, &r);
2035 varobj_update_result r = {0};
2038 VEC_safe_push (varobj_update_result, stack, &r);
2041 /* Walk through the children, reconstructing them all. */
2042 while (!VEC_empty (varobj_update_result, stack))
2044 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2045 struct varobj *v = r.varobj;
2047 VEC_pop (varobj_update_result, stack);
2049 /* Update this variable, unless it's a root, which is already
2051 if (!r.value_installed)
2053 struct type *new_type;
2055 new = value_of_child (v->parent, v->index);
2056 if (update_type_if_necessary(v, new))
2059 new_type = value_type (new);
2061 new_type = v->root->lang->type_of_child (v->parent, v->index);
2063 if (varobj_value_has_mutated (v, new, new_type))
2065 /* The children are no longer valid; delete them now.
2066 Report the fact that its type changed as well. */
2067 varobj_delete (v, NULL, 1 /* only_children */);
2068 v->num_children = -1;
2075 if (install_new_value (v, new, r.type_changed))
2082 /* We probably should not get children of a varobj that has a
2083 pretty-printer, but for which -var-list-children was never
2085 if (v->pretty_printer)
2087 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2088 VEC (varobj_p) *new = 0;
2089 int i, children_changed = 0;
2094 if (!v->children_requested)
2098 /* If we initially did not have potential children, but
2099 now we do, consider the varobj as changed.
2100 Otherwise, if children were never requested, consider
2101 it as unchanged -- presumably, such varobj is not yet
2102 expanded in the UI, so we need not bother getting
2104 if (!varobj_has_more (v, 0))
2106 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
2108 if (varobj_has_more (v, 0))
2113 VEC_safe_push (varobj_update_result, result, &r);
2118 /* If update_dynamic_varobj_children returns 0, then we have
2119 a non-conforming pretty-printer, so we skip it. */
2120 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2121 &unchanged, &children_changed, 1,
2124 if (children_changed || new)
2126 r.children_changed = 1;
2129 /* Push in reverse order so that the first child is
2130 popped from the work stack first, and so will be
2131 added to result first. This does not affect
2132 correctness, just "nicer". */
2133 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2135 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2136 varobj_update_result r = {0};
2138 /* Type may change only if value was changed. */
2142 r.value_installed = 1;
2143 VEC_safe_push (varobj_update_result, stack, &r);
2145 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
2147 varobj_p tmp = VEC_index (varobj_p, changed, i);
2148 varobj_update_result r = {0};
2152 r.value_installed = 1;
2153 VEC_safe_push (varobj_update_result, stack, &r);
2155 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2157 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
2161 varobj_update_result r = {0};
2164 r.value_installed = 1;
2165 VEC_safe_push (varobj_update_result, stack, &r);
2168 if (r.changed || r.children_changed)
2169 VEC_safe_push (varobj_update_result, result, &r);
2171 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2172 because NEW has been put into the result vector. */
2173 VEC_free (varobj_p, changed);
2174 VEC_free (varobj_p, type_changed);
2175 VEC_free (varobj_p, unchanged);
2181 /* Push any children. Use reverse order so that the first
2182 child is popped from the work stack first, and so
2183 will be added to result first. This does not
2184 affect correctness, just "nicer". */
2185 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
2187 varobj_p c = VEC_index (varobj_p, v->children, i);
2189 /* Child may be NULL if explicitly deleted by -var-delete. */
2190 if (c != NULL && !c->frozen)
2192 varobj_update_result r = {0};
2195 VEC_safe_push (varobj_update_result, stack, &r);
2199 if (r.changed || r.type_changed)
2200 VEC_safe_push (varobj_update_result, result, &r);
2203 VEC_free (varobj_update_result, stack);
2209 /* Helper functions */
2212 * Variable object construction/destruction
2216 delete_variable (struct cpstack **resultp, struct varobj *var,
2217 int only_children_p)
2221 delete_variable_1 (resultp, &delcount, var,
2222 only_children_p, 1 /* remove_from_parent_p */ );
2227 /* Delete the variable object VAR and its children. */
2228 /* IMPORTANT NOTE: If we delete a variable which is a child
2229 and the parent is not removed we dump core. It must be always
2230 initially called with remove_from_parent_p set. */
2232 delete_variable_1 (struct cpstack **resultp, int *delcountp,
2233 struct varobj *var, int only_children_p,
2234 int remove_from_parent_p)
2238 /* Delete any children of this variable, too. */
2239 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2241 varobj_p child = VEC_index (varobj_p, var->children, i);
2245 if (!remove_from_parent_p)
2246 child->parent = NULL;
2247 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2249 VEC_free (varobj_p, var->children);
2251 /* if we were called to delete only the children we are done here. */
2252 if (only_children_p)
2255 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2256 /* If the name is null, this is a temporary variable, that has not
2257 yet been installed, don't report it, it belongs to the caller... */
2258 if (var->obj_name != NULL)
2260 cppush (resultp, xstrdup (var->obj_name));
2261 *delcountp = *delcountp + 1;
2264 /* If this variable has a parent, remove it from its parent's list. */
2265 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2266 (as indicated by remove_from_parent_p) we don't bother doing an
2267 expensive list search to find the element to remove when we are
2268 discarding the list afterwards. */
2269 if ((remove_from_parent_p) && (var->parent != NULL))
2271 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2274 if (var->obj_name != NULL)
2275 uninstall_variable (var);
2277 /* Free memory associated with this variable. */
2278 free_variable (var);
2281 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2283 install_variable (struct varobj *var)
2286 struct vlist *newvl;
2288 unsigned int index = 0;
2291 for (chp = var->obj_name; *chp; chp++)
2293 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2296 cv = *(varobj_table + index);
2297 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2301 error (_("Duplicate variable object name"));
2303 /* Add varobj to hash table. */
2304 newvl = xmalloc (sizeof (struct vlist));
2305 newvl->next = *(varobj_table + index);
2307 *(varobj_table + index) = newvl;
2309 /* If root, add varobj to root list. */
2310 if (is_root_p (var))
2312 /* Add to list of root variables. */
2313 if (rootlist == NULL)
2314 var->root->next = NULL;
2316 var->root->next = rootlist;
2317 rootlist = var->root;
2323 /* Unistall the object VAR. */
2325 uninstall_variable (struct varobj *var)
2329 struct varobj_root *cr;
2330 struct varobj_root *prer;
2332 unsigned int index = 0;
2335 /* Remove varobj from hash table. */
2336 for (chp = var->obj_name; *chp; chp++)
2338 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2341 cv = *(varobj_table + index);
2343 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2350 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2355 ("Assertion failed: Could not find variable object \"%s\" to delete",
2361 *(varobj_table + index) = cv->next;
2363 prev->next = cv->next;
2367 /* If root, remove varobj from root list. */
2368 if (is_root_p (var))
2370 /* Remove from list of root variables. */
2371 if (rootlist == var->root)
2372 rootlist = var->root->next;
2377 while ((cr != NULL) && (cr->rootvar != var))
2384 warning (_("Assertion failed: Could not find "
2385 "varobj \"%s\" in root list"),
2392 prer->next = cr->next;
2398 /* Create and install a child of the parent of the given name. */
2399 static struct varobj *
2400 create_child (struct varobj *parent, int index, char *name)
2402 return create_child_with_value (parent, index, name,
2403 value_of_child (parent, index));
2406 /* Does CHILD represent a child with no name? This happens when
2407 the child is an anonmous struct or union and it has no field name
2408 in its parent variable.
2410 This has already been determined by *_describe_child. The easiest
2411 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2414 is_anonymous_child (struct varobj *child)
2416 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2417 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2420 static struct varobj *
2421 create_child_with_value (struct varobj *parent, int index, const char *name,
2422 struct value *value)
2424 struct varobj *child;
2427 child = new_variable ();
2429 /* Name is allocated by name_of_child. */
2430 /* FIXME: xstrdup should not be here. */
2431 child->name = xstrdup (name);
2432 child->index = index;
2433 child->parent = parent;
2434 child->root = parent->root;
2436 if (is_anonymous_child (child))
2437 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2439 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2440 child->obj_name = childs_name;
2442 install_variable (child);
2444 /* Compute the type of the child. Must do this before
2445 calling install_new_value. */
2447 /* If the child had no evaluation errors, var->value
2448 will be non-NULL and contain a valid type. */
2449 child->type = value_actual_type (value, 0, NULL);
2451 /* Otherwise, we must compute the type. */
2452 child->type = (*child->root->lang->type_of_child) (child->parent,
2454 install_new_value (child, value, 1);
2461 * Miscellaneous utility functions.
2464 /* Allocate memory and initialize a new variable. */
2465 static struct varobj *
2470 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2472 var->path_expr = NULL;
2473 var->obj_name = NULL;
2477 var->num_children = -1;
2479 var->children = NULL;
2483 var->print_value = NULL;
2485 var->not_fetched = 0;
2486 var->children_requested = 0;
2489 var->constructor = 0;
2490 var->pretty_printer = 0;
2491 var->child_iter = 0;
2492 var->saved_item = 0;
2497 /* Allocate memory and initialize a new root variable. */
2498 static struct varobj *
2499 new_root_variable (void)
2501 struct varobj *var = new_variable ();
2503 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2504 var->root->lang = NULL;
2505 var->root->exp = NULL;
2506 var->root->valid_block = NULL;
2507 var->root->frame = null_frame_id;
2508 var->root->floating = 0;
2509 var->root->rootvar = NULL;
2510 var->root->is_valid = 1;
2515 /* Free any allocated memory associated with VAR. */
2517 free_variable (struct varobj *var)
2520 if (var->pretty_printer)
2522 struct cleanup *cleanup = varobj_ensure_python_env (var);
2523 Py_XDECREF (var->constructor);
2524 Py_XDECREF (var->pretty_printer);
2525 Py_XDECREF (var->child_iter);
2526 Py_XDECREF (var->saved_item);
2527 do_cleanups (cleanup);
2531 value_free (var->value);
2533 /* Free the expression if this is a root variable. */
2534 if (is_root_p (var))
2536 xfree (var->root->exp);
2541 xfree (var->obj_name);
2542 xfree (var->print_value);
2543 xfree (var->path_expr);
2548 do_free_variable_cleanup (void *var)
2550 free_variable (var);
2553 static struct cleanup *
2554 make_cleanup_free_variable (struct varobj *var)
2556 return make_cleanup (do_free_variable_cleanup, var);
2559 /* This returns the type of the variable. It also skips past typedefs
2560 to return the real type of the variable.
2562 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2563 except within get_target_type and get_type. */
2564 static struct type *
2565 get_type (struct varobj *var)
2571 type = check_typedef (type);
2576 /* Return the type of the value that's stored in VAR,
2577 or that would have being stored there if the
2578 value were accessible.
2580 This differs from VAR->type in that VAR->type is always
2581 the true type of the expession in the source language.
2582 The return value of this function is the type we're
2583 actually storing in varobj, and using for displaying
2584 the values and for comparing previous and new values.
2586 For example, top-level references are always stripped. */
2587 static struct type *
2588 get_value_type (struct varobj *var)
2593 type = value_type (var->value);
2597 type = check_typedef (type);
2599 if (TYPE_CODE (type) == TYPE_CODE_REF)
2600 type = get_target_type (type);
2602 type = check_typedef (type);
2607 /* This returns the target type (or NULL) of TYPE, also skipping
2608 past typedefs, just like get_type ().
2610 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2611 except within get_target_type and get_type. */
2612 static struct type *
2613 get_target_type (struct type *type)
2617 type = TYPE_TARGET_TYPE (type);
2619 type = check_typedef (type);
2625 /* What is the default display for this variable? We assume that
2626 everything is "natural". Any exceptions? */
2627 static enum varobj_display_formats
2628 variable_default_display (struct varobj *var)
2630 return FORMAT_NATURAL;
2633 /* FIXME: The following should be generic for any pointer. */
2635 cppush (struct cpstack **pstack, char *name)
2639 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2645 /* FIXME: The following should be generic for any pointer. */
2647 cppop (struct cpstack **pstack)
2652 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2657 *pstack = (*pstack)->next;
2664 * Language-dependencies
2667 /* Common entry points */
2669 /* Get the language of variable VAR. */
2670 static enum varobj_languages
2671 variable_language (struct varobj *var)
2673 enum varobj_languages lang;
2675 switch (var->root->exp->language_defn->la_language)
2681 case language_cplus:
2695 /* Return the number of children for a given variable.
2696 The result of this function is defined by the language
2697 implementation. The number of children returned by this function
2698 is the number of children that the user will see in the variable
2701 number_of_children (struct varobj *var)
2703 return (*var->root->lang->number_of_children) (var);
2706 /* What is the expression for the root varobj VAR? Returns a malloc'd
2709 name_of_variable (struct varobj *var)
2711 return (*var->root->lang->name_of_variable) (var);
2714 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2717 name_of_child (struct varobj *var, int index)
2719 return (*var->root->lang->name_of_child) (var, index);
2722 /* What is the ``struct value *'' of the root variable VAR?
2723 For floating variable object, evaluation can get us a value
2724 of different type from what is stored in varobj already. In
2726 - *type_changed will be set to 1
2727 - old varobj will be freed, and new one will be
2728 created, with the same name.
2729 - *var_handle will be set to the new varobj
2730 Otherwise, *type_changed will be set to 0. */
2731 static struct value *
2732 value_of_root (struct varobj **var_handle, int *type_changed)
2736 if (var_handle == NULL)
2741 /* This should really be an exception, since this should
2742 only get called with a root variable. */
2744 if (!is_root_p (var))
2747 if (var->root->floating)
2749 struct varobj *tmp_var;
2750 char *old_type, *new_type;
2752 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2753 USE_SELECTED_FRAME);
2754 if (tmp_var == NULL)
2758 old_type = varobj_get_type (var);
2759 new_type = varobj_get_type (tmp_var);
2760 if (strcmp (old_type, new_type) == 0)
2762 /* The expression presently stored inside var->root->exp
2763 remembers the locations of local variables relatively to
2764 the frame where the expression was created (in DWARF location
2765 button, for example). Naturally, those locations are not
2766 correct in other frames, so update the expression. */
2768 struct expression *tmp_exp = var->root->exp;
2770 var->root->exp = tmp_var->root->exp;
2771 tmp_var->root->exp = tmp_exp;
2773 varobj_delete (tmp_var, NULL, 0);
2778 tmp_var->obj_name = xstrdup (var->obj_name);
2779 tmp_var->from = var->from;
2780 tmp_var->to = var->to;
2781 varobj_delete (var, NULL, 0);
2783 install_variable (tmp_var);
2784 *var_handle = tmp_var;
2797 struct value *value;
2799 value = (*var->root->lang->value_of_root) (var_handle);
2800 if (var->value == NULL || value == NULL)
2802 /* For root varobj-s, a NULL value indicates a scoping issue.
2803 So, nothing to do in terms of checking for mutations. */
2805 else if (varobj_value_has_mutated (var, value, value_type (value)))
2807 /* The type has mutated, so the children are no longer valid.
2808 Just delete them, and tell our caller that the type has
2810 varobj_delete (var, NULL, 1 /* only_children */);
2811 var->num_children = -1;
2820 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2821 static struct value *
2822 value_of_child (struct varobj *parent, int index)
2824 struct value *value;
2826 value = (*parent->root->lang->value_of_child) (parent, index);
2831 /* GDB already has a command called "value_of_variable". Sigh. */
2833 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2835 if (var->root->is_valid)
2837 if (var->pretty_printer)
2838 return value_get_print_value (var->value, var->format, var);
2839 return (*var->root->lang->value_of_variable) (var, format);
2846 value_get_print_value (struct value *value, enum varobj_display_formats format,
2849 struct ui_file *stb;
2850 struct cleanup *old_chain;
2851 gdb_byte *thevalue = NULL;
2852 struct value_print_options opts;
2853 struct type *type = NULL;
2855 char *encoding = NULL;
2856 struct gdbarch *gdbarch = NULL;
2857 /* Initialize it just to avoid a GCC false warning. */
2858 CORE_ADDR str_addr = 0;
2859 int string_print = 0;
2864 stb = mem_fileopen ();
2865 old_chain = make_cleanup_ui_file_delete (stb);
2867 gdbarch = get_type_arch (value_type (value));
2870 PyObject *value_formatter = var->pretty_printer;
2872 varobj_ensure_python_env (var);
2874 if (value_formatter)
2876 /* First check to see if we have any children at all. If so,
2877 we simply return {...}. */
2878 if (dynamic_varobj_has_child_method (var))
2880 do_cleanups (old_chain);
2881 return xstrdup ("{...}");
2884 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2886 struct value *replacement;
2887 PyObject *output = NULL;
2889 output = apply_varobj_pretty_printer (value_formatter,
2893 /* If we have string like output ... */
2896 make_cleanup_py_decref (output);
2898 /* If this is a lazy string, extract it. For lazy
2899 strings we always print as a string, so set
2901 if (gdbpy_is_lazy_string (output))
2903 gdbpy_extract_lazy_string (output, &str_addr, &type,
2905 make_cleanup (free_current_contents, &encoding);
2910 /* If it is a regular (non-lazy) string, extract
2911 it and copy the contents into THEVALUE. If the
2912 hint says to print it as a string, set
2913 string_print. Otherwise just return the extracted
2914 string as a value. */
2917 = python_string_to_target_python_string (output);
2921 char *s = PyString_AsString (py_str);
2924 hint = gdbpy_get_display_hint (value_formatter);
2927 if (!strcmp (hint, "string"))
2932 len = PyString_Size (py_str);
2933 thevalue = xmemdup (s, len + 1, len + 1);
2934 type = builtin_type (gdbarch)->builtin_char;
2939 do_cleanups (old_chain);
2943 make_cleanup (xfree, thevalue);
2946 gdbpy_print_stack ();
2949 /* If the printer returned a replacement value, set VALUE
2950 to REPLACEMENT. If there is not a replacement value,
2951 just use the value passed to this function. */
2953 value = replacement;
2959 get_formatted_print_options (&opts, format_code[(int) format]);
2963 /* If the THEVALUE has contents, it is a regular string. */
2965 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2966 else if (string_print)
2967 /* Otherwise, if string_print is set, and it is not a regular
2968 string, it is a lazy string. */
2969 val_print_string (type, encoding, str_addr, len, stb, &opts);
2971 /* All other cases. */
2972 common_val_print (value, stb, 0, &opts, current_language);
2974 thevalue = ui_file_xstrdup (stb, NULL);
2976 do_cleanups (old_chain);
2981 varobj_editable_p (struct varobj *var)
2985 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2988 type = get_value_type (var);
2990 switch (TYPE_CODE (type))
2992 case TYPE_CODE_STRUCT:
2993 case TYPE_CODE_UNION:
2994 case TYPE_CODE_ARRAY:
2995 case TYPE_CODE_FUNC:
2996 case TYPE_CODE_METHOD:
3006 /* Call VAR's value_is_changeable_p language-specific callback. */
3009 varobj_value_is_changeable_p (struct varobj *var)
3011 return var->root->lang->value_is_changeable_p (var);
3014 /* Return 1 if that varobj is floating, that is is always evaluated in the
3015 selected frame, and not bound to thread/frame. Such variable objects
3016 are created using '@' as frame specifier to -var-create. */
3018 varobj_floating_p (struct varobj *var)
3020 return var->root->floating;
3023 /* Given the value and the type of a variable object,
3024 adjust the value and type to those necessary
3025 for getting children of the variable object.
3026 This includes dereferencing top-level references
3027 to all types and dereferencing pointers to
3030 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3031 value will be fetched and if it differs from static type
3032 the value will be casted to it.
3034 Both TYPE and *TYPE should be non-null. VALUE
3035 can be null if we want to only translate type.
3036 *VALUE can be null as well -- if the parent
3039 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
3040 depending on whether pointer was dereferenced
3041 in this function. */
3043 adjust_value_for_child_access (struct value **value,
3046 int lookup_actual_type)
3048 gdb_assert (type && *type);
3053 *type = check_typedef (*type);
3055 /* The type of value stored in varobj, that is passed
3056 to us, is already supposed to be
3057 reference-stripped. */
3059 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3061 /* Pointers to structures are treated just like
3062 structures when accessing children. Don't
3063 dererences pointers to other types. */
3064 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3066 struct type *target_type = get_target_type (*type);
3067 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3068 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3070 if (value && *value)
3072 volatile struct gdb_exception except;
3074 TRY_CATCH (except, RETURN_MASK_ERROR)
3076 *value = value_ind (*value);
3079 if (except.reason < 0)
3082 *type = target_type;
3088 /* The 'get_target_type' function calls check_typedef on
3089 result, so we can immediately check type code. No
3090 need to call check_typedef here. */
3092 /* Access a real type of the value (if necessary and possible). */
3093 if (value && *value && lookup_actual_type)
3095 struct type *enclosing_type;
3096 int real_type_found = 0;
3098 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3099 if (real_type_found)
3101 *type = enclosing_type;
3102 *value = value_cast (enclosing_type, *value);
3107 /* Implement the "value_is_changeable_p" varobj callback for most
3111 default_value_is_changeable_p (struct varobj *var)
3116 if (CPLUS_FAKE_CHILD (var))
3119 type = get_value_type (var);
3121 switch (TYPE_CODE (type))
3123 case TYPE_CODE_STRUCT:
3124 case TYPE_CODE_UNION:
3125 case TYPE_CODE_ARRAY:
3139 c_number_of_children (struct varobj *var)
3141 struct type *type = get_value_type (var);
3143 struct type *target;
3145 adjust_value_for_child_access (NULL, &type, NULL, 0);
3146 target = get_target_type (type);
3148 switch (TYPE_CODE (type))
3150 case TYPE_CODE_ARRAY:
3151 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
3152 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
3153 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3155 /* If we don't know how many elements there are, don't display
3160 case TYPE_CODE_STRUCT:
3161 case TYPE_CODE_UNION:
3162 children = TYPE_NFIELDS (type);
3166 /* The type here is a pointer to non-struct. Typically, pointers
3167 have one child, except for function ptrs, which have no children,
3168 and except for void*, as we don't know what to show.
3170 We can show char* so we allow it to be dereferenced. If you decide
3171 to test for it, please mind that a little magic is necessary to
3172 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
3173 TYPE_NAME == "char". */
3174 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3175 || TYPE_CODE (target) == TYPE_CODE_VOID)
3182 /* Other types have no children. */
3190 c_name_of_variable (struct varobj *parent)
3192 return xstrdup (parent->name);
3195 /* Return the value of element TYPE_INDEX of a structure
3196 value VALUE. VALUE's type should be a structure,
3197 or union, or a typedef to struct/union.
3199 Returns NULL if getting the value fails. Never throws. */
3200 static struct value *
3201 value_struct_element_index (struct value *value, int type_index)
3203 struct value *result = NULL;
3204 volatile struct gdb_exception e;
3205 struct type *type = value_type (value);
3207 type = check_typedef (type);
3209 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3210 || TYPE_CODE (type) == TYPE_CODE_UNION);
3212 TRY_CATCH (e, RETURN_MASK_ERROR)
3214 if (field_is_static (&TYPE_FIELD (type, type_index)))
3215 result = value_static_field (type, type_index);
3217 result = value_primitive_field (value, 0, type_index, type);
3229 /* Obtain the information about child INDEX of the variable
3231 If CNAME is not null, sets *CNAME to the name of the child relative
3233 If CVALUE is not null, sets *CVALUE to the value of the child.
3234 If CTYPE is not null, sets *CTYPE to the type of the child.
3236 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3237 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3240 c_describe_child (struct varobj *parent, int index,
3241 char **cname, struct value **cvalue, struct type **ctype,
3242 char **cfull_expression)
3244 struct value *value = parent->value;
3245 struct type *type = get_value_type (parent);
3246 char *parent_expression = NULL;
3248 volatile struct gdb_exception except;
3256 if (cfull_expression)
3258 *cfull_expression = NULL;
3259 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
3261 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
3263 switch (TYPE_CODE (type))
3265 case TYPE_CODE_ARRAY:
3268 = xstrdup (int_string (index
3269 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3272 if (cvalue && value)
3274 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
3276 TRY_CATCH (except, RETURN_MASK_ERROR)
3278 *cvalue = value_subscript (value, real_index);
3283 *ctype = get_target_type (type);
3285 if (cfull_expression)
3287 xstrprintf ("(%s)[%s]", parent_expression,
3289 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3295 case TYPE_CODE_STRUCT:
3296 case TYPE_CODE_UNION:
3298 const char *field_name;
3300 /* If the type is anonymous and the field has no name,
3301 set an appropriate name. */
3302 field_name = TYPE_FIELD_NAME (type, index);
3303 if (field_name == NULL || *field_name == '\0')
3307 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3308 == TYPE_CODE_STRUCT)
3309 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3311 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3314 if (cfull_expression)
3315 *cfull_expression = xstrdup ("");
3320 *cname = xstrdup (field_name);
3322 if (cfull_expression)
3324 char *join = was_ptr ? "->" : ".";
3326 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3331 if (cvalue && value)
3333 /* For C, varobj index is the same as type index. */
3334 *cvalue = value_struct_element_index (value, index);
3338 *ctype = TYPE_FIELD_TYPE (type, index);
3344 *cname = xstrprintf ("*%s", parent->name);
3346 if (cvalue && value)
3348 TRY_CATCH (except, RETURN_MASK_ERROR)
3350 *cvalue = value_ind (value);
3353 if (except.reason < 0)
3357 /* Don't use get_target_type because it calls
3358 check_typedef and here, we want to show the true
3359 declared type of the variable. */
3361 *ctype = TYPE_TARGET_TYPE (type);
3363 if (cfull_expression)
3364 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
3369 /* This should not happen. */
3371 *cname = xstrdup ("???");
3372 if (cfull_expression)
3373 *cfull_expression = xstrdup ("???");
3374 /* Don't set value and type, we don't know then. */
3379 c_name_of_child (struct varobj *parent, int index)
3383 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3388 c_path_expr_of_child (struct varobj *child)
3390 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3392 return child->path_expr;
3395 /* If frame associated with VAR can be found, switch
3396 to it and return 1. Otherwise, return 0. */
3398 check_scope (struct varobj *var)
3400 struct frame_info *fi;
3403 fi = frame_find_by_id (var->root->frame);
3408 CORE_ADDR pc = get_frame_pc (fi);
3410 if (pc < BLOCK_START (var->root->valid_block) ||
3411 pc >= BLOCK_END (var->root->valid_block))
3419 static struct value *
3420 c_value_of_root (struct varobj **var_handle)
3422 struct value *new_val = NULL;
3423 struct varobj *var = *var_handle;
3424 int within_scope = 0;
3425 struct cleanup *back_to;
3427 /* Only root variables can be updated... */
3428 if (!is_root_p (var))
3429 /* Not a root var. */
3432 back_to = make_cleanup_restore_current_thread ();
3434 /* Determine whether the variable is still around. */
3435 if (var->root->valid_block == NULL || var->root->floating)
3437 else if (var->root->thread_id == 0)
3439 /* The program was single-threaded when the variable object was
3440 created. Technically, it's possible that the program became
3441 multi-threaded since then, but we don't support such
3443 within_scope = check_scope (var);
3447 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3448 if (in_thread_list (ptid))
3450 switch_to_thread (ptid);
3451 within_scope = check_scope (var);
3457 volatile struct gdb_exception except;
3459 /* We need to catch errors here, because if evaluate
3460 expression fails we want to just return NULL. */
3461 TRY_CATCH (except, RETURN_MASK_ERROR)
3463 new_val = evaluate_expression (var->root->exp);
3469 do_cleanups (back_to);
3474 static struct value *
3475 c_value_of_child (struct varobj *parent, int index)
3477 struct value *value = NULL;
3479 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3483 static struct type *
3484 c_type_of_child (struct varobj *parent, int index)
3486 struct type *type = NULL;
3488 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3493 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3495 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3496 it will print out its children instead of "{...}". So we need to
3497 catch that case explicitly. */
3498 struct type *type = get_type (var);
3500 /* Strip top-level references. */
3501 while (TYPE_CODE (type) == TYPE_CODE_REF)
3502 type = check_typedef (TYPE_TARGET_TYPE (type));
3504 switch (TYPE_CODE (type))
3506 case TYPE_CODE_STRUCT:
3507 case TYPE_CODE_UNION:
3508 return xstrdup ("{...}");
3511 case TYPE_CODE_ARRAY:
3515 number = xstrprintf ("[%d]", var->num_children);
3522 if (var->value == NULL)
3524 /* This can happen if we attempt to get the value of a struct
3525 member when the parent is an invalid pointer. This is an
3526 error condition, so we should tell the caller. */
3531 if (var->not_fetched && value_lazy (var->value))
3532 /* Frozen variable and no value yet. We don't
3533 implicitly fetch the value. MI response will
3534 use empty string for the value, which is OK. */
3537 gdb_assert (varobj_value_is_changeable_p (var));
3538 gdb_assert (!value_lazy (var->value));
3540 /* If the specified format is the current one,
3541 we can reuse print_value. */
3542 if (format == var->format)
3543 return xstrdup (var->print_value);
3545 return value_get_print_value (var->value, format, var);
3555 cplus_number_of_children (struct varobj *var)
3557 struct value *value = NULL;
3559 int children, dont_know;
3560 int lookup_actual_type = 0;
3561 struct value_print_options opts;
3566 get_user_print_options (&opts);
3568 if (!CPLUS_FAKE_CHILD (var))
3570 type = get_value_type (var);
3572 /* It is necessary to access a real type (via RTTI). */
3573 if (opts.objectprint)
3576 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3577 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3579 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3581 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3582 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3586 cplus_class_num_children (type, kids);
3587 if (kids[v_public] != 0)
3589 if (kids[v_private] != 0)
3591 if (kids[v_protected] != 0)
3594 /* Add any baseclasses. */
3595 children += TYPE_N_BASECLASSES (type);
3598 /* FIXME: save children in var. */
3605 type = get_value_type (var->parent);
3607 /* It is necessary to access a real type (via RTTI). */
3608 if (opts.objectprint)
3610 struct varobj *parent = var->parent;
3612 value = parent->value;
3613 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3614 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3616 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3618 cplus_class_num_children (type, kids);
3619 if (strcmp (var->name, "public") == 0)
3620 children = kids[v_public];
3621 else if (strcmp (var->name, "private") == 0)
3622 children = kids[v_private];
3624 children = kids[v_protected];
3629 children = c_number_of_children (var);
3634 /* Compute # of public, private, and protected variables in this class.
3635 That means we need to descend into all baseclasses and find out
3636 how many are there, too. */
3638 cplus_class_num_children (struct type *type, int children[3])
3640 int i, vptr_fieldno;
3641 struct type *basetype = NULL;
3643 children[v_public] = 0;
3644 children[v_private] = 0;
3645 children[v_protected] = 0;
3647 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3648 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3650 /* If we have a virtual table pointer, omit it. Even if virtual
3651 table pointers are not specifically marked in the debug info,
3652 they should be artificial. */
3653 if ((type == basetype && i == vptr_fieldno)
3654 || TYPE_FIELD_ARTIFICIAL (type, i))
3657 if (TYPE_FIELD_PROTECTED (type, i))
3658 children[v_protected]++;
3659 else if (TYPE_FIELD_PRIVATE (type, i))
3660 children[v_private]++;
3662 children[v_public]++;
3667 cplus_name_of_variable (struct varobj *parent)
3669 return c_name_of_variable (parent);
3672 enum accessibility { private_field, protected_field, public_field };
3674 /* Check if field INDEX of TYPE has the specified accessibility.
3675 Return 0 if so and 1 otherwise. */
3677 match_accessibility (struct type *type, int index, enum accessibility acc)
3679 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3681 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3683 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3684 && !TYPE_FIELD_PROTECTED (type, index))
3691 cplus_describe_child (struct varobj *parent, int index,
3692 char **cname, struct value **cvalue, struct type **ctype,
3693 char **cfull_expression)
3695 struct value *value;
3698 int lookup_actual_type = 0;
3699 char *parent_expression = NULL;
3701 struct value_print_options opts;
3709 if (cfull_expression)
3710 *cfull_expression = NULL;
3712 get_user_print_options (&opts);
3714 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3715 if (opts.objectprint)
3716 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3717 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3719 type = get_value_type (var);
3720 if (cfull_expression)
3721 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
3723 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
3725 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3726 || TYPE_CODE (type) == TYPE_CODE_UNION)
3728 char *join = was_ptr ? "->" : ".";
3730 if (CPLUS_FAKE_CHILD (parent))
3732 /* The fields of the class type are ordered as they
3733 appear in the class. We are given an index for a
3734 particular access control type ("public","protected",
3735 or "private"). We must skip over fields that don't
3736 have the access control we are looking for to properly
3737 find the indexed field. */
3738 int type_index = TYPE_N_BASECLASSES (type);
3739 enum accessibility acc = public_field;
3741 struct type *basetype = NULL;
3742 const char *field_name;
3744 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3745 if (strcmp (parent->name, "private") == 0)
3746 acc = private_field;
3747 else if (strcmp (parent->name, "protected") == 0)
3748 acc = protected_field;
3752 if ((type == basetype && type_index == vptr_fieldno)
3753 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3755 else if (match_accessibility (type, type_index, acc))
3761 /* If the type is anonymous and the field has no name,
3762 set an appopriate name. */
3763 field_name = TYPE_FIELD_NAME (type, type_index);
3764 if (field_name == NULL || *field_name == '\0')
3768 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3769 == TYPE_CODE_STRUCT)
3770 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3771 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3773 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3776 if (cfull_expression)
3777 *cfull_expression = xstrdup ("");
3782 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3784 if (cfull_expression)
3786 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3790 if (cvalue && value)
3791 *cvalue = value_struct_element_index (value, type_index);
3794 *ctype = TYPE_FIELD_TYPE (type, type_index);
3796 else if (index < TYPE_N_BASECLASSES (type))
3798 /* This is a baseclass. */
3800 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3802 if (cvalue && value)
3803 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3807 *ctype = TYPE_FIELD_TYPE (type, index);
3810 if (cfull_expression)
3812 char *ptr = was_ptr ? "*" : "";
3814 /* Cast the parent to the base' type. Note that in gdb,
3817 will create an lvalue, for all appearences, so we don't
3818 need to use more fancy:
3822 When we are in the scope of the base class or of one
3823 of its children, the type field name will be interpreted
3824 as a constructor, if it exists. Therefore, we must
3825 indicate that the name is a class name by using the
3826 'class' keyword. See PR mi/11912 */
3827 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
3829 TYPE_FIELD_NAME (type, index),
3836 char *access = NULL;
3839 cplus_class_num_children (type, children);
3841 /* Everything beyond the baseclasses can
3842 only be "public", "private", or "protected"
3844 The special "fake" children are always output by varobj in
3845 this order. So if INDEX == 2, it MUST be "protected". */
3846 index -= TYPE_N_BASECLASSES (type);
3850 if (children[v_public] > 0)
3852 else if (children[v_private] > 0)
3855 access = "protected";
3858 if (children[v_public] > 0)
3860 if (children[v_private] > 0)
3863 access = "protected";
3865 else if (children[v_private] > 0)
3866 access = "protected";
3869 /* Must be protected. */
3870 access = "protected";
3877 gdb_assert (access);
3879 *cname = xstrdup (access);
3881 /* Value and type and full expression are null here. */
3886 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3891 cplus_name_of_child (struct varobj *parent, int index)
3895 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3900 cplus_path_expr_of_child (struct varobj *child)
3902 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3904 return child->path_expr;
3907 static struct value *
3908 cplus_value_of_root (struct varobj **var_handle)
3910 return c_value_of_root (var_handle);
3913 static struct value *
3914 cplus_value_of_child (struct varobj *parent, int index)
3916 struct value *value = NULL;
3918 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3922 static struct type *
3923 cplus_type_of_child (struct varobj *parent, int index)
3925 struct type *type = NULL;
3927 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3932 cplus_value_of_variable (struct varobj *var,
3933 enum varobj_display_formats format)
3936 /* If we have one of our special types, don't print out
3938 if (CPLUS_FAKE_CHILD (var))
3939 return xstrdup ("");
3941 return c_value_of_variable (var, format);
3947 java_number_of_children (struct varobj *var)
3949 return cplus_number_of_children (var);
3953 java_name_of_variable (struct varobj *parent)
3957 name = cplus_name_of_variable (parent);
3958 /* If the name has "-" in it, it is because we
3959 needed to escape periods in the name... */
3962 while (*p != '\000')
3973 java_name_of_child (struct varobj *parent, int index)
3977 name = cplus_name_of_child (parent, index);
3978 /* Escape any periods in the name... */
3981 while (*p != '\000')
3992 java_path_expr_of_child (struct varobj *child)
3997 static struct value *
3998 java_value_of_root (struct varobj **var_handle)
4000 return cplus_value_of_root (var_handle);
4003 static struct value *
4004 java_value_of_child (struct varobj *parent, int index)
4006 return cplus_value_of_child (parent, index);
4009 static struct type *
4010 java_type_of_child (struct varobj *parent, int index)
4012 return cplus_type_of_child (parent, index);
4016 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4018 return cplus_value_of_variable (var, format);
4021 /* Ada specific callbacks for VAROBJs. */
4024 ada_number_of_children (struct varobj *var)
4026 return ada_varobj_get_number_of_children (var->value, var->type);
4030 ada_name_of_variable (struct varobj *parent)
4032 return c_name_of_variable (parent);
4036 ada_name_of_child (struct varobj *parent, int index)
4038 return ada_varobj_get_name_of_child (parent->value, parent->type,
4039 parent->name, index);
4043 ada_path_expr_of_child (struct varobj *child)
4045 struct varobj *parent = child->parent;
4046 const char *parent_path_expr = varobj_get_path_expr (parent);
4048 return ada_varobj_get_path_expr_of_child (parent->value,
4055 static struct value *
4056 ada_value_of_root (struct varobj **var_handle)
4058 return c_value_of_root (var_handle);
4061 static struct value *
4062 ada_value_of_child (struct varobj *parent, int index)
4064 return ada_varobj_get_value_of_child (parent->value, parent->type,
4065 parent->name, index);
4068 static struct type *
4069 ada_type_of_child (struct varobj *parent, int index)
4071 return ada_varobj_get_type_of_child (parent->value, parent->type,
4076 ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4078 struct value_print_options opts;
4080 get_formatted_print_options (&opts, format_code[(int) format]);
4084 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
4087 /* Implement the "value_is_changeable_p" routine for Ada. */
4090 ada_value_is_changeable_p (struct varobj *var)
4092 struct type *type = var->value ? value_type (var->value) : var->type;
4094 if (ada_is_array_descriptor_type (type)
4095 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4097 /* This is in reality a pointer to an unconstrained array.
4098 its value is changeable. */
4102 if (ada_is_string_type (type))
4104 /* We display the contents of the string in the array's
4105 "value" field. The contents can change, so consider
4106 that the array is changeable. */
4110 return default_value_is_changeable_p (var);
4113 /* Implement the "value_has_mutated" routine for Ada. */
4116 ada_value_has_mutated (struct varobj *var, struct value *new_val,
4117 struct type *new_type)
4123 /* If the number of fields have changed, then for sure the type
4125 if (ada_varobj_get_number_of_children (new_val, new_type)
4126 != var->num_children)
4129 /* If the number of fields have remained the same, then we need
4130 to check the name of each field. If they remain the same,
4131 then chances are the type hasn't mutated. This is technically
4132 an incomplete test, as the child's type might have changed
4133 despite the fact that the name remains the same. But we'll
4134 handle this situation by saying that the child has mutated,
4137 If only part (or none!) of the children have been fetched,
4138 then only check the ones we fetched. It does not matter
4139 to the frontend whether a child that it has not fetched yet
4140 has mutated or not. So just assume it hasn't. */
4142 restrict_range (var->children, &from, &to);
4143 for (i = from; i < to; i++)
4144 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4146 VEC_index (varobj_p, var->children, i)->name) != 0)
4152 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4153 with an arbitrary caller supplied DATA pointer. */
4156 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4158 struct varobj_root *var_root, *var_root_next;
4160 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4162 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4164 var_root_next = var_root->next;
4166 (*func) (var_root->rootvar, data);
4170 extern void _initialize_varobj (void);
4172 _initialize_varobj (void)
4174 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4176 varobj_table = xmalloc (sizeof_table);
4177 memset (varobj_table, 0, sizeof_table);
4179 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
4181 _("Set varobj debugging."),
4182 _("Show varobj debugging."),
4183 _("When non-zero, varobj debugging is enabled."),
4184 NULL, show_varobjdebug,
4185 &setlist, &showlist);
4188 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4189 defined on globals. It is a helper for varobj_invalidate. */
4192 varobj_invalidate_iter (struct varobj *var, void *unused)
4194 /* Floating varobjs are reparsed on each stop, so we don't care if the
4195 presently parsed expression refers to something that's gone. */
4196 if (var->root->floating)
4199 /* global var must be re-evaluated. */
4200 if (var->root->valid_block == NULL)
4202 struct varobj *tmp_var;
4204 /* Try to create a varobj with same expression. If we succeed
4205 replace the old varobj, otherwise invalidate it. */
4206 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4208 if (tmp_var != NULL)
4210 tmp_var->obj_name = xstrdup (var->obj_name);
4211 varobj_delete (var, NULL, 0);
4212 install_variable (tmp_var);
4215 var->root->is_valid = 0;
4217 else /* locals must be invalidated. */
4218 var->root->is_valid = 0;
4221 /* Invalidate the varobjs that are tied to locals and re-create the ones that
4222 are defined on globals.
4223 Invalidated varobjs will be always printed in_scope="invalid". */
4226 varobj_invalidate (void)
4228 all_root_varobjs (varobj_invalidate_iter, NULL);