1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include "exceptions.h"
21 #include "expression.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdb_regex.h"
34 #include "gdbthread.h"
36 #include "ada-varobj.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
46 /* The names of varobjs representing anonymous structs or unions. */
47 #define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48 #define ANONYMOUS_UNION_NAME _("<anonymous union>")
50 /* Non-zero if we want to see trace of varobj level stuff. */
52 unsigned int varobjdebug = 0;
54 show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
60 /* String representations of gdb's format codes. */
61 char *varobj_format_string[] =
62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
64 /* String representations of gdb's known languages. */
65 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
67 /* True if we want to allow Python-based pretty-printing. */
68 static int pretty_printing = 0;
71 varobj_enable_pretty_printing (void)
78 /* Every root variable has one of these structures saved in its
79 varobj. Members which must be free'd are noted. */
83 /* Alloc'd expression for this parent. */
84 struct expression *exp;
86 /* Block for which this expression is valid. */
87 const struct block *valid_block;
89 /* The frame for this expression. This field is set iff valid_block is
91 struct frame_id frame;
93 /* The thread ID that this varobj_root belong to. This field
94 is only valid if valid_block is not NULL.
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
102 always updated in the specific scope/thread/frame. */
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
109 /* Language info for this variable and its children. */
110 struct language_specific *lang;
112 /* The varobj for this root node. */
113 struct varobj *rootvar;
115 /* Next root variable */
116 struct varobj_root *next;
119 /* Every variable in the system has a structure of this type defined
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
125 /* Alloc'd name of the variable for this object. If this variable is a
126 child, then this name will be the child's source name.
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
139 /* Index of this variable in its parent or -1. */
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
153 /* The number of (immediate) children this variable has. */
156 /* If this object is a child, this points to its immediate parent. */
157 struct varobj *parent;
159 /* Children of this object. */
160 VEC (varobj_p) *children;
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
166 int children_requested;
168 /* Description of the root variable. Points to root variable for
170 struct varobj_root *root;
172 /* The format of the output for this object. */
173 enum varobj_display_formats format;
175 /* Was this variable updated via a varobj_set_value operation. */
178 /* Last print value. */
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
206 /* The iterator returned by the printer's 'children' method, or NULL
208 PyObject *child_iter;
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
221 struct cpstack *next;
224 /* A list of varobjs */
232 /* Private function prototypes */
234 /* Helper functions for the above subcommands. */
236 static int delete_variable (struct cpstack **, struct varobj *, int);
238 static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
241 static int install_variable (struct varobj *);
243 static void uninstall_variable (struct varobj *);
245 static struct varobj *create_child (struct varobj *, int, char *);
247 static struct varobj *
248 create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
251 /* Utility routines */
253 static struct varobj *new_variable (void);
255 static struct varobj *new_root_variable (void);
257 static void free_variable (struct varobj *var);
259 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
261 static struct type *get_type (struct varobj *var);
263 static struct type *get_value_type (struct varobj *var);
265 static struct type *get_target_type (struct type *);
267 static enum varobj_display_formats variable_default_display (struct varobj *);
269 static void cppush (struct cpstack **pstack, char *name);
271 static char *cppop (struct cpstack **pstack);
273 static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
276 static int install_new_value (struct varobj *var, struct value *value,
279 /* Language-specific routines. */
281 static enum varobj_languages variable_language (struct varobj *var);
283 static int number_of_children (struct varobj *);
285 static char *name_of_variable (struct varobj *);
287 static char *name_of_child (struct varobj *, int);
289 static struct value *value_of_root (struct varobj **var_handle, int *);
291 static struct value *value_of_child (struct varobj *parent, int index);
293 static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
296 static char *value_get_print_value (struct value *value,
297 enum varobj_display_formats format,
300 static int varobj_value_is_changeable_p (struct varobj *var);
302 static int is_root_p (struct varobj *var);
306 static struct varobj *varobj_add_child (struct varobj *var,
308 struct value *value);
310 #endif /* HAVE_PYTHON */
312 static int default_value_is_changeable_p (struct varobj *var);
314 /* C implementation */
316 static int c_number_of_children (struct varobj *var);
318 static char *c_name_of_variable (struct varobj *parent);
320 static char *c_name_of_child (struct varobj *parent, int index);
322 static char *c_path_expr_of_child (struct varobj *child);
324 static struct value *c_value_of_root (struct varobj **var_handle);
326 static struct value *c_value_of_child (struct varobj *parent, int index);
328 static struct type *c_type_of_child (struct varobj *parent, int index);
330 static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
333 /* C++ implementation */
335 static int cplus_number_of_children (struct varobj *var);
337 static void cplus_class_num_children (struct type *type, int children[3]);
339 static char *cplus_name_of_variable (struct varobj *parent);
341 static char *cplus_name_of_child (struct varobj *parent, int index);
343 static char *cplus_path_expr_of_child (struct varobj *child);
345 static struct value *cplus_value_of_root (struct varobj **var_handle);
347 static struct value *cplus_value_of_child (struct varobj *parent, int index);
349 static struct type *cplus_type_of_child (struct varobj *parent, int index);
351 static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
354 /* Java implementation */
356 static int java_number_of_children (struct varobj *var);
358 static char *java_name_of_variable (struct varobj *parent);
360 static char *java_name_of_child (struct varobj *parent, int index);
362 static char *java_path_expr_of_child (struct varobj *child);
364 static struct value *java_value_of_root (struct varobj **var_handle);
366 static struct value *java_value_of_child (struct varobj *parent, int index);
368 static struct type *java_type_of_child (struct varobj *parent, int index);
370 static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
373 /* Ada implementation */
375 static int ada_number_of_children (struct varobj *var);
377 static char *ada_name_of_variable (struct varobj *parent);
379 static char *ada_name_of_child (struct varobj *parent, int index);
381 static char *ada_path_expr_of_child (struct varobj *child);
383 static struct value *ada_value_of_root (struct varobj **var_handle);
385 static struct value *ada_value_of_child (struct varobj *parent, int index);
387 static struct type *ada_type_of_child (struct varobj *parent, int index);
389 static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
392 static int ada_value_is_changeable_p (struct varobj *var);
394 static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
397 /* The language specific vector */
399 struct language_specific
402 /* The language of this variable. */
403 enum varobj_languages language;
405 /* The number of children of PARENT. */
406 int (*number_of_children) (struct varobj * parent);
408 /* The name (expression) of a root varobj. */
409 char *(*name_of_variable) (struct varobj * parent);
411 /* The name of the INDEX'th child of PARENT. */
412 char *(*name_of_child) (struct varobj * parent, int index);
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
418 /* The ``struct value *'' of the root variable ROOT. */
419 struct value *(*value_of_root) (struct varobj ** root_handle);
421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
422 struct value *(*value_of_child) (struct varobj * parent, int index);
424 /* The type of the INDEX'th child of PARENT. */
425 struct type *(*type_of_child) (struct varobj * parent, int index);
427 /* The current value of VAR. */
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
441 /* Return nonzero if the type of VAR has mutated.
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
457 /* Array of known source language routines. */
458 static struct language_specific languages[vlang_end] = {
459 /* Unknown (try treating as C). */
462 c_number_of_children,
465 c_path_expr_of_child,
470 default_value_is_changeable_p,
471 NULL /* value_has_mutated */}
476 c_number_of_children,
479 c_path_expr_of_child,
484 default_value_is_changeable_p,
485 NULL /* value_has_mutated */}
490 cplus_number_of_children,
491 cplus_name_of_variable,
493 cplus_path_expr_of_child,
495 cplus_value_of_child,
497 cplus_value_of_variable,
498 default_value_is_changeable_p,
499 NULL /* value_has_mutated */}
504 java_number_of_children,
505 java_name_of_variable,
507 java_path_expr_of_child,
511 java_value_of_variable,
512 default_value_is_changeable_p,
513 NULL /* value_has_mutated */},
517 ada_number_of_children,
518 ada_name_of_variable,
520 ada_path_expr_of_child,
524 ada_value_of_variable,
525 ada_value_is_changeable_p,
526 ada_value_has_mutated}
529 /* A little convenience enum for dealing with C++/Java. */
532 v_public = 0, v_private, v_protected
537 /* Mappings of varobj_display_formats enums to gdb's format codes. */
538 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
540 /* Header of the list of root variable objects. */
541 static struct varobj_root *rootlist;
543 /* Prime number indicating the number of buckets in the hash table. */
544 /* A prime large enough to avoid too many colisions. */
545 #define VAROBJ_TABLE_SIZE 227
547 /* Pointer to the varobj hash table (built at run time). */
548 static struct vlist **varobj_table;
550 /* Is the variable X one of our "fake" children? */
551 #define CPLUS_FAKE_CHILD(x) \
552 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
555 /* API Implementation */
557 is_root_p (struct varobj *var)
559 return (var->root->rootvar == var);
563 /* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
565 static struct cleanup *
566 varobj_ensure_python_env (struct varobj *var)
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
573 /* Creates a varobj (not its children). */
575 /* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
578 static struct frame_info *
579 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
581 struct frame_info *frame = NULL;
583 if (frame_addr == (CORE_ADDR) 0)
586 for (frame = get_current_frame ();
588 frame = get_prev_frame (frame))
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
600 if (frame_base == frame_addr)
608 varobj_create (char *objname,
609 char *expression, CORE_ADDR frame, enum varobj_type type)
612 struct cleanup *old_chain;
614 /* Fill out a varobj structure for the (root) variable being constructed. */
615 var = new_root_variable ();
616 old_chain = make_cleanup_free_variable (var);
618 if (expression != NULL)
620 struct frame_info *fi;
621 struct frame_id old_id = null_frame_id;
624 enum varobj_languages lang;
625 struct value *value = NULL;
626 volatile struct gdb_exception except;
629 /* Parse and evaluate the expression, filling in as much of the
630 variable's data as possible. */
632 if (has_stack_frames ())
634 /* Allow creator to specify context of variable. */
635 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
636 fi = get_selected_frame (NULL);
638 /* FIXME: cagney/2002-11-23: This code should be doing a
639 lookup using the frame ID and not just the frame's
640 ``address''. This, of course, means an interface
641 change. However, with out that interface change ISAs,
642 such as the ia64 with its two stacks, won't work.
643 Similar goes for the case where there is a frameless
645 fi = find_frame_addr_in_frame_chain (frame);
650 /* frame = -2 means always use selected frame. */
651 if (type == USE_SELECTED_FRAME)
652 var->root->floating = 1;
658 block = get_frame_block (fi, 0);
659 pc = get_frame_pc (fi);
663 innermost_block = NULL;
664 /* Wrap the call to parse expression, so we can
665 return a sensible error. */
666 TRY_CATCH (except, RETURN_MASK_ERROR)
668 var->root->exp = parse_exp_1 (&p, pc, block, 0);
671 if (except.reason < 0)
673 do_cleanups (old_chain);
677 /* Don't allow variables to be created for types. */
678 if (var->root->exp->elts[0].opcode == OP_TYPE
679 || var->root->exp->elts[0].opcode == OP_TYPEOF
680 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
682 do_cleanups (old_chain);
683 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
684 " as an expression.\n");
688 var->format = variable_default_display (var);
689 var->root->valid_block = innermost_block;
690 var->name = xstrdup (expression);
691 /* For a root var, the name and the expr are the same. */
692 var->path_expr = xstrdup (expression);
694 /* When the frame is different from the current frame,
695 we must select the appropriate frame before parsing
696 the expression, otherwise the value will not be current.
697 Since select_frame is so benign, just call it for all cases. */
700 /* User could specify explicit FRAME-ADDR which was not found but
701 EXPRESSION is frame specific and we would not be able to evaluate
702 it correctly next time. With VALID_BLOCK set we must also set
703 FRAME and THREAD_ID. */
705 error (_("Failed to find the specified frame"));
707 var->root->frame = get_frame_id (fi);
708 var->root->thread_id = pid_to_thread_id (inferior_ptid);
709 old_id = get_frame_id (get_selected_frame (NULL));
713 /* We definitely need to catch errors here.
714 If evaluate_expression succeeds we got the value we wanted.
715 But if it fails, we still go on with a call to evaluate_type(). */
716 TRY_CATCH (except, RETURN_MASK_ERROR)
718 value = evaluate_expression (var->root->exp);
721 if (except.reason < 0)
723 /* Error getting the value. Try to at least get the
725 struct value *type_only_value = evaluate_type (var->root->exp);
727 var->type = value_type (type_only_value);
731 int real_type_found = 0;
733 var->type = value_actual_type (value, 0, &real_type_found);
735 value = value_cast (var->type, value);
738 /* Set language info */
739 lang = variable_language (var);
740 var->root->lang = &languages[lang];
742 install_new_value (var, value, 1 /* Initial assignment */);
744 /* Set ourselves as our root. */
745 var->root->rootvar = var;
747 /* Reset the selected frame. */
748 if (frame_id_p (old_id))
749 select_frame (frame_find_by_id (old_id));
752 /* If the variable object name is null, that means this
753 is a temporary variable, so don't install it. */
755 if ((var != NULL) && (objname != NULL))
757 var->obj_name = xstrdup (objname);
759 /* If a varobj name is duplicated, the install will fail so
761 if (!install_variable (var))
763 do_cleanups (old_chain);
768 discard_cleanups (old_chain);
772 /* Generates an unique name that can be used for a varobj. */
775 varobj_gen_name (void)
780 /* Generate a name for this object. */
782 obj_name = xstrprintf ("var%d", id);
787 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
788 error if OBJNAME cannot be found. */
791 varobj_get_handle (char *objname)
795 unsigned int index = 0;
798 for (chp = objname; *chp; chp++)
800 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
803 cv = *(varobj_table + index);
804 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
808 error (_("Variable object not found"));
813 /* Given the handle, return the name of the object. */
816 varobj_get_objname (struct varobj *var)
818 return var->obj_name;
821 /* Given the handle, return the expression represented by the object. */
824 varobj_get_expression (struct varobj *var)
826 return name_of_variable (var);
829 /* Deletes a varobj and all its children if only_children == 0,
830 otherwise deletes only the children; returns a malloc'ed list of
831 all the (malloc'ed) names of the variables that have been deleted
832 (NULL terminated). */
835 varobj_delete (struct varobj *var, char ***dellist, int only_children)
839 struct cpstack *result = NULL;
842 /* Initialize a stack for temporary results. */
843 cppush (&result, NULL);
846 /* Delete only the variable children. */
847 delcount = delete_variable (&result, var, 1 /* only the children */ );
849 /* Delete the variable and all its children. */
850 delcount = delete_variable (&result, var, 0 /* parent+children */ );
852 /* We may have been asked to return a list of what has been deleted. */
855 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
859 *cp = cppop (&result);
860 while ((*cp != NULL) && (mycount > 0))
864 *cp = cppop (&result);
867 if (mycount || (*cp != NULL))
868 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
877 /* Convenience function for varobj_set_visualizer. Instantiate a
878 pretty-printer for a given value. */
880 instantiate_pretty_printer (PyObject *constructor, struct value *value)
882 PyObject *val_obj = NULL;
885 val_obj = value_to_value_object (value);
889 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
896 /* Set/Get variable object display format. */
898 enum varobj_display_formats
899 varobj_set_display_format (struct varobj *var,
900 enum varobj_display_formats format)
907 case FORMAT_HEXADECIMAL:
909 var->format = format;
913 var->format = variable_default_display (var);
916 if (varobj_value_is_changeable_p (var)
917 && var->value && !value_lazy (var->value))
919 xfree (var->print_value);
920 var->print_value = value_get_print_value (var->value, var->format, var);
926 enum varobj_display_formats
927 varobj_get_display_format (struct varobj *var)
933 varobj_get_display_hint (struct varobj *var)
938 struct cleanup *back_to = varobj_ensure_python_env (var);
940 if (var->pretty_printer)
941 result = gdbpy_get_display_hint (var->pretty_printer);
943 do_cleanups (back_to);
949 /* Return true if the varobj has items after TO, false otherwise. */
952 varobj_has_more (struct varobj *var, int to)
954 if (VEC_length (varobj_p, var->children) > to)
956 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
957 && var->saved_item != NULL);
960 /* If the variable object is bound to a specific thread, that
961 is its evaluation can always be done in context of a frame
962 inside that thread, returns GDB id of the thread -- which
963 is always positive. Otherwise, returns -1. */
965 varobj_get_thread_id (struct varobj *var)
967 if (var->root->valid_block && var->root->thread_id > 0)
968 return var->root->thread_id;
974 varobj_set_frozen (struct varobj *var, int frozen)
976 /* When a variable is unfrozen, we don't fetch its value.
977 The 'not_fetched' flag remains set, so next -var-update
980 We don't fetch the value, because for structures the client
981 should do -var-update anyway. It would be bad to have different
982 client-size logic for structure and other types. */
983 var->frozen = frozen;
987 varobj_get_frozen (struct varobj *var)
992 /* A helper function that restricts a range to what is actually
993 available in a VEC. This follows the usual rules for the meaning
994 of FROM and TO -- if either is negative, the entire range is
998 restrict_range (VEC (varobj_p) *children, int *from, int *to)
1000 if (*from < 0 || *to < 0)
1003 *to = VEC_length (varobj_p, children);
1007 if (*from > VEC_length (varobj_p, children))
1008 *from = VEC_length (varobj_p, children);
1009 if (*to > VEC_length (varobj_p, children))
1010 *to = VEC_length (varobj_p, children);
1018 /* A helper for update_dynamic_varobj_children that installs a new
1019 child when needed. */
1022 install_dynamic_child (struct varobj *var,
1023 VEC (varobj_p) **changed,
1024 VEC (varobj_p) **type_changed,
1025 VEC (varobj_p) **new,
1026 VEC (varobj_p) **unchanged,
1030 struct value *value)
1032 if (VEC_length (varobj_p, var->children) < index + 1)
1034 /* There's no child yet. */
1035 struct varobj *child = varobj_add_child (var, name, value);
1039 VEC_safe_push (varobj_p, *new, child);
1045 varobj_p existing = VEC_index (varobj_p, var->children, index);
1047 int type_updated = update_type_if_necessary (existing, value);
1051 VEC_safe_push (varobj_p, *type_changed, existing);
1053 if (install_new_value (existing, value, 0))
1055 if (!type_updated && changed)
1056 VEC_safe_push (varobj_p, *changed, existing);
1058 else if (!type_updated && unchanged)
1059 VEC_safe_push (varobj_p, *unchanged, existing);
1064 dynamic_varobj_has_child_method (struct varobj *var)
1066 struct cleanup *back_to;
1067 PyObject *printer = var->pretty_printer;
1070 back_to = varobj_ensure_python_env (var);
1071 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1072 do_cleanups (back_to);
1079 update_dynamic_varobj_children (struct varobj *var,
1080 VEC (varobj_p) **changed,
1081 VEC (varobj_p) **type_changed,
1082 VEC (varobj_p) **new,
1083 VEC (varobj_p) **unchanged,
1085 int update_children,
1090 struct cleanup *back_to;
1093 PyObject *printer = var->pretty_printer;
1095 back_to = varobj_ensure_python_env (var);
1098 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1100 do_cleanups (back_to);
1104 if (update_children || !var->child_iter)
1106 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1111 gdbpy_print_stack ();
1112 error (_("Null value returned for children"));
1115 make_cleanup_py_decref (children);
1117 Py_XDECREF (var->child_iter);
1118 var->child_iter = PyObject_GetIter (children);
1119 if (!var->child_iter)
1121 gdbpy_print_stack ();
1122 error (_("Could not get children iterator"));
1125 Py_XDECREF (var->saved_item);
1126 var->saved_item = NULL;
1131 i = VEC_length (varobj_p, var->children);
1133 /* We ask for one extra child, so that MI can report whether there
1134 are more children. */
1135 for (; to < 0 || i < to + 1; ++i)
1140 /* See if there was a leftover from last time. */
1141 if (var->saved_item)
1143 item = var->saved_item;
1144 var->saved_item = NULL;
1147 item = PyIter_Next (var->child_iter);
1151 /* Normal end of iteration. */
1152 if (!PyErr_Occurred ())
1155 /* If we got a memory error, just use the text as the
1157 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1159 PyObject *type, *value, *trace;
1160 char *name_str, *value_str;
1162 PyErr_Fetch (&type, &value, &trace);
1163 value_str = gdbpy_exception_to_string (type, value);
1169 gdbpy_print_stack ();
1173 name_str = xstrprintf ("<error at %d>", i);
1174 item = Py_BuildValue ("(ss)", name_str, value_str);
1179 gdbpy_print_stack ();
1187 /* Any other kind of error. */
1188 gdbpy_print_stack ();
1193 /* We don't want to push the extra child on any report list. */
1194 if (to < 0 || i < to)
1199 struct cleanup *inner;
1200 int can_mention = from < 0 || i >= from;
1202 inner = make_cleanup_py_decref (item);
1204 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1206 gdbpy_print_stack ();
1207 error (_("Invalid item from the child list"));
1210 v = convert_value_from_python (py_v);
1212 gdbpy_print_stack ();
1213 install_dynamic_child (var, can_mention ? changed : NULL,
1214 can_mention ? type_changed : NULL,
1215 can_mention ? new : NULL,
1216 can_mention ? unchanged : NULL,
1217 can_mention ? cchanged : NULL, i, name, v);
1218 do_cleanups (inner);
1222 Py_XDECREF (var->saved_item);
1223 var->saved_item = item;
1225 /* We want to truncate the child list just before this
1234 if (i < VEC_length (varobj_p, var->children))
1239 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1240 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1241 VEC_truncate (varobj_p, var->children, i);
1244 /* If there are fewer children than requested, note that the list of
1245 children changed. */
1246 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1249 var->num_children = VEC_length (varobj_p, var->children);
1251 do_cleanups (back_to);
1255 gdb_assert (0 && "should never be called if Python is not enabled");
1260 varobj_get_num_children (struct varobj *var)
1262 if (var->num_children == -1)
1264 if (var->pretty_printer)
1268 /* If we have a dynamic varobj, don't report -1 children.
1269 So, try to fetch some children first. */
1270 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
1274 var->num_children = number_of_children (var);
1277 return var->num_children >= 0 ? var->num_children : 0;
1280 /* Creates a list of the immediate children of a variable object;
1281 the return code is the number of such children or -1 on error. */
1284 varobj_list_children (struct varobj *var, int *from, int *to)
1287 int i, children_changed;
1289 var->children_requested = 1;
1291 if (var->pretty_printer)
1293 /* This, in theory, can result in the number of children changing without
1294 frontend noticing. But well, calling -var-list-children on the same
1295 varobj twice is not something a sane frontend would do. */
1296 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1297 &children_changed, 0, 0, *to);
1298 restrict_range (var->children, from, to);
1299 return var->children;
1302 if (var->num_children == -1)
1303 var->num_children = number_of_children (var);
1305 /* If that failed, give up. */
1306 if (var->num_children == -1)
1307 return var->children;
1309 /* If we're called when the list of children is not yet initialized,
1310 allocate enough elements in it. */
1311 while (VEC_length (varobj_p, var->children) < var->num_children)
1312 VEC_safe_push (varobj_p, var->children, NULL);
1314 for (i = 0; i < var->num_children; i++)
1316 varobj_p existing = VEC_index (varobj_p, var->children, i);
1318 if (existing == NULL)
1320 /* Either it's the first call to varobj_list_children for
1321 this variable object, and the child was never created,
1322 or it was explicitly deleted by the client. */
1323 name = name_of_child (var, i);
1324 existing = create_child (var, i, name);
1325 VEC_replace (varobj_p, var->children, i, existing);
1329 restrict_range (var->children, from, to);
1330 return var->children;
1335 static struct varobj *
1336 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1338 varobj_p v = create_child_with_value (var,
1339 VEC_length (varobj_p, var->children),
1342 VEC_safe_push (varobj_p, var->children, v);
1346 #endif /* HAVE_PYTHON */
1348 /* Obtain the type of an object Variable as a string similar to the one gdb
1349 prints on the console. */
1352 varobj_get_type (struct varobj *var)
1354 /* For the "fake" variables, do not return a type. (It's type is
1356 Do not return a type for invalid variables as well. */
1357 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1360 return type_to_string (var->type);
1363 /* Obtain the type of an object variable. */
1366 varobj_get_gdb_type (struct varobj *var)
1371 /* Is VAR a path expression parent, i.e., can it be used to construct
1372 a valid path expression? */
1375 is_path_expr_parent (struct varobj *var)
1379 /* "Fake" children are not path_expr parents. */
1380 if (CPLUS_FAKE_CHILD (var))
1383 type = get_value_type (var);
1385 /* Anonymous unions and structs are also not path_expr parents. */
1386 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1387 || TYPE_CODE (type) == TYPE_CODE_UNION)
1388 && TYPE_NAME (type) == NULL);
1391 /* Return the path expression parent for VAR. */
1393 static struct varobj *
1394 get_path_expr_parent (struct varobj *var)
1396 struct varobj *parent = var;
1398 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1399 parent = parent->parent;
1404 /* Return a pointer to the full rooted expression of varobj VAR.
1405 If it has not been computed yet, compute it. */
1407 varobj_get_path_expr (struct varobj *var)
1409 if (var->path_expr != NULL)
1410 return var->path_expr;
1413 /* For root varobjs, we initialize path_expr
1414 when creating varobj, so here it should be
1416 gdb_assert (!is_root_p (var));
1417 return (*var->root->lang->path_expr_of_child) (var);
1421 enum varobj_languages
1422 varobj_get_language (struct varobj *var)
1424 return variable_language (var);
1428 varobj_get_attributes (struct varobj *var)
1432 if (varobj_editable_p (var))
1433 /* FIXME: define masks for attributes. */
1434 attributes |= 0x00000001; /* Editable */
1440 varobj_pretty_printed_p (struct varobj *var)
1442 return var->pretty_printer != NULL;
1446 varobj_get_formatted_value (struct varobj *var,
1447 enum varobj_display_formats format)
1449 return my_value_of_variable (var, format);
1453 varobj_get_value (struct varobj *var)
1455 return my_value_of_variable (var, var->format);
1458 /* Set the value of an object variable (if it is editable) to the
1459 value of the given expression. */
1460 /* Note: Invokes functions that can call error(). */
1463 varobj_set_value (struct varobj *var, char *expression)
1465 struct value *val = NULL; /* Initialize to keep gcc happy. */
1466 /* The argument "expression" contains the variable's new value.
1467 We need to first construct a legal expression for this -- ugh! */
1468 /* Does this cover all the bases? */
1469 struct expression *exp;
1470 struct value *value = NULL; /* Initialize to keep gcc happy. */
1471 int saved_input_radix = input_radix;
1472 char *s = expression;
1473 volatile struct gdb_exception except;
1475 gdb_assert (varobj_editable_p (var));
1477 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1478 exp = parse_exp_1 (&s, 0, 0, 0);
1479 TRY_CATCH (except, RETURN_MASK_ERROR)
1481 value = evaluate_expression (exp);
1484 if (except.reason < 0)
1486 /* We cannot proceed without a valid expression. */
1491 /* All types that are editable must also be changeable. */
1492 gdb_assert (varobj_value_is_changeable_p (var));
1494 /* The value of a changeable variable object must not be lazy. */
1495 gdb_assert (!value_lazy (var->value));
1497 /* Need to coerce the input. We want to check if the
1498 value of the variable object will be different
1499 after assignment, and the first thing value_assign
1500 does is coerce the input.
1501 For example, if we are assigning an array to a pointer variable we
1502 should compare the pointer with the array's address, not with the
1504 value = coerce_array (value);
1506 /* The new value may be lazy. value_assign, or
1507 rather value_contents, will take care of this. */
1508 TRY_CATCH (except, RETURN_MASK_ERROR)
1510 val = value_assign (var->value, value);
1513 if (except.reason < 0)
1516 /* If the value has changed, record it, so that next -var-update can
1517 report this change. If a variable had a value of '1', we've set it
1518 to '333' and then set again to '1', when -var-update will report this
1519 variable as changed -- because the first assignment has set the
1520 'updated' flag. There's no need to optimize that, because return value
1521 of -var-update should be considered an approximation. */
1522 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1523 input_radix = saved_input_radix;
1529 /* A helper function to install a constructor function and visualizer
1533 install_visualizer (struct varobj *var, PyObject *constructor,
1534 PyObject *visualizer)
1536 Py_XDECREF (var->constructor);
1537 var->constructor = constructor;
1539 Py_XDECREF (var->pretty_printer);
1540 var->pretty_printer = visualizer;
1542 Py_XDECREF (var->child_iter);
1543 var->child_iter = NULL;
1546 /* Install the default visualizer for VAR. */
1549 install_default_visualizer (struct varobj *var)
1551 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1552 if (CPLUS_FAKE_CHILD (var))
1555 if (pretty_printing)
1557 PyObject *pretty_printer = NULL;
1561 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1562 if (! pretty_printer)
1564 gdbpy_print_stack ();
1565 error (_("Cannot instantiate printer for default visualizer"));
1569 if (pretty_printer == Py_None)
1571 Py_DECREF (pretty_printer);
1572 pretty_printer = NULL;
1575 install_visualizer (var, NULL, pretty_printer);
1579 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1580 make a new object. */
1583 construct_visualizer (struct varobj *var, PyObject *constructor)
1585 PyObject *pretty_printer;
1587 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1588 if (CPLUS_FAKE_CHILD (var))
1591 Py_INCREF (constructor);
1592 if (constructor == Py_None)
1593 pretty_printer = NULL;
1596 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1597 if (! pretty_printer)
1599 gdbpy_print_stack ();
1600 Py_DECREF (constructor);
1601 constructor = Py_None;
1602 Py_INCREF (constructor);
1605 if (pretty_printer == Py_None)
1607 Py_DECREF (pretty_printer);
1608 pretty_printer = NULL;
1612 install_visualizer (var, constructor, pretty_printer);
1615 #endif /* HAVE_PYTHON */
1617 /* A helper function for install_new_value. This creates and installs
1618 a visualizer for VAR, if appropriate. */
1621 install_new_value_visualizer (struct varobj *var)
1624 /* If the constructor is None, then we want the raw value. If VAR
1625 does not have a value, just skip this. */
1626 if (var->constructor != Py_None && var->value)
1628 struct cleanup *cleanup;
1630 cleanup = varobj_ensure_python_env (var);
1632 if (!var->constructor)
1633 install_default_visualizer (var);
1635 construct_visualizer (var, var->constructor);
1637 do_cleanups (cleanup);
1644 /* When using RTTI to determine variable type it may be changed in runtime when
1645 the variable value is changed. This function checks whether type of varobj
1646 VAR will change when a new value NEW_VALUE is assigned and if it is so
1647 updates the type of VAR. */
1650 update_type_if_necessary (struct varobj *var, struct value *new_value)
1654 struct value_print_options opts;
1656 get_user_print_options (&opts);
1657 if (opts.objectprint)
1659 struct type *new_type;
1660 char *curr_type_str, *new_type_str;
1662 new_type = value_actual_type (new_value, 0, 0);
1663 new_type_str = type_to_string (new_type);
1664 curr_type_str = varobj_get_type (var);
1665 if (strcmp (curr_type_str, new_type_str) != 0)
1667 var->type = new_type;
1669 /* This information may be not valid for a new type. */
1670 varobj_delete (var, NULL, 1);
1671 VEC_free (varobj_p, var->children);
1672 var->num_children = -1;
1681 /* Assign a new value to a variable object. If INITIAL is non-zero,
1682 this is the first assignement after the variable object was just
1683 created, or changed type. In that case, just assign the value
1685 Otherwise, assign the new value, and return 1 if the value is
1686 different from the current one, 0 otherwise. The comparison is
1687 done on textual representation of value. Therefore, some types
1688 need not be compared. E.g. for structures the reported value is
1689 always "{...}", so no comparison is necessary here. If the old
1690 value was NULL and new one is not, or vice versa, we always return 1.
1692 The VALUE parameter should not be released -- the function will
1693 take care of releasing it when needed. */
1695 install_new_value (struct varobj *var, struct value *value, int initial)
1700 int intentionally_not_fetched = 0;
1701 char *print_value = NULL;
1703 /* We need to know the varobj's type to decide if the value should
1704 be fetched or not. C++ fake children (public/protected/private)
1705 don't have a type. */
1706 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1707 changeable = varobj_value_is_changeable_p (var);
1709 /* If the type has custom visualizer, we consider it to be always
1710 changeable. FIXME: need to make sure this behaviour will not
1711 mess up read-sensitive values. */
1712 if (var->pretty_printer)
1715 need_to_fetch = changeable;
1717 /* We are not interested in the address of references, and given
1718 that in C++ a reference is not rebindable, it cannot
1719 meaningfully change. So, get hold of the real value. */
1721 value = coerce_ref (value);
1723 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1724 /* For unions, we need to fetch the value implicitly because
1725 of implementation of union member fetch. When gdb
1726 creates a value for a field and the value of the enclosing
1727 structure is not lazy, it immediately copies the necessary
1728 bytes from the enclosing values. If the enclosing value is
1729 lazy, the call to value_fetch_lazy on the field will read
1730 the data from memory. For unions, that means we'll read the
1731 same memory more than once, which is not desirable. So
1735 /* The new value might be lazy. If the type is changeable,
1736 that is we'll be comparing values of this type, fetch the
1737 value now. Otherwise, on the next update the old value
1738 will be lazy, which means we've lost that old value. */
1739 if (need_to_fetch && value && value_lazy (value))
1741 struct varobj *parent = var->parent;
1742 int frozen = var->frozen;
1744 for (; !frozen && parent; parent = parent->parent)
1745 frozen |= parent->frozen;
1747 if (frozen && initial)
1749 /* For variables that are frozen, or are children of frozen
1750 variables, we don't do fetch on initial assignment.
1751 For non-initial assignemnt we do the fetch, since it means we're
1752 explicitly asked to compare the new value with the old one. */
1753 intentionally_not_fetched = 1;
1757 volatile struct gdb_exception except;
1759 TRY_CATCH (except, RETURN_MASK_ERROR)
1761 value_fetch_lazy (value);
1764 if (except.reason < 0)
1766 /* Set the value to NULL, so that for the next -var-update,
1767 we don't try to compare the new value with this value,
1768 that we couldn't even read. */
1774 /* Get a reference now, before possibly passing it to any Python
1775 code that might release it. */
1777 value_incref (value);
1779 /* Below, we'll be comparing string rendering of old and new
1780 values. Don't get string rendering if the value is
1781 lazy -- if it is, the code above has decided that the value
1782 should not be fetched. */
1783 if (value && !value_lazy (value) && !var->pretty_printer)
1784 print_value = value_get_print_value (value, var->format, var);
1786 /* If the type is changeable, compare the old and the new values.
1787 If this is the initial assignment, we don't have any old value
1789 if (!initial && changeable)
1791 /* If the value of the varobj was changed by -var-set-value,
1792 then the value in the varobj and in the target is the same.
1793 However, that value is different from the value that the
1794 varobj had after the previous -var-update. So need to the
1795 varobj as changed. */
1800 else if (! var->pretty_printer)
1802 /* Try to compare the values. That requires that both
1803 values are non-lazy. */
1804 if (var->not_fetched && value_lazy (var->value))
1806 /* This is a frozen varobj and the value was never read.
1807 Presumably, UI shows some "never read" indicator.
1808 Now that we've fetched the real value, we need to report
1809 this varobj as changed so that UI can show the real
1813 else if (var->value == NULL && value == NULL)
1816 else if (var->value == NULL || value == NULL)
1822 gdb_assert (!value_lazy (var->value));
1823 gdb_assert (!value_lazy (value));
1825 gdb_assert (var->print_value != NULL && print_value != NULL);
1826 if (strcmp (var->print_value, print_value) != 0)
1832 if (!initial && !changeable)
1834 /* For values that are not changeable, we don't compare the values.
1835 However, we want to notice if a value was not NULL and now is NULL,
1836 or vise versa, so that we report when top-level varobjs come in scope
1837 and leave the scope. */
1838 changed = (var->value != NULL) != (value != NULL);
1841 /* We must always keep the new value, since children depend on it. */
1842 if (var->value != NULL && var->value != value)
1843 value_free (var->value);
1845 if (value && value_lazy (value) && intentionally_not_fetched)
1846 var->not_fetched = 1;
1848 var->not_fetched = 0;
1851 install_new_value_visualizer (var);
1853 /* If we installed a pretty-printer, re-compare the printed version
1854 to see if the variable changed. */
1855 if (var->pretty_printer)
1857 xfree (print_value);
1858 print_value = value_get_print_value (var->value, var->format, var);
1859 if ((var->print_value == NULL && print_value != NULL)
1860 || (var->print_value != NULL && print_value == NULL)
1861 || (var->print_value != NULL && print_value != NULL
1862 && strcmp (var->print_value, print_value) != 0))
1865 if (var->print_value)
1866 xfree (var->print_value);
1867 var->print_value = print_value;
1869 gdb_assert (!var->value || value_type (var->value));
1874 /* Return the requested range for a varobj. VAR is the varobj. FROM
1875 and TO are out parameters; *FROM and *TO will be set to the
1876 selected sub-range of VAR. If no range was selected using
1877 -var-set-update-range, then both will be -1. */
1879 varobj_get_child_range (struct varobj *var, int *from, int *to)
1885 /* Set the selected sub-range of children of VAR to start at index
1886 FROM and end at index TO. If either FROM or TO is less than zero,
1887 this is interpreted as a request for all children. */
1889 varobj_set_child_range (struct varobj *var, int from, int to)
1896 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1899 PyObject *mainmod, *globals, *constructor;
1900 struct cleanup *back_to;
1902 back_to = varobj_ensure_python_env (var);
1904 mainmod = PyImport_AddModule ("__main__");
1905 globals = PyModule_GetDict (mainmod);
1906 Py_INCREF (globals);
1907 make_cleanup_py_decref (globals);
1909 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1913 gdbpy_print_stack ();
1914 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1917 construct_visualizer (var, constructor);
1918 Py_XDECREF (constructor);
1920 /* If there are any children now, wipe them. */
1921 varobj_delete (var, NULL, 1 /* children only */);
1922 var->num_children = -1;
1924 do_cleanups (back_to);
1926 error (_("Python support required"));
1930 /* If NEW_VALUE is the new value of the given varobj (var), return
1931 non-zero if var has mutated. In other words, if the type of
1932 the new value is different from the type of the varobj's old
1935 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1938 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1939 struct type *new_type)
1941 /* If we haven't previously computed the number of children in var,
1942 it does not matter from the front-end's perspective whether
1943 the type has mutated or not. For all intents and purposes,
1944 it has not mutated. */
1945 if (var->num_children < 0)
1948 if (var->root->lang->value_has_mutated)
1949 return var->root->lang->value_has_mutated (var, new_value, new_type);
1954 /* Update the values for a variable and its children. This is a
1955 two-pronged attack. First, re-parse the value for the root's
1956 expression to see if it's changed. Then go all the way
1957 through its children, reconstructing them and noting if they've
1960 The EXPLICIT parameter specifies if this call is result
1961 of MI request to update this specific variable, or
1962 result of implicit -var-update *. For implicit request, we don't
1963 update frozen variables.
1965 NOTE: This function may delete the caller's varobj. If it
1966 returns TYPE_CHANGED, then it has done this and VARP will be modified
1967 to point to the new varobj. */
1969 VEC(varobj_update_result) *
1970 varobj_update (struct varobj **varp, int explicit)
1972 int type_changed = 0;
1975 VEC (varobj_update_result) *stack = NULL;
1976 VEC (varobj_update_result) *result = NULL;
1978 /* Frozen means frozen -- we don't check for any change in
1979 this varobj, including its going out of scope, or
1980 changing type. One use case for frozen varobjs is
1981 retaining previously evaluated expressions, and we don't
1982 want them to be reevaluated at all. */
1983 if (!explicit && (*varp)->frozen)
1986 if (!(*varp)->root->is_valid)
1988 varobj_update_result r = {0};
1991 r.status = VAROBJ_INVALID;
1992 VEC_safe_push (varobj_update_result, result, &r);
1996 if ((*varp)->root->rootvar == *varp)
1998 varobj_update_result r = {0};
2001 r.status = VAROBJ_IN_SCOPE;
2003 /* Update the root variable. value_of_root can return NULL
2004 if the variable is no longer around, i.e. we stepped out of
2005 the frame in which a local existed. We are letting the
2006 value_of_root variable dispose of the varobj if the type
2008 new = value_of_root (varp, &type_changed);
2009 if (update_type_if_necessary(*varp, new))
2012 r.type_changed = type_changed;
2013 if (install_new_value ((*varp), new, type_changed))
2017 r.status = VAROBJ_NOT_IN_SCOPE;
2018 r.value_installed = 1;
2020 if (r.status == VAROBJ_NOT_IN_SCOPE)
2022 if (r.type_changed || r.changed)
2023 VEC_safe_push (varobj_update_result, result, &r);
2027 VEC_safe_push (varobj_update_result, stack, &r);
2031 varobj_update_result r = {0};
2034 VEC_safe_push (varobj_update_result, stack, &r);
2037 /* Walk through the children, reconstructing them all. */
2038 while (!VEC_empty (varobj_update_result, stack))
2040 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2041 struct varobj *v = r.varobj;
2043 VEC_pop (varobj_update_result, stack);
2045 /* Update this variable, unless it's a root, which is already
2047 if (!r.value_installed)
2049 struct type *new_type;
2051 new = value_of_child (v->parent, v->index);
2052 if (update_type_if_necessary(v, new))
2055 new_type = value_type (new);
2057 new_type = v->root->lang->type_of_child (v->parent, v->index);
2059 if (varobj_value_has_mutated (v, new, new_type))
2061 /* The children are no longer valid; delete them now.
2062 Report the fact that its type changed as well. */
2063 varobj_delete (v, NULL, 1 /* only_children */);
2064 v->num_children = -1;
2071 if (install_new_value (v, new, r.type_changed))
2078 /* We probably should not get children of a varobj that has a
2079 pretty-printer, but for which -var-list-children was never
2081 if (v->pretty_printer)
2083 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2084 VEC (varobj_p) *new = 0;
2085 int i, children_changed = 0;
2090 if (!v->children_requested)
2094 /* If we initially did not have potential children, but
2095 now we do, consider the varobj as changed.
2096 Otherwise, if children were never requested, consider
2097 it as unchanged -- presumably, such varobj is not yet
2098 expanded in the UI, so we need not bother getting
2100 if (!varobj_has_more (v, 0))
2102 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
2104 if (varobj_has_more (v, 0))
2109 VEC_safe_push (varobj_update_result, result, &r);
2114 /* If update_dynamic_varobj_children returns 0, then we have
2115 a non-conforming pretty-printer, so we skip it. */
2116 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2117 &unchanged, &children_changed, 1,
2120 if (children_changed || new)
2122 r.children_changed = 1;
2125 /* Push in reverse order so that the first child is
2126 popped from the work stack first, and so will be
2127 added to result first. This does not affect
2128 correctness, just "nicer". */
2129 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2131 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2132 varobj_update_result r = {0};
2134 /* Type may change only if value was changed. */
2138 r.value_installed = 1;
2139 VEC_safe_push (varobj_update_result, stack, &r);
2141 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
2143 varobj_p tmp = VEC_index (varobj_p, changed, i);
2144 varobj_update_result r = {0};
2148 r.value_installed = 1;
2149 VEC_safe_push (varobj_update_result, stack, &r);
2151 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2153 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
2157 varobj_update_result r = {0};
2160 r.value_installed = 1;
2161 VEC_safe_push (varobj_update_result, stack, &r);
2164 if (r.changed || r.children_changed)
2165 VEC_safe_push (varobj_update_result, result, &r);
2167 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2168 because NEW has been put into the result vector. */
2169 VEC_free (varobj_p, changed);
2170 VEC_free (varobj_p, type_changed);
2171 VEC_free (varobj_p, unchanged);
2177 /* Push any children. Use reverse order so that the first
2178 child is popped from the work stack first, and so
2179 will be added to result first. This does not
2180 affect correctness, just "nicer". */
2181 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
2183 varobj_p c = VEC_index (varobj_p, v->children, i);
2185 /* Child may be NULL if explicitly deleted by -var-delete. */
2186 if (c != NULL && !c->frozen)
2188 varobj_update_result r = {0};
2191 VEC_safe_push (varobj_update_result, stack, &r);
2195 if (r.changed || r.type_changed)
2196 VEC_safe_push (varobj_update_result, result, &r);
2199 VEC_free (varobj_update_result, stack);
2205 /* Helper functions */
2208 * Variable object construction/destruction
2212 delete_variable (struct cpstack **resultp, struct varobj *var,
2213 int only_children_p)
2217 delete_variable_1 (resultp, &delcount, var,
2218 only_children_p, 1 /* remove_from_parent_p */ );
2223 /* Delete the variable object VAR and its children. */
2224 /* IMPORTANT NOTE: If we delete a variable which is a child
2225 and the parent is not removed we dump core. It must be always
2226 initially called with remove_from_parent_p set. */
2228 delete_variable_1 (struct cpstack **resultp, int *delcountp,
2229 struct varobj *var, int only_children_p,
2230 int remove_from_parent_p)
2234 /* Delete any children of this variable, too. */
2235 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2237 varobj_p child = VEC_index (varobj_p, var->children, i);
2241 if (!remove_from_parent_p)
2242 child->parent = NULL;
2243 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2245 VEC_free (varobj_p, var->children);
2247 /* if we were called to delete only the children we are done here. */
2248 if (only_children_p)
2251 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2252 /* If the name is null, this is a temporary variable, that has not
2253 yet been installed, don't report it, it belongs to the caller... */
2254 if (var->obj_name != NULL)
2256 cppush (resultp, xstrdup (var->obj_name));
2257 *delcountp = *delcountp + 1;
2260 /* If this variable has a parent, remove it from its parent's list. */
2261 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2262 (as indicated by remove_from_parent_p) we don't bother doing an
2263 expensive list search to find the element to remove when we are
2264 discarding the list afterwards. */
2265 if ((remove_from_parent_p) && (var->parent != NULL))
2267 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2270 if (var->obj_name != NULL)
2271 uninstall_variable (var);
2273 /* Free memory associated with this variable. */
2274 free_variable (var);
2277 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2279 install_variable (struct varobj *var)
2282 struct vlist *newvl;
2284 unsigned int index = 0;
2287 for (chp = var->obj_name; *chp; chp++)
2289 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2292 cv = *(varobj_table + index);
2293 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2297 error (_("Duplicate variable object name"));
2299 /* Add varobj to hash table. */
2300 newvl = xmalloc (sizeof (struct vlist));
2301 newvl->next = *(varobj_table + index);
2303 *(varobj_table + index) = newvl;
2305 /* If root, add varobj to root list. */
2306 if (is_root_p (var))
2308 /* Add to list of root variables. */
2309 if (rootlist == NULL)
2310 var->root->next = NULL;
2312 var->root->next = rootlist;
2313 rootlist = var->root;
2319 /* Unistall the object VAR. */
2321 uninstall_variable (struct varobj *var)
2325 struct varobj_root *cr;
2326 struct varobj_root *prer;
2328 unsigned int index = 0;
2331 /* Remove varobj from hash table. */
2332 for (chp = var->obj_name; *chp; chp++)
2334 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2337 cv = *(varobj_table + index);
2339 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2346 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2351 ("Assertion failed: Could not find variable object \"%s\" to delete",
2357 *(varobj_table + index) = cv->next;
2359 prev->next = cv->next;
2363 /* If root, remove varobj from root list. */
2364 if (is_root_p (var))
2366 /* Remove from list of root variables. */
2367 if (rootlist == var->root)
2368 rootlist = var->root->next;
2373 while ((cr != NULL) && (cr->rootvar != var))
2380 warning (_("Assertion failed: Could not find "
2381 "varobj \"%s\" in root list"),
2388 prer->next = cr->next;
2394 /* Create and install a child of the parent of the given name. */
2395 static struct varobj *
2396 create_child (struct varobj *parent, int index, char *name)
2398 return create_child_with_value (parent, index, name,
2399 value_of_child (parent, index));
2402 /* Does CHILD represent a child with no name? This happens when
2403 the child is an anonmous struct or union and it has no field name
2404 in its parent variable.
2406 This has already been determined by *_describe_child. The easiest
2407 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2410 is_anonymous_child (struct varobj *child)
2412 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2413 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2416 static struct varobj *
2417 create_child_with_value (struct varobj *parent, int index, const char *name,
2418 struct value *value)
2420 struct varobj *child;
2423 child = new_variable ();
2425 /* Name is allocated by name_of_child. */
2426 /* FIXME: xstrdup should not be here. */
2427 child->name = xstrdup (name);
2428 child->index = index;
2429 child->parent = parent;
2430 child->root = parent->root;
2432 if (is_anonymous_child (child))
2433 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2435 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2436 child->obj_name = childs_name;
2438 install_variable (child);
2440 /* Compute the type of the child. Must do this before
2441 calling install_new_value. */
2443 /* If the child had no evaluation errors, var->value
2444 will be non-NULL and contain a valid type. */
2445 child->type = value_actual_type (value, 0, NULL);
2447 /* Otherwise, we must compute the type. */
2448 child->type = (*child->root->lang->type_of_child) (child->parent,
2450 install_new_value (child, value, 1);
2457 * Miscellaneous utility functions.
2460 /* Allocate memory and initialize a new variable. */
2461 static struct varobj *
2466 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2468 var->path_expr = NULL;
2469 var->obj_name = NULL;
2473 var->num_children = -1;
2475 var->children = NULL;
2479 var->print_value = NULL;
2481 var->not_fetched = 0;
2482 var->children_requested = 0;
2485 var->constructor = 0;
2486 var->pretty_printer = 0;
2487 var->child_iter = 0;
2488 var->saved_item = 0;
2493 /* Allocate memory and initialize a new root variable. */
2494 static struct varobj *
2495 new_root_variable (void)
2497 struct varobj *var = new_variable ();
2499 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2500 var->root->lang = NULL;
2501 var->root->exp = NULL;
2502 var->root->valid_block = NULL;
2503 var->root->frame = null_frame_id;
2504 var->root->floating = 0;
2505 var->root->rootvar = NULL;
2506 var->root->is_valid = 1;
2511 /* Free any allocated memory associated with VAR. */
2513 free_variable (struct varobj *var)
2516 if (var->pretty_printer)
2518 struct cleanup *cleanup = varobj_ensure_python_env (var);
2519 Py_XDECREF (var->constructor);
2520 Py_XDECREF (var->pretty_printer);
2521 Py_XDECREF (var->child_iter);
2522 Py_XDECREF (var->saved_item);
2523 do_cleanups (cleanup);
2527 value_free (var->value);
2529 /* Free the expression if this is a root variable. */
2530 if (is_root_p (var))
2532 xfree (var->root->exp);
2537 xfree (var->obj_name);
2538 xfree (var->print_value);
2539 xfree (var->path_expr);
2544 do_free_variable_cleanup (void *var)
2546 free_variable (var);
2549 static struct cleanup *
2550 make_cleanup_free_variable (struct varobj *var)
2552 return make_cleanup (do_free_variable_cleanup, var);
2555 /* This returns the type of the variable. It also skips past typedefs
2556 to return the real type of the variable.
2558 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2559 except within get_target_type and get_type. */
2560 static struct type *
2561 get_type (struct varobj *var)
2567 type = check_typedef (type);
2572 /* Return the type of the value that's stored in VAR,
2573 or that would have being stored there if the
2574 value were accessible.
2576 This differs from VAR->type in that VAR->type is always
2577 the true type of the expession in the source language.
2578 The return value of this function is the type we're
2579 actually storing in varobj, and using for displaying
2580 the values and for comparing previous and new values.
2582 For example, top-level references are always stripped. */
2583 static struct type *
2584 get_value_type (struct varobj *var)
2589 type = value_type (var->value);
2593 type = check_typedef (type);
2595 if (TYPE_CODE (type) == TYPE_CODE_REF)
2596 type = get_target_type (type);
2598 type = check_typedef (type);
2603 /* This returns the target type (or NULL) of TYPE, also skipping
2604 past typedefs, just like get_type ().
2606 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2607 except within get_target_type and get_type. */
2608 static struct type *
2609 get_target_type (struct type *type)
2613 type = TYPE_TARGET_TYPE (type);
2615 type = check_typedef (type);
2621 /* What is the default display for this variable? We assume that
2622 everything is "natural". Any exceptions? */
2623 static enum varobj_display_formats
2624 variable_default_display (struct varobj *var)
2626 return FORMAT_NATURAL;
2629 /* FIXME: The following should be generic for any pointer. */
2631 cppush (struct cpstack **pstack, char *name)
2635 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2641 /* FIXME: The following should be generic for any pointer. */
2643 cppop (struct cpstack **pstack)
2648 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2653 *pstack = (*pstack)->next;
2660 * Language-dependencies
2663 /* Common entry points */
2665 /* Get the language of variable VAR. */
2666 static enum varobj_languages
2667 variable_language (struct varobj *var)
2669 enum varobj_languages lang;
2671 switch (var->root->exp->language_defn->la_language)
2677 case language_cplus:
2691 /* Return the number of children for a given variable.
2692 The result of this function is defined by the language
2693 implementation. The number of children returned by this function
2694 is the number of children that the user will see in the variable
2697 number_of_children (struct varobj *var)
2699 return (*var->root->lang->number_of_children) (var);
2702 /* What is the expression for the root varobj VAR? Returns a malloc'd
2705 name_of_variable (struct varobj *var)
2707 return (*var->root->lang->name_of_variable) (var);
2710 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2713 name_of_child (struct varobj *var, int index)
2715 return (*var->root->lang->name_of_child) (var, index);
2718 /* What is the ``struct value *'' of the root variable VAR?
2719 For floating variable object, evaluation can get us a value
2720 of different type from what is stored in varobj already. In
2722 - *type_changed will be set to 1
2723 - old varobj will be freed, and new one will be
2724 created, with the same name.
2725 - *var_handle will be set to the new varobj
2726 Otherwise, *type_changed will be set to 0. */
2727 static struct value *
2728 value_of_root (struct varobj **var_handle, int *type_changed)
2732 if (var_handle == NULL)
2737 /* This should really be an exception, since this should
2738 only get called with a root variable. */
2740 if (!is_root_p (var))
2743 if (var->root->floating)
2745 struct varobj *tmp_var;
2746 char *old_type, *new_type;
2748 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2749 USE_SELECTED_FRAME);
2750 if (tmp_var == NULL)
2754 old_type = varobj_get_type (var);
2755 new_type = varobj_get_type (tmp_var);
2756 if (strcmp (old_type, new_type) == 0)
2758 /* The expression presently stored inside var->root->exp
2759 remembers the locations of local variables relatively to
2760 the frame where the expression was created (in DWARF location
2761 button, for example). Naturally, those locations are not
2762 correct in other frames, so update the expression. */
2764 struct expression *tmp_exp = var->root->exp;
2766 var->root->exp = tmp_var->root->exp;
2767 tmp_var->root->exp = tmp_exp;
2769 varobj_delete (tmp_var, NULL, 0);
2774 tmp_var->obj_name = xstrdup (var->obj_name);
2775 tmp_var->from = var->from;
2776 tmp_var->to = var->to;
2777 varobj_delete (var, NULL, 0);
2779 install_variable (tmp_var);
2780 *var_handle = tmp_var;
2793 struct value *value;
2795 value = (*var->root->lang->value_of_root) (var_handle);
2796 if (var->value == NULL || value == NULL)
2798 /* For root varobj-s, a NULL value indicates a scoping issue.
2799 So, nothing to do in terms of checking for mutations. */
2801 else if (varobj_value_has_mutated (var, value, value_type (value)))
2803 /* The type has mutated, so the children are no longer valid.
2804 Just delete them, and tell our caller that the type has
2806 varobj_delete (var, NULL, 1 /* only_children */);
2807 var->num_children = -1;
2816 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2817 static struct value *
2818 value_of_child (struct varobj *parent, int index)
2820 struct value *value;
2822 value = (*parent->root->lang->value_of_child) (parent, index);
2827 /* GDB already has a command called "value_of_variable". Sigh. */
2829 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2831 if (var->root->is_valid)
2833 if (var->pretty_printer)
2834 return value_get_print_value (var->value, var->format, var);
2835 return (*var->root->lang->value_of_variable) (var, format);
2842 value_get_print_value (struct value *value, enum varobj_display_formats format,
2845 struct ui_file *stb;
2846 struct cleanup *old_chain;
2847 gdb_byte *thevalue = NULL;
2848 struct value_print_options opts;
2849 struct type *type = NULL;
2851 char *encoding = NULL;
2852 struct gdbarch *gdbarch = NULL;
2853 /* Initialize it just to avoid a GCC false warning. */
2854 CORE_ADDR str_addr = 0;
2855 int string_print = 0;
2860 stb = mem_fileopen ();
2861 old_chain = make_cleanup_ui_file_delete (stb);
2863 gdbarch = get_type_arch (value_type (value));
2866 PyObject *value_formatter = var->pretty_printer;
2868 varobj_ensure_python_env (var);
2870 if (value_formatter)
2872 /* First check to see if we have any children at all. If so,
2873 we simply return {...}. */
2874 if (dynamic_varobj_has_child_method (var))
2876 do_cleanups (old_chain);
2877 return xstrdup ("{...}");
2880 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2882 struct value *replacement;
2883 PyObject *output = NULL;
2885 output = apply_varobj_pretty_printer (value_formatter,
2889 /* If we have string like output ... */
2892 make_cleanup_py_decref (output);
2894 /* If this is a lazy string, extract it. For lazy
2895 strings we always print as a string, so set
2897 if (gdbpy_is_lazy_string (output))
2899 gdbpy_extract_lazy_string (output, &str_addr, &type,
2901 make_cleanup (free_current_contents, &encoding);
2906 /* If it is a regular (non-lazy) string, extract
2907 it and copy the contents into THEVALUE. If the
2908 hint says to print it as a string, set
2909 string_print. Otherwise just return the extracted
2910 string as a value. */
2912 char *s = python_string_to_target_string (output);
2918 hint = gdbpy_get_display_hint (value_formatter);
2921 if (!strcmp (hint, "string"))
2927 thevalue = xmemdup (s, len + 1, len + 1);
2928 type = builtin_type (gdbarch)->builtin_char;
2933 do_cleanups (old_chain);
2937 make_cleanup (xfree, thevalue);
2940 gdbpy_print_stack ();
2943 /* If the printer returned a replacement value, set VALUE
2944 to REPLACEMENT. If there is not a replacement value,
2945 just use the value passed to this function. */
2947 value = replacement;
2953 get_formatted_print_options (&opts, format_code[(int) format]);
2957 /* If the THEVALUE has contents, it is a regular string. */
2959 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2960 else if (string_print)
2961 /* Otherwise, if string_print is set, and it is not a regular
2962 string, it is a lazy string. */
2963 val_print_string (type, encoding, str_addr, len, stb, &opts);
2965 /* All other cases. */
2966 common_val_print (value, stb, 0, &opts, current_language);
2968 thevalue = ui_file_xstrdup (stb, NULL);
2970 do_cleanups (old_chain);
2975 varobj_editable_p (struct varobj *var)
2979 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2982 type = get_value_type (var);
2984 switch (TYPE_CODE (type))
2986 case TYPE_CODE_STRUCT:
2987 case TYPE_CODE_UNION:
2988 case TYPE_CODE_ARRAY:
2989 case TYPE_CODE_FUNC:
2990 case TYPE_CODE_METHOD:
3000 /* Call VAR's value_is_changeable_p language-specific callback. */
3003 varobj_value_is_changeable_p (struct varobj *var)
3005 return var->root->lang->value_is_changeable_p (var);
3008 /* Return 1 if that varobj is floating, that is is always evaluated in the
3009 selected frame, and not bound to thread/frame. Such variable objects
3010 are created using '@' as frame specifier to -var-create. */
3012 varobj_floating_p (struct varobj *var)
3014 return var->root->floating;
3017 /* Given the value and the type of a variable object,
3018 adjust the value and type to those necessary
3019 for getting children of the variable object.
3020 This includes dereferencing top-level references
3021 to all types and dereferencing pointers to
3024 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3025 value will be fetched and if it differs from static type
3026 the value will be casted to it.
3028 Both TYPE and *TYPE should be non-null. VALUE
3029 can be null if we want to only translate type.
3030 *VALUE can be null as well -- if the parent
3033 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
3034 depending on whether pointer was dereferenced
3035 in this function. */
3037 adjust_value_for_child_access (struct value **value,
3040 int lookup_actual_type)
3042 gdb_assert (type && *type);
3047 *type = check_typedef (*type);
3049 /* The type of value stored in varobj, that is passed
3050 to us, is already supposed to be
3051 reference-stripped. */
3053 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3055 /* Pointers to structures are treated just like
3056 structures when accessing children. Don't
3057 dererences pointers to other types. */
3058 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3060 struct type *target_type = get_target_type (*type);
3061 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3062 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3064 if (value && *value)
3066 volatile struct gdb_exception except;
3068 TRY_CATCH (except, RETURN_MASK_ERROR)
3070 *value = value_ind (*value);
3073 if (except.reason < 0)
3076 *type = target_type;
3082 /* The 'get_target_type' function calls check_typedef on
3083 result, so we can immediately check type code. No
3084 need to call check_typedef here. */
3086 /* Access a real type of the value (if necessary and possible). */
3087 if (value && *value && lookup_actual_type)
3089 struct type *enclosing_type;
3090 int real_type_found = 0;
3092 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3093 if (real_type_found)
3095 *type = enclosing_type;
3096 *value = value_cast (enclosing_type, *value);
3101 /* Implement the "value_is_changeable_p" varobj callback for most
3105 default_value_is_changeable_p (struct varobj *var)
3110 if (CPLUS_FAKE_CHILD (var))
3113 type = get_value_type (var);
3115 switch (TYPE_CODE (type))
3117 case TYPE_CODE_STRUCT:
3118 case TYPE_CODE_UNION:
3119 case TYPE_CODE_ARRAY:
3133 c_number_of_children (struct varobj *var)
3135 struct type *type = get_value_type (var);
3137 struct type *target;
3139 adjust_value_for_child_access (NULL, &type, NULL, 0);
3140 target = get_target_type (type);
3142 switch (TYPE_CODE (type))
3144 case TYPE_CODE_ARRAY:
3145 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
3146 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
3147 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3149 /* If we don't know how many elements there are, don't display
3154 case TYPE_CODE_STRUCT:
3155 case TYPE_CODE_UNION:
3156 children = TYPE_NFIELDS (type);
3160 /* The type here is a pointer to non-struct. Typically, pointers
3161 have one child, except for function ptrs, which have no children,
3162 and except for void*, as we don't know what to show.
3164 We can show char* so we allow it to be dereferenced. If you decide
3165 to test for it, please mind that a little magic is necessary to
3166 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
3167 TYPE_NAME == "char". */
3168 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3169 || TYPE_CODE (target) == TYPE_CODE_VOID)
3176 /* Other types have no children. */
3184 c_name_of_variable (struct varobj *parent)
3186 return xstrdup (parent->name);
3189 /* Return the value of element TYPE_INDEX of a structure
3190 value VALUE. VALUE's type should be a structure,
3191 or union, or a typedef to struct/union.
3193 Returns NULL if getting the value fails. Never throws. */
3194 static struct value *
3195 value_struct_element_index (struct value *value, int type_index)
3197 struct value *result = NULL;
3198 volatile struct gdb_exception e;
3199 struct type *type = value_type (value);
3201 type = check_typedef (type);
3203 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3204 || TYPE_CODE (type) == TYPE_CODE_UNION);
3206 TRY_CATCH (e, RETURN_MASK_ERROR)
3208 if (field_is_static (&TYPE_FIELD (type, type_index)))
3209 result = value_static_field (type, type_index);
3211 result = value_primitive_field (value, 0, type_index, type);
3223 /* Obtain the information about child INDEX of the variable
3225 If CNAME is not null, sets *CNAME to the name of the child relative
3227 If CVALUE is not null, sets *CVALUE to the value of the child.
3228 If CTYPE is not null, sets *CTYPE to the type of the child.
3230 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3231 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3234 c_describe_child (struct varobj *parent, int index,
3235 char **cname, struct value **cvalue, struct type **ctype,
3236 char **cfull_expression)
3238 struct value *value = parent->value;
3239 struct type *type = get_value_type (parent);
3240 char *parent_expression = NULL;
3242 volatile struct gdb_exception except;
3250 if (cfull_expression)
3252 *cfull_expression = NULL;
3253 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
3255 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
3257 switch (TYPE_CODE (type))
3259 case TYPE_CODE_ARRAY:
3262 = xstrdup (int_string (index
3263 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3266 if (cvalue && value)
3268 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
3270 TRY_CATCH (except, RETURN_MASK_ERROR)
3272 *cvalue = value_subscript (value, real_index);
3277 *ctype = get_target_type (type);
3279 if (cfull_expression)
3281 xstrprintf ("(%s)[%s]", parent_expression,
3283 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3289 case TYPE_CODE_STRUCT:
3290 case TYPE_CODE_UNION:
3292 const char *field_name;
3294 /* If the type is anonymous and the field has no name,
3295 set an appropriate name. */
3296 field_name = TYPE_FIELD_NAME (type, index);
3297 if (field_name == NULL || *field_name == '\0')
3301 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3302 == TYPE_CODE_STRUCT)
3303 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3305 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3308 if (cfull_expression)
3309 *cfull_expression = xstrdup ("");
3314 *cname = xstrdup (field_name);
3316 if (cfull_expression)
3318 char *join = was_ptr ? "->" : ".";
3320 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3325 if (cvalue && value)
3327 /* For C, varobj index is the same as type index. */
3328 *cvalue = value_struct_element_index (value, index);
3332 *ctype = TYPE_FIELD_TYPE (type, index);
3338 *cname = xstrprintf ("*%s", parent->name);
3340 if (cvalue && value)
3342 TRY_CATCH (except, RETURN_MASK_ERROR)
3344 *cvalue = value_ind (value);
3347 if (except.reason < 0)
3351 /* Don't use get_target_type because it calls
3352 check_typedef and here, we want to show the true
3353 declared type of the variable. */
3355 *ctype = TYPE_TARGET_TYPE (type);
3357 if (cfull_expression)
3358 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
3363 /* This should not happen. */
3365 *cname = xstrdup ("???");
3366 if (cfull_expression)
3367 *cfull_expression = xstrdup ("???");
3368 /* Don't set value and type, we don't know then. */
3373 c_name_of_child (struct varobj *parent, int index)
3377 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3382 c_path_expr_of_child (struct varobj *child)
3384 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3386 return child->path_expr;
3389 /* If frame associated with VAR can be found, switch
3390 to it and return 1. Otherwise, return 0. */
3392 check_scope (struct varobj *var)
3394 struct frame_info *fi;
3397 fi = frame_find_by_id (var->root->frame);
3402 CORE_ADDR pc = get_frame_pc (fi);
3404 if (pc < BLOCK_START (var->root->valid_block) ||
3405 pc >= BLOCK_END (var->root->valid_block))
3413 static struct value *
3414 c_value_of_root (struct varobj **var_handle)
3416 struct value *new_val = NULL;
3417 struct varobj *var = *var_handle;
3418 int within_scope = 0;
3419 struct cleanup *back_to;
3421 /* Only root variables can be updated... */
3422 if (!is_root_p (var))
3423 /* Not a root var. */
3426 back_to = make_cleanup_restore_current_thread ();
3428 /* Determine whether the variable is still around. */
3429 if (var->root->valid_block == NULL || var->root->floating)
3431 else if (var->root->thread_id == 0)
3433 /* The program was single-threaded when the variable object was
3434 created. Technically, it's possible that the program became
3435 multi-threaded since then, but we don't support such
3437 within_scope = check_scope (var);
3441 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3442 if (in_thread_list (ptid))
3444 switch_to_thread (ptid);
3445 within_scope = check_scope (var);
3451 volatile struct gdb_exception except;
3453 /* We need to catch errors here, because if evaluate
3454 expression fails we want to just return NULL. */
3455 TRY_CATCH (except, RETURN_MASK_ERROR)
3457 new_val = evaluate_expression (var->root->exp);
3463 do_cleanups (back_to);
3468 static struct value *
3469 c_value_of_child (struct varobj *parent, int index)
3471 struct value *value = NULL;
3473 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3477 static struct type *
3478 c_type_of_child (struct varobj *parent, int index)
3480 struct type *type = NULL;
3482 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3487 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3489 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3490 it will print out its children instead of "{...}". So we need to
3491 catch that case explicitly. */
3492 struct type *type = get_type (var);
3494 /* Strip top-level references. */
3495 while (TYPE_CODE (type) == TYPE_CODE_REF)
3496 type = check_typedef (TYPE_TARGET_TYPE (type));
3498 switch (TYPE_CODE (type))
3500 case TYPE_CODE_STRUCT:
3501 case TYPE_CODE_UNION:
3502 return xstrdup ("{...}");
3505 case TYPE_CODE_ARRAY:
3509 number = xstrprintf ("[%d]", var->num_children);
3516 if (var->value == NULL)
3518 /* This can happen if we attempt to get the value of a struct
3519 member when the parent is an invalid pointer. This is an
3520 error condition, so we should tell the caller. */
3525 if (var->not_fetched && value_lazy (var->value))
3526 /* Frozen variable and no value yet. We don't
3527 implicitly fetch the value. MI response will
3528 use empty string for the value, which is OK. */
3531 gdb_assert (varobj_value_is_changeable_p (var));
3532 gdb_assert (!value_lazy (var->value));
3534 /* If the specified format is the current one,
3535 we can reuse print_value. */
3536 if (format == var->format)
3537 return xstrdup (var->print_value);
3539 return value_get_print_value (var->value, format, var);
3549 cplus_number_of_children (struct varobj *var)
3551 struct value *value = NULL;
3553 int children, dont_know;
3554 int lookup_actual_type = 0;
3555 struct value_print_options opts;
3560 get_user_print_options (&opts);
3562 if (!CPLUS_FAKE_CHILD (var))
3564 type = get_value_type (var);
3566 /* It is necessary to access a real type (via RTTI). */
3567 if (opts.objectprint)
3570 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3571 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3573 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3575 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3576 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3580 cplus_class_num_children (type, kids);
3581 if (kids[v_public] != 0)
3583 if (kids[v_private] != 0)
3585 if (kids[v_protected] != 0)
3588 /* Add any baseclasses. */
3589 children += TYPE_N_BASECLASSES (type);
3592 /* FIXME: save children in var. */
3599 type = get_value_type (var->parent);
3601 /* It is necessary to access a real type (via RTTI). */
3602 if (opts.objectprint)
3604 struct varobj *parent = var->parent;
3606 value = parent->value;
3607 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3608 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3610 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3612 cplus_class_num_children (type, kids);
3613 if (strcmp (var->name, "public") == 0)
3614 children = kids[v_public];
3615 else if (strcmp (var->name, "private") == 0)
3616 children = kids[v_private];
3618 children = kids[v_protected];
3623 children = c_number_of_children (var);
3628 /* Compute # of public, private, and protected variables in this class.
3629 That means we need to descend into all baseclasses and find out
3630 how many are there, too. */
3632 cplus_class_num_children (struct type *type, int children[3])
3634 int i, vptr_fieldno;
3635 struct type *basetype = NULL;
3637 children[v_public] = 0;
3638 children[v_private] = 0;
3639 children[v_protected] = 0;
3641 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3642 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3644 /* If we have a virtual table pointer, omit it. Even if virtual
3645 table pointers are not specifically marked in the debug info,
3646 they should be artificial. */
3647 if ((type == basetype && i == vptr_fieldno)
3648 || TYPE_FIELD_ARTIFICIAL (type, i))
3651 if (TYPE_FIELD_PROTECTED (type, i))
3652 children[v_protected]++;
3653 else if (TYPE_FIELD_PRIVATE (type, i))
3654 children[v_private]++;
3656 children[v_public]++;
3661 cplus_name_of_variable (struct varobj *parent)
3663 return c_name_of_variable (parent);
3666 enum accessibility { private_field, protected_field, public_field };
3668 /* Check if field INDEX of TYPE has the specified accessibility.
3669 Return 0 if so and 1 otherwise. */
3671 match_accessibility (struct type *type, int index, enum accessibility acc)
3673 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3675 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3677 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3678 && !TYPE_FIELD_PROTECTED (type, index))
3685 cplus_describe_child (struct varobj *parent, int index,
3686 char **cname, struct value **cvalue, struct type **ctype,
3687 char **cfull_expression)
3689 struct value *value;
3692 int lookup_actual_type = 0;
3693 char *parent_expression = NULL;
3695 struct value_print_options opts;
3703 if (cfull_expression)
3704 *cfull_expression = NULL;
3706 get_user_print_options (&opts);
3708 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3709 if (opts.objectprint)
3710 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3711 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3713 type = get_value_type (var);
3714 if (cfull_expression)
3715 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
3717 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
3719 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3720 || TYPE_CODE (type) == TYPE_CODE_UNION)
3722 char *join = was_ptr ? "->" : ".";
3724 if (CPLUS_FAKE_CHILD (parent))
3726 /* The fields of the class type are ordered as they
3727 appear in the class. We are given an index for a
3728 particular access control type ("public","protected",
3729 or "private"). We must skip over fields that don't
3730 have the access control we are looking for to properly
3731 find the indexed field. */
3732 int type_index = TYPE_N_BASECLASSES (type);
3733 enum accessibility acc = public_field;
3735 struct type *basetype = NULL;
3736 const char *field_name;
3738 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3739 if (strcmp (parent->name, "private") == 0)
3740 acc = private_field;
3741 else if (strcmp (parent->name, "protected") == 0)
3742 acc = protected_field;
3746 if ((type == basetype && type_index == vptr_fieldno)
3747 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3749 else if (match_accessibility (type, type_index, acc))
3755 /* If the type is anonymous and the field has no name,
3756 set an appopriate name. */
3757 field_name = TYPE_FIELD_NAME (type, type_index);
3758 if (field_name == NULL || *field_name == '\0')
3762 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3763 == TYPE_CODE_STRUCT)
3764 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3765 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3767 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3770 if (cfull_expression)
3771 *cfull_expression = xstrdup ("");
3776 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3778 if (cfull_expression)
3780 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3784 if (cvalue && value)
3785 *cvalue = value_struct_element_index (value, type_index);
3788 *ctype = TYPE_FIELD_TYPE (type, type_index);
3790 else if (index < TYPE_N_BASECLASSES (type))
3792 /* This is a baseclass. */
3794 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3796 if (cvalue && value)
3797 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3801 *ctype = TYPE_FIELD_TYPE (type, index);
3804 if (cfull_expression)
3806 char *ptr = was_ptr ? "*" : "";
3808 /* Cast the parent to the base' type. Note that in gdb,
3811 will create an lvalue, for all appearences, so we don't
3812 need to use more fancy:
3816 When we are in the scope of the base class or of one
3817 of its children, the type field name will be interpreted
3818 as a constructor, if it exists. Therefore, we must
3819 indicate that the name is a class name by using the
3820 'class' keyword. See PR mi/11912 */
3821 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
3823 TYPE_FIELD_NAME (type, index),
3830 char *access = NULL;
3833 cplus_class_num_children (type, children);
3835 /* Everything beyond the baseclasses can
3836 only be "public", "private", or "protected"
3838 The special "fake" children are always output by varobj in
3839 this order. So if INDEX == 2, it MUST be "protected". */
3840 index -= TYPE_N_BASECLASSES (type);
3844 if (children[v_public] > 0)
3846 else if (children[v_private] > 0)
3849 access = "protected";
3852 if (children[v_public] > 0)
3854 if (children[v_private] > 0)
3857 access = "protected";
3859 else if (children[v_private] > 0)
3860 access = "protected";
3863 /* Must be protected. */
3864 access = "protected";
3871 gdb_assert (access);
3873 *cname = xstrdup (access);
3875 /* Value and type and full expression are null here. */
3880 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3885 cplus_name_of_child (struct varobj *parent, int index)
3889 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3894 cplus_path_expr_of_child (struct varobj *child)
3896 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3898 return child->path_expr;
3901 static struct value *
3902 cplus_value_of_root (struct varobj **var_handle)
3904 return c_value_of_root (var_handle);
3907 static struct value *
3908 cplus_value_of_child (struct varobj *parent, int index)
3910 struct value *value = NULL;
3912 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3916 static struct type *
3917 cplus_type_of_child (struct varobj *parent, int index)
3919 struct type *type = NULL;
3921 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3926 cplus_value_of_variable (struct varobj *var,
3927 enum varobj_display_formats format)
3930 /* If we have one of our special types, don't print out
3932 if (CPLUS_FAKE_CHILD (var))
3933 return xstrdup ("");
3935 return c_value_of_variable (var, format);
3941 java_number_of_children (struct varobj *var)
3943 return cplus_number_of_children (var);
3947 java_name_of_variable (struct varobj *parent)
3951 name = cplus_name_of_variable (parent);
3952 /* If the name has "-" in it, it is because we
3953 needed to escape periods in the name... */
3956 while (*p != '\000')
3967 java_name_of_child (struct varobj *parent, int index)
3971 name = cplus_name_of_child (parent, index);
3972 /* Escape any periods in the name... */
3975 while (*p != '\000')
3986 java_path_expr_of_child (struct varobj *child)
3991 static struct value *
3992 java_value_of_root (struct varobj **var_handle)
3994 return cplus_value_of_root (var_handle);
3997 static struct value *
3998 java_value_of_child (struct varobj *parent, int index)
4000 return cplus_value_of_child (parent, index);
4003 static struct type *
4004 java_type_of_child (struct varobj *parent, int index)
4006 return cplus_type_of_child (parent, index);
4010 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4012 return cplus_value_of_variable (var, format);
4015 /* Ada specific callbacks for VAROBJs. */
4018 ada_number_of_children (struct varobj *var)
4020 return ada_varobj_get_number_of_children (var->value, var->type);
4024 ada_name_of_variable (struct varobj *parent)
4026 return c_name_of_variable (parent);
4030 ada_name_of_child (struct varobj *parent, int index)
4032 return ada_varobj_get_name_of_child (parent->value, parent->type,
4033 parent->name, index);
4037 ada_path_expr_of_child (struct varobj *child)
4039 struct varobj *parent = child->parent;
4040 const char *parent_path_expr = varobj_get_path_expr (parent);
4042 return ada_varobj_get_path_expr_of_child (parent->value,
4049 static struct value *
4050 ada_value_of_root (struct varobj **var_handle)
4052 return c_value_of_root (var_handle);
4055 static struct value *
4056 ada_value_of_child (struct varobj *parent, int index)
4058 return ada_varobj_get_value_of_child (parent->value, parent->type,
4059 parent->name, index);
4062 static struct type *
4063 ada_type_of_child (struct varobj *parent, int index)
4065 return ada_varobj_get_type_of_child (parent->value, parent->type,
4070 ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4072 struct value_print_options opts;
4074 get_formatted_print_options (&opts, format_code[(int) format]);
4078 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
4081 /* Implement the "value_is_changeable_p" routine for Ada. */
4084 ada_value_is_changeable_p (struct varobj *var)
4086 struct type *type = var->value ? value_type (var->value) : var->type;
4088 if (ada_is_array_descriptor_type (type)
4089 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4091 /* This is in reality a pointer to an unconstrained array.
4092 its value is changeable. */
4096 if (ada_is_string_type (type))
4098 /* We display the contents of the string in the array's
4099 "value" field. The contents can change, so consider
4100 that the array is changeable. */
4104 return default_value_is_changeable_p (var);
4107 /* Implement the "value_has_mutated" routine for Ada. */
4110 ada_value_has_mutated (struct varobj *var, struct value *new_val,
4111 struct type *new_type)
4117 /* If the number of fields have changed, then for sure the type
4119 if (ada_varobj_get_number_of_children (new_val, new_type)
4120 != var->num_children)
4123 /* If the number of fields have remained the same, then we need
4124 to check the name of each field. If they remain the same,
4125 then chances are the type hasn't mutated. This is technically
4126 an incomplete test, as the child's type might have changed
4127 despite the fact that the name remains the same. But we'll
4128 handle this situation by saying that the child has mutated,
4131 If only part (or none!) of the children have been fetched,
4132 then only check the ones we fetched. It does not matter
4133 to the frontend whether a child that it has not fetched yet
4134 has mutated or not. So just assume it hasn't. */
4136 restrict_range (var->children, &from, &to);
4137 for (i = from; i < to; i++)
4138 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4140 VEC_index (varobj_p, var->children, i)->name) != 0)
4146 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4147 with an arbitrary caller supplied DATA pointer. */
4150 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4152 struct varobj_root *var_root, *var_root_next;
4154 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4156 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4158 var_root_next = var_root->next;
4160 (*func) (var_root->rootvar, data);
4164 extern void _initialize_varobj (void);
4166 _initialize_varobj (void)
4168 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4170 varobj_table = xmalloc (sizeof_table);
4171 memset (varobj_table, 0, sizeof_table);
4173 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
4175 _("Set varobj debugging."),
4176 _("Show varobj debugging."),
4177 _("When non-zero, varobj debugging is enabled."),
4178 NULL, show_varobjdebug,
4179 &setlist, &showlist);
4182 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4183 defined on globals. It is a helper for varobj_invalidate.
4185 This function is called after changing the symbol file, in this case the
4186 pointers to "struct type" stored by the varobj are no longer valid. All
4187 varobj must be either re-evaluated, or marked as invalid here. */
4190 varobj_invalidate_iter (struct varobj *var, void *unused)
4192 /* global and floating var must be re-evaluated. */
4193 if (var->root->floating || var->root->valid_block == NULL)
4195 struct varobj *tmp_var;
4197 /* Try to create a varobj with same expression. If we succeed
4198 replace the old varobj, otherwise invalidate it. */
4199 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4201 if (tmp_var != NULL)
4203 tmp_var->obj_name = xstrdup (var->obj_name);
4204 varobj_delete (var, NULL, 0);
4205 install_variable (tmp_var);
4208 var->root->is_valid = 0;
4210 else /* locals must be invalidated. */
4211 var->root->is_valid = 0;
4214 /* Invalidate the varobjs that are tied to locals and re-create the ones that
4215 are defined on globals.
4216 Invalidated varobjs will be always printed in_scope="invalid". */
4219 varobj_invalidate (void)
4221 all_root_varobjs (varobj_invalidate_iter, NULL);