1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "exceptions.h"
22 #include "expression.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
36 #include "gdbthread.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
46 /* Non-zero if we want to see trace of varobj level stuff. */
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
67 varobj_enable_pretty_printing (void)
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
82 /* Block for which this expression is valid */
83 struct block *valid_block;
85 /* The frame for this expression. This field is set iff valid_block is
87 struct frame_id frame;
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
111 /* Next root variable */
112 struct varobj_root *next;
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
135 /* Index of this variable in its parent or -1 */
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
149 /* The number of (immediate) children this variable has */
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
155 /* Children of this object. */
156 VEC (varobj_p) *children;
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
162 int children_requested;
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
170 /* Was this variable updated via a varobj_set_value operation */
173 /* Last print value. */
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
201 /* The iterator returned by the printer's 'children' method, or NULL
203 PyObject *child_iter;
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
216 struct cpstack *next;
219 /* A list of varobjs */
227 /* Private function prototypes */
229 /* Helper functions for the above subcommands. */
231 static int delete_variable (struct cpstack **, struct varobj *, int);
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
236 static int install_variable (struct varobj *);
238 static void uninstall_variable (struct varobj *);
240 static struct varobj *create_child (struct varobj *, int, char *);
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
246 /* Utility routines */
248 static struct varobj *new_variable (void);
250 static struct varobj *new_root_variable (void);
252 static void free_variable (struct varobj *var);
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256 static struct type *get_type (struct varobj *var);
258 static struct type *get_value_type (struct varobj *var);
260 static struct type *get_target_type (struct type *);
262 static enum varobj_display_formats variable_default_display (struct varobj *);
264 static void cppush (struct cpstack **pstack, char *name);
266 static char *cppop (struct cpstack **pstack);
268 static int install_new_value (struct varobj *var, struct value *value,
271 /* Language-specific routines. */
273 static enum varobj_languages variable_language (struct varobj *var);
275 static int number_of_children (struct varobj *);
277 static char *name_of_variable (struct varobj *);
279 static char *name_of_child (struct varobj *, int);
281 static struct value *value_of_root (struct varobj **var_handle, int *);
283 static struct value *value_of_child (struct varobj *parent, int index);
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
292 static int varobj_value_is_changeable_p (struct varobj *var);
294 static int is_root_p (struct varobj *var);
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
301 #endif /* HAVE_PYTHON */
303 /* C implementation */
305 static int c_number_of_children (struct varobj *var);
307 static char *c_name_of_variable (struct varobj *parent);
309 static char *c_name_of_child (struct varobj *parent, int index);
311 static char *c_path_expr_of_child (struct varobj *child);
313 static struct value *c_value_of_root (struct varobj **var_handle);
315 static struct value *c_value_of_child (struct varobj *parent, int index);
317 static struct type *c_type_of_child (struct varobj *parent, int index);
319 static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
322 /* C++ implementation */
324 static int cplus_number_of_children (struct varobj *var);
326 static void cplus_class_num_children (struct type *type, int children[3]);
328 static char *cplus_name_of_variable (struct varobj *parent);
330 static char *cplus_name_of_child (struct varobj *parent, int index);
332 static char *cplus_path_expr_of_child (struct varobj *child);
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
340 static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
343 /* Java implementation */
345 static int java_number_of_children (struct varobj *var);
347 static char *java_name_of_variable (struct varobj *parent);
349 static char *java_name_of_child (struct varobj *parent, int index);
351 static char *java_path_expr_of_child (struct varobj *child);
353 static struct value *java_value_of_root (struct varobj **var_handle);
355 static struct value *java_value_of_child (struct varobj *parent, int index);
357 static struct type *java_type_of_child (struct varobj *parent, int index);
359 static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
362 /* The language specific vector */
364 struct language_specific
367 /* The language of this variable */
368 enum varobj_languages language;
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
402 c_number_of_children,
405 c_path_expr_of_child,
414 c_number_of_children,
417 c_path_expr_of_child,
426 cplus_number_of_children,
427 cplus_name_of_variable,
429 cplus_path_expr_of_child,
431 cplus_value_of_child,
433 cplus_value_of_variable}
438 java_number_of_children,
439 java_name_of_variable,
441 java_path_expr_of_child,
445 java_value_of_variable}
448 /* A little convenience enum for dealing with C++/Java */
451 v_public = 0, v_private, v_protected
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
474 /* API Implementation */
476 is_root_p (struct varobj *var)
478 return (var->root->rootvar == var);
482 /* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
485 varobj_ensure_python_env (struct varobj *var)
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
492 /* Creates a varobj (not its children) */
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
500 struct frame_info *frame = NULL;
502 if (frame_addr == (CORE_ADDR) 0)
505 for (frame = get_current_frame ();
507 frame = get_prev_frame (frame))
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
517 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
519 if (frame_base == frame_addr)
527 varobj_create (char *objname,
528 char *expression, CORE_ADDR frame, enum varobj_type type)
531 struct cleanup *old_chain;
533 /* Fill out a varobj structure for the (root) variable being constructed. */
534 var = new_root_variable ();
535 old_chain = make_cleanup_free_variable (var);
537 if (expression != NULL)
539 struct frame_info *fi;
540 struct frame_id old_id = null_frame_id;
543 enum varobj_languages lang;
544 struct value *value = NULL;
546 /* Parse and evaluate the expression, filling in as much of the
547 variable's data as possible. */
549 if (has_stack_frames ())
551 /* Allow creator to specify context of variable */
552 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
553 fi = get_selected_frame (NULL);
555 /* FIXME: cagney/2002-11-23: This code should be doing a
556 lookup using the frame ID and not just the frame's
557 ``address''. This, of course, means an interface
558 change. However, with out that interface change ISAs,
559 such as the ia64 with its two stacks, won't work.
560 Similar goes for the case where there is a frameless
562 fi = find_frame_addr_in_frame_chain (frame);
567 /* frame = -2 means always use selected frame */
568 if (type == USE_SELECTED_FRAME)
569 var->root->floating = 1;
573 block = get_frame_block (fi, 0);
576 innermost_block = NULL;
577 /* Wrap the call to parse expression, so we can
578 return a sensible error. */
579 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
584 /* Don't allow variables to be created for types. */
585 if (var->root->exp->elts[0].opcode == OP_TYPE)
587 do_cleanups (old_chain);
588 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
589 " as an expression.\n");
593 var->format = variable_default_display (var);
594 var->root->valid_block = innermost_block;
595 var->name = xstrdup (expression);
596 /* For a root var, the name and the expr are the same. */
597 var->path_expr = xstrdup (expression);
599 /* When the frame is different from the current frame,
600 we must select the appropriate frame before parsing
601 the expression, otherwise the value will not be current.
602 Since select_frame is so benign, just call it for all cases. */
605 /* User could specify explicit FRAME-ADDR which was not found but
606 EXPRESSION is frame specific and we would not be able to evaluate
607 it correctly next time. With VALID_BLOCK set we must also set
608 FRAME and THREAD_ID. */
610 error (_("Failed to find the specified frame"));
612 var->root->frame = get_frame_id (fi);
613 var->root->thread_id = pid_to_thread_id (inferior_ptid);
614 old_id = get_frame_id (get_selected_frame (NULL));
618 /* We definitely need to catch errors here.
619 If evaluate_expression succeeds we got the value we wanted.
620 But if it fails, we still go on with a call to evaluate_type() */
621 if (!gdb_evaluate_expression (var->root->exp, &value))
623 /* Error getting the value. Try to at least get the
625 struct value *type_only_value = evaluate_type (var->root->exp);
627 var->type = value_type (type_only_value);
630 var->type = value_type (value);
632 install_new_value (var, value, 1 /* Initial assignment */);
634 /* Set language info */
635 lang = variable_language (var);
636 var->root->lang = &languages[lang];
638 /* Set ourselves as our root */
639 var->root->rootvar = var;
641 /* Reset the selected frame */
642 if (frame_id_p (old_id))
643 select_frame (frame_find_by_id (old_id));
646 /* If the variable object name is null, that means this
647 is a temporary variable, so don't install it. */
649 if ((var != NULL) && (objname != NULL))
651 var->obj_name = xstrdup (objname);
653 /* If a varobj name is duplicated, the install will fail so
655 if (!install_variable (var))
657 do_cleanups (old_chain);
662 discard_cleanups (old_chain);
666 /* Generates an unique name that can be used for a varobj */
669 varobj_gen_name (void)
674 /* generate a name for this object */
676 obj_name = xstrprintf ("var%d", id);
681 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
682 error if OBJNAME cannot be found. */
685 varobj_get_handle (char *objname)
689 unsigned int index = 0;
692 for (chp = objname; *chp; chp++)
694 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
697 cv = *(varobj_table + index);
698 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
702 error (_("Variable object not found"));
707 /* Given the handle, return the name of the object */
710 varobj_get_objname (struct varobj *var)
712 return var->obj_name;
715 /* Given the handle, return the expression represented by the object */
718 varobj_get_expression (struct varobj *var)
720 return name_of_variable (var);
723 /* Deletes a varobj and all its children if only_children == 0,
724 otherwise deletes only the children; returns a malloc'ed list of all the
725 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
728 varobj_delete (struct varobj *var, char ***dellist, int only_children)
732 struct cpstack *result = NULL;
735 /* Initialize a stack for temporary results */
736 cppush (&result, NULL);
739 /* Delete only the variable children */
740 delcount = delete_variable (&result, var, 1 /* only the children */ );
742 /* Delete the variable and all its children */
743 delcount = delete_variable (&result, var, 0 /* parent+children */ );
745 /* We may have been asked to return a list of what has been deleted */
748 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
752 *cp = cppop (&result);
753 while ((*cp != NULL) && (mycount > 0))
757 *cp = cppop (&result);
760 if (mycount || (*cp != NULL))
761 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
770 /* Convenience function for varobj_set_visualizer. Instantiate a
771 pretty-printer for a given value. */
773 instantiate_pretty_printer (PyObject *constructor, struct value *value)
775 PyObject *val_obj = NULL;
778 val_obj = value_to_value_object (value);
782 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
790 /* Set/Get variable object display format */
792 enum varobj_display_formats
793 varobj_set_display_format (struct varobj *var,
794 enum varobj_display_formats format)
801 case FORMAT_HEXADECIMAL:
803 var->format = format;
807 var->format = variable_default_display (var);
810 if (varobj_value_is_changeable_p (var)
811 && var->value && !value_lazy (var->value))
813 xfree (var->print_value);
814 var->print_value = value_get_print_value (var->value, var->format, var);
820 enum varobj_display_formats
821 varobj_get_display_format (struct varobj *var)
827 varobj_get_display_hint (struct varobj *var)
832 struct cleanup *back_to = varobj_ensure_python_env (var);
834 if (var->pretty_printer)
835 result = gdbpy_get_display_hint (var->pretty_printer);
837 do_cleanups (back_to);
843 /* Return true if the varobj has items after TO, false otherwise. */
846 varobj_has_more (struct varobj *var, int to)
848 if (VEC_length (varobj_p, var->children) > to)
850 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
851 && var->saved_item != NULL);
854 /* If the variable object is bound to a specific thread, that
855 is its evaluation can always be done in context of a frame
856 inside that thread, returns GDB id of the thread -- which
857 is always positive. Otherwise, returns -1. */
859 varobj_get_thread_id (struct varobj *var)
861 if (var->root->valid_block && var->root->thread_id > 0)
862 return var->root->thread_id;
868 varobj_set_frozen (struct varobj *var, int frozen)
870 /* When a variable is unfrozen, we don't fetch its value.
871 The 'not_fetched' flag remains set, so next -var-update
874 We don't fetch the value, because for structures the client
875 should do -var-update anyway. It would be bad to have different
876 client-size logic for structure and other types. */
877 var->frozen = frozen;
881 varobj_get_frozen (struct varobj *var)
886 /* A helper function that restricts a range to what is actually
887 available in a VEC. This follows the usual rules for the meaning
888 of FROM and TO -- if either is negative, the entire range is
892 restrict_range (VEC (varobj_p) *children, int *from, int *to)
894 if (*from < 0 || *to < 0)
897 *to = VEC_length (varobj_p, children);
901 if (*from > VEC_length (varobj_p, children))
902 *from = VEC_length (varobj_p, children);
903 if (*to > VEC_length (varobj_p, children))
904 *to = VEC_length (varobj_p, children);
912 /* A helper for update_dynamic_varobj_children that installs a new
913 child when needed. */
916 install_dynamic_child (struct varobj *var,
917 VEC (varobj_p) **changed,
918 VEC (varobj_p) **new,
919 VEC (varobj_p) **unchanged,
925 if (VEC_length (varobj_p, var->children) < index + 1)
927 /* There's no child yet. */
928 struct varobj *child = varobj_add_child (var, name, value);
932 VEC_safe_push (varobj_p, *new, child);
938 varobj_p existing = VEC_index (varobj_p, var->children, index);
940 if (install_new_value (existing, value, 0))
943 VEC_safe_push (varobj_p, *changed, existing);
946 VEC_safe_push (varobj_p, *unchanged, existing);
951 dynamic_varobj_has_child_method (struct varobj *var)
953 struct cleanup *back_to;
954 PyObject *printer = var->pretty_printer;
957 back_to = varobj_ensure_python_env (var);
958 result = PyObject_HasAttr (printer, gdbpy_children_cst);
959 do_cleanups (back_to);
966 update_dynamic_varobj_children (struct varobj *var,
967 VEC (varobj_p) **changed,
968 VEC (varobj_p) **new,
969 VEC (varobj_p) **unchanged,
976 struct cleanup *back_to;
979 PyObject *printer = var->pretty_printer;
981 back_to = varobj_ensure_python_env (var);
984 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
986 do_cleanups (back_to);
990 if (update_children || !var->child_iter)
992 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
997 gdbpy_print_stack ();
998 error (_("Null value returned for children"));
1001 make_cleanup_py_decref (children);
1003 if (!PyIter_Check (children))
1004 error (_("Returned value is not iterable"));
1006 Py_XDECREF (var->child_iter);
1007 var->child_iter = PyObject_GetIter (children);
1008 if (!var->child_iter)
1010 gdbpy_print_stack ();
1011 error (_("Could not get children iterator"));
1014 Py_XDECREF (var->saved_item);
1015 var->saved_item = NULL;
1020 i = VEC_length (varobj_p, var->children);
1022 /* We ask for one extra child, so that MI can report whether there
1023 are more children. */
1024 for (; to < 0 || i < to + 1; ++i)
1028 /* See if there was a leftover from last time. */
1029 if (var->saved_item)
1031 item = var->saved_item;
1032 var->saved_item = NULL;
1035 item = PyIter_Next (var->child_iter);
1040 /* We don't want to push the extra child on any report list. */
1041 if (to < 0 || i < to)
1046 struct cleanup *inner;
1047 int can_mention = from < 0 || i >= from;
1049 inner = make_cleanup_py_decref (item);
1051 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1052 error (_("Invalid item from the child list"));
1054 v = convert_value_from_python (py_v);
1056 gdbpy_print_stack ();
1057 install_dynamic_child (var, can_mention ? changed : NULL,
1058 can_mention ? new : NULL,
1059 can_mention ? unchanged : NULL,
1060 can_mention ? cchanged : NULL, i, name, v);
1061 do_cleanups (inner);
1065 Py_XDECREF (var->saved_item);
1066 var->saved_item = item;
1068 /* We want to truncate the child list just before this
1074 if (i < VEC_length (varobj_p, var->children))
1079 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1080 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1081 VEC_truncate (varobj_p, var->children, i);
1084 /* If there are fewer children than requested, note that the list of
1085 children changed. */
1086 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1089 var->num_children = VEC_length (varobj_p, var->children);
1091 do_cleanups (back_to);
1095 gdb_assert (0 && "should never be called if Python is not enabled");
1100 varobj_get_num_children (struct varobj *var)
1102 if (var->num_children == -1)
1104 if (var->pretty_printer)
1108 /* If we have a dynamic varobj, don't report -1 children.
1109 So, try to fetch some children first. */
1110 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1114 var->num_children = number_of_children (var);
1117 return var->num_children >= 0 ? var->num_children : 0;
1120 /* Creates a list of the immediate children of a variable object;
1121 the return code is the number of such children or -1 on error */
1124 varobj_list_children (struct varobj *var, int *from, int *to)
1127 int i, children_changed;
1129 var->children_requested = 1;
1131 if (var->pretty_printer)
1133 /* This, in theory, can result in the number of children changing without
1134 frontend noticing. But well, calling -var-list-children on the same
1135 varobj twice is not something a sane frontend would do. */
1136 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1138 restrict_range (var->children, from, to);
1139 return var->children;
1142 if (var->num_children == -1)
1143 var->num_children = number_of_children (var);
1145 /* If that failed, give up. */
1146 if (var->num_children == -1)
1147 return var->children;
1149 /* If we're called when the list of children is not yet initialized,
1150 allocate enough elements in it. */
1151 while (VEC_length (varobj_p, var->children) < var->num_children)
1152 VEC_safe_push (varobj_p, var->children, NULL);
1154 for (i = 0; i < var->num_children; i++)
1156 varobj_p existing = VEC_index (varobj_p, var->children, i);
1158 if (existing == NULL)
1160 /* Either it's the first call to varobj_list_children for
1161 this variable object, and the child was never created,
1162 or it was explicitly deleted by the client. */
1163 name = name_of_child (var, i);
1164 existing = create_child (var, i, name);
1165 VEC_replace (varobj_p, var->children, i, existing);
1169 restrict_range (var->children, from, to);
1170 return var->children;
1175 static struct varobj *
1176 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1178 varobj_p v = create_child_with_value (var,
1179 VEC_length (varobj_p, var->children),
1182 VEC_safe_push (varobj_p, var->children, v);
1186 #endif /* HAVE_PYTHON */
1188 /* Obtain the type of an object Variable as a string similar to the one gdb
1189 prints on the console */
1192 varobj_get_type (struct varobj *var)
1194 /* For the "fake" variables, do not return a type. (It's type is
1196 Do not return a type for invalid variables as well. */
1197 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1200 return type_to_string (var->type);
1203 /* Obtain the type of an object variable. */
1206 varobj_get_gdb_type (struct varobj *var)
1211 /* Return a pointer to the full rooted expression of varobj VAR.
1212 If it has not been computed yet, compute it. */
1214 varobj_get_path_expr (struct varobj *var)
1216 if (var->path_expr != NULL)
1217 return var->path_expr;
1220 /* For root varobjs, we initialize path_expr
1221 when creating varobj, so here it should be
1223 gdb_assert (!is_root_p (var));
1224 return (*var->root->lang->path_expr_of_child) (var);
1228 enum varobj_languages
1229 varobj_get_language (struct varobj *var)
1231 return variable_language (var);
1235 varobj_get_attributes (struct varobj *var)
1239 if (varobj_editable_p (var))
1240 /* FIXME: define masks for attributes */
1241 attributes |= 0x00000001; /* Editable */
1247 varobj_pretty_printed_p (struct varobj *var)
1249 return var->pretty_printer != NULL;
1253 varobj_get_formatted_value (struct varobj *var,
1254 enum varobj_display_formats format)
1256 return my_value_of_variable (var, format);
1260 varobj_get_value (struct varobj *var)
1262 return my_value_of_variable (var, var->format);
1265 /* Set the value of an object variable (if it is editable) to the
1266 value of the given expression */
1267 /* Note: Invokes functions that can call error() */
1270 varobj_set_value (struct varobj *var, char *expression)
1274 /* The argument "expression" contains the variable's new value.
1275 We need to first construct a legal expression for this -- ugh! */
1276 /* Does this cover all the bases? */
1277 struct expression *exp;
1278 struct value *value;
1279 int saved_input_radix = input_radix;
1280 char *s = expression;
1282 gdb_assert (varobj_editable_p (var));
1284 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1285 exp = parse_exp_1 (&s, 0, 0);
1286 if (!gdb_evaluate_expression (exp, &value))
1288 /* We cannot proceed without a valid expression. */
1293 /* All types that are editable must also be changeable. */
1294 gdb_assert (varobj_value_is_changeable_p (var));
1296 /* The value of a changeable variable object must not be lazy. */
1297 gdb_assert (!value_lazy (var->value));
1299 /* Need to coerce the input. We want to check if the
1300 value of the variable object will be different
1301 after assignment, and the first thing value_assign
1302 does is coerce the input.
1303 For example, if we are assigning an array to a pointer variable we
1304 should compare the pointer with the the array's address, not with the
1306 value = coerce_array (value);
1308 /* The new value may be lazy. gdb_value_assign, or
1309 rather value_contents, will take care of this.
1310 If fetching of the new value will fail, gdb_value_assign
1311 with catch the exception. */
1312 if (!gdb_value_assign (var->value, value, &val))
1315 /* If the value has changed, record it, so that next -var-update can
1316 report this change. If a variable had a value of '1', we've set it
1317 to '333' and then set again to '1', when -var-update will report this
1318 variable as changed -- because the first assignment has set the
1319 'updated' flag. There's no need to optimize that, because return value
1320 of -var-update should be considered an approximation. */
1321 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1322 input_radix = saved_input_radix;
1328 /* A helper function to install a constructor function and visualizer
1332 install_visualizer (struct varobj *var, PyObject *constructor,
1333 PyObject *visualizer)
1335 Py_XDECREF (var->constructor);
1336 var->constructor = constructor;
1338 Py_XDECREF (var->pretty_printer);
1339 var->pretty_printer = visualizer;
1341 Py_XDECREF (var->child_iter);
1342 var->child_iter = NULL;
1345 /* Install the default visualizer for VAR. */
1348 install_default_visualizer (struct varobj *var)
1350 if (pretty_printing)
1352 PyObject *pretty_printer = NULL;
1356 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1357 if (! pretty_printer)
1359 gdbpy_print_stack ();
1360 error (_("Cannot instantiate printer for default visualizer"));
1364 if (pretty_printer == Py_None)
1366 Py_DECREF (pretty_printer);
1367 pretty_printer = NULL;
1370 install_visualizer (var, NULL, pretty_printer);
1374 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1375 make a new object. */
1378 construct_visualizer (struct varobj *var, PyObject *constructor)
1380 PyObject *pretty_printer;
1382 Py_INCREF (constructor);
1383 if (constructor == Py_None)
1384 pretty_printer = NULL;
1387 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1388 if (! pretty_printer)
1390 gdbpy_print_stack ();
1391 Py_DECREF (constructor);
1392 constructor = Py_None;
1393 Py_INCREF (constructor);
1396 if (pretty_printer == Py_None)
1398 Py_DECREF (pretty_printer);
1399 pretty_printer = NULL;
1403 install_visualizer (var, constructor, pretty_printer);
1406 #endif /* HAVE_PYTHON */
1408 /* A helper function for install_new_value. This creates and installs
1409 a visualizer for VAR, if appropriate. */
1412 install_new_value_visualizer (struct varobj *var)
1415 /* If the constructor is None, then we want the raw value. If VAR
1416 does not have a value, just skip this. */
1417 if (var->constructor != Py_None && var->value)
1419 struct cleanup *cleanup;
1421 cleanup = varobj_ensure_python_env (var);
1423 if (!var->constructor)
1424 install_default_visualizer (var);
1426 construct_visualizer (var, var->constructor);
1428 do_cleanups (cleanup);
1435 /* Assign a new value to a variable object. If INITIAL is non-zero,
1436 this is the first assignement after the variable object was just
1437 created, or changed type. In that case, just assign the value
1439 Otherwise, assign the new value, and return 1 if the value is different
1440 from the current one, 0 otherwise. The comparison is done on textual
1441 representation of value. Therefore, some types need not be compared. E.g.
1442 for structures the reported value is always "{...}", so no comparison is
1443 necessary here. If the old value was NULL and new one is not, or vice versa,
1446 The VALUE parameter should not be released -- the function will
1447 take care of releasing it when needed. */
1449 install_new_value (struct varobj *var, struct value *value, int initial)
1454 int intentionally_not_fetched = 0;
1455 char *print_value = NULL;
1457 /* We need to know the varobj's type to decide if the value should
1458 be fetched or not. C++ fake children (public/protected/private) don't have
1460 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1461 changeable = varobj_value_is_changeable_p (var);
1463 /* If the type has custom visualizer, we consider it to be always
1464 changeable. FIXME: need to make sure this behaviour will not
1465 mess up read-sensitive values. */
1466 if (var->pretty_printer)
1469 need_to_fetch = changeable;
1471 /* We are not interested in the address of references, and given
1472 that in C++ a reference is not rebindable, it cannot
1473 meaningfully change. So, get hold of the real value. */
1475 value = coerce_ref (value);
1477 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1478 /* For unions, we need to fetch the value implicitly because
1479 of implementation of union member fetch. When gdb
1480 creates a value for a field and the value of the enclosing
1481 structure is not lazy, it immediately copies the necessary
1482 bytes from the enclosing values. If the enclosing value is
1483 lazy, the call to value_fetch_lazy on the field will read
1484 the data from memory. For unions, that means we'll read the
1485 same memory more than once, which is not desirable. So
1489 /* The new value might be lazy. If the type is changeable,
1490 that is we'll be comparing values of this type, fetch the
1491 value now. Otherwise, on the next update the old value
1492 will be lazy, which means we've lost that old value. */
1493 if (need_to_fetch && value && value_lazy (value))
1495 struct varobj *parent = var->parent;
1496 int frozen = var->frozen;
1498 for (; !frozen && parent; parent = parent->parent)
1499 frozen |= parent->frozen;
1501 if (frozen && initial)
1503 /* For variables that are frozen, or are children of frozen
1504 variables, we don't do fetch on initial assignment.
1505 For non-initial assignemnt we do the fetch, since it means we're
1506 explicitly asked to compare the new value with the old one. */
1507 intentionally_not_fetched = 1;
1509 else if (!gdb_value_fetch_lazy (value))
1511 /* Set the value to NULL, so that for the next -var-update,
1512 we don't try to compare the new value with this value,
1513 that we couldn't even read. */
1519 /* Below, we'll be comparing string rendering of old and new
1520 values. Don't get string rendering if the value is
1521 lazy -- if it is, the code above has decided that the value
1522 should not be fetched. */
1523 if (value && !value_lazy (value) && !var->pretty_printer)
1524 print_value = value_get_print_value (value, var->format, var);
1526 /* If the type is changeable, compare the old and the new values.
1527 If this is the initial assignment, we don't have any old value
1529 if (!initial && changeable)
1531 /* If the value of the varobj was changed by -var-set-value, then the
1532 value in the varobj and in the target is the same. However, that value
1533 is different from the value that the varobj had after the previous
1534 -var-update. So need to the varobj as changed. */
1539 else if (! var->pretty_printer)
1541 /* Try to compare the values. That requires that both
1542 values are non-lazy. */
1543 if (var->not_fetched && value_lazy (var->value))
1545 /* This is a frozen varobj and the value was never read.
1546 Presumably, UI shows some "never read" indicator.
1547 Now that we've fetched the real value, we need to report
1548 this varobj as changed so that UI can show the real
1552 else if (var->value == NULL && value == NULL)
1555 else if (var->value == NULL || value == NULL)
1561 gdb_assert (!value_lazy (var->value));
1562 gdb_assert (!value_lazy (value));
1564 gdb_assert (var->print_value != NULL && print_value != NULL);
1565 if (strcmp (var->print_value, print_value) != 0)
1571 if (!initial && !changeable)
1573 /* For values that are not changeable, we don't compare the values.
1574 However, we want to notice if a value was not NULL and now is NULL,
1575 or vise versa, so that we report when top-level varobjs come in scope
1576 and leave the scope. */
1577 changed = (var->value != NULL) != (value != NULL);
1580 /* We must always keep the new value, since children depend on it. */
1581 if (var->value != NULL && var->value != value)
1582 value_free (var->value);
1585 value_incref (value);
1586 if (value && value_lazy (value) && intentionally_not_fetched)
1587 var->not_fetched = 1;
1589 var->not_fetched = 0;
1592 install_new_value_visualizer (var);
1594 /* If we installed a pretty-printer, re-compare the printed version
1595 to see if the variable changed. */
1596 if (var->pretty_printer)
1598 xfree (print_value);
1599 print_value = value_get_print_value (var->value, var->format, var);
1600 if ((var->print_value == NULL && print_value != NULL)
1601 || (var->print_value != NULL && print_value == NULL)
1602 || (var->print_value != NULL && print_value != NULL
1603 && strcmp (var->print_value, print_value) != 0))
1606 if (var->print_value)
1607 xfree (var->print_value);
1608 var->print_value = print_value;
1610 gdb_assert (!var->value || value_type (var->value));
1615 /* Return the requested range for a varobj. VAR is the varobj. FROM
1616 and TO are out parameters; *FROM and *TO will be set to the
1617 selected sub-range of VAR. If no range was selected using
1618 -var-set-update-range, then both will be -1. */
1620 varobj_get_child_range (struct varobj *var, int *from, int *to)
1626 /* Set the selected sub-range of children of VAR to start at index
1627 FROM and end at index TO. If either FROM or TO is less than zero,
1628 this is interpreted as a request for all children. */
1630 varobj_set_child_range (struct varobj *var, int from, int to)
1637 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1640 PyObject *mainmod, *globals, *constructor;
1641 struct cleanup *back_to;
1643 back_to = varobj_ensure_python_env (var);
1645 mainmod = PyImport_AddModule ("__main__");
1646 globals = PyModule_GetDict (mainmod);
1647 Py_INCREF (globals);
1648 make_cleanup_py_decref (globals);
1650 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1654 gdbpy_print_stack ();
1655 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1658 construct_visualizer (var, constructor);
1659 Py_XDECREF (constructor);
1661 /* If there are any children now, wipe them. */
1662 varobj_delete (var, NULL, 1 /* children only */);
1663 var->num_children = -1;
1665 do_cleanups (back_to);
1667 error (_("Python support required"));
1671 /* Update the values for a variable and its children. This is a
1672 two-pronged attack. First, re-parse the value for the root's
1673 expression to see if it's changed. Then go all the way
1674 through its children, reconstructing them and noting if they've
1677 The EXPLICIT parameter specifies if this call is result
1678 of MI request to update this specific variable, or
1679 result of implicit -var-update *. For implicit request, we don't
1680 update frozen variables.
1682 NOTE: This function may delete the caller's varobj. If it
1683 returns TYPE_CHANGED, then it has done this and VARP will be modified
1684 to point to the new varobj. */
1686 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1689 int type_changed = 0;
1692 VEC (varobj_update_result) *stack = NULL;
1693 VEC (varobj_update_result) *result = NULL;
1695 /* Frozen means frozen -- we don't check for any change in
1696 this varobj, including its going out of scope, or
1697 changing type. One use case for frozen varobjs is
1698 retaining previously evaluated expressions, and we don't
1699 want them to be reevaluated at all. */
1700 if (!explicit && (*varp)->frozen)
1703 if (!(*varp)->root->is_valid)
1705 varobj_update_result r = {0};
1708 r.status = VAROBJ_INVALID;
1709 VEC_safe_push (varobj_update_result, result, &r);
1713 if ((*varp)->root->rootvar == *varp)
1715 varobj_update_result r = {0};
1718 r.status = VAROBJ_IN_SCOPE;
1720 /* Update the root variable. value_of_root can return NULL
1721 if the variable is no longer around, i.e. we stepped out of
1722 the frame in which a local existed. We are letting the
1723 value_of_root variable dispose of the varobj if the type
1725 new = value_of_root (varp, &type_changed);
1728 r.type_changed = type_changed;
1729 if (install_new_value ((*varp), new, type_changed))
1733 r.status = VAROBJ_NOT_IN_SCOPE;
1734 r.value_installed = 1;
1736 if (r.status == VAROBJ_NOT_IN_SCOPE)
1738 if (r.type_changed || r.changed)
1739 VEC_safe_push (varobj_update_result, result, &r);
1743 VEC_safe_push (varobj_update_result, stack, &r);
1747 varobj_update_result r = {0};
1750 VEC_safe_push (varobj_update_result, stack, &r);
1753 /* Walk through the children, reconstructing them all. */
1754 while (!VEC_empty (varobj_update_result, stack))
1756 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1757 struct varobj *v = r.varobj;
1759 VEC_pop (varobj_update_result, stack);
1761 /* Update this variable, unless it's a root, which is already
1763 if (!r.value_installed)
1765 new = value_of_child (v->parent, v->index);
1766 if (install_new_value (v, new, 0 /* type not changed */))
1773 /* We probably should not get children of a varobj that has a
1774 pretty-printer, but for which -var-list-children was never
1776 if (v->pretty_printer)
1778 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1779 int i, children_changed = 0;
1784 if (!v->children_requested)
1788 /* If we initially did not have potential children, but
1789 now we do, consider the varobj as changed.
1790 Otherwise, if children were never requested, consider
1791 it as unchanged -- presumably, such varobj is not yet
1792 expanded in the UI, so we need not bother getting
1794 if (!varobj_has_more (v, 0))
1796 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1798 if (varobj_has_more (v, 0))
1803 VEC_safe_push (varobj_update_result, result, &r);
1808 /* If update_dynamic_varobj_children returns 0, then we have
1809 a non-conforming pretty-printer, so we skip it. */
1810 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1811 &children_changed, 1,
1814 if (children_changed || new)
1816 r.children_changed = 1;
1819 /* Push in reverse order so that the first child is
1820 popped from the work stack first, and so will be
1821 added to result first. This does not affect
1822 correctness, just "nicer". */
1823 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1825 varobj_p tmp = VEC_index (varobj_p, changed, i);
1826 varobj_update_result r = {0};
1830 r.value_installed = 1;
1831 VEC_safe_push (varobj_update_result, stack, &r);
1833 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1835 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1839 varobj_update_result r = {0};
1842 r.value_installed = 1;
1843 VEC_safe_push (varobj_update_result, stack, &r);
1846 if (r.changed || r.children_changed)
1847 VEC_safe_push (varobj_update_result, result, &r);
1849 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1850 has been put into the result vector. */
1851 VEC_free (varobj_p, changed);
1852 VEC_free (varobj_p, unchanged);
1858 /* Push any children. Use reverse order so that the first
1859 child is popped from the work stack first, and so
1860 will be added to result first. This does not
1861 affect correctness, just "nicer". */
1862 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1864 varobj_p c = VEC_index (varobj_p, v->children, i);
1866 /* Child may be NULL if explicitly deleted by -var-delete. */
1867 if (c != NULL && !c->frozen)
1869 varobj_update_result r = {0};
1872 VEC_safe_push (varobj_update_result, stack, &r);
1876 if (r.changed || r.type_changed)
1877 VEC_safe_push (varobj_update_result, result, &r);
1880 VEC_free (varobj_update_result, stack);
1886 /* Helper functions */
1889 * Variable object construction/destruction
1893 delete_variable (struct cpstack **resultp, struct varobj *var,
1894 int only_children_p)
1898 delete_variable_1 (resultp, &delcount, var,
1899 only_children_p, 1 /* remove_from_parent_p */ );
1904 /* Delete the variable object VAR and its children */
1905 /* IMPORTANT NOTE: If we delete a variable which is a child
1906 and the parent is not removed we dump core. It must be always
1907 initially called with remove_from_parent_p set */
1909 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1910 struct varobj *var, int only_children_p,
1911 int remove_from_parent_p)
1915 /* Delete any children of this variable, too. */
1916 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1918 varobj_p child = VEC_index (varobj_p, var->children, i);
1922 if (!remove_from_parent_p)
1923 child->parent = NULL;
1924 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1926 VEC_free (varobj_p, var->children);
1928 /* if we were called to delete only the children we are done here */
1929 if (only_children_p)
1932 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1933 /* If the name is null, this is a temporary variable, that has not
1934 yet been installed, don't report it, it belongs to the caller... */
1935 if (var->obj_name != NULL)
1937 cppush (resultp, xstrdup (var->obj_name));
1938 *delcountp = *delcountp + 1;
1941 /* If this variable has a parent, remove it from its parent's list */
1942 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1943 (as indicated by remove_from_parent_p) we don't bother doing an
1944 expensive list search to find the element to remove when we are
1945 discarding the list afterwards */
1946 if ((remove_from_parent_p) && (var->parent != NULL))
1948 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1951 if (var->obj_name != NULL)
1952 uninstall_variable (var);
1954 /* Free memory associated with this variable */
1955 free_variable (var);
1958 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1960 install_variable (struct varobj *var)
1963 struct vlist *newvl;
1965 unsigned int index = 0;
1968 for (chp = var->obj_name; *chp; chp++)
1970 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1973 cv = *(varobj_table + index);
1974 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1978 error (_("Duplicate variable object name"));
1980 /* Add varobj to hash table */
1981 newvl = xmalloc (sizeof (struct vlist));
1982 newvl->next = *(varobj_table + index);
1984 *(varobj_table + index) = newvl;
1986 /* If root, add varobj to root list */
1987 if (is_root_p (var))
1989 /* Add to list of root variables */
1990 if (rootlist == NULL)
1991 var->root->next = NULL;
1993 var->root->next = rootlist;
1994 rootlist = var->root;
2000 /* Unistall the object VAR. */
2002 uninstall_variable (struct varobj *var)
2006 struct varobj_root *cr;
2007 struct varobj_root *prer;
2009 unsigned int index = 0;
2012 /* Remove varobj from hash table */
2013 for (chp = var->obj_name; *chp; chp++)
2015 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2018 cv = *(varobj_table + index);
2020 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2027 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2032 ("Assertion failed: Could not find variable object \"%s\" to delete",
2038 *(varobj_table + index) = cv->next;
2040 prev->next = cv->next;
2044 /* If root, remove varobj from root list */
2045 if (is_root_p (var))
2047 /* Remove from list of root variables */
2048 if (rootlist == var->root)
2049 rootlist = var->root->next;
2054 while ((cr != NULL) && (cr->rootvar != var))
2062 ("Assertion failed: Could not find varobj \"%s\" in root list",
2069 prer->next = cr->next;
2075 /* Create and install a child of the parent of the given name */
2076 static struct varobj *
2077 create_child (struct varobj *parent, int index, char *name)
2079 return create_child_with_value (parent, index, name,
2080 value_of_child (parent, index));
2083 static struct varobj *
2084 create_child_with_value (struct varobj *parent, int index, const char *name,
2085 struct value *value)
2087 struct varobj *child;
2090 child = new_variable ();
2092 /* name is allocated by name_of_child */
2093 /* FIXME: xstrdup should not be here. */
2094 child->name = xstrdup (name);
2095 child->index = index;
2096 child->parent = parent;
2097 child->root = parent->root;
2098 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2099 child->obj_name = childs_name;
2100 install_variable (child);
2102 /* Compute the type of the child. Must do this before
2103 calling install_new_value. */
2105 /* If the child had no evaluation errors, var->value
2106 will be non-NULL and contain a valid type. */
2107 child->type = value_type (value);
2109 /* Otherwise, we must compute the type. */
2110 child->type = (*child->root->lang->type_of_child) (child->parent,
2112 install_new_value (child, value, 1);
2119 * Miscellaneous utility functions.
2122 /* Allocate memory and initialize a new variable */
2123 static struct varobj *
2128 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2130 var->path_expr = NULL;
2131 var->obj_name = NULL;
2135 var->num_children = -1;
2137 var->children = NULL;
2141 var->print_value = NULL;
2143 var->not_fetched = 0;
2144 var->children_requested = 0;
2147 var->constructor = 0;
2148 var->pretty_printer = 0;
2149 var->child_iter = 0;
2150 var->saved_item = 0;
2155 /* Allocate memory and initialize a new root variable */
2156 static struct varobj *
2157 new_root_variable (void)
2159 struct varobj *var = new_variable ();
2161 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2162 var->root->lang = NULL;
2163 var->root->exp = NULL;
2164 var->root->valid_block = NULL;
2165 var->root->frame = null_frame_id;
2166 var->root->floating = 0;
2167 var->root->rootvar = NULL;
2168 var->root->is_valid = 1;
2173 /* Free any allocated memory associated with VAR. */
2175 free_variable (struct varobj *var)
2178 if (var->pretty_printer)
2180 struct cleanup *cleanup = varobj_ensure_python_env (var);
2181 Py_XDECREF (var->constructor);
2182 Py_XDECREF (var->pretty_printer);
2183 Py_XDECREF (var->child_iter);
2184 Py_XDECREF (var->saved_item);
2185 do_cleanups (cleanup);
2189 value_free (var->value);
2191 /* Free the expression if this is a root variable. */
2192 if (is_root_p (var))
2194 xfree (var->root->exp);
2199 xfree (var->obj_name);
2200 xfree (var->print_value);
2201 xfree (var->path_expr);
2206 do_free_variable_cleanup (void *var)
2208 free_variable (var);
2211 static struct cleanup *
2212 make_cleanup_free_variable (struct varobj *var)
2214 return make_cleanup (do_free_variable_cleanup, var);
2217 /* This returns the type of the variable. It also skips past typedefs
2218 to return the real type of the variable.
2220 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2221 except within get_target_type and get_type. */
2222 static struct type *
2223 get_type (struct varobj *var)
2229 type = check_typedef (type);
2234 /* Return the type of the value that's stored in VAR,
2235 or that would have being stored there if the
2236 value were accessible.
2238 This differs from VAR->type in that VAR->type is always
2239 the true type of the expession in the source language.
2240 The return value of this function is the type we're
2241 actually storing in varobj, and using for displaying
2242 the values and for comparing previous and new values.
2244 For example, top-level references are always stripped. */
2245 static struct type *
2246 get_value_type (struct varobj *var)
2251 type = value_type (var->value);
2255 type = check_typedef (type);
2257 if (TYPE_CODE (type) == TYPE_CODE_REF)
2258 type = get_target_type (type);
2260 type = check_typedef (type);
2265 /* This returns the target type (or NULL) of TYPE, also skipping
2266 past typedefs, just like get_type ().
2268 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2269 except within get_target_type and get_type. */
2270 static struct type *
2271 get_target_type (struct type *type)
2275 type = TYPE_TARGET_TYPE (type);
2277 type = check_typedef (type);
2283 /* What is the default display for this variable? We assume that
2284 everything is "natural". Any exceptions? */
2285 static enum varobj_display_formats
2286 variable_default_display (struct varobj *var)
2288 return FORMAT_NATURAL;
2291 /* FIXME: The following should be generic for any pointer */
2293 cppush (struct cpstack **pstack, char *name)
2297 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2303 /* FIXME: The following should be generic for any pointer */
2305 cppop (struct cpstack **pstack)
2310 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2315 *pstack = (*pstack)->next;
2322 * Language-dependencies
2325 /* Common entry points */
2327 /* Get the language of variable VAR. */
2328 static enum varobj_languages
2329 variable_language (struct varobj *var)
2331 enum varobj_languages lang;
2333 switch (var->root->exp->language_defn->la_language)
2339 case language_cplus:
2350 /* Return the number of children for a given variable.
2351 The result of this function is defined by the language
2352 implementation. The number of children returned by this function
2353 is the number of children that the user will see in the variable
2356 number_of_children (struct varobj *var)
2358 return (*var->root->lang->number_of_children) (var);;
2361 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2363 name_of_variable (struct varobj *var)
2365 return (*var->root->lang->name_of_variable) (var);
2368 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2370 name_of_child (struct varobj *var, int index)
2372 return (*var->root->lang->name_of_child) (var, index);
2375 /* What is the ``struct value *'' of the root variable VAR?
2376 For floating variable object, evaluation can get us a value
2377 of different type from what is stored in varobj already. In
2379 - *type_changed will be set to 1
2380 - old varobj will be freed, and new one will be
2381 created, with the same name.
2382 - *var_handle will be set to the new varobj
2383 Otherwise, *type_changed will be set to 0. */
2384 static struct value *
2385 value_of_root (struct varobj **var_handle, int *type_changed)
2389 if (var_handle == NULL)
2394 /* This should really be an exception, since this should
2395 only get called with a root variable. */
2397 if (!is_root_p (var))
2400 if (var->root->floating)
2402 struct varobj *tmp_var;
2403 char *old_type, *new_type;
2405 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2406 USE_SELECTED_FRAME);
2407 if (tmp_var == NULL)
2411 old_type = varobj_get_type (var);
2412 new_type = varobj_get_type (tmp_var);
2413 if (strcmp (old_type, new_type) == 0)
2415 /* The expression presently stored inside var->root->exp
2416 remembers the locations of local variables relatively to
2417 the frame where the expression was created (in DWARF location
2418 button, for example). Naturally, those locations are not
2419 correct in other frames, so update the expression. */
2421 struct expression *tmp_exp = var->root->exp;
2423 var->root->exp = tmp_var->root->exp;
2424 tmp_var->root->exp = tmp_exp;
2426 varobj_delete (tmp_var, NULL, 0);
2431 tmp_var->obj_name = xstrdup (var->obj_name);
2432 tmp_var->from = var->from;
2433 tmp_var->to = var->to;
2434 varobj_delete (var, NULL, 0);
2436 install_variable (tmp_var);
2437 *var_handle = tmp_var;
2449 return (*var->root->lang->value_of_root) (var_handle);
2452 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2453 static struct value *
2454 value_of_child (struct varobj *parent, int index)
2456 struct value *value;
2458 value = (*parent->root->lang->value_of_child) (parent, index);
2463 /* GDB already has a command called "value_of_variable". Sigh. */
2465 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2467 if (var->root->is_valid)
2469 if (var->pretty_printer)
2470 return value_get_print_value (var->value, var->format, var);
2471 return (*var->root->lang->value_of_variable) (var, format);
2478 value_get_print_value (struct value *value, enum varobj_display_formats format,
2481 struct ui_file *stb;
2482 struct cleanup *old_chain;
2483 gdb_byte *thevalue = NULL;
2484 struct value_print_options opts;
2485 struct type *type = NULL;
2487 char *encoding = NULL;
2488 struct gdbarch *gdbarch = NULL;
2489 /* Initialize it just to avoid a GCC false warning. */
2490 CORE_ADDR str_addr = 0;
2491 int string_print = 0;
2496 stb = mem_fileopen ();
2497 old_chain = make_cleanup_ui_file_delete (stb);
2499 gdbarch = get_type_arch (value_type (value));
2502 PyObject *value_formatter = var->pretty_printer;
2504 varobj_ensure_python_env (var);
2506 if (value_formatter)
2508 /* First check to see if we have any children at all. If so,
2509 we simply return {...}. */
2510 if (dynamic_varobj_has_child_method (var))
2512 do_cleanups (old_chain);
2513 return xstrdup ("{...}");
2516 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2519 struct value *replacement;
2520 PyObject *output = NULL;
2522 hint = gdbpy_get_display_hint (value_formatter);
2525 if (!strcmp (hint, "string"))
2530 output = apply_varobj_pretty_printer (value_formatter,
2535 make_cleanup_py_decref (output);
2537 if (gdbpy_is_lazy_string (output))
2539 gdbpy_extract_lazy_string (output, &str_addr, &type,
2541 make_cleanup (free_current_contents, &encoding);
2547 = python_string_to_target_python_string (output);
2551 char *s = PyString_AsString (py_str);
2553 len = PyString_Size (py_str);
2554 thevalue = xmemdup (s, len + 1, len + 1);
2555 type = builtin_type (gdbarch)->builtin_char;
2560 do_cleanups (old_chain);
2564 make_cleanup (xfree, thevalue);
2567 gdbpy_print_stack ();
2571 value = replacement;
2577 get_formatted_print_options (&opts, format_code[(int) format]);
2581 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2582 else if (string_print)
2583 val_print_string (type, encoding, str_addr, len, stb, &opts);
2585 common_val_print (value, stb, 0, &opts, current_language);
2586 thevalue = ui_file_xstrdup (stb, NULL);
2588 do_cleanups (old_chain);
2593 varobj_editable_p (struct varobj *var)
2597 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2600 type = get_value_type (var);
2602 switch (TYPE_CODE (type))
2604 case TYPE_CODE_STRUCT:
2605 case TYPE_CODE_UNION:
2606 case TYPE_CODE_ARRAY:
2607 case TYPE_CODE_FUNC:
2608 case TYPE_CODE_METHOD:
2618 /* Return non-zero if changes in value of VAR
2619 must be detected and reported by -var-update.
2620 Return zero is -var-update should never report
2621 changes of such values. This makes sense for structures
2622 (since the changes in children values will be reported separately),
2623 or for artifical objects (like 'public' pseudo-field in C++).
2625 Return value of 0 means that gdb need not call value_fetch_lazy
2626 for the value of this variable object. */
2628 varobj_value_is_changeable_p (struct varobj *var)
2633 if (CPLUS_FAKE_CHILD (var))
2636 type = get_value_type (var);
2638 switch (TYPE_CODE (type))
2640 case TYPE_CODE_STRUCT:
2641 case TYPE_CODE_UNION:
2642 case TYPE_CODE_ARRAY:
2653 /* Return 1 if that varobj is floating, that is is always evaluated in the
2654 selected frame, and not bound to thread/frame. Such variable objects
2655 are created using '@' as frame specifier to -var-create. */
2657 varobj_floating_p (struct varobj *var)
2659 return var->root->floating;
2662 /* Given the value and the type of a variable object,
2663 adjust the value and type to those necessary
2664 for getting children of the variable object.
2665 This includes dereferencing top-level references
2666 to all types and dereferencing pointers to
2669 Both TYPE and *TYPE should be non-null. VALUE
2670 can be null if we want to only translate type.
2671 *VALUE can be null as well -- if the parent
2674 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2675 depending on whether pointer was dereferenced
2676 in this function. */
2678 adjust_value_for_child_access (struct value **value,
2682 gdb_assert (type && *type);
2687 *type = check_typedef (*type);
2689 /* The type of value stored in varobj, that is passed
2690 to us, is already supposed to be
2691 reference-stripped. */
2693 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2695 /* Pointers to structures are treated just like
2696 structures when accessing children. Don't
2697 dererences pointers to other types. */
2698 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2700 struct type *target_type = get_target_type (*type);
2701 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2702 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2704 if (value && *value)
2706 int success = gdb_value_ind (*value, value);
2711 *type = target_type;
2717 /* The 'get_target_type' function calls check_typedef on
2718 result, so we can immediately check type code. No
2719 need to call check_typedef here. */
2724 c_number_of_children (struct varobj *var)
2726 struct type *type = get_value_type (var);
2728 struct type *target;
2730 adjust_value_for_child_access (NULL, &type, NULL);
2731 target = get_target_type (type);
2733 switch (TYPE_CODE (type))
2735 case TYPE_CODE_ARRAY:
2736 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2737 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2738 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2740 /* If we don't know how many elements there are, don't display
2745 case TYPE_CODE_STRUCT:
2746 case TYPE_CODE_UNION:
2747 children = TYPE_NFIELDS (type);
2751 /* The type here is a pointer to non-struct. Typically, pointers
2752 have one child, except for function ptrs, which have no children,
2753 and except for void*, as we don't know what to show.
2755 We can show char* so we allow it to be dereferenced. If you decide
2756 to test for it, please mind that a little magic is necessary to
2757 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2758 TYPE_NAME == "char" */
2759 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2760 || TYPE_CODE (target) == TYPE_CODE_VOID)
2767 /* Other types have no children */
2775 c_name_of_variable (struct varobj *parent)
2777 return xstrdup (parent->name);
2780 /* Return the value of element TYPE_INDEX of a structure
2781 value VALUE. VALUE's type should be a structure,
2782 or union, or a typedef to struct/union.
2784 Returns NULL if getting the value fails. Never throws. */
2785 static struct value *
2786 value_struct_element_index (struct value *value, int type_index)
2788 struct value *result = NULL;
2789 volatile struct gdb_exception e;
2790 struct type *type = value_type (value);
2792 type = check_typedef (type);
2794 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2795 || TYPE_CODE (type) == TYPE_CODE_UNION);
2797 TRY_CATCH (e, RETURN_MASK_ERROR)
2799 if (field_is_static (&TYPE_FIELD (type, type_index)))
2800 result = value_static_field (type, type_index);
2802 result = value_primitive_field (value, 0, type_index, type);
2814 /* Obtain the information about child INDEX of the variable
2816 If CNAME is not null, sets *CNAME to the name of the child relative
2818 If CVALUE is not null, sets *CVALUE to the value of the child.
2819 If CTYPE is not null, sets *CTYPE to the type of the child.
2821 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2822 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2825 c_describe_child (struct varobj *parent, int index,
2826 char **cname, struct value **cvalue, struct type **ctype,
2827 char **cfull_expression)
2829 struct value *value = parent->value;
2830 struct type *type = get_value_type (parent);
2831 char *parent_expression = NULL;
2840 if (cfull_expression)
2842 *cfull_expression = NULL;
2843 parent_expression = varobj_get_path_expr (parent);
2845 adjust_value_for_child_access (&value, &type, &was_ptr);
2847 switch (TYPE_CODE (type))
2849 case TYPE_CODE_ARRAY:
2851 *cname = xstrdup (int_string (index
2852 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2855 if (cvalue && value)
2857 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2859 gdb_value_subscript (value, real_index, cvalue);
2863 *ctype = get_target_type (type);
2865 if (cfull_expression)
2867 xstrprintf ("(%s)[%s]", parent_expression,
2869 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2875 case TYPE_CODE_STRUCT:
2876 case TYPE_CODE_UNION:
2878 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2880 if (cvalue && value)
2882 /* For C, varobj index is the same as type index. */
2883 *cvalue = value_struct_element_index (value, index);
2887 *ctype = TYPE_FIELD_TYPE (type, index);
2889 if (cfull_expression)
2891 char *join = was_ptr ? "->" : ".";
2893 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2894 TYPE_FIELD_NAME (type, index));
2901 *cname = xstrprintf ("*%s", parent->name);
2903 if (cvalue && value)
2905 int success = gdb_value_ind (value, cvalue);
2911 /* Don't use get_target_type because it calls
2912 check_typedef and here, we want to show the true
2913 declared type of the variable. */
2915 *ctype = TYPE_TARGET_TYPE (type);
2917 if (cfull_expression)
2918 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2923 /* This should not happen */
2925 *cname = xstrdup ("???");
2926 if (cfull_expression)
2927 *cfull_expression = xstrdup ("???");
2928 /* Don't set value and type, we don't know then. */
2933 c_name_of_child (struct varobj *parent, int index)
2937 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2942 c_path_expr_of_child (struct varobj *child)
2944 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2946 return child->path_expr;
2949 /* If frame associated with VAR can be found, switch
2950 to it and return 1. Otherwise, return 0. */
2952 check_scope (struct varobj *var)
2954 struct frame_info *fi;
2957 fi = frame_find_by_id (var->root->frame);
2962 CORE_ADDR pc = get_frame_pc (fi);
2964 if (pc < BLOCK_START (var->root->valid_block) ||
2965 pc >= BLOCK_END (var->root->valid_block))
2973 static struct value *
2974 c_value_of_root (struct varobj **var_handle)
2976 struct value *new_val = NULL;
2977 struct varobj *var = *var_handle;
2978 int within_scope = 0;
2979 struct cleanup *back_to;
2981 /* Only root variables can be updated... */
2982 if (!is_root_p (var))
2983 /* Not a root var */
2986 back_to = make_cleanup_restore_current_thread ();
2988 /* Determine whether the variable is still around. */
2989 if (var->root->valid_block == NULL || var->root->floating)
2991 else if (var->root->thread_id == 0)
2993 /* The program was single-threaded when the variable object was
2994 created. Technically, it's possible that the program became
2995 multi-threaded since then, but we don't support such
2997 within_scope = check_scope (var);
3001 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3002 if (in_thread_list (ptid))
3004 switch_to_thread (ptid);
3005 within_scope = check_scope (var);
3011 /* We need to catch errors here, because if evaluate
3012 expression fails we want to just return NULL. */
3013 gdb_evaluate_expression (var->root->exp, &new_val);
3017 do_cleanups (back_to);
3022 static struct value *
3023 c_value_of_child (struct varobj *parent, int index)
3025 struct value *value = NULL;
3027 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3031 static struct type *
3032 c_type_of_child (struct varobj *parent, int index)
3034 struct type *type = NULL;
3036 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3041 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3043 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3044 it will print out its children instead of "{...}". So we need to
3045 catch that case explicitly. */
3046 struct type *type = get_type (var);
3048 /* If we have a custom formatter, return whatever string it has
3050 if (var->pretty_printer && var->print_value)
3051 return xstrdup (var->print_value);
3053 /* Strip top-level references. */
3054 while (TYPE_CODE (type) == TYPE_CODE_REF)
3055 type = check_typedef (TYPE_TARGET_TYPE (type));
3057 switch (TYPE_CODE (type))
3059 case TYPE_CODE_STRUCT:
3060 case TYPE_CODE_UNION:
3061 return xstrdup ("{...}");
3064 case TYPE_CODE_ARRAY:
3068 number = xstrprintf ("[%d]", var->num_children);
3075 if (var->value == NULL)
3077 /* This can happen if we attempt to get the value of a struct
3078 member when the parent is an invalid pointer. This is an
3079 error condition, so we should tell the caller. */
3084 if (var->not_fetched && value_lazy (var->value))
3085 /* Frozen variable and no value yet. We don't
3086 implicitly fetch the value. MI response will
3087 use empty string for the value, which is OK. */
3090 gdb_assert (varobj_value_is_changeable_p (var));
3091 gdb_assert (!value_lazy (var->value));
3093 /* If the specified format is the current one,
3094 we can reuse print_value */
3095 if (format == var->format)
3096 return xstrdup (var->print_value);
3098 return value_get_print_value (var->value, format, var);
3108 cplus_number_of_children (struct varobj *var)
3111 int children, dont_know;
3116 if (!CPLUS_FAKE_CHILD (var))
3118 type = get_value_type (var);
3119 adjust_value_for_child_access (NULL, &type, NULL);
3121 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3122 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3126 cplus_class_num_children (type, kids);
3127 if (kids[v_public] != 0)
3129 if (kids[v_private] != 0)
3131 if (kids[v_protected] != 0)
3134 /* Add any baseclasses */
3135 children += TYPE_N_BASECLASSES (type);
3138 /* FIXME: save children in var */
3145 type = get_value_type (var->parent);
3146 adjust_value_for_child_access (NULL, &type, NULL);
3148 cplus_class_num_children (type, kids);
3149 if (strcmp (var->name, "public") == 0)
3150 children = kids[v_public];
3151 else if (strcmp (var->name, "private") == 0)
3152 children = kids[v_private];
3154 children = kids[v_protected];
3159 children = c_number_of_children (var);
3164 /* Compute # of public, private, and protected variables in this class.
3165 That means we need to descend into all baseclasses and find out
3166 how many are there, too. */
3168 cplus_class_num_children (struct type *type, int children[3])
3170 int i, vptr_fieldno;
3171 struct type *basetype = NULL;
3173 children[v_public] = 0;
3174 children[v_private] = 0;
3175 children[v_protected] = 0;
3177 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3178 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3180 /* If we have a virtual table pointer, omit it. Even if virtual
3181 table pointers are not specifically marked in the debug info,
3182 they should be artificial. */
3183 if ((type == basetype && i == vptr_fieldno)
3184 || TYPE_FIELD_ARTIFICIAL (type, i))
3187 if (TYPE_FIELD_PROTECTED (type, i))
3188 children[v_protected]++;
3189 else if (TYPE_FIELD_PRIVATE (type, i))
3190 children[v_private]++;
3192 children[v_public]++;
3197 cplus_name_of_variable (struct varobj *parent)
3199 return c_name_of_variable (parent);
3202 enum accessibility { private_field, protected_field, public_field };
3204 /* Check if field INDEX of TYPE has the specified accessibility.
3205 Return 0 if so and 1 otherwise. */
3207 match_accessibility (struct type *type, int index, enum accessibility acc)
3209 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3211 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3213 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3214 && !TYPE_FIELD_PROTECTED (type, index))
3221 cplus_describe_child (struct varobj *parent, int index,
3222 char **cname, struct value **cvalue, struct type **ctype,
3223 char **cfull_expression)
3225 struct value *value;
3228 char *parent_expression = NULL;
3236 if (cfull_expression)
3237 *cfull_expression = NULL;
3239 if (CPLUS_FAKE_CHILD (parent))
3241 value = parent->parent->value;
3242 type = get_value_type (parent->parent);
3243 if (cfull_expression)
3244 parent_expression = varobj_get_path_expr (parent->parent);
3248 value = parent->value;
3249 type = get_value_type (parent);
3250 if (cfull_expression)
3251 parent_expression = varobj_get_path_expr (parent);
3254 adjust_value_for_child_access (&value, &type, &was_ptr);
3256 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3257 || TYPE_CODE (type) == TYPE_CODE_UNION)
3259 char *join = was_ptr ? "->" : ".";
3261 if (CPLUS_FAKE_CHILD (parent))
3263 /* The fields of the class type are ordered as they
3264 appear in the class. We are given an index for a
3265 particular access control type ("public","protected",
3266 or "private"). We must skip over fields that don't
3267 have the access control we are looking for to properly
3268 find the indexed field. */
3269 int type_index = TYPE_N_BASECLASSES (type);
3270 enum accessibility acc = public_field;
3272 struct type *basetype = NULL;
3274 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3275 if (strcmp (parent->name, "private") == 0)
3276 acc = private_field;
3277 else if (strcmp (parent->name, "protected") == 0)
3278 acc = protected_field;
3282 if ((type == basetype && type_index == vptr_fieldno)
3283 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3285 else if (match_accessibility (type, type_index, acc))
3292 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3294 if (cvalue && value)
3295 *cvalue = value_struct_element_index (value, type_index);
3298 *ctype = TYPE_FIELD_TYPE (type, type_index);
3300 if (cfull_expression)
3301 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3303 TYPE_FIELD_NAME (type, type_index));
3305 else if (index < TYPE_N_BASECLASSES (type))
3307 /* This is a baseclass. */
3309 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3311 if (cvalue && value)
3312 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3316 *ctype = TYPE_FIELD_TYPE (type, index);
3319 if (cfull_expression)
3321 char *ptr = was_ptr ? "*" : "";
3323 /* Cast the parent to the base' type. Note that in gdb,
3326 will create an lvalue, for all appearences, so we don't
3327 need to use more fancy:
3330 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3332 TYPE_FIELD_NAME (type, index),
3339 char *access = NULL;
3342 cplus_class_num_children (type, children);
3344 /* Everything beyond the baseclasses can
3345 only be "public", "private", or "protected"
3347 The special "fake" children are always output by varobj in
3348 this order. So if INDEX == 2, it MUST be "protected". */
3349 index -= TYPE_N_BASECLASSES (type);
3353 if (children[v_public] > 0)
3355 else if (children[v_private] > 0)
3358 access = "protected";
3361 if (children[v_public] > 0)
3363 if (children[v_private] > 0)
3366 access = "protected";
3368 else if (children[v_private] > 0)
3369 access = "protected";
3372 /* Must be protected */
3373 access = "protected";
3380 gdb_assert (access);
3382 *cname = xstrdup (access);
3384 /* Value and type and full expression are null here. */
3389 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3394 cplus_name_of_child (struct varobj *parent, int index)
3398 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3403 cplus_path_expr_of_child (struct varobj *child)
3405 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3407 return child->path_expr;
3410 static struct value *
3411 cplus_value_of_root (struct varobj **var_handle)
3413 return c_value_of_root (var_handle);
3416 static struct value *
3417 cplus_value_of_child (struct varobj *parent, int index)
3419 struct value *value = NULL;
3421 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3425 static struct type *
3426 cplus_type_of_child (struct varobj *parent, int index)
3428 struct type *type = NULL;
3430 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3435 cplus_value_of_variable (struct varobj *var,
3436 enum varobj_display_formats format)
3439 /* If we have one of our special types, don't print out
3441 if (CPLUS_FAKE_CHILD (var))
3442 return xstrdup ("");
3444 return c_value_of_variable (var, format);
3450 java_number_of_children (struct varobj *var)
3452 return cplus_number_of_children (var);
3456 java_name_of_variable (struct varobj *parent)
3460 name = cplus_name_of_variable (parent);
3461 /* If the name has "-" in it, it is because we
3462 needed to escape periods in the name... */
3465 while (*p != '\000')
3476 java_name_of_child (struct varobj *parent, int index)
3480 name = cplus_name_of_child (parent, index);
3481 /* Escape any periods in the name... */
3484 while (*p != '\000')
3495 java_path_expr_of_child (struct varobj *child)
3500 static struct value *
3501 java_value_of_root (struct varobj **var_handle)
3503 return cplus_value_of_root (var_handle);
3506 static struct value *
3507 java_value_of_child (struct varobj *parent, int index)
3509 return cplus_value_of_child (parent, index);
3512 static struct type *
3513 java_type_of_child (struct varobj *parent, int index)
3515 return cplus_type_of_child (parent, index);
3519 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3521 return cplus_value_of_variable (var, format);
3524 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3525 with an arbitrary caller supplied DATA pointer. */
3528 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3530 struct varobj_root *var_root, *var_root_next;
3532 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3534 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3536 var_root_next = var_root->next;
3538 (*func) (var_root->rootvar, data);
3542 extern void _initialize_varobj (void);
3544 _initialize_varobj (void)
3546 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3548 varobj_table = xmalloc (sizeof_table);
3549 memset (varobj_table, 0, sizeof_table);
3551 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3553 Set varobj debugging."), _("\
3554 Show varobj debugging."), _("\
3555 When non-zero, varobj debugging is enabled."),
3558 &setlist, &showlist);
3561 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3562 defined on globals. It is a helper for varobj_invalidate. */
3565 varobj_invalidate_iter (struct varobj *var, void *unused)
3567 /* Floating varobjs are reparsed on each stop, so we don't care if the
3568 presently parsed expression refers to something that's gone. */
3569 if (var->root->floating)
3572 /* global var must be re-evaluated. */
3573 if (var->root->valid_block == NULL)
3575 struct varobj *tmp_var;
3577 /* Try to create a varobj with same expression. If we succeed
3578 replace the old varobj, otherwise invalidate it. */
3579 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3581 if (tmp_var != NULL)
3583 tmp_var->obj_name = xstrdup (var->obj_name);
3584 varobj_delete (var, NULL, 0);
3585 install_variable (tmp_var);
3588 var->root->is_valid = 0;
3590 else /* locals must be invalidated. */
3591 var->root->is_valid = 0;
3594 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3595 are defined on globals.
3596 Invalidated varobjs will be always printed in_scope="invalid". */
3599 varobj_invalidate (void)
3601 all_root_varobjs (varobj_invalidate_iter, NULL);