1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "exceptions.h"
22 #include "expression.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
36 #include "gdbthread.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
46 /* Non-zero if we want to see trace of varobj level stuff. */
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
67 varobj_enable_pretty_printing (void)
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
82 /* Block for which this expression is valid */
83 struct block *valid_block;
85 /* The frame for this expression. This field is set iff valid_block is
87 struct frame_id frame;
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
111 /* Next root variable */
112 struct varobj_root *next;
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
135 /* Index of this variable in its parent or -1 */
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
149 /* The number of (immediate) children this variable has */
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
155 /* Children of this object. */
156 VEC (varobj_p) *children;
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
162 int children_requested;
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
170 /* Was this variable updated via a varobj_set_value operation */
173 /* Last print value. */
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
201 /* The iterator returned by the printer's 'children' method, or NULL
203 PyObject *child_iter;
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
216 struct cpstack *next;
219 /* A list of varobjs */
227 /* Private function prototypes */
229 /* Helper functions for the above subcommands. */
231 static int delete_variable (struct cpstack **, struct varobj *, int);
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
236 static int install_variable (struct varobj *);
238 static void uninstall_variable (struct varobj *);
240 static struct varobj *create_child (struct varobj *, int, char *);
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
246 /* Utility routines */
248 static struct varobj *new_variable (void);
250 static struct varobj *new_root_variable (void);
252 static void free_variable (struct varobj *var);
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256 static struct type *get_type (struct varobj *var);
258 static struct type *get_value_type (struct varobj *var);
260 static struct type *get_target_type (struct type *);
262 static enum varobj_display_formats variable_default_display (struct varobj *);
264 static void cppush (struct cpstack **pstack, char *name);
266 static char *cppop (struct cpstack **pstack);
268 static int install_new_value (struct varobj *var, struct value *value,
271 /* Language-specific routines. */
273 static enum varobj_languages variable_language (struct varobj *var);
275 static int number_of_children (struct varobj *);
277 static char *name_of_variable (struct varobj *);
279 static char *name_of_child (struct varobj *, int);
281 static struct value *value_of_root (struct varobj **var_handle, int *);
283 static struct value *value_of_child (struct varobj *parent, int index);
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
292 static int varobj_value_is_changeable_p (struct varobj *var);
294 static int is_root_p (struct varobj *var);
296 static struct varobj *
297 varobj_add_child (struct varobj *var, const char *name, struct value *value);
299 /* C implementation */
301 static int c_number_of_children (struct varobj *var);
303 static char *c_name_of_variable (struct varobj *parent);
305 static char *c_name_of_child (struct varobj *parent, int index);
307 static char *c_path_expr_of_child (struct varobj *child);
309 static struct value *c_value_of_root (struct varobj **var_handle);
311 static struct value *c_value_of_child (struct varobj *parent, int index);
313 static struct type *c_type_of_child (struct varobj *parent, int index);
315 static char *c_value_of_variable (struct varobj *var,
316 enum varobj_display_formats format);
318 /* C++ implementation */
320 static int cplus_number_of_children (struct varobj *var);
322 static void cplus_class_num_children (struct type *type, int children[3]);
324 static char *cplus_name_of_variable (struct varobj *parent);
326 static char *cplus_name_of_child (struct varobj *parent, int index);
328 static char *cplus_path_expr_of_child (struct varobj *child);
330 static struct value *cplus_value_of_root (struct varobj **var_handle);
332 static struct value *cplus_value_of_child (struct varobj *parent, int index);
334 static struct type *cplus_type_of_child (struct varobj *parent, int index);
336 static char *cplus_value_of_variable (struct varobj *var,
337 enum varobj_display_formats format);
339 /* Java implementation */
341 static int java_number_of_children (struct varobj *var);
343 static char *java_name_of_variable (struct varobj *parent);
345 static char *java_name_of_child (struct varobj *parent, int index);
347 static char *java_path_expr_of_child (struct varobj *child);
349 static struct value *java_value_of_root (struct varobj **var_handle);
351 static struct value *java_value_of_child (struct varobj *parent, int index);
353 static struct type *java_type_of_child (struct varobj *parent, int index);
355 static char *java_value_of_variable (struct varobj *var,
356 enum varobj_display_formats format);
358 /* The language specific vector */
360 struct language_specific
363 /* The language of this variable */
364 enum varobj_languages language;
366 /* The number of children of PARENT. */
367 int (*number_of_children) (struct varobj * parent);
369 /* The name (expression) of a root varobj. */
370 char *(*name_of_variable) (struct varobj * parent);
372 /* The name of the INDEX'th child of PARENT. */
373 char *(*name_of_child) (struct varobj * parent, int index);
375 /* Returns the rooted expression of CHILD, which is a variable
376 obtain that has some parent. */
377 char *(*path_expr_of_child) (struct varobj * child);
379 /* The ``struct value *'' of the root variable ROOT. */
380 struct value *(*value_of_root) (struct varobj ** root_handle);
382 /* The ``struct value *'' of the INDEX'th child of PARENT. */
383 struct value *(*value_of_child) (struct varobj * parent, int index);
385 /* The type of the INDEX'th child of PARENT. */
386 struct type *(*type_of_child) (struct varobj * parent, int index);
388 /* The current value of VAR. */
389 char *(*value_of_variable) (struct varobj * var,
390 enum varobj_display_formats format);
393 /* Array of known source language routines. */
394 static struct language_specific languages[vlang_end] = {
395 /* Unknown (try treating as C */
398 c_number_of_children,
401 c_path_expr_of_child,
410 c_number_of_children,
413 c_path_expr_of_child,
422 cplus_number_of_children,
423 cplus_name_of_variable,
425 cplus_path_expr_of_child,
427 cplus_value_of_child,
429 cplus_value_of_variable}
434 java_number_of_children,
435 java_name_of_variable,
437 java_path_expr_of_child,
441 java_value_of_variable}
444 /* A little convenience enum for dealing with C++/Java */
447 v_public = 0, v_private, v_protected
452 /* Mappings of varobj_display_formats enums to gdb's format codes */
453 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
455 /* Header of the list of root variable objects */
456 static struct varobj_root *rootlist;
458 /* Prime number indicating the number of buckets in the hash table */
459 /* A prime large enough to avoid too many colisions */
460 #define VAROBJ_TABLE_SIZE 227
462 /* Pointer to the varobj hash table (built at run time) */
463 static struct vlist **varobj_table;
465 /* Is the variable X one of our "fake" children? */
466 #define CPLUS_FAKE_CHILD(x) \
467 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
470 /* API Implementation */
472 is_root_p (struct varobj *var)
474 return (var->root->rootvar == var);
478 /* Helper function to install a Python environment suitable for
479 use during operations on VAR. */
481 varobj_ensure_python_env (struct varobj *var)
483 return ensure_python_env (var->root->exp->gdbarch,
484 var->root->exp->language_defn);
488 /* Creates a varobj (not its children) */
490 /* Return the full FRAME which corresponds to the given CORE_ADDR
491 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
493 static struct frame_info *
494 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
496 struct frame_info *frame = NULL;
498 if (frame_addr == (CORE_ADDR) 0)
501 for (frame = get_current_frame ();
503 frame = get_prev_frame (frame))
505 /* The CORE_ADDR we get as argument was parsed from a string GDB
506 output as $fp. This output got truncated to gdbarch_addr_bit.
507 Truncate the frame base address in the same manner before
508 comparing it against our argument. */
509 CORE_ADDR frame_base = get_frame_base_address (frame);
510 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
511 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
512 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
514 if (frame_base == frame_addr)
522 varobj_create (char *objname,
523 char *expression, CORE_ADDR frame, enum varobj_type type)
526 struct frame_info *fi;
527 struct frame_info *old_fi = NULL;
529 struct cleanup *old_chain;
531 /* Fill out a varobj structure for the (root) variable being constructed. */
532 var = new_root_variable ();
533 old_chain = make_cleanup_free_variable (var);
535 if (expression != NULL)
538 enum varobj_languages lang;
539 struct value *value = NULL;
541 /* Parse and evaluate the expression, filling in as much of the
542 variable's data as possible. */
544 if (has_stack_frames ())
546 /* Allow creator to specify context of variable */
547 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
548 fi = get_selected_frame (NULL);
550 /* FIXME: cagney/2002-11-23: This code should be doing a
551 lookup using the frame ID and not just the frame's
552 ``address''. This, of course, means an interface
553 change. However, with out that interface change ISAs,
554 such as the ia64 with its two stacks, won't work.
555 Similar goes for the case where there is a frameless
557 fi = find_frame_addr_in_frame_chain (frame);
562 /* frame = -2 means always use selected frame */
563 if (type == USE_SELECTED_FRAME)
564 var->root->floating = 1;
568 block = get_frame_block (fi, 0);
571 innermost_block = NULL;
572 /* Wrap the call to parse expression, so we can
573 return a sensible error. */
574 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
579 /* Don't allow variables to be created for types. */
580 if (var->root->exp->elts[0].opcode == OP_TYPE)
582 do_cleanups (old_chain);
583 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
584 " as an expression.\n");
588 var->format = variable_default_display (var);
589 var->root->valid_block = innermost_block;
590 var->name = xstrdup (expression);
591 /* For a root var, the name and the expr are the same. */
592 var->path_expr = xstrdup (expression);
594 /* When the frame is different from the current frame,
595 we must select the appropriate frame before parsing
596 the expression, otherwise the value will not be current.
597 Since select_frame is so benign, just call it for all cases. */
600 /* User could specify explicit FRAME-ADDR which was not found but
601 EXPRESSION is frame specific and we would not be able to evaluate
602 it correctly next time. With VALID_BLOCK set we must also set
603 FRAME and THREAD_ID. */
605 error (_("Failed to find the specified frame"));
607 var->root->frame = get_frame_id (fi);
608 var->root->thread_id = pid_to_thread_id (inferior_ptid);
609 old_fi = get_selected_frame (NULL);
613 /* We definitely need to catch errors here.
614 If evaluate_expression succeeds we got the value we wanted.
615 But if it fails, we still go on with a call to evaluate_type() */
616 if (!gdb_evaluate_expression (var->root->exp, &value))
618 /* Error getting the value. Try to at least get the
620 struct value *type_only_value = evaluate_type (var->root->exp);
621 var->type = value_type (type_only_value);
624 var->type = value_type (value);
626 install_new_value (var, value, 1 /* Initial assignment */);
628 /* Set language info */
629 lang = variable_language (var);
630 var->root->lang = &languages[lang];
632 /* Set ourselves as our root */
633 var->root->rootvar = var;
635 /* Reset the selected frame */
637 select_frame (old_fi);
640 /* If the variable object name is null, that means this
641 is a temporary variable, so don't install it. */
643 if ((var != NULL) && (objname != NULL))
645 var->obj_name = xstrdup (objname);
647 /* If a varobj name is duplicated, the install will fail so
649 if (!install_variable (var))
651 do_cleanups (old_chain);
656 discard_cleanups (old_chain);
660 /* Generates an unique name that can be used for a varobj */
663 varobj_gen_name (void)
668 /* generate a name for this object */
670 obj_name = xstrprintf ("var%d", id);
675 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
676 error if OBJNAME cannot be found. */
679 varobj_get_handle (char *objname)
683 unsigned int index = 0;
686 for (chp = objname; *chp; chp++)
688 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
691 cv = *(varobj_table + index);
692 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
696 error (_("Variable object not found"));
701 /* Given the handle, return the name of the object */
704 varobj_get_objname (struct varobj *var)
706 return var->obj_name;
709 /* Given the handle, return the expression represented by the object */
712 varobj_get_expression (struct varobj *var)
714 return name_of_variable (var);
717 /* Deletes a varobj and all its children if only_children == 0,
718 otherwise deletes only the children; returns a malloc'ed list of all the
719 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
722 varobj_delete (struct varobj *var, char ***dellist, int only_children)
726 struct cpstack *result = NULL;
729 /* Initialize a stack for temporary results */
730 cppush (&result, NULL);
733 /* Delete only the variable children */
734 delcount = delete_variable (&result, var, 1 /* only the children */ );
736 /* Delete the variable and all its children */
737 delcount = delete_variable (&result, var, 0 /* parent+children */ );
739 /* We may have been asked to return a list of what has been deleted */
742 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
746 *cp = cppop (&result);
747 while ((*cp != NULL) && (mycount > 0))
751 *cp = cppop (&result);
754 if (mycount || (*cp != NULL))
755 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
762 /* Convenience function for varobj_set_visualizer. Instantiate a
763 pretty-printer for a given value. */
765 instantiate_pretty_printer (PyObject *constructor, struct value *value)
768 PyObject *val_obj = NULL;
771 val_obj = value_to_value_object (value);
775 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
782 /* Set/Get variable object display format */
784 enum varobj_display_formats
785 varobj_set_display_format (struct varobj *var,
786 enum varobj_display_formats format)
793 case FORMAT_HEXADECIMAL:
795 var->format = format;
799 var->format = variable_default_display (var);
802 if (varobj_value_is_changeable_p (var)
803 && var->value && !value_lazy (var->value))
805 xfree (var->print_value);
806 var->print_value = value_get_print_value (var->value, var->format, var);
812 enum varobj_display_formats
813 varobj_get_display_format (struct varobj *var)
819 varobj_get_display_hint (struct varobj *var)
824 struct cleanup *back_to = varobj_ensure_python_env (var);
826 if (var->pretty_printer)
827 result = gdbpy_get_display_hint (var->pretty_printer);
829 do_cleanups (back_to);
835 /* Return true if the varobj has items after TO, false otherwise. */
838 varobj_has_more (struct varobj *var, int to)
840 if (VEC_length (varobj_p, var->children) > to)
842 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
843 && var->saved_item != NULL);
846 /* If the variable object is bound to a specific thread, that
847 is its evaluation can always be done in context of a frame
848 inside that thread, returns GDB id of the thread -- which
849 is always positive. Otherwise, returns -1. */
851 varobj_get_thread_id (struct varobj *var)
853 if (var->root->valid_block && var->root->thread_id > 0)
854 return var->root->thread_id;
860 varobj_set_frozen (struct varobj *var, int frozen)
862 /* When a variable is unfrozen, we don't fetch its value.
863 The 'not_fetched' flag remains set, so next -var-update
866 We don't fetch the value, because for structures the client
867 should do -var-update anyway. It would be bad to have different
868 client-size logic for structure and other types. */
869 var->frozen = frozen;
873 varobj_get_frozen (struct varobj *var)
878 /* A helper function that restricts a range to what is actually
879 available in a VEC. This follows the usual rules for the meaning
880 of FROM and TO -- if either is negative, the entire range is
884 restrict_range (VEC (varobj_p) *children, int *from, int *to)
886 if (*from < 0 || *to < 0)
889 *to = VEC_length (varobj_p, children);
893 if (*from > VEC_length (varobj_p, children))
894 *from = VEC_length (varobj_p, children);
895 if (*to > VEC_length (varobj_p, children))
896 *to = VEC_length (varobj_p, children);
902 /* A helper for update_dynamic_varobj_children that installs a new
903 child when needed. */
906 install_dynamic_child (struct varobj *var,
907 VEC (varobj_p) **changed,
908 VEC (varobj_p) **new,
909 VEC (varobj_p) **unchanged,
915 if (VEC_length (varobj_p, var->children) < index + 1)
917 /* There's no child yet. */
918 struct varobj *child = varobj_add_child (var, name, value);
921 VEC_safe_push (varobj_p, *new, child);
927 varobj_p existing = VEC_index (varobj_p, var->children, index);
928 if (install_new_value (existing, value, 0))
931 VEC_safe_push (varobj_p, *changed, existing);
934 VEC_safe_push (varobj_p, *unchanged, existing);
941 dynamic_varobj_has_child_method (struct varobj *var)
943 struct cleanup *back_to;
944 PyObject *printer = var->pretty_printer;
947 back_to = varobj_ensure_python_env (var);
948 result = PyObject_HasAttr (printer, gdbpy_children_cst);
949 do_cleanups (back_to);
956 update_dynamic_varobj_children (struct varobj *var,
957 VEC (varobj_p) **changed,
958 VEC (varobj_p) **new,
959 VEC (varobj_p) **unchanged,
966 struct cleanup *back_to;
969 PyObject *printer = var->pretty_printer;
971 back_to = varobj_ensure_python_env (var);
974 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
976 do_cleanups (back_to);
980 if (update_children || !var->child_iter)
982 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
987 gdbpy_print_stack ();
988 error (_("Null value returned for children"));
991 make_cleanup_py_decref (children);
993 if (!PyIter_Check (children))
994 error (_("Returned value is not iterable"));
996 Py_XDECREF (var->child_iter);
997 var->child_iter = PyObject_GetIter (children);
998 if (!var->child_iter)
1000 gdbpy_print_stack ();
1001 error (_("Could not get children iterator"));
1004 Py_XDECREF (var->saved_item);
1005 var->saved_item = NULL;
1010 i = VEC_length (varobj_p, var->children);
1012 /* We ask for one extra child, so that MI can report whether there
1013 are more children. */
1014 for (; to < 0 || i < to + 1; ++i)
1018 /* See if there was a leftover from last time. */
1019 if (var->saved_item)
1021 item = var->saved_item;
1022 var->saved_item = NULL;
1025 item = PyIter_Next (var->child_iter);
1030 /* We don't want to push the extra child on any report list. */
1031 if (to < 0 || i < to)
1036 struct cleanup *inner;
1037 int can_mention = from < 0 || i >= from;
1039 inner = make_cleanup_py_decref (item);
1041 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1042 error (_("Invalid item from the child list"));
1044 v = convert_value_from_python (py_v);
1045 install_dynamic_child (var, can_mention ? changed : NULL,
1046 can_mention ? new : NULL,
1047 can_mention ? unchanged : NULL,
1048 can_mention ? cchanged : NULL, i, name, v);
1049 do_cleanups (inner);
1053 Py_XDECREF (var->saved_item);
1054 var->saved_item = item;
1056 /* We want to truncate the child list just before this
1062 if (i < VEC_length (varobj_p, var->children))
1066 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1067 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1068 VEC_truncate (varobj_p, var->children, i);
1071 /* If there are fewer children than requested, note that the list of
1072 children changed. */
1073 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1076 var->num_children = VEC_length (varobj_p, var->children);
1078 do_cleanups (back_to);
1082 gdb_assert (0 && "should never be called if Python is not enabled");
1087 varobj_get_num_children (struct varobj *var)
1089 if (var->num_children == -1)
1091 if (var->pretty_printer)
1095 /* If we have a dynamic varobj, don't report -1 children.
1096 So, try to fetch some children first. */
1097 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1101 var->num_children = number_of_children (var);
1104 return var->num_children >= 0 ? var->num_children : 0;
1107 /* Creates a list of the immediate children of a variable object;
1108 the return code is the number of such children or -1 on error */
1111 varobj_list_children (struct varobj *var, int *from, int *to)
1113 struct varobj *child;
1115 int i, children_changed;
1117 var->children_requested = 1;
1119 if (var->pretty_printer)
1121 /* This, in theory, can result in the number of children changing without
1122 frontend noticing. But well, calling -var-list-children on the same
1123 varobj twice is not something a sane frontend would do. */
1124 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1126 restrict_range (var->children, from, to);
1127 return var->children;
1130 if (var->num_children == -1)
1131 var->num_children = number_of_children (var);
1133 /* If that failed, give up. */
1134 if (var->num_children == -1)
1135 return var->children;
1137 /* If we're called when the list of children is not yet initialized,
1138 allocate enough elements in it. */
1139 while (VEC_length (varobj_p, var->children) < var->num_children)
1140 VEC_safe_push (varobj_p, var->children, NULL);
1142 for (i = 0; i < var->num_children; i++)
1144 varobj_p existing = VEC_index (varobj_p, var->children, i);
1146 if (existing == NULL)
1148 /* Either it's the first call to varobj_list_children for
1149 this variable object, and the child was never created,
1150 or it was explicitly deleted by the client. */
1151 name = name_of_child (var, i);
1152 existing = create_child (var, i, name);
1153 VEC_replace (varobj_p, var->children, i, existing);
1157 restrict_range (var->children, from, to);
1158 return var->children;
1161 static struct varobj *
1162 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1164 varobj_p v = create_child_with_value (var,
1165 VEC_length (varobj_p, var->children),
1167 VEC_safe_push (varobj_p, var->children, v);
1171 /* Obtain the type of an object Variable as a string similar to the one gdb
1172 prints on the console */
1175 varobj_get_type (struct varobj *var)
1177 /* For the "fake" variables, do not return a type. (It's type is
1179 Do not return a type for invalid variables as well. */
1180 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1183 return type_to_string (var->type);
1186 /* Obtain the type of an object variable. */
1189 varobj_get_gdb_type (struct varobj *var)
1194 /* Return a pointer to the full rooted expression of varobj VAR.
1195 If it has not been computed yet, compute it. */
1197 varobj_get_path_expr (struct varobj *var)
1199 if (var->path_expr != NULL)
1200 return var->path_expr;
1203 /* For root varobjs, we initialize path_expr
1204 when creating varobj, so here it should be
1206 gdb_assert (!is_root_p (var));
1207 return (*var->root->lang->path_expr_of_child) (var);
1211 enum varobj_languages
1212 varobj_get_language (struct varobj *var)
1214 return variable_language (var);
1218 varobj_get_attributes (struct varobj *var)
1222 if (varobj_editable_p (var))
1223 /* FIXME: define masks for attributes */
1224 attributes |= 0x00000001; /* Editable */
1230 varobj_pretty_printed_p (struct varobj *var)
1232 return var->pretty_printer != NULL;
1236 varobj_get_formatted_value (struct varobj *var,
1237 enum varobj_display_formats format)
1239 return my_value_of_variable (var, format);
1243 varobj_get_value (struct varobj *var)
1245 return my_value_of_variable (var, var->format);
1248 /* Set the value of an object variable (if it is editable) to the
1249 value of the given expression */
1250 /* Note: Invokes functions that can call error() */
1253 varobj_set_value (struct varobj *var, char *expression)
1259 /* The argument "expression" contains the variable's new value.
1260 We need to first construct a legal expression for this -- ugh! */
1261 /* Does this cover all the bases? */
1262 struct expression *exp;
1263 struct value *value;
1264 int saved_input_radix = input_radix;
1265 char *s = expression;
1268 gdb_assert (varobj_editable_p (var));
1270 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1271 exp = parse_exp_1 (&s, 0, 0);
1272 if (!gdb_evaluate_expression (exp, &value))
1274 /* We cannot proceed without a valid expression. */
1279 /* All types that are editable must also be changeable. */
1280 gdb_assert (varobj_value_is_changeable_p (var));
1282 /* The value of a changeable variable object must not be lazy. */
1283 gdb_assert (!value_lazy (var->value));
1285 /* Need to coerce the input. We want to check if the
1286 value of the variable object will be different
1287 after assignment, and the first thing value_assign
1288 does is coerce the input.
1289 For example, if we are assigning an array to a pointer variable we
1290 should compare the pointer with the the array's address, not with the
1292 value = coerce_array (value);
1294 /* The new value may be lazy. gdb_value_assign, or
1295 rather value_contents, will take care of this.
1296 If fetching of the new value will fail, gdb_value_assign
1297 with catch the exception. */
1298 if (!gdb_value_assign (var->value, value, &val))
1301 /* If the value has changed, record it, so that next -var-update can
1302 report this change. If a variable had a value of '1', we've set it
1303 to '333' and then set again to '1', when -var-update will report this
1304 variable as changed -- because the first assignment has set the
1305 'updated' flag. There's no need to optimize that, because return value
1306 of -var-update should be considered an approximation. */
1307 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1308 input_radix = saved_input_radix;
1314 /* A helper function to install a constructor function and visualizer
1318 install_visualizer (struct varobj *var, PyObject *constructor,
1319 PyObject *visualizer)
1321 Py_XDECREF (var->constructor);
1322 var->constructor = constructor;
1324 Py_XDECREF (var->pretty_printer);
1325 var->pretty_printer = visualizer;
1327 Py_XDECREF (var->child_iter);
1328 var->child_iter = NULL;
1331 /* Install the default visualizer for VAR. */
1334 install_default_visualizer (struct varobj *var)
1336 if (pretty_printing)
1338 PyObject *pretty_printer = NULL;
1342 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1343 if (! pretty_printer)
1345 gdbpy_print_stack ();
1346 error (_("Cannot instantiate printer for default visualizer"));
1350 if (pretty_printer == Py_None)
1352 Py_DECREF (pretty_printer);
1353 pretty_printer = NULL;
1356 install_visualizer (var, NULL, pretty_printer);
1360 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1361 make a new object. */
1364 construct_visualizer (struct varobj *var, PyObject *constructor)
1366 PyObject *pretty_printer;
1368 Py_INCREF (constructor);
1369 if (constructor == Py_None)
1370 pretty_printer = NULL;
1373 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1374 if (! pretty_printer)
1376 gdbpy_print_stack ();
1377 Py_DECREF (constructor);
1378 constructor = Py_None;
1379 Py_INCREF (constructor);
1382 if (pretty_printer == Py_None)
1384 Py_DECREF (pretty_printer);
1385 pretty_printer = NULL;
1389 install_visualizer (var, constructor, pretty_printer);
1392 #endif /* HAVE_PYTHON */
1394 /* A helper function for install_new_value. This creates and installs
1395 a visualizer for VAR, if appropriate. */
1398 install_new_value_visualizer (struct varobj *var)
1401 /* If the constructor is None, then we want the raw value. If VAR
1402 does not have a value, just skip this. */
1403 if (var->constructor != Py_None && var->value)
1405 struct cleanup *cleanup;
1406 PyObject *pretty_printer = NULL;
1408 cleanup = varobj_ensure_python_env (var);
1410 if (!var->constructor)
1411 install_default_visualizer (var);
1413 construct_visualizer (var, var->constructor);
1415 do_cleanups (cleanup);
1422 /* Assign a new value to a variable object. If INITIAL is non-zero,
1423 this is the first assignement after the variable object was just
1424 created, or changed type. In that case, just assign the value
1426 Otherwise, assign the new value, and return 1 if the value is different
1427 from the current one, 0 otherwise. The comparison is done on textual
1428 representation of value. Therefore, some types need not be compared. E.g.
1429 for structures the reported value is always "{...}", so no comparison is
1430 necessary here. If the old value was NULL and new one is not, or vice versa,
1433 The VALUE parameter should not be released -- the function will
1434 take care of releasing it when needed. */
1436 install_new_value (struct varobj *var, struct value *value, int initial)
1441 int intentionally_not_fetched = 0;
1442 char *print_value = NULL;
1444 /* We need to know the varobj's type to decide if the value should
1445 be fetched or not. C++ fake children (public/protected/private) don't have
1447 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1448 changeable = varobj_value_is_changeable_p (var);
1450 /* If the type has custom visualizer, we consider it to be always
1451 changeable. FIXME: need to make sure this behaviour will not
1452 mess up read-sensitive values. */
1453 if (var->pretty_printer)
1456 need_to_fetch = changeable;
1458 /* We are not interested in the address of references, and given
1459 that in C++ a reference is not rebindable, it cannot
1460 meaningfully change. So, get hold of the real value. */
1462 value = coerce_ref (value);
1464 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1465 /* For unions, we need to fetch the value implicitly because
1466 of implementation of union member fetch. When gdb
1467 creates a value for a field and the value of the enclosing
1468 structure is not lazy, it immediately copies the necessary
1469 bytes from the enclosing values. If the enclosing value is
1470 lazy, the call to value_fetch_lazy on the field will read
1471 the data from memory. For unions, that means we'll read the
1472 same memory more than once, which is not desirable. So
1476 /* The new value might be lazy. If the type is changeable,
1477 that is we'll be comparing values of this type, fetch the
1478 value now. Otherwise, on the next update the old value
1479 will be lazy, which means we've lost that old value. */
1480 if (need_to_fetch && value && value_lazy (value))
1482 struct varobj *parent = var->parent;
1483 int frozen = var->frozen;
1484 for (; !frozen && parent; parent = parent->parent)
1485 frozen |= parent->frozen;
1487 if (frozen && initial)
1489 /* For variables that are frozen, or are children of frozen
1490 variables, we don't do fetch on initial assignment.
1491 For non-initial assignemnt we do the fetch, since it means we're
1492 explicitly asked to compare the new value with the old one. */
1493 intentionally_not_fetched = 1;
1495 else if (!gdb_value_fetch_lazy (value))
1497 /* Set the value to NULL, so that for the next -var-update,
1498 we don't try to compare the new value with this value,
1499 that we couldn't even read. */
1505 /* Below, we'll be comparing string rendering of old and new
1506 values. Don't get string rendering if the value is
1507 lazy -- if it is, the code above has decided that the value
1508 should not be fetched. */
1509 if (value && !value_lazy (value) && !var->pretty_printer)
1510 print_value = value_get_print_value (value, var->format, var);
1512 /* If the type is changeable, compare the old and the new values.
1513 If this is the initial assignment, we don't have any old value
1515 if (!initial && changeable)
1517 /* If the value of the varobj was changed by -var-set-value, then the
1518 value in the varobj and in the target is the same. However, that value
1519 is different from the value that the varobj had after the previous
1520 -var-update. So need to the varobj as changed. */
1525 else if (! var->pretty_printer)
1527 /* Try to compare the values. That requires that both
1528 values are non-lazy. */
1529 if (var->not_fetched && value_lazy (var->value))
1531 /* This is a frozen varobj and the value was never read.
1532 Presumably, UI shows some "never read" indicator.
1533 Now that we've fetched the real value, we need to report
1534 this varobj as changed so that UI can show the real
1538 else if (var->value == NULL && value == NULL)
1541 else if (var->value == NULL || value == NULL)
1547 gdb_assert (!value_lazy (var->value));
1548 gdb_assert (!value_lazy (value));
1550 gdb_assert (var->print_value != NULL && print_value != NULL);
1551 if (strcmp (var->print_value, print_value) != 0)
1557 if (!initial && !changeable)
1559 /* For values that are not changeable, we don't compare the values.
1560 However, we want to notice if a value was not NULL and now is NULL,
1561 or vise versa, so that we report when top-level varobjs come in scope
1562 and leave the scope. */
1563 changed = (var->value != NULL) != (value != NULL);
1566 /* We must always keep the new value, since children depend on it. */
1567 if (var->value != NULL && var->value != value)
1568 value_free (var->value);
1571 value_incref (value);
1572 if (value && value_lazy (value) && intentionally_not_fetched)
1573 var->not_fetched = 1;
1575 var->not_fetched = 0;
1578 install_new_value_visualizer (var);
1580 /* If we installed a pretty-printer, re-compare the printed version
1581 to see if the variable changed. */
1582 if (var->pretty_printer)
1584 xfree (print_value);
1585 print_value = value_get_print_value (var->value, var->format, var);
1586 if (!var->print_value || strcmp (var->print_value, print_value) != 0)
1589 if (var->print_value)
1590 xfree (var->print_value);
1591 var->print_value = print_value;
1593 gdb_assert (!var->value || value_type (var->value));
1598 /* Return the requested range for a varobj. VAR is the varobj. FROM
1599 and TO are out parameters; *FROM and *TO will be set to the
1600 selected sub-range of VAR. If no range was selected using
1601 -var-set-update-range, then both will be -1. */
1603 varobj_get_child_range (struct varobj *var, int *from, int *to)
1609 /* Set the selected sub-range of children of VAR to start at index
1610 FROM and end at index TO. If either FROM or TO is less than zero,
1611 this is interpreted as a request for all children. */
1613 varobj_set_child_range (struct varobj *var, int from, int to)
1620 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1623 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1624 struct cleanup *back_to, *value;
1626 back_to = varobj_ensure_python_env (var);
1628 mainmod = PyImport_AddModule ("__main__");
1629 globals = PyModule_GetDict (mainmod);
1630 Py_INCREF (globals);
1631 make_cleanup_py_decref (globals);
1633 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1637 gdbpy_print_stack ();
1638 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1641 construct_visualizer (var, constructor);
1642 Py_XDECREF (constructor);
1644 /* If there are any children now, wipe them. */
1645 varobj_delete (var, NULL, 1 /* children only */);
1646 var->num_children = -1;
1648 do_cleanups (back_to);
1650 error (_("Python support required"));
1654 /* Update the values for a variable and its children. This is a
1655 two-pronged attack. First, re-parse the value for the root's
1656 expression to see if it's changed. Then go all the way
1657 through its children, reconstructing them and noting if they've
1660 The EXPLICIT parameter specifies if this call is result
1661 of MI request to update this specific variable, or
1662 result of implicit -var-update *. For implicit request, we don't
1663 update frozen variables.
1665 NOTE: This function may delete the caller's varobj. If it
1666 returns TYPE_CHANGED, then it has done this and VARP will be modified
1667 to point to the new varobj. */
1669 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1672 int type_changed = 0;
1677 struct varobj **templist = NULL;
1679 VEC (varobj_update_result) *stack = NULL;
1680 VEC (varobj_update_result) *result = NULL;
1681 struct frame_info *fi;
1683 /* Frozen means frozen -- we don't check for any change in
1684 this varobj, including its going out of scope, or
1685 changing type. One use case for frozen varobjs is
1686 retaining previously evaluated expressions, and we don't
1687 want them to be reevaluated at all. */
1688 if (!explicit && (*varp)->frozen)
1691 if (!(*varp)->root->is_valid)
1693 varobj_update_result r = {*varp};
1694 r.status = VAROBJ_INVALID;
1695 VEC_safe_push (varobj_update_result, result, &r);
1699 if ((*varp)->root->rootvar == *varp)
1701 varobj_update_result r = {*varp};
1702 r.status = VAROBJ_IN_SCOPE;
1704 /* Update the root variable. value_of_root can return NULL
1705 if the variable is no longer around, i.e. we stepped out of
1706 the frame in which a local existed. We are letting the
1707 value_of_root variable dispose of the varobj if the type
1709 new = value_of_root (varp, &type_changed);
1712 r.type_changed = type_changed;
1713 if (install_new_value ((*varp), new, type_changed))
1717 r.status = VAROBJ_NOT_IN_SCOPE;
1718 r.value_installed = 1;
1720 if (r.status == VAROBJ_NOT_IN_SCOPE)
1722 if (r.type_changed || r.changed)
1723 VEC_safe_push (varobj_update_result, result, &r);
1727 VEC_safe_push (varobj_update_result, stack, &r);
1731 varobj_update_result r = {*varp};
1732 VEC_safe_push (varobj_update_result, stack, &r);
1735 /* Walk through the children, reconstructing them all. */
1736 while (!VEC_empty (varobj_update_result, stack))
1738 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1739 struct varobj *v = r.varobj;
1741 VEC_pop (varobj_update_result, stack);
1743 /* Update this variable, unless it's a root, which is already
1745 if (!r.value_installed)
1747 new = value_of_child (v->parent, v->index);
1748 if (install_new_value (v, new, 0 /* type not changed */))
1755 /* We probably should not get children of a varobj that has a
1756 pretty-printer, but for which -var-list-children was never
1758 if (v->pretty_printer)
1760 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1761 int i, children_changed = 0;
1766 if (!v->children_requested)
1770 /* If we initially did not have potential children, but
1771 now we do, consider the varobj as changed.
1772 Otherwise, if children were never requested, consider
1773 it as unchanged -- presumably, such varobj is not yet
1774 expanded in the UI, so we need not bother getting
1776 if (!varobj_has_more (v, 0))
1778 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1780 if (varobj_has_more (v, 0))
1785 VEC_safe_push (varobj_update_result, result, &r);
1790 /* If update_dynamic_varobj_children returns 0, then we have
1791 a non-conforming pretty-printer, so we skip it. */
1792 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1793 &children_changed, 1,
1796 if (children_changed || new)
1798 r.children_changed = 1;
1801 /* Push in reverse order so that the first child is
1802 popped from the work stack first, and so will be
1803 added to result first. This does not affect
1804 correctness, just "nicer". */
1805 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1807 varobj_p tmp = VEC_index (varobj_p, changed, i);
1808 varobj_update_result r = {tmp};
1810 r.value_installed = 1;
1811 VEC_safe_push (varobj_update_result, stack, &r);
1813 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1815 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1818 varobj_update_result r = {tmp};
1819 r.value_installed = 1;
1820 VEC_safe_push (varobj_update_result, stack, &r);
1823 if (r.changed || r.children_changed)
1824 VEC_safe_push (varobj_update_result, result, &r);
1826 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1827 has been put into the result vector. */
1828 VEC_free (varobj_p, changed);
1829 VEC_free (varobj_p, unchanged);
1835 /* Push any children. Use reverse order so that the first
1836 child is popped from the work stack first, and so
1837 will be added to result first. This does not
1838 affect correctness, just "nicer". */
1839 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1841 varobj_p c = VEC_index (varobj_p, v->children, i);
1842 /* Child may be NULL if explicitly deleted by -var-delete. */
1843 if (c != NULL && !c->frozen)
1845 varobj_update_result r = {c};
1846 VEC_safe_push (varobj_update_result, stack, &r);
1850 if (r.changed || r.type_changed)
1851 VEC_safe_push (varobj_update_result, result, &r);
1854 VEC_free (varobj_update_result, stack);
1860 /* Helper functions */
1863 * Variable object construction/destruction
1867 delete_variable (struct cpstack **resultp, struct varobj *var,
1868 int only_children_p)
1872 delete_variable_1 (resultp, &delcount, var,
1873 only_children_p, 1 /* remove_from_parent_p */ );
1878 /* Delete the variable object VAR and its children */
1879 /* IMPORTANT NOTE: If we delete a variable which is a child
1880 and the parent is not removed we dump core. It must be always
1881 initially called with remove_from_parent_p set */
1883 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1884 struct varobj *var, int only_children_p,
1885 int remove_from_parent_p)
1889 /* Delete any children of this variable, too. */
1890 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1892 varobj_p child = VEC_index (varobj_p, var->children, i);
1895 if (!remove_from_parent_p)
1896 child->parent = NULL;
1897 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1899 VEC_free (varobj_p, var->children);
1901 /* if we were called to delete only the children we are done here */
1902 if (only_children_p)
1905 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1906 /* If the name is null, this is a temporary variable, that has not
1907 yet been installed, don't report it, it belongs to the caller... */
1908 if (var->obj_name != NULL)
1910 cppush (resultp, xstrdup (var->obj_name));
1911 *delcountp = *delcountp + 1;
1914 /* If this variable has a parent, remove it from its parent's list */
1915 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1916 (as indicated by remove_from_parent_p) we don't bother doing an
1917 expensive list search to find the element to remove when we are
1918 discarding the list afterwards */
1919 if ((remove_from_parent_p) && (var->parent != NULL))
1921 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1924 if (var->obj_name != NULL)
1925 uninstall_variable (var);
1927 /* Free memory associated with this variable */
1928 free_variable (var);
1931 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1933 install_variable (struct varobj *var)
1936 struct vlist *newvl;
1938 unsigned int index = 0;
1941 for (chp = var->obj_name; *chp; chp++)
1943 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1946 cv = *(varobj_table + index);
1947 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1951 error (_("Duplicate variable object name"));
1953 /* Add varobj to hash table */
1954 newvl = xmalloc (sizeof (struct vlist));
1955 newvl->next = *(varobj_table + index);
1957 *(varobj_table + index) = newvl;
1959 /* If root, add varobj to root list */
1960 if (is_root_p (var))
1962 /* Add to list of root variables */
1963 if (rootlist == NULL)
1964 var->root->next = NULL;
1966 var->root->next = rootlist;
1967 rootlist = var->root;
1973 /* Unistall the object VAR. */
1975 uninstall_variable (struct varobj *var)
1979 struct varobj_root *cr;
1980 struct varobj_root *prer;
1982 unsigned int index = 0;
1985 /* Remove varobj from hash table */
1986 for (chp = var->obj_name; *chp; chp++)
1988 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1991 cv = *(varobj_table + index);
1993 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2000 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2005 ("Assertion failed: Could not find variable object \"%s\" to delete",
2011 *(varobj_table + index) = cv->next;
2013 prev->next = cv->next;
2017 /* If root, remove varobj from root list */
2018 if (is_root_p (var))
2020 /* Remove from list of root variables */
2021 if (rootlist == var->root)
2022 rootlist = var->root->next;
2027 while ((cr != NULL) && (cr->rootvar != var))
2035 ("Assertion failed: Could not find varobj \"%s\" in root list",
2042 prer->next = cr->next;
2048 /* Create and install a child of the parent of the given name */
2049 static struct varobj *
2050 create_child (struct varobj *parent, int index, char *name)
2052 return create_child_with_value (parent, index, name,
2053 value_of_child (parent, index));
2056 static struct varobj *
2057 create_child_with_value (struct varobj *parent, int index, const char *name,
2058 struct value *value)
2060 struct varobj *child;
2063 child = new_variable ();
2065 /* name is allocated by name_of_child */
2066 /* FIXME: xstrdup should not be here. */
2067 child->name = xstrdup (name);
2068 child->index = index;
2069 child->parent = parent;
2070 child->root = parent->root;
2071 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2072 child->obj_name = childs_name;
2073 install_variable (child);
2075 /* Compute the type of the child. Must do this before
2076 calling install_new_value. */
2078 /* If the child had no evaluation errors, var->value
2079 will be non-NULL and contain a valid type. */
2080 child->type = value_type (value);
2082 /* Otherwise, we must compute the type. */
2083 child->type = (*child->root->lang->type_of_child) (child->parent,
2085 install_new_value (child, value, 1);
2092 * Miscellaneous utility functions.
2095 /* Allocate memory and initialize a new variable */
2096 static struct varobj *
2101 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2103 var->path_expr = NULL;
2104 var->obj_name = NULL;
2108 var->num_children = -1;
2110 var->children = NULL;
2114 var->print_value = NULL;
2116 var->not_fetched = 0;
2117 var->children_requested = 0;
2120 var->constructor = 0;
2121 var->pretty_printer = 0;
2122 var->child_iter = 0;
2123 var->saved_item = 0;
2128 /* Allocate memory and initialize a new root variable */
2129 static struct varobj *
2130 new_root_variable (void)
2132 struct varobj *var = new_variable ();
2133 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2134 var->root->lang = NULL;
2135 var->root->exp = NULL;
2136 var->root->valid_block = NULL;
2137 var->root->frame = null_frame_id;
2138 var->root->floating = 0;
2139 var->root->rootvar = NULL;
2140 var->root->is_valid = 1;
2145 /* Free any allocated memory associated with VAR. */
2147 free_variable (struct varobj *var)
2150 if (var->pretty_printer)
2152 struct cleanup *cleanup = varobj_ensure_python_env (var);
2153 Py_XDECREF (var->constructor);
2154 Py_XDECREF (var->pretty_printer);
2155 Py_XDECREF (var->child_iter);
2156 Py_XDECREF (var->saved_item);
2157 do_cleanups (cleanup);
2161 value_free (var->value);
2163 /* Free the expression if this is a root variable. */
2164 if (is_root_p (var))
2166 xfree (var->root->exp);
2171 xfree (var->obj_name);
2172 xfree (var->print_value);
2173 xfree (var->path_expr);
2178 do_free_variable_cleanup (void *var)
2180 free_variable (var);
2183 static struct cleanup *
2184 make_cleanup_free_variable (struct varobj *var)
2186 return make_cleanup (do_free_variable_cleanup, var);
2189 /* This returns the type of the variable. It also skips past typedefs
2190 to return the real type of the variable.
2192 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2193 except within get_target_type and get_type. */
2194 static struct type *
2195 get_type (struct varobj *var)
2201 type = check_typedef (type);
2206 /* Return the type of the value that's stored in VAR,
2207 or that would have being stored there if the
2208 value were accessible.
2210 This differs from VAR->type in that VAR->type is always
2211 the true type of the expession in the source language.
2212 The return value of this function is the type we're
2213 actually storing in varobj, and using for displaying
2214 the values and for comparing previous and new values.
2216 For example, top-level references are always stripped. */
2217 static struct type *
2218 get_value_type (struct varobj *var)
2223 type = value_type (var->value);
2227 type = check_typedef (type);
2229 if (TYPE_CODE (type) == TYPE_CODE_REF)
2230 type = get_target_type (type);
2232 type = check_typedef (type);
2237 /* This returns the target type (or NULL) of TYPE, also skipping
2238 past typedefs, just like get_type ().
2240 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2241 except within get_target_type and get_type. */
2242 static struct type *
2243 get_target_type (struct type *type)
2247 type = TYPE_TARGET_TYPE (type);
2249 type = check_typedef (type);
2255 /* What is the default display for this variable? We assume that
2256 everything is "natural". Any exceptions? */
2257 static enum varobj_display_formats
2258 variable_default_display (struct varobj *var)
2260 return FORMAT_NATURAL;
2263 /* FIXME: The following should be generic for any pointer */
2265 cppush (struct cpstack **pstack, char *name)
2269 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2275 /* FIXME: The following should be generic for any pointer */
2277 cppop (struct cpstack **pstack)
2282 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2287 *pstack = (*pstack)->next;
2294 * Language-dependencies
2297 /* Common entry points */
2299 /* Get the language of variable VAR. */
2300 static enum varobj_languages
2301 variable_language (struct varobj *var)
2303 enum varobj_languages lang;
2305 switch (var->root->exp->language_defn->la_language)
2311 case language_cplus:
2322 /* Return the number of children for a given variable.
2323 The result of this function is defined by the language
2324 implementation. The number of children returned by this function
2325 is the number of children that the user will see in the variable
2328 number_of_children (struct varobj *var)
2330 return (*var->root->lang->number_of_children) (var);;
2333 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2335 name_of_variable (struct varobj *var)
2337 return (*var->root->lang->name_of_variable) (var);
2340 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2342 name_of_child (struct varobj *var, int index)
2344 return (*var->root->lang->name_of_child) (var, index);
2347 /* What is the ``struct value *'' of the root variable VAR?
2348 For floating variable object, evaluation can get us a value
2349 of different type from what is stored in varobj already. In
2351 - *type_changed will be set to 1
2352 - old varobj will be freed, and new one will be
2353 created, with the same name.
2354 - *var_handle will be set to the new varobj
2355 Otherwise, *type_changed will be set to 0. */
2356 static struct value *
2357 value_of_root (struct varobj **var_handle, int *type_changed)
2361 if (var_handle == NULL)
2366 /* This should really be an exception, since this should
2367 only get called with a root variable. */
2369 if (!is_root_p (var))
2372 if (var->root->floating)
2374 struct varobj *tmp_var;
2375 char *old_type, *new_type;
2377 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2378 USE_SELECTED_FRAME);
2379 if (tmp_var == NULL)
2383 old_type = varobj_get_type (var);
2384 new_type = varobj_get_type (tmp_var);
2385 if (strcmp (old_type, new_type) == 0)
2387 /* The expression presently stored inside var->root->exp
2388 remembers the locations of local variables relatively to
2389 the frame where the expression was created (in DWARF location
2390 button, for example). Naturally, those locations are not
2391 correct in other frames, so update the expression. */
2393 struct expression *tmp_exp = var->root->exp;
2394 var->root->exp = tmp_var->root->exp;
2395 tmp_var->root->exp = tmp_exp;
2397 varobj_delete (tmp_var, NULL, 0);
2402 tmp_var->obj_name = xstrdup (var->obj_name);
2403 tmp_var->from = var->from;
2404 tmp_var->to = var->to;
2405 varobj_delete (var, NULL, 0);
2407 install_variable (tmp_var);
2408 *var_handle = tmp_var;
2420 return (*var->root->lang->value_of_root) (var_handle);
2423 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2424 static struct value *
2425 value_of_child (struct varobj *parent, int index)
2427 struct value *value;
2429 value = (*parent->root->lang->value_of_child) (parent, index);
2434 /* GDB already has a command called "value_of_variable". Sigh. */
2436 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2438 if (var->root->is_valid)
2440 if (var->pretty_printer)
2441 return value_get_print_value (var->value, var->format, var);
2442 return (*var->root->lang->value_of_variable) (var, format);
2449 value_get_print_value (struct value *value, enum varobj_display_formats format,
2452 struct ui_file *stb;
2453 struct cleanup *old_chain;
2454 gdb_byte *thevalue = NULL;
2455 struct value_print_options opts;
2463 struct cleanup *back_to = varobj_ensure_python_env (var);
2464 PyObject *value_formatter = var->pretty_printer;
2466 if (value_formatter)
2468 /* First check to see if we have any children at all. If so,
2469 we simply return {...}. */
2470 if (dynamic_varobj_has_child_method (var))
2471 return xstrdup ("{...}");
2473 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2476 struct value *replacement;
2477 int string_print = 0;
2478 PyObject *output = NULL;
2480 hint = gdbpy_get_display_hint (value_formatter);
2483 if (!strcmp (hint, "string"))
2488 output = apply_varobj_pretty_printer (value_formatter,
2493 = python_string_to_target_python_string (output);
2496 char *s = PyString_AsString (py_str);
2497 len = PyString_Size (py_str);
2498 thevalue = xmemdup (s, len + 1, len + 1);
2503 if (thevalue && !string_print)
2505 do_cleanups (back_to);
2509 value = replacement;
2512 do_cleanups (back_to);
2516 stb = mem_fileopen ();
2517 old_chain = make_cleanup_ui_file_delete (stb);
2519 get_formatted_print_options (&opts, format_code[(int) format]);
2524 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2525 make_cleanup (xfree, thevalue);
2526 LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char,
2527 thevalue, len, 0, &opts);
2530 common_val_print (value, stb, 0, &opts, current_language);
2531 thevalue = ui_file_xstrdup (stb, NULL);
2533 do_cleanups (old_chain);
2538 varobj_editable_p (struct varobj *var)
2541 struct value *value;
2543 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2546 type = get_value_type (var);
2548 switch (TYPE_CODE (type))
2550 case TYPE_CODE_STRUCT:
2551 case TYPE_CODE_UNION:
2552 case TYPE_CODE_ARRAY:
2553 case TYPE_CODE_FUNC:
2554 case TYPE_CODE_METHOD:
2564 /* Return non-zero if changes in value of VAR
2565 must be detected and reported by -var-update.
2566 Return zero is -var-update should never report
2567 changes of such values. This makes sense for structures
2568 (since the changes in children values will be reported separately),
2569 or for artifical objects (like 'public' pseudo-field in C++).
2571 Return value of 0 means that gdb need not call value_fetch_lazy
2572 for the value of this variable object. */
2574 varobj_value_is_changeable_p (struct varobj *var)
2579 if (CPLUS_FAKE_CHILD (var))
2582 type = get_value_type (var);
2584 switch (TYPE_CODE (type))
2586 case TYPE_CODE_STRUCT:
2587 case TYPE_CODE_UNION:
2588 case TYPE_CODE_ARRAY:
2599 /* Return 1 if that varobj is floating, that is is always evaluated in the
2600 selected frame, and not bound to thread/frame. Such variable objects
2601 are created using '@' as frame specifier to -var-create. */
2603 varobj_floating_p (struct varobj *var)
2605 return var->root->floating;
2608 /* Given the value and the type of a variable object,
2609 adjust the value and type to those necessary
2610 for getting children of the variable object.
2611 This includes dereferencing top-level references
2612 to all types and dereferencing pointers to
2615 Both TYPE and *TYPE should be non-null. VALUE
2616 can be null if we want to only translate type.
2617 *VALUE can be null as well -- if the parent
2620 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2621 depending on whether pointer was dereferenced
2622 in this function. */
2624 adjust_value_for_child_access (struct value **value,
2628 gdb_assert (type && *type);
2633 *type = check_typedef (*type);
2635 /* The type of value stored in varobj, that is passed
2636 to us, is already supposed to be
2637 reference-stripped. */
2639 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2641 /* Pointers to structures are treated just like
2642 structures when accessing children. Don't
2643 dererences pointers to other types. */
2644 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2646 struct type *target_type = get_target_type (*type);
2647 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2648 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2650 if (value && *value)
2652 int success = gdb_value_ind (*value, value);
2656 *type = target_type;
2662 /* The 'get_target_type' function calls check_typedef on
2663 result, so we can immediately check type code. No
2664 need to call check_typedef here. */
2669 c_number_of_children (struct varobj *var)
2671 struct type *type = get_value_type (var);
2673 struct type *target;
2675 adjust_value_for_child_access (NULL, &type, NULL);
2676 target = get_target_type (type);
2678 switch (TYPE_CODE (type))
2680 case TYPE_CODE_ARRAY:
2681 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2682 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2683 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2685 /* If we don't know how many elements there are, don't display
2690 case TYPE_CODE_STRUCT:
2691 case TYPE_CODE_UNION:
2692 children = TYPE_NFIELDS (type);
2696 /* The type here is a pointer to non-struct. Typically, pointers
2697 have one child, except for function ptrs, which have no children,
2698 and except for void*, as we don't know what to show.
2700 We can show char* so we allow it to be dereferenced. If you decide
2701 to test for it, please mind that a little magic is necessary to
2702 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2703 TYPE_NAME == "char" */
2704 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2705 || TYPE_CODE (target) == TYPE_CODE_VOID)
2712 /* Other types have no children */
2720 c_name_of_variable (struct varobj *parent)
2722 return xstrdup (parent->name);
2725 /* Return the value of element TYPE_INDEX of a structure
2726 value VALUE. VALUE's type should be a structure,
2727 or union, or a typedef to struct/union.
2729 Returns NULL if getting the value fails. Never throws. */
2730 static struct value *
2731 value_struct_element_index (struct value *value, int type_index)
2733 struct value *result = NULL;
2734 volatile struct gdb_exception e;
2736 struct type *type = value_type (value);
2737 type = check_typedef (type);
2739 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2740 || TYPE_CODE (type) == TYPE_CODE_UNION);
2742 TRY_CATCH (e, RETURN_MASK_ERROR)
2744 if (field_is_static (&TYPE_FIELD (type, type_index)))
2745 result = value_static_field (type, type_index);
2747 result = value_primitive_field (value, 0, type_index, type);
2759 /* Obtain the information about child INDEX of the variable
2761 If CNAME is not null, sets *CNAME to the name of the child relative
2763 If CVALUE is not null, sets *CVALUE to the value of the child.
2764 If CTYPE is not null, sets *CTYPE to the type of the child.
2766 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2767 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2770 c_describe_child (struct varobj *parent, int index,
2771 char **cname, struct value **cvalue, struct type **ctype,
2772 char **cfull_expression)
2774 struct value *value = parent->value;
2775 struct type *type = get_value_type (parent);
2776 char *parent_expression = NULL;
2785 if (cfull_expression)
2787 *cfull_expression = NULL;
2788 parent_expression = varobj_get_path_expr (parent);
2790 adjust_value_for_child_access (&value, &type, &was_ptr);
2792 switch (TYPE_CODE (type))
2794 case TYPE_CODE_ARRAY:
2796 *cname = xstrdup (int_string (index
2797 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2800 if (cvalue && value)
2802 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2803 gdb_value_subscript (value, real_index, cvalue);
2807 *ctype = get_target_type (type);
2809 if (cfull_expression)
2811 xstrprintf ("(%s)[%s]", parent_expression,
2813 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2819 case TYPE_CODE_STRUCT:
2820 case TYPE_CODE_UNION:
2822 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2824 if (cvalue && value)
2826 /* For C, varobj index is the same as type index. */
2827 *cvalue = value_struct_element_index (value, index);
2831 *ctype = TYPE_FIELD_TYPE (type, index);
2833 if (cfull_expression)
2835 char *join = was_ptr ? "->" : ".";
2836 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2837 TYPE_FIELD_NAME (type, index));
2844 *cname = xstrprintf ("*%s", parent->name);
2846 if (cvalue && value)
2848 int success = gdb_value_ind (value, cvalue);
2853 /* Don't use get_target_type because it calls
2854 check_typedef and here, we want to show the true
2855 declared type of the variable. */
2857 *ctype = TYPE_TARGET_TYPE (type);
2859 if (cfull_expression)
2860 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2865 /* This should not happen */
2867 *cname = xstrdup ("???");
2868 if (cfull_expression)
2869 *cfull_expression = xstrdup ("???");
2870 /* Don't set value and type, we don't know then. */
2875 c_name_of_child (struct varobj *parent, int index)
2878 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2883 c_path_expr_of_child (struct varobj *child)
2885 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2887 return child->path_expr;
2890 /* If frame associated with VAR can be found, switch
2891 to it and return 1. Otherwise, return 0. */
2893 check_scope (struct varobj *var)
2895 struct frame_info *fi;
2898 fi = frame_find_by_id (var->root->frame);
2903 CORE_ADDR pc = get_frame_pc (fi);
2904 if (pc < BLOCK_START (var->root->valid_block) ||
2905 pc >= BLOCK_END (var->root->valid_block))
2913 static struct value *
2914 c_value_of_root (struct varobj **var_handle)
2916 struct value *new_val = NULL;
2917 struct varobj *var = *var_handle;
2918 struct frame_info *fi;
2919 int within_scope = 0;
2920 struct cleanup *back_to;
2922 /* Only root variables can be updated... */
2923 if (!is_root_p (var))
2924 /* Not a root var */
2927 back_to = make_cleanup_restore_current_thread ();
2929 /* Determine whether the variable is still around. */
2930 if (var->root->valid_block == NULL || var->root->floating)
2932 else if (var->root->thread_id == 0)
2934 /* The program was single-threaded when the variable object was
2935 created. Technically, it's possible that the program became
2936 multi-threaded since then, but we don't support such
2938 within_scope = check_scope (var);
2942 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2943 if (in_thread_list (ptid))
2945 switch_to_thread (ptid);
2946 within_scope = check_scope (var);
2952 /* We need to catch errors here, because if evaluate
2953 expression fails we want to just return NULL. */
2954 gdb_evaluate_expression (var->root->exp, &new_val);
2958 do_cleanups (back_to);
2963 static struct value *
2964 c_value_of_child (struct varobj *parent, int index)
2966 struct value *value = NULL;
2967 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2972 static struct type *
2973 c_type_of_child (struct varobj *parent, int index)
2975 struct type *type = NULL;
2976 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2981 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2983 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2984 it will print out its children instead of "{...}". So we need to
2985 catch that case explicitly. */
2986 struct type *type = get_type (var);
2988 /* If we have a custom formatter, return whatever string it has
2990 if (var->pretty_printer && var->print_value)
2991 return xstrdup (var->print_value);
2993 /* Strip top-level references. */
2994 while (TYPE_CODE (type) == TYPE_CODE_REF)
2995 type = check_typedef (TYPE_TARGET_TYPE (type));
2997 switch (TYPE_CODE (type))
2999 case TYPE_CODE_STRUCT:
3000 case TYPE_CODE_UNION:
3001 return xstrdup ("{...}");
3004 case TYPE_CODE_ARRAY:
3007 number = xstrprintf ("[%d]", var->num_children);
3014 if (var->value == NULL)
3016 /* This can happen if we attempt to get the value of a struct
3017 member when the parent is an invalid pointer. This is an
3018 error condition, so we should tell the caller. */
3023 if (var->not_fetched && value_lazy (var->value))
3024 /* Frozen variable and no value yet. We don't
3025 implicitly fetch the value. MI response will
3026 use empty string for the value, which is OK. */
3029 gdb_assert (varobj_value_is_changeable_p (var));
3030 gdb_assert (!value_lazy (var->value));
3032 /* If the specified format is the current one,
3033 we can reuse print_value */
3034 if (format == var->format)
3035 return xstrdup (var->print_value);
3037 return value_get_print_value (var->value, format, var);
3047 cplus_number_of_children (struct varobj *var)
3050 int children, dont_know;
3055 if (!CPLUS_FAKE_CHILD (var))
3057 type = get_value_type (var);
3058 adjust_value_for_child_access (NULL, &type, NULL);
3060 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3061 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3065 cplus_class_num_children (type, kids);
3066 if (kids[v_public] != 0)
3068 if (kids[v_private] != 0)
3070 if (kids[v_protected] != 0)
3073 /* Add any baseclasses */
3074 children += TYPE_N_BASECLASSES (type);
3077 /* FIXME: save children in var */
3084 type = get_value_type (var->parent);
3085 adjust_value_for_child_access (NULL, &type, NULL);
3087 cplus_class_num_children (type, kids);
3088 if (strcmp (var->name, "public") == 0)
3089 children = kids[v_public];
3090 else if (strcmp (var->name, "private") == 0)
3091 children = kids[v_private];
3093 children = kids[v_protected];
3098 children = c_number_of_children (var);
3103 /* Compute # of public, private, and protected variables in this class.
3104 That means we need to descend into all baseclasses and find out
3105 how many are there, too. */
3107 cplus_class_num_children (struct type *type, int children[3])
3109 int i, vptr_fieldno;
3110 struct type *basetype = NULL;
3112 children[v_public] = 0;
3113 children[v_private] = 0;
3114 children[v_protected] = 0;
3116 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3117 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3119 /* If we have a virtual table pointer, omit it. Even if virtual
3120 table pointers are not specifically marked in the debug info,
3121 they should be artificial. */
3122 if ((type == basetype && i == vptr_fieldno)
3123 || TYPE_FIELD_ARTIFICIAL (type, i))
3126 if (TYPE_FIELD_PROTECTED (type, i))
3127 children[v_protected]++;
3128 else if (TYPE_FIELD_PRIVATE (type, i))
3129 children[v_private]++;
3131 children[v_public]++;
3136 cplus_name_of_variable (struct varobj *parent)
3138 return c_name_of_variable (parent);
3141 enum accessibility { private_field, protected_field, public_field };
3143 /* Check if field INDEX of TYPE has the specified accessibility.
3144 Return 0 if so and 1 otherwise. */
3146 match_accessibility (struct type *type, int index, enum accessibility acc)
3148 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3150 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3152 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3153 && !TYPE_FIELD_PROTECTED (type, index))
3160 cplus_describe_child (struct varobj *parent, int index,
3161 char **cname, struct value **cvalue, struct type **ctype,
3162 char **cfull_expression)
3165 struct value *value;
3168 char *parent_expression = NULL;
3176 if (cfull_expression)
3177 *cfull_expression = NULL;
3179 if (CPLUS_FAKE_CHILD (parent))
3181 value = parent->parent->value;
3182 type = get_value_type (parent->parent);
3183 if (cfull_expression)
3184 parent_expression = varobj_get_path_expr (parent->parent);
3188 value = parent->value;
3189 type = get_value_type (parent);
3190 if (cfull_expression)
3191 parent_expression = varobj_get_path_expr (parent);
3194 adjust_value_for_child_access (&value, &type, &was_ptr);
3196 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3197 || TYPE_CODE (type) == TYPE_CODE_UNION)
3199 char *join = was_ptr ? "->" : ".";
3200 if (CPLUS_FAKE_CHILD (parent))
3202 /* The fields of the class type are ordered as they
3203 appear in the class. We are given an index for a
3204 particular access control type ("public","protected",
3205 or "private"). We must skip over fields that don't
3206 have the access control we are looking for to properly
3207 find the indexed field. */
3208 int type_index = TYPE_N_BASECLASSES (type);
3209 enum accessibility acc = public_field;
3211 struct type *basetype = NULL;
3213 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3214 if (strcmp (parent->name, "private") == 0)
3215 acc = private_field;
3216 else if (strcmp (parent->name, "protected") == 0)
3217 acc = protected_field;
3221 if ((type == basetype && type_index == vptr_fieldno)
3222 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3224 else if (match_accessibility (type, type_index, acc))
3231 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3233 if (cvalue && value)
3234 *cvalue = value_struct_element_index (value, type_index);
3237 *ctype = TYPE_FIELD_TYPE (type, type_index);
3239 if (cfull_expression)
3240 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3242 TYPE_FIELD_NAME (type, type_index));
3244 else if (index < TYPE_N_BASECLASSES (type))
3246 /* This is a baseclass. */
3248 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3250 if (cvalue && value)
3251 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3255 *ctype = TYPE_FIELD_TYPE (type, index);
3258 if (cfull_expression)
3260 char *ptr = was_ptr ? "*" : "";
3261 /* Cast the parent to the base' type. Note that in gdb,
3264 will create an lvalue, for all appearences, so we don't
3265 need to use more fancy:
3268 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3270 TYPE_FIELD_NAME (type, index),
3277 char *access = NULL;
3279 cplus_class_num_children (type, children);
3281 /* Everything beyond the baseclasses can
3282 only be "public", "private", or "protected"
3284 The special "fake" children are always output by varobj in
3285 this order. So if INDEX == 2, it MUST be "protected". */
3286 index -= TYPE_N_BASECLASSES (type);
3290 if (children[v_public] > 0)
3292 else if (children[v_private] > 0)
3295 access = "protected";
3298 if (children[v_public] > 0)
3300 if (children[v_private] > 0)
3303 access = "protected";
3305 else if (children[v_private] > 0)
3306 access = "protected";
3309 /* Must be protected */
3310 access = "protected";
3317 gdb_assert (access);
3319 *cname = xstrdup (access);
3321 /* Value and type and full expression are null here. */
3326 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3331 cplus_name_of_child (struct varobj *parent, int index)
3334 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3339 cplus_path_expr_of_child (struct varobj *child)
3341 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3343 return child->path_expr;
3346 static struct value *
3347 cplus_value_of_root (struct varobj **var_handle)
3349 return c_value_of_root (var_handle);
3352 static struct value *
3353 cplus_value_of_child (struct varobj *parent, int index)
3355 struct value *value = NULL;
3356 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3360 static struct type *
3361 cplus_type_of_child (struct varobj *parent, int index)
3363 struct type *type = NULL;
3364 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3369 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3372 /* If we have one of our special types, don't print out
3374 if (CPLUS_FAKE_CHILD (var))
3375 return xstrdup ("");
3377 return c_value_of_variable (var, format);
3383 java_number_of_children (struct varobj *var)
3385 return cplus_number_of_children (var);
3389 java_name_of_variable (struct varobj *parent)
3393 name = cplus_name_of_variable (parent);
3394 /* If the name has "-" in it, it is because we
3395 needed to escape periods in the name... */
3398 while (*p != '\000')
3409 java_name_of_child (struct varobj *parent, int index)
3413 name = cplus_name_of_child (parent, index);
3414 /* Escape any periods in the name... */
3417 while (*p != '\000')
3428 java_path_expr_of_child (struct varobj *child)
3433 static struct value *
3434 java_value_of_root (struct varobj **var_handle)
3436 return cplus_value_of_root (var_handle);
3439 static struct value *
3440 java_value_of_child (struct varobj *parent, int index)
3442 return cplus_value_of_child (parent, index);
3445 static struct type *
3446 java_type_of_child (struct varobj *parent, int index)
3448 return cplus_type_of_child (parent, index);
3452 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3454 return cplus_value_of_variable (var, format);
3457 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3458 with an arbitrary caller supplied DATA pointer. */
3461 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3463 struct varobj_root *var_root, *var_root_next;
3465 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3467 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3469 var_root_next = var_root->next;
3471 (*func) (var_root->rootvar, data);
3475 extern void _initialize_varobj (void);
3477 _initialize_varobj (void)
3479 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3481 varobj_table = xmalloc (sizeof_table);
3482 memset (varobj_table, 0, sizeof_table);
3484 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3486 Set varobj debugging."), _("\
3487 Show varobj debugging."), _("\
3488 When non-zero, varobj debugging is enabled."),
3491 &setlist, &showlist);
3494 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3495 defined on globals. It is a helper for varobj_invalidate. */
3498 varobj_invalidate_iter (struct varobj *var, void *unused)
3500 /* Floating varobjs are reparsed on each stop, so we don't care if the
3501 presently parsed expression refers to something that's gone. */
3502 if (var->root->floating)
3505 /* global var must be re-evaluated. */
3506 if (var->root->valid_block == NULL)
3508 struct varobj *tmp_var;
3510 /* Try to create a varobj with same expression. If we succeed
3511 replace the old varobj, otherwise invalidate it. */
3512 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3514 if (tmp_var != NULL)
3516 tmp_var->obj_name = xstrdup (var->obj_name);
3517 varobj_delete (var, NULL, 0);
3518 install_variable (tmp_var);
3521 var->root->is_valid = 0;
3523 else /* locals must be invalidated. */
3524 var->root->is_valid = 0;
3527 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3528 are defined on globals.
3529 Invalidated varobjs will be always printed in_scope="invalid". */
3532 varobj_invalidate (void)
3534 all_root_varobjs (varobj_invalidate_iter, NULL);