1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
35 #include "python/python.h"
36 #include "python/python-internal.h"
41 /* Non-zero if we want to see trace of varobj level stuff. */
43 unsigned int varobjdebug = 0;
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
59 varobj_enable_pretty_printing (void)
66 /* Every root variable has one of these structures saved in its
71 /* The expression for this parent. */
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
77 /* The frame for this expression. This field is set iff valid_block is
79 struct frame_id frame;
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
97 /* Language-related operations for this variable and its
99 const struct lang_varobj_ops *lang_ops;
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
104 /* Next root variable */
105 struct varobj_root *next;
108 /* Dynamic part of varobj. */
110 struct varobj_dynamic
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
116 int children_requested;
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
127 /* The iterator returned by the printer's 'children' method, or NULL
129 struct varobj_iter *child_iter;
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
139 /* A list of varobjs */
147 /* Private function prototypes */
149 /* Helper functions for the above subcommands. */
151 static int delete_variable (struct varobj *, int);
153 static void delete_variable_1 (int *, struct varobj *, int, int);
155 static int install_variable (struct varobj *);
157 static void uninstall_variable (struct varobj *);
159 static struct varobj *create_child (struct varobj *, int, std::string &);
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
165 /* Utility routines */
167 static struct varobj *new_variable (void);
169 static struct varobj *new_root_variable (void);
171 static void free_variable (struct varobj *var);
173 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
175 static enum varobj_display_formats variable_default_display (struct varobj *);
177 static int update_type_if_necessary (struct varobj *var,
178 struct value *new_value);
180 static int install_new_value (struct varobj *var, struct value *value,
183 /* Language-specific routines. */
185 static int number_of_children (const struct varobj *);
187 static std::string name_of_variable (const struct varobj *);
189 static std::string name_of_child (struct varobj *, int);
191 static struct value *value_of_root (struct varobj **var_handle, int *);
193 static struct value *value_of_child (const struct varobj *parent, int index);
195 static std::string my_value_of_variable (struct varobj *var,
196 enum varobj_display_formats format);
198 static int is_root_p (const struct varobj *var);
200 static struct varobj *varobj_add_child (struct varobj *var,
201 struct varobj_item *item);
205 /* Mappings of varobj_display_formats enums to gdb's format codes. */
206 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
208 /* Header of the list of root variable objects. */
209 static struct varobj_root *rootlist;
211 /* Prime number indicating the number of buckets in the hash table. */
212 /* A prime large enough to avoid too many collisions. */
213 #define VAROBJ_TABLE_SIZE 227
215 /* Pointer to the varobj hash table (built at run time). */
216 static struct vlist **varobj_table;
220 /* API Implementation */
222 is_root_p (const struct varobj *var)
224 return (var->root->rootvar == var);
228 /* Helper function to install a Python environment suitable for
229 use during operations on VAR. */
231 varobj_ensure_python_env (const struct varobj *var)
233 return ensure_python_env (var->root->exp->gdbarch,
234 var->root->exp->language_defn);
238 /* Return the full FRAME which corresponds to the given CORE_ADDR
239 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
241 static struct frame_info *
242 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
244 struct frame_info *frame = NULL;
246 if (frame_addr == (CORE_ADDR) 0)
249 for (frame = get_current_frame ();
251 frame = get_prev_frame (frame))
253 /* The CORE_ADDR we get as argument was parsed from a string GDB
254 output as $fp. This output got truncated to gdbarch_addr_bit.
255 Truncate the frame base address in the same manner before
256 comparing it against our argument. */
257 CORE_ADDR frame_base = get_frame_base_address (frame);
258 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
260 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
261 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
263 if (frame_base == frame_addr)
270 /* Creates a varobj (not its children). */
273 varobj_create (const char *objname,
274 const char *expression, CORE_ADDR frame, enum varobj_type type)
277 struct cleanup *old_chain;
279 /* Fill out a varobj structure for the (root) variable being constructed. */
280 var = new_root_variable ();
281 old_chain = make_cleanup_free_variable (var);
283 if (expression != NULL)
285 struct frame_info *fi;
286 struct frame_id old_id = null_frame_id;
287 const struct block *block;
289 struct value *value = NULL;
292 /* Parse and evaluate the expression, filling in as much of the
293 variable's data as possible. */
295 if (has_stack_frames ())
297 /* Allow creator to specify context of variable. */
298 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
299 fi = get_selected_frame (NULL);
301 /* FIXME: cagney/2002-11-23: This code should be doing a
302 lookup using the frame ID and not just the frame's
303 ``address''. This, of course, means an interface
304 change. However, with out that interface change ISAs,
305 such as the ia64 with its two stacks, won't work.
306 Similar goes for the case where there is a frameless
308 fi = find_frame_addr_in_frame_chain (frame);
313 /* frame = -2 means always use selected frame. */
314 if (type == USE_SELECTED_FRAME)
315 var->root->floating = 1;
321 block = get_frame_block (fi, 0);
322 pc = get_frame_pc (fi);
326 innermost_block = NULL;
327 /* Wrap the call to parse expression, so we can
328 return a sensible error. */
331 var->root->exp = parse_exp_1 (&p, pc, block, 0);
334 CATCH (except, RETURN_MASK_ERROR)
336 do_cleanups (old_chain);
341 /* Don't allow variables to be created for types. */
342 if (var->root->exp->elts[0].opcode == OP_TYPE
343 || var->root->exp->elts[0].opcode == OP_TYPEOF
344 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
346 do_cleanups (old_chain);
347 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
348 " as an expression.\n");
352 var->format = variable_default_display (var);
353 var->root->valid_block = innermost_block;
354 var->name = expression;
355 /* For a root var, the name and the expr are the same. */
356 var->path_expr = expression;
358 /* When the frame is different from the current frame,
359 we must select the appropriate frame before parsing
360 the expression, otherwise the value will not be current.
361 Since select_frame is so benign, just call it for all cases. */
364 /* User could specify explicit FRAME-ADDR which was not found but
365 EXPRESSION is frame specific and we would not be able to evaluate
366 it correctly next time. With VALID_BLOCK set we must also set
367 FRAME and THREAD_ID. */
369 error (_("Failed to find the specified frame"));
371 var->root->frame = get_frame_id (fi);
372 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
373 old_id = get_frame_id (get_selected_frame (NULL));
377 /* We definitely need to catch errors here.
378 If evaluate_expression succeeds we got the value we wanted.
379 But if it fails, we still go on with a call to evaluate_type(). */
382 value = evaluate_expression (var->root->exp.get ());
384 CATCH (except, RETURN_MASK_ERROR)
386 /* Error getting the value. Try to at least get the
388 struct value *type_only_value = evaluate_type (var->root->exp.get ());
390 var->type = value_type (type_only_value);
396 int real_type_found = 0;
398 var->type = value_actual_type (value, 0, &real_type_found);
400 value = value_cast (var->type, value);
403 /* Set language info */
404 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
406 install_new_value (var, value, 1 /* Initial assignment */);
408 /* Set ourselves as our root. */
409 var->root->rootvar = var;
411 /* Reset the selected frame. */
412 if (frame_id_p (old_id))
413 select_frame (frame_find_by_id (old_id));
416 /* If the variable object name is null, that means this
417 is a temporary variable, so don't install it. */
419 if ((var != NULL) && (objname != NULL))
421 var->obj_name = objname;
423 /* If a varobj name is duplicated, the install will fail so
425 if (!install_variable (var))
427 do_cleanups (old_chain);
432 discard_cleanups (old_chain);
436 /* Generates an unique name that can be used for a varobj. */
439 varobj_gen_name (void)
444 /* Generate a name for this object. */
446 obj_name = xstrprintf ("var%d", id);
451 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
452 error if OBJNAME cannot be found. */
455 varobj_get_handle (const char *objname)
459 unsigned int index = 0;
462 for (chp = objname; *chp; chp++)
464 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
467 cv = *(varobj_table + index);
468 while (cv != NULL && cv->var->obj_name != objname)
472 error (_("Variable object not found"));
477 /* Given the handle, return the name of the object. */
480 varobj_get_objname (const struct varobj *var)
482 return var->obj_name.c_str ();
485 /* Given the handle, return the expression represented by the
489 varobj_get_expression (const struct varobj *var)
491 return name_of_variable (var);
497 varobj_delete (struct varobj *var, int only_children)
499 return delete_variable (var, only_children);
504 /* Convenience function for varobj_set_visualizer. Instantiate a
505 pretty-printer for a given value. */
507 instantiate_pretty_printer (PyObject *constructor, struct value *value)
509 PyObject *val_obj = NULL;
512 val_obj = value_to_value_object (value);
516 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
523 /* Set/Get variable object display format. */
525 enum varobj_display_formats
526 varobj_set_display_format (struct varobj *var,
527 enum varobj_display_formats format)
534 case FORMAT_HEXADECIMAL:
536 case FORMAT_ZHEXADECIMAL:
537 var->format = format;
541 var->format = variable_default_display (var);
544 if (varobj_value_is_changeable_p (var)
545 && var->value && !value_lazy (var->value))
547 var->print_value = varobj_value_get_print_value (var->value,
554 enum varobj_display_formats
555 varobj_get_display_format (const struct varobj *var)
561 varobj_get_display_hint (const struct varobj *var)
566 struct cleanup *back_to;
568 if (!gdb_python_initialized)
571 back_to = varobj_ensure_python_env (var);
573 if (var->dynamic->pretty_printer != NULL)
574 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
576 do_cleanups (back_to);
582 /* Return true if the varobj has items after TO, false otherwise. */
585 varobj_has_more (const struct varobj *var, int to)
587 if (VEC_length (varobj_p, var->children) > to)
589 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
590 && (var->dynamic->saved_item != NULL));
593 /* If the variable object is bound to a specific thread, that
594 is its evaluation can always be done in context of a frame
595 inside that thread, returns GDB id of the thread -- which
596 is always positive. Otherwise, returns -1. */
598 varobj_get_thread_id (const struct varobj *var)
600 if (var->root->valid_block && var->root->thread_id > 0)
601 return var->root->thread_id;
607 varobj_set_frozen (struct varobj *var, int frozen)
609 /* When a variable is unfrozen, we don't fetch its value.
610 The 'not_fetched' flag remains set, so next -var-update
613 We don't fetch the value, because for structures the client
614 should do -var-update anyway. It would be bad to have different
615 client-size logic for structure and other types. */
616 var->frozen = frozen;
620 varobj_get_frozen (const struct varobj *var)
625 /* A helper function that restricts a range to what is actually
626 available in a VEC. This follows the usual rules for the meaning
627 of FROM and TO -- if either is negative, the entire range is
631 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
633 if (*from < 0 || *to < 0)
636 *to = VEC_length (varobj_p, children);
640 if (*from > VEC_length (varobj_p, children))
641 *from = VEC_length (varobj_p, children);
642 if (*to > VEC_length (varobj_p, children))
643 *to = VEC_length (varobj_p, children);
649 /* A helper for update_dynamic_varobj_children that installs a new
650 child when needed. */
653 install_dynamic_child (struct varobj *var,
654 VEC (varobj_p) **changed,
655 VEC (varobj_p) **type_changed,
656 VEC (varobj_p) **newobj,
657 VEC (varobj_p) **unchanged,
660 struct varobj_item *item)
662 if (VEC_length (varobj_p, var->children) < index + 1)
664 /* There's no child yet. */
665 struct varobj *child = varobj_add_child (var, item);
669 VEC_safe_push (varobj_p, *newobj, child);
675 varobj_p existing = VEC_index (varobj_p, var->children, index);
676 int type_updated = update_type_if_necessary (existing, item->value);
681 VEC_safe_push (varobj_p, *type_changed, existing);
683 if (install_new_value (existing, item->value, 0))
685 if (!type_updated && changed)
686 VEC_safe_push (varobj_p, *changed, existing);
688 else if (!type_updated && unchanged)
689 VEC_safe_push (varobj_p, *unchanged, existing);
696 dynamic_varobj_has_child_method (const struct varobj *var)
698 struct cleanup *back_to;
699 PyObject *printer = var->dynamic->pretty_printer;
702 if (!gdb_python_initialized)
705 back_to = varobj_ensure_python_env (var);
706 result = PyObject_HasAttr (printer, gdbpy_children_cst);
707 do_cleanups (back_to);
712 /* A factory for creating dynamic varobj's iterators. Returns an
713 iterator object suitable for iterating over VAR's children. */
715 static struct varobj_iter *
716 varobj_get_iterator (struct varobj *var)
719 if (var->dynamic->pretty_printer)
720 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
723 gdb_assert_not_reached (_("\
724 requested an iterator from a non-dynamic varobj"));
727 /* Release and clear VAR's saved item, if any. */
730 varobj_clear_saved_item (struct varobj_dynamic *var)
732 if (var->saved_item != NULL)
734 value_free (var->saved_item->value);
735 xfree (var->saved_item);
736 var->saved_item = NULL;
741 update_dynamic_varobj_children (struct varobj *var,
742 VEC (varobj_p) **changed,
743 VEC (varobj_p) **type_changed,
744 VEC (varobj_p) **newobj,
745 VEC (varobj_p) **unchanged,
755 if (update_children || var->dynamic->child_iter == NULL)
757 varobj_iter_delete (var->dynamic->child_iter);
758 var->dynamic->child_iter = varobj_get_iterator (var);
760 varobj_clear_saved_item (var->dynamic);
764 if (var->dynamic->child_iter == NULL)
768 i = VEC_length (varobj_p, var->children);
770 /* We ask for one extra child, so that MI can report whether there
771 are more children. */
772 for (; to < 0 || i < to + 1; ++i)
776 /* See if there was a leftover from last time. */
777 if (var->dynamic->saved_item != NULL)
779 item = var->dynamic->saved_item;
780 var->dynamic->saved_item = NULL;
784 item = varobj_iter_next (var->dynamic->child_iter);
785 /* Release vitem->value so its lifetime is not bound to the
786 execution of a command. */
787 if (item != NULL && item->value != NULL)
788 release_value_or_incref (item->value);
793 /* Iteration is done. Remove iterator from VAR. */
794 varobj_iter_delete (var->dynamic->child_iter);
795 var->dynamic->child_iter = NULL;
798 /* We don't want to push the extra child on any report list. */
799 if (to < 0 || i < to)
801 int can_mention = from < 0 || i >= from;
803 install_dynamic_child (var, can_mention ? changed : NULL,
804 can_mention ? type_changed : NULL,
805 can_mention ? newobj : NULL,
806 can_mention ? unchanged : NULL,
807 can_mention ? cchanged : NULL, i,
814 var->dynamic->saved_item = item;
816 /* We want to truncate the child list just before this
822 if (i < VEC_length (varobj_p, var->children))
827 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
828 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
829 VEC_truncate (varobj_p, var->children, i);
832 /* If there are fewer children than requested, note that the list of
834 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
837 var->num_children = VEC_length (varobj_p, var->children);
843 varobj_get_num_children (struct varobj *var)
845 if (var->num_children == -1)
847 if (varobj_is_dynamic_p (var))
851 /* If we have a dynamic varobj, don't report -1 children.
852 So, try to fetch some children first. */
853 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
857 var->num_children = number_of_children (var);
860 return var->num_children >= 0 ? var->num_children : 0;
863 /* Creates a list of the immediate children of a variable object;
864 the return code is the number of such children or -1 on error. */
867 varobj_list_children (struct varobj *var, int *from, int *to)
869 int i, children_changed;
871 var->dynamic->children_requested = 1;
873 if (varobj_is_dynamic_p (var))
875 /* This, in theory, can result in the number of children changing without
876 frontend noticing. But well, calling -var-list-children on the same
877 varobj twice is not something a sane frontend would do. */
878 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
879 &children_changed, 0, 0, *to);
880 varobj_restrict_range (var->children, from, to);
881 return var->children;
884 if (var->num_children == -1)
885 var->num_children = number_of_children (var);
887 /* If that failed, give up. */
888 if (var->num_children == -1)
889 return var->children;
891 /* If we're called when the list of children is not yet initialized,
892 allocate enough elements in it. */
893 while (VEC_length (varobj_p, var->children) < var->num_children)
894 VEC_safe_push (varobj_p, var->children, NULL);
896 for (i = 0; i < var->num_children; i++)
898 varobj_p existing = VEC_index (varobj_p, var->children, i);
900 if (existing == NULL)
902 /* Either it's the first call to varobj_list_children for
903 this variable object, and the child was never created,
904 or it was explicitly deleted by the client. */
905 std::string name = name_of_child (var, i);
906 existing = create_child (var, i, name);
907 VEC_replace (varobj_p, var->children, i, existing);
911 varobj_restrict_range (var->children, from, to);
912 return var->children;
915 static struct varobj *
916 varobj_add_child (struct varobj *var, struct varobj_item *item)
918 varobj_p v = create_child_with_value (var,
919 VEC_length (varobj_p, var->children),
922 VEC_safe_push (varobj_p, var->children, v);
926 /* Obtain the type of an object Variable as a string similar to the one gdb
927 prints on the console. The caller is responsible for freeing the string.
931 varobj_get_type (struct varobj *var)
933 /* For the "fake" variables, do not return a type. (Its type is
935 Do not return a type for invalid variables as well. */
936 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
937 return std::string ();
939 return type_to_string (var->type);
942 /* Obtain the type of an object variable. */
945 varobj_get_gdb_type (const struct varobj *var)
950 /* Is VAR a path expression parent, i.e., can it be used to construct
951 a valid path expression? */
954 is_path_expr_parent (const struct varobj *var)
956 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
957 return var->root->lang_ops->is_path_expr_parent (var);
960 /* Is VAR a path expression parent, i.e., can it be used to construct
961 a valid path expression? By default we assume any VAR can be a path
965 varobj_default_is_path_expr_parent (const struct varobj *var)
970 /* Return the path expression parent for VAR. */
972 const struct varobj *
973 varobj_get_path_expr_parent (const struct varobj *var)
975 const struct varobj *parent = var;
977 while (!is_root_p (parent) && !is_path_expr_parent (parent))
978 parent = parent->parent;
983 /* Return a pointer to the full rooted expression of varobj VAR.
984 If it has not been computed yet, compute it. */
987 varobj_get_path_expr (const struct varobj *var)
989 if (var->path_expr.empty ())
991 /* For root varobjs, we initialize path_expr
992 when creating varobj, so here it should be
994 struct varobj *mutable_var = (struct varobj *) var;
995 gdb_assert (!is_root_p (var));
997 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
1000 return var->path_expr.c_str ();
1003 const struct language_defn *
1004 varobj_get_language (const struct varobj *var)
1006 return var->root->exp->language_defn;
1010 varobj_get_attributes (const struct varobj *var)
1014 if (varobj_editable_p (var))
1015 /* FIXME: define masks for attributes. */
1016 attributes |= 0x00000001; /* Editable */
1021 /* Return true if VAR is a dynamic varobj. */
1024 varobj_is_dynamic_p (const struct varobj *var)
1026 return var->dynamic->pretty_printer != NULL;
1030 varobj_get_formatted_value (struct varobj *var,
1031 enum varobj_display_formats format)
1033 return my_value_of_variable (var, format);
1037 varobj_get_value (struct varobj *var)
1039 return my_value_of_variable (var, var->format);
1042 /* Set the value of an object variable (if it is editable) to the
1043 value of the given expression. */
1044 /* Note: Invokes functions that can call error(). */
1047 varobj_set_value (struct varobj *var, const char *expression)
1049 struct value *val = NULL; /* Initialize to keep gcc happy. */
1050 /* The argument "expression" contains the variable's new value.
1051 We need to first construct a legal expression for this -- ugh! */
1052 /* Does this cover all the bases? */
1053 struct value *value = NULL; /* Initialize to keep gcc happy. */
1054 int saved_input_radix = input_radix;
1055 const char *s = expression;
1057 gdb_assert (varobj_editable_p (var));
1059 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1060 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1063 value = evaluate_expression (exp.get ());
1066 CATCH (except, RETURN_MASK_ERROR)
1068 /* We cannot proceed without a valid expression. */
1073 /* All types that are editable must also be changeable. */
1074 gdb_assert (varobj_value_is_changeable_p (var));
1076 /* The value of a changeable variable object must not be lazy. */
1077 gdb_assert (!value_lazy (var->value));
1079 /* Need to coerce the input. We want to check if the
1080 value of the variable object will be different
1081 after assignment, and the first thing value_assign
1082 does is coerce the input.
1083 For example, if we are assigning an array to a pointer variable we
1084 should compare the pointer with the array's address, not with the
1086 value = coerce_array (value);
1088 /* The new value may be lazy. value_assign, or
1089 rather value_contents, will take care of this. */
1092 val = value_assign (var->value, value);
1095 CATCH (except, RETURN_MASK_ERROR)
1101 /* If the value has changed, record it, so that next -var-update can
1102 report this change. If a variable had a value of '1', we've set it
1103 to '333' and then set again to '1', when -var-update will report this
1104 variable as changed -- because the first assignment has set the
1105 'updated' flag. There's no need to optimize that, because return value
1106 of -var-update should be considered an approximation. */
1107 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1108 input_radix = saved_input_radix;
1114 /* A helper function to install a constructor function and visualizer
1115 in a varobj_dynamic. */
1118 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1119 PyObject *visualizer)
1121 Py_XDECREF (var->constructor);
1122 var->constructor = constructor;
1124 Py_XDECREF (var->pretty_printer);
1125 var->pretty_printer = visualizer;
1127 varobj_iter_delete (var->child_iter);
1128 var->child_iter = NULL;
1131 /* Install the default visualizer for VAR. */
1134 install_default_visualizer (struct varobj *var)
1136 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1137 if (CPLUS_FAKE_CHILD (var))
1140 if (pretty_printing)
1142 PyObject *pretty_printer = NULL;
1146 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1147 if (! pretty_printer)
1149 gdbpy_print_stack ();
1150 error (_("Cannot instantiate printer for default visualizer"));
1154 if (pretty_printer == Py_None)
1156 Py_DECREF (pretty_printer);
1157 pretty_printer = NULL;
1160 install_visualizer (var->dynamic, NULL, pretty_printer);
1164 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1165 make a new object. */
1168 construct_visualizer (struct varobj *var, PyObject *constructor)
1170 PyObject *pretty_printer;
1172 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1173 if (CPLUS_FAKE_CHILD (var))
1176 Py_INCREF (constructor);
1177 if (constructor == Py_None)
1178 pretty_printer = NULL;
1181 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1182 if (! pretty_printer)
1184 gdbpy_print_stack ();
1185 Py_DECREF (constructor);
1186 constructor = Py_None;
1187 Py_INCREF (constructor);
1190 if (pretty_printer == Py_None)
1192 Py_DECREF (pretty_printer);
1193 pretty_printer = NULL;
1197 install_visualizer (var->dynamic, constructor, pretty_printer);
1200 #endif /* HAVE_PYTHON */
1202 /* A helper function for install_new_value. This creates and installs
1203 a visualizer for VAR, if appropriate. */
1206 install_new_value_visualizer (struct varobj *var)
1209 /* If the constructor is None, then we want the raw value. If VAR
1210 does not have a value, just skip this. */
1211 if (!gdb_python_initialized)
1214 if (var->dynamic->constructor != Py_None && var->value != NULL)
1216 struct cleanup *cleanup;
1218 cleanup = varobj_ensure_python_env (var);
1220 if (var->dynamic->constructor == NULL)
1221 install_default_visualizer (var);
1223 construct_visualizer (var, var->dynamic->constructor);
1225 do_cleanups (cleanup);
1232 /* When using RTTI to determine variable type it may be changed in runtime when
1233 the variable value is changed. This function checks whether type of varobj
1234 VAR will change when a new value NEW_VALUE is assigned and if it is so
1235 updates the type of VAR. */
1238 update_type_if_necessary (struct varobj *var, struct value *new_value)
1242 struct value_print_options opts;
1244 get_user_print_options (&opts);
1245 if (opts.objectprint)
1247 struct type *new_type = value_actual_type (new_value, 0, 0);
1248 std::string new_type_str = type_to_string (new_type);
1249 std::string curr_type_str = varobj_get_type (var);
1251 /* Did the type name change? */
1252 if (curr_type_str != new_type_str)
1254 var->type = new_type;
1256 /* This information may be not valid for a new type. */
1257 varobj_delete (var, 1);
1258 VEC_free (varobj_p, var->children);
1259 var->num_children = -1;
1268 /* Assign a new value to a variable object. If INITIAL is non-zero,
1269 this is the first assignement after the variable object was just
1270 created, or changed type. In that case, just assign the value
1272 Otherwise, assign the new value, and return 1 if the value is
1273 different from the current one, 0 otherwise. The comparison is
1274 done on textual representation of value. Therefore, some types
1275 need not be compared. E.g. for structures the reported value is
1276 always "{...}", so no comparison is necessary here. If the old
1277 value was NULL and new one is not, or vice versa, we always return 1.
1279 The VALUE parameter should not be released -- the function will
1280 take care of releasing it when needed. */
1282 install_new_value (struct varobj *var, struct value *value, int initial)
1287 int intentionally_not_fetched = 0;
1289 /* We need to know the varobj's type to decide if the value should
1290 be fetched or not. C++ fake children (public/protected/private)
1291 don't have a type. */
1292 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1293 changeable = varobj_value_is_changeable_p (var);
1295 /* If the type has custom visualizer, we consider it to be always
1296 changeable. FIXME: need to make sure this behaviour will not
1297 mess up read-sensitive values. */
1298 if (var->dynamic->pretty_printer != NULL)
1301 need_to_fetch = changeable;
1303 /* We are not interested in the address of references, and given
1304 that in C++ a reference is not rebindable, it cannot
1305 meaningfully change. So, get hold of the real value. */
1307 value = coerce_ref (value);
1309 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1310 /* For unions, we need to fetch the value implicitly because
1311 of implementation of union member fetch. When gdb
1312 creates a value for a field and the value of the enclosing
1313 structure is not lazy, it immediately copies the necessary
1314 bytes from the enclosing values. If the enclosing value is
1315 lazy, the call to value_fetch_lazy on the field will read
1316 the data from memory. For unions, that means we'll read the
1317 same memory more than once, which is not desirable. So
1321 /* The new value might be lazy. If the type is changeable,
1322 that is we'll be comparing values of this type, fetch the
1323 value now. Otherwise, on the next update the old value
1324 will be lazy, which means we've lost that old value. */
1325 if (need_to_fetch && value && value_lazy (value))
1327 const struct varobj *parent = var->parent;
1328 int frozen = var->frozen;
1330 for (; !frozen && parent; parent = parent->parent)
1331 frozen |= parent->frozen;
1333 if (frozen && initial)
1335 /* For variables that are frozen, or are children of frozen
1336 variables, we don't do fetch on initial assignment.
1337 For non-initial assignemnt we do the fetch, since it means we're
1338 explicitly asked to compare the new value with the old one. */
1339 intentionally_not_fetched = 1;
1346 value_fetch_lazy (value);
1349 CATCH (except, RETURN_MASK_ERROR)
1351 /* Set the value to NULL, so that for the next -var-update,
1352 we don't try to compare the new value with this value,
1353 that we couldn't even read. */
1360 /* Get a reference now, before possibly passing it to any Python
1361 code that might release it. */
1363 value_incref (value);
1365 /* Below, we'll be comparing string rendering of old and new
1366 values. Don't get string rendering if the value is
1367 lazy -- if it is, the code above has decided that the value
1368 should not be fetched. */
1369 std::string print_value;
1370 if (value != NULL && !value_lazy (value)
1371 && var->dynamic->pretty_printer == NULL)
1372 print_value = varobj_value_get_print_value (value, var->format, var);
1374 /* If the type is changeable, compare the old and the new values.
1375 If this is the initial assignment, we don't have any old value
1377 if (!initial && changeable)
1379 /* If the value of the varobj was changed by -var-set-value,
1380 then the value in the varobj and in the target is the same.
1381 However, that value is different from the value that the
1382 varobj had after the previous -var-update. So need to the
1383 varobj as changed. */
1388 else if (var->dynamic->pretty_printer == NULL)
1390 /* Try to compare the values. That requires that both
1391 values are non-lazy. */
1392 if (var->not_fetched && value_lazy (var->value))
1394 /* This is a frozen varobj and the value was never read.
1395 Presumably, UI shows some "never read" indicator.
1396 Now that we've fetched the real value, we need to report
1397 this varobj as changed so that UI can show the real
1401 else if (var->value == NULL && value == NULL)
1404 else if (var->value == NULL || value == NULL)
1410 gdb_assert (!value_lazy (var->value));
1411 gdb_assert (!value_lazy (value));
1413 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1414 if (var->print_value != print_value)
1420 if (!initial && !changeable)
1422 /* For values that are not changeable, we don't compare the values.
1423 However, we want to notice if a value was not NULL and now is NULL,
1424 or vise versa, so that we report when top-level varobjs come in scope
1425 and leave the scope. */
1426 changed = (var->value != NULL) != (value != NULL);
1429 /* We must always keep the new value, since children depend on it. */
1430 if (var->value != NULL && var->value != value)
1431 value_free (var->value);
1433 if (value && value_lazy (value) && intentionally_not_fetched)
1434 var->not_fetched = 1;
1436 var->not_fetched = 0;
1439 install_new_value_visualizer (var);
1441 /* If we installed a pretty-printer, re-compare the printed version
1442 to see if the variable changed. */
1443 if (var->dynamic->pretty_printer != NULL)
1445 print_value = varobj_value_get_print_value (var->value, var->format,
1447 if ((var->print_value.empty () && !print_value.empty ())
1448 || (!var->print_value.empty () && print_value.empty ())
1449 || (!var->print_value.empty () && !print_value.empty ()
1450 && var->print_value != print_value))
1453 var->print_value = print_value;
1455 gdb_assert (!var->value || value_type (var->value));
1460 /* Return the requested range for a varobj. VAR is the varobj. FROM
1461 and TO are out parameters; *FROM and *TO will be set to the
1462 selected sub-range of VAR. If no range was selected using
1463 -var-set-update-range, then both will be -1. */
1465 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1471 /* Set the selected sub-range of children of VAR to start at index
1472 FROM and end at index TO. If either FROM or TO is less than zero,
1473 this is interpreted as a request for all children. */
1475 varobj_set_child_range (struct varobj *var, int from, int to)
1482 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1485 PyObject *mainmod, *globals, *constructor;
1486 struct cleanup *back_to;
1488 if (!gdb_python_initialized)
1491 back_to = varobj_ensure_python_env (var);
1493 mainmod = PyImport_AddModule ("__main__");
1494 globals = PyModule_GetDict (mainmod);
1495 Py_INCREF (globals);
1496 make_cleanup_py_decref (globals);
1498 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1502 gdbpy_print_stack ();
1503 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1506 construct_visualizer (var, constructor);
1507 Py_XDECREF (constructor);
1509 /* If there are any children now, wipe them. */
1510 varobj_delete (var, 1 /* children only */);
1511 var->num_children = -1;
1513 do_cleanups (back_to);
1515 error (_("Python support required"));
1519 /* If NEW_VALUE is the new value of the given varobj (var), return
1520 non-zero if var has mutated. In other words, if the type of
1521 the new value is different from the type of the varobj's old
1524 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1527 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1528 struct type *new_type)
1530 /* If we haven't previously computed the number of children in var,
1531 it does not matter from the front-end's perspective whether
1532 the type has mutated or not. For all intents and purposes,
1533 it has not mutated. */
1534 if (var->num_children < 0)
1537 if (var->root->lang_ops->value_has_mutated)
1539 /* The varobj module, when installing new values, explicitly strips
1540 references, saying that we're not interested in those addresses.
1541 But detection of mutation happens before installing the new
1542 value, so our value may be a reference that we need to strip
1543 in order to remain consistent. */
1544 if (new_value != NULL)
1545 new_value = coerce_ref (new_value);
1546 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1552 /* Update the values for a variable and its children. This is a
1553 two-pronged attack. First, re-parse the value for the root's
1554 expression to see if it's changed. Then go all the way
1555 through its children, reconstructing them and noting if they've
1558 The EXPLICIT parameter specifies if this call is result
1559 of MI request to update this specific variable, or
1560 result of implicit -var-update *. For implicit request, we don't
1561 update frozen variables.
1563 NOTE: This function may delete the caller's varobj. If it
1564 returns TYPE_CHANGED, then it has done this and VARP will be modified
1565 to point to the new varobj. */
1567 VEC(varobj_update_result) *
1568 varobj_update (struct varobj **varp, int is_explicit)
1570 int type_changed = 0;
1572 struct value *newobj;
1573 VEC (varobj_update_result) *stack = NULL;
1574 VEC (varobj_update_result) *result = NULL;
1576 /* Frozen means frozen -- we don't check for any change in
1577 this varobj, including its going out of scope, or
1578 changing type. One use case for frozen varobjs is
1579 retaining previously evaluated expressions, and we don't
1580 want them to be reevaluated at all. */
1581 if (!is_explicit && (*varp)->frozen)
1584 if (!(*varp)->root->is_valid)
1586 varobj_update_result r = {0};
1589 r.status = VAROBJ_INVALID;
1590 VEC_safe_push (varobj_update_result, result, &r);
1594 if ((*varp)->root->rootvar == *varp)
1596 varobj_update_result r = {0};
1599 r.status = VAROBJ_IN_SCOPE;
1601 /* Update the root variable. value_of_root can return NULL
1602 if the variable is no longer around, i.e. we stepped out of
1603 the frame in which a local existed. We are letting the
1604 value_of_root variable dispose of the varobj if the type
1606 newobj = value_of_root (varp, &type_changed);
1607 if (update_type_if_necessary(*varp, newobj))
1610 r.type_changed = type_changed;
1611 if (install_new_value ((*varp), newobj, type_changed))
1615 r.status = VAROBJ_NOT_IN_SCOPE;
1616 r.value_installed = 1;
1618 if (r.status == VAROBJ_NOT_IN_SCOPE)
1620 if (r.type_changed || r.changed)
1621 VEC_safe_push (varobj_update_result, result, &r);
1625 VEC_safe_push (varobj_update_result, stack, &r);
1629 varobj_update_result r = {0};
1632 VEC_safe_push (varobj_update_result, stack, &r);
1635 /* Walk through the children, reconstructing them all. */
1636 while (!VEC_empty (varobj_update_result, stack))
1638 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1639 struct varobj *v = r.varobj;
1641 VEC_pop (varobj_update_result, stack);
1643 /* Update this variable, unless it's a root, which is already
1645 if (!r.value_installed)
1647 struct type *new_type;
1649 newobj = value_of_child (v->parent, v->index);
1650 if (update_type_if_necessary(v, newobj))
1653 new_type = value_type (newobj);
1655 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1657 if (varobj_value_has_mutated (v, newobj, new_type))
1659 /* The children are no longer valid; delete them now.
1660 Report the fact that its type changed as well. */
1661 varobj_delete (v, 1 /* only_children */);
1662 v->num_children = -1;
1669 if (install_new_value (v, newobj, r.type_changed))
1676 /* We probably should not get children of a dynamic varobj, but
1677 for which -var-list-children was never invoked. */
1678 if (varobj_is_dynamic_p (v))
1680 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1681 VEC (varobj_p) *newobj = 0;
1682 int i, children_changed = 0;
1687 if (!v->dynamic->children_requested)
1691 /* If we initially did not have potential children, but
1692 now we do, consider the varobj as changed.
1693 Otherwise, if children were never requested, consider
1694 it as unchanged -- presumably, such varobj is not yet
1695 expanded in the UI, so we need not bother getting
1697 if (!varobj_has_more (v, 0))
1699 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1701 if (varobj_has_more (v, 0))
1706 VEC_safe_push (varobj_update_result, result, &r);
1711 /* If update_dynamic_varobj_children returns 0, then we have
1712 a non-conforming pretty-printer, so we skip it. */
1713 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1714 &unchanged, &children_changed, 1,
1717 if (children_changed || newobj)
1719 r.children_changed = 1;
1722 /* Push in reverse order so that the first child is
1723 popped from the work stack first, and so will be
1724 added to result first. This does not affect
1725 correctness, just "nicer". */
1726 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1728 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1729 varobj_update_result r = {0};
1731 /* Type may change only if value was changed. */
1735 r.value_installed = 1;
1736 VEC_safe_push (varobj_update_result, stack, &r);
1738 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1740 varobj_p tmp = VEC_index (varobj_p, changed, i);
1741 varobj_update_result r = {0};
1745 r.value_installed = 1;
1746 VEC_safe_push (varobj_update_result, stack, &r);
1748 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1750 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1754 varobj_update_result r = {0};
1757 r.value_installed = 1;
1758 VEC_safe_push (varobj_update_result, stack, &r);
1761 if (r.changed || r.children_changed)
1762 VEC_safe_push (varobj_update_result, result, &r);
1764 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1765 because NEW has been put into the result vector. */
1766 VEC_free (varobj_p, changed);
1767 VEC_free (varobj_p, type_changed);
1768 VEC_free (varobj_p, unchanged);
1774 /* Push any children. Use reverse order so that the first
1775 child is popped from the work stack first, and so
1776 will be added to result first. This does not
1777 affect correctness, just "nicer". */
1778 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1780 varobj_p c = VEC_index (varobj_p, v->children, i);
1782 /* Child may be NULL if explicitly deleted by -var-delete. */
1783 if (c != NULL && !c->frozen)
1785 varobj_update_result r = {0};
1788 VEC_safe_push (varobj_update_result, stack, &r);
1792 if (r.changed || r.type_changed)
1793 VEC_safe_push (varobj_update_result, result, &r);
1796 VEC_free (varobj_update_result, stack);
1802 /* Helper functions */
1805 * Variable object construction/destruction
1809 delete_variable (struct varobj *var, int only_children_p)
1813 delete_variable_1 (&delcount, var, only_children_p,
1814 1 /* remove_from_parent_p */ );
1819 /* Delete the variable object VAR and its children. */
1820 /* IMPORTANT NOTE: If we delete a variable which is a child
1821 and the parent is not removed we dump core. It must be always
1822 initially called with remove_from_parent_p set. */
1824 delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
1825 int remove_from_parent_p)
1829 /* Delete any children of this variable, too. */
1830 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1832 varobj_p child = VEC_index (varobj_p, var->children, i);
1836 if (!remove_from_parent_p)
1837 child->parent = NULL;
1838 delete_variable_1 (delcountp, child, 0, only_children_p);
1840 VEC_free (varobj_p, var->children);
1842 /* if we were called to delete only the children we are done here. */
1843 if (only_children_p)
1846 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1847 /* If the name is empty, this is a temporary variable, that has not
1848 yet been installed, don't report it, it belongs to the caller... */
1849 if (!var->obj_name.empty ())
1851 *delcountp = *delcountp + 1;
1854 /* If this variable has a parent, remove it from its parent's list. */
1855 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1856 (as indicated by remove_from_parent_p) we don't bother doing an
1857 expensive list search to find the element to remove when we are
1858 discarding the list afterwards. */
1859 if ((remove_from_parent_p) && (var->parent != NULL))
1861 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1864 if (!var->obj_name.empty ())
1865 uninstall_variable (var);
1867 /* Free memory associated with this variable. */
1868 free_variable (var);
1871 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1873 install_variable (struct varobj *var)
1876 struct vlist *newvl;
1878 unsigned int index = 0;
1881 for (chp = var->obj_name.c_str (); *chp; chp++)
1883 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1886 cv = *(varobj_table + index);
1887 while (cv != NULL && cv->var->obj_name != var->obj_name)
1891 error (_("Duplicate variable object name"));
1893 /* Add varobj to hash table. */
1894 newvl = XNEW (struct vlist);
1895 newvl->next = *(varobj_table + index);
1897 *(varobj_table + index) = newvl;
1899 /* If root, add varobj to root list. */
1900 if (is_root_p (var))
1902 /* Add to list of root variables. */
1903 if (rootlist == NULL)
1904 var->root->next = NULL;
1906 var->root->next = rootlist;
1907 rootlist = var->root;
1913 /* Unistall the object VAR. */
1915 uninstall_variable (struct varobj *var)
1919 struct varobj_root *cr;
1920 struct varobj_root *prer;
1922 unsigned int index = 0;
1925 /* Remove varobj from hash table. */
1926 for (chp = var->obj_name.c_str (); *chp; chp++)
1928 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1931 cv = *(varobj_table + index);
1933 while (cv != NULL && cv->var->obj_name != var->obj_name)
1940 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1945 ("Assertion failed: Could not find variable object \"%s\" to delete",
1946 var->obj_name.c_str ());
1951 *(varobj_table + index) = cv->next;
1953 prev->next = cv->next;
1957 /* If root, remove varobj from root list. */
1958 if (is_root_p (var))
1960 /* Remove from list of root variables. */
1961 if (rootlist == var->root)
1962 rootlist = var->root->next;
1967 while ((cr != NULL) && (cr->rootvar != var))
1974 warning (_("Assertion failed: Could not find "
1975 "varobj \"%s\" in root list"),
1976 var->obj_name.c_str ());
1982 prer->next = cr->next;
1988 /* Create and install a child of the parent of the given name.
1990 The created VAROBJ takes ownership of the allocated NAME. */
1992 static struct varobj *
1993 create_child (struct varobj *parent, int index, std::string &name)
1995 struct varobj_item item;
1997 std::swap (item.name, name);
1998 item.value = value_of_child (parent, index);
2000 return create_child_with_value (parent, index, &item);
2003 static struct varobj *
2004 create_child_with_value (struct varobj *parent, int index,
2005 struct varobj_item *item)
2007 struct varobj *child;
2009 child = new_variable ();
2011 /* NAME is allocated by caller. */
2012 std::swap (child->name, item->name);
2013 child->index = index;
2014 child->parent = parent;
2015 child->root = parent->root;
2017 if (varobj_is_anonymous_child (child))
2018 child->obj_name = string_printf ("%s.%d_anonymous",
2019 parent->obj_name.c_str (), index);
2021 child->obj_name = string_printf ("%s.%s",
2022 parent->obj_name.c_str (),
2023 child->name.c_str ());
2025 install_variable (child);
2027 /* Compute the type of the child. Must do this before
2028 calling install_new_value. */
2029 if (item->value != NULL)
2030 /* If the child had no evaluation errors, var->value
2031 will be non-NULL and contain a valid type. */
2032 child->type = value_actual_type (item->value, 0, NULL);
2034 /* Otherwise, we must compute the type. */
2035 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2037 install_new_value (child, item->value, 1);
2044 * Miscellaneous utility functions.
2047 /* Allocate memory and initialize a new variable. */
2048 static struct varobj *
2053 var = new varobj ();
2057 var->num_children = -1;
2059 var->children = NULL;
2060 var->format = FORMAT_NATURAL;
2064 var->not_fetched = 0;
2065 var->dynamic = XNEW (struct varobj_dynamic);
2066 var->dynamic->children_requested = 0;
2069 var->dynamic->constructor = 0;
2070 var->dynamic->pretty_printer = 0;
2071 var->dynamic->child_iter = 0;
2072 var->dynamic->saved_item = 0;
2077 /* Allocate memory and initialize a new root variable. */
2078 static struct varobj *
2079 new_root_variable (void)
2081 struct varobj *var = new_variable ();
2083 var->root = new varobj_root ();
2084 var->root->lang_ops = NULL;
2085 var->root->exp = NULL;
2086 var->root->valid_block = NULL;
2087 var->root->frame = null_frame_id;
2088 var->root->floating = 0;
2089 var->root->rootvar = NULL;
2090 var->root->is_valid = 1;
2095 /* Free any allocated memory associated with VAR. */
2097 free_variable (struct varobj *var)
2100 if (var->dynamic->pretty_printer != NULL)
2102 struct cleanup *cleanup = varobj_ensure_python_env (var);
2104 Py_XDECREF (var->dynamic->constructor);
2105 Py_XDECREF (var->dynamic->pretty_printer);
2106 do_cleanups (cleanup);
2110 varobj_iter_delete (var->dynamic->child_iter);
2111 varobj_clear_saved_item (var->dynamic);
2112 value_free (var->value);
2114 if (is_root_p (var))
2117 xfree (var->dynamic);
2122 do_free_variable_cleanup (void *var)
2124 free_variable ((struct varobj *) var);
2127 static struct cleanup *
2128 make_cleanup_free_variable (struct varobj *var)
2130 return make_cleanup (do_free_variable_cleanup, var);
2133 /* Return the type of the value that's stored in VAR,
2134 or that would have being stored there if the
2135 value were accessible.
2137 This differs from VAR->type in that VAR->type is always
2138 the true type of the expession in the source language.
2139 The return value of this function is the type we're
2140 actually storing in varobj, and using for displaying
2141 the values and for comparing previous and new values.
2143 For example, top-level references are always stripped. */
2145 varobj_get_value_type (const struct varobj *var)
2150 type = value_type (var->value);
2154 type = check_typedef (type);
2156 if (TYPE_CODE (type) == TYPE_CODE_REF)
2157 type = get_target_type (type);
2159 type = check_typedef (type);
2164 /* What is the default display for this variable? We assume that
2165 everything is "natural". Any exceptions? */
2166 static enum varobj_display_formats
2167 variable_default_display (struct varobj *var)
2169 return FORMAT_NATURAL;
2173 * Language-dependencies
2176 /* Common entry points */
2178 /* Return the number of children for a given variable.
2179 The result of this function is defined by the language
2180 implementation. The number of children returned by this function
2181 is the number of children that the user will see in the variable
2184 number_of_children (const struct varobj *var)
2186 return (*var->root->lang_ops->number_of_children) (var);
2189 /* What is the expression for the root varobj VAR? */
2192 name_of_variable (const struct varobj *var)
2194 return (*var->root->lang_ops->name_of_variable) (var);
2197 /* What is the name of the INDEX'th child of VAR? */
2200 name_of_child (struct varobj *var, int index)
2202 return (*var->root->lang_ops->name_of_child) (var, index);
2205 /* If frame associated with VAR can be found, switch
2206 to it and return 1. Otherwise, return 0. */
2209 check_scope (const struct varobj *var)
2211 struct frame_info *fi;
2214 fi = frame_find_by_id (var->root->frame);
2219 CORE_ADDR pc = get_frame_pc (fi);
2221 if (pc < BLOCK_START (var->root->valid_block) ||
2222 pc >= BLOCK_END (var->root->valid_block))
2230 /* Helper function to value_of_root. */
2232 static struct value *
2233 value_of_root_1 (struct varobj **var_handle)
2235 struct value *new_val = NULL;
2236 struct varobj *var = *var_handle;
2237 int within_scope = 0;
2238 struct cleanup *back_to;
2240 /* Only root variables can be updated... */
2241 if (!is_root_p (var))
2242 /* Not a root var. */
2245 back_to = make_cleanup_restore_current_thread ();
2247 /* Determine whether the variable is still around. */
2248 if (var->root->valid_block == NULL || var->root->floating)
2250 else if (var->root->thread_id == 0)
2252 /* The program was single-threaded when the variable object was
2253 created. Technically, it's possible that the program became
2254 multi-threaded since then, but we don't support such
2256 within_scope = check_scope (var);
2260 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2262 if (!ptid_equal (minus_one_ptid, ptid))
2264 switch_to_thread (ptid);
2265 within_scope = check_scope (var);
2272 /* We need to catch errors here, because if evaluate
2273 expression fails we want to just return NULL. */
2276 new_val = evaluate_expression (var->root->exp.get ());
2278 CATCH (except, RETURN_MASK_ERROR)
2284 do_cleanups (back_to);
2289 /* What is the ``struct value *'' of the root variable VAR?
2290 For floating variable object, evaluation can get us a value
2291 of different type from what is stored in varobj already. In
2293 - *type_changed will be set to 1
2294 - old varobj will be freed, and new one will be
2295 created, with the same name.
2296 - *var_handle will be set to the new varobj
2297 Otherwise, *type_changed will be set to 0. */
2298 static struct value *
2299 value_of_root (struct varobj **var_handle, int *type_changed)
2303 if (var_handle == NULL)
2308 /* This should really be an exception, since this should
2309 only get called with a root variable. */
2311 if (!is_root_p (var))
2314 if (var->root->floating)
2316 struct varobj *tmp_var;
2318 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2319 USE_SELECTED_FRAME);
2320 if (tmp_var == NULL)
2324 std::string old_type = varobj_get_type (var);
2325 std::string new_type = varobj_get_type (tmp_var);
2326 if (old_type == new_type)
2328 /* The expression presently stored inside var->root->exp
2329 remembers the locations of local variables relatively to
2330 the frame where the expression was created (in DWARF location
2331 button, for example). Naturally, those locations are not
2332 correct in other frames, so update the expression. */
2334 std::swap (var->root->exp, tmp_var->root->exp);
2336 varobj_delete (tmp_var, 0);
2341 tmp_var->obj_name = var->obj_name;
2342 tmp_var->from = var->from;
2343 tmp_var->to = var->to;
2344 varobj_delete (var, 0);
2346 install_variable (tmp_var);
2347 *var_handle = tmp_var;
2358 struct value *value;
2360 value = value_of_root_1 (var_handle);
2361 if (var->value == NULL || value == NULL)
2363 /* For root varobj-s, a NULL value indicates a scoping issue.
2364 So, nothing to do in terms of checking for mutations. */
2366 else if (varobj_value_has_mutated (var, value, value_type (value)))
2368 /* The type has mutated, so the children are no longer valid.
2369 Just delete them, and tell our caller that the type has
2371 varobj_delete (var, 1 /* only_children */);
2372 var->num_children = -1;
2381 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2382 static struct value *
2383 value_of_child (const struct varobj *parent, int index)
2385 struct value *value;
2387 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2392 /* GDB already has a command called "value_of_variable". Sigh. */
2394 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2396 if (var->root->is_valid)
2398 if (var->dynamic->pretty_printer != NULL)
2399 return varobj_value_get_print_value (var->value, var->format, var);
2400 return (*var->root->lang_ops->value_of_variable) (var, format);
2403 return std::string ();
2407 varobj_formatted_print_options (struct value_print_options *opts,
2408 enum varobj_display_formats format)
2410 get_formatted_print_options (opts, format_code[(int) format]);
2411 opts->deref_ref = 0;
2416 varobj_value_get_print_value (struct value *value,
2417 enum varobj_display_formats format,
2418 const struct varobj *var)
2420 struct ui_file *stb;
2421 struct cleanup *old_chain;
2422 struct value_print_options opts;
2423 struct type *type = NULL;
2425 char *encoding = NULL;
2426 /* Initialize it just to avoid a GCC false warning. */
2427 CORE_ADDR str_addr = 0;
2428 int string_print = 0;
2431 return std::string ();
2433 stb = mem_fileopen ();
2434 old_chain = make_cleanup_ui_file_delete (stb);
2436 std::string thevalue;
2439 if (gdb_python_initialized)
2441 PyObject *value_formatter = var->dynamic->pretty_printer;
2443 varobj_ensure_python_env (var);
2445 if (value_formatter)
2447 /* First check to see if we have any children at all. If so,
2448 we simply return {...}. */
2449 if (dynamic_varobj_has_child_method (var))
2451 do_cleanups (old_chain);
2452 return xstrdup ("{...}");
2455 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2457 struct value *replacement;
2458 PyObject *output = NULL;
2460 output = apply_varobj_pretty_printer (value_formatter,
2464 /* If we have string like output ... */
2467 make_cleanup_py_decref (output);
2469 /* If this is a lazy string, extract it. For lazy
2470 strings we always print as a string, so set
2472 if (gdbpy_is_lazy_string (output))
2474 gdbpy_extract_lazy_string (output, &str_addr, &type,
2476 make_cleanup (free_current_contents, &encoding);
2481 /* If it is a regular (non-lazy) string, extract
2482 it and copy the contents into THEVALUE. If the
2483 hint says to print it as a string, set
2484 string_print. Otherwise just return the extracted
2485 string as a value. */
2487 char *s = python_string_to_target_string (output);
2491 struct gdbarch *gdbarch;
2494 hint = gdbpy_get_display_hint (value_formatter);
2497 if (!strcmp (hint, "string"))
2502 thevalue = std::string (s);
2503 len = thevalue.size ();
2504 gdbarch = get_type_arch (value_type (value));
2505 type = builtin_type (gdbarch)->builtin_char;
2510 do_cleanups (old_chain);
2515 gdbpy_print_stack ();
2518 /* If the printer returned a replacement value, set VALUE
2519 to REPLACEMENT. If there is not a replacement value,
2520 just use the value passed to this function. */
2522 value = replacement;
2528 varobj_formatted_print_options (&opts, format);
2530 /* If the THEVALUE has contents, it is a regular string. */
2531 if (!thevalue.empty ())
2532 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue.c_str (),
2533 len, encoding, 0, &opts);
2534 else if (string_print)
2535 /* Otherwise, if string_print is set, and it is not a regular
2536 string, it is a lazy string. */
2537 val_print_string (type, encoding, str_addr, len, stb, &opts);
2539 /* All other cases. */
2540 common_val_print (value, stb, 0, &opts, current_language);
2542 thevalue = ui_file_as_string (stb);
2544 do_cleanups (old_chain);
2549 varobj_editable_p (const struct varobj *var)
2553 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2556 type = varobj_get_value_type (var);
2558 switch (TYPE_CODE (type))
2560 case TYPE_CODE_STRUCT:
2561 case TYPE_CODE_UNION:
2562 case TYPE_CODE_ARRAY:
2563 case TYPE_CODE_FUNC:
2564 case TYPE_CODE_METHOD:
2574 /* Call VAR's value_is_changeable_p language-specific callback. */
2577 varobj_value_is_changeable_p (const struct varobj *var)
2579 return var->root->lang_ops->value_is_changeable_p (var);
2582 /* Return 1 if that varobj is floating, that is is always evaluated in the
2583 selected frame, and not bound to thread/frame. Such variable objects
2584 are created using '@' as frame specifier to -var-create. */
2586 varobj_floating_p (const struct varobj *var)
2588 return var->root->floating;
2591 /* Implement the "value_is_changeable_p" varobj callback for most
2595 varobj_default_value_is_changeable_p (const struct varobj *var)
2600 if (CPLUS_FAKE_CHILD (var))
2603 type = varobj_get_value_type (var);
2605 switch (TYPE_CODE (type))
2607 case TYPE_CODE_STRUCT:
2608 case TYPE_CODE_UNION:
2609 case TYPE_CODE_ARRAY:
2620 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2621 with an arbitrary caller supplied DATA pointer. */
2624 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2626 struct varobj_root *var_root, *var_root_next;
2628 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2630 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2632 var_root_next = var_root->next;
2634 (*func) (var_root->rootvar, data);
2638 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2639 defined on globals. It is a helper for varobj_invalidate.
2641 This function is called after changing the symbol file, in this case the
2642 pointers to "struct type" stored by the varobj are no longer valid. All
2643 varobj must be either re-evaluated, or marked as invalid here. */
2646 varobj_invalidate_iter (struct varobj *var, void *unused)
2648 /* global and floating var must be re-evaluated. */
2649 if (var->root->floating || var->root->valid_block == NULL)
2651 struct varobj *tmp_var;
2653 /* Try to create a varobj with same expression. If we succeed
2654 replace the old varobj, otherwise invalidate it. */
2655 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2657 if (tmp_var != NULL)
2659 tmp_var->obj_name = var->obj_name;
2660 varobj_delete (var, 0);
2661 install_variable (tmp_var);
2664 var->root->is_valid = 0;
2666 else /* locals must be invalidated. */
2667 var->root->is_valid = 0;
2670 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2671 are defined on globals.
2672 Invalidated varobjs will be always printed in_scope="invalid". */
2675 varobj_invalidate (void)
2677 all_root_varobjs (varobj_invalidate_iter, NULL);
2680 extern void _initialize_varobj (void);
2682 _initialize_varobj (void)
2684 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2686 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2688 _("Set varobj debugging."),
2689 _("Show varobj debugging."),
2690 _("When non-zero, varobj debugging is enabled."),
2691 NULL, show_varobjdebug,
2692 &setdebuglist, &showdebuglist);