1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
35 #include "python/python.h"
36 #include "python/python-internal.h"
41 /* Non-zero if we want to see trace of varobj level stuff. */
43 unsigned int varobjdebug = 0;
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
59 varobj_enable_pretty_printing (void)
66 /* Every root variable has one of these structures saved in its
67 varobj. Members which must be free'd are noted. */
71 /* Alloc'd expression for this parent. */
72 struct expression *exp;
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
77 /* The frame for this expression. This field is set iff valid_block is
79 struct frame_id frame;
81 /* The thread ID that this varobj_root belong to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
97 /* Language-related operations for this variable and its
99 const struct lang_varobj_ops *lang_ops;
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
104 /* Next root variable */
105 struct varobj_root *next;
108 /* Dynamic part of varobj. */
110 struct varobj_dynamic
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
116 int children_requested;
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
127 /* The iterator returned by the printer's 'children' method, or NULL
129 struct varobj_iter *child_iter;
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
142 struct cpstack *next;
145 /* A list of varobjs */
153 /* Private function prototypes */
155 /* Helper functions for the above subcommands. */
157 static int delete_variable (struct cpstack **, struct varobj *, int);
159 static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
162 static int install_variable (struct varobj *);
164 static void uninstall_variable (struct varobj *);
166 static struct varobj *create_child (struct varobj *, int, char *);
168 static struct varobj *
169 create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
172 /* Utility routines */
174 static struct varobj *new_variable (void);
176 static struct varobj *new_root_variable (void);
178 static void free_variable (struct varobj *var);
180 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
182 static enum varobj_display_formats variable_default_display (struct varobj *);
184 static void cppush (struct cpstack **pstack, char *name);
186 static char *cppop (struct cpstack **pstack);
188 static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
191 static int install_new_value (struct varobj *var, struct value *value,
194 /* Language-specific routines. */
196 static int number_of_children (const struct varobj *);
198 static char *name_of_variable (const struct varobj *);
200 static char *name_of_child (struct varobj *, int);
202 static struct value *value_of_root (struct varobj **var_handle, int *);
204 static struct value *value_of_child (const struct varobj *parent, int index);
206 static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
209 static int is_root_p (const struct varobj *var);
211 static struct varobj *varobj_add_child (struct varobj *var,
212 struct varobj_item *item);
216 /* Mappings of varobj_display_formats enums to gdb's format codes. */
217 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
219 /* Header of the list of root variable objects. */
220 static struct varobj_root *rootlist;
222 /* Prime number indicating the number of buckets in the hash table. */
223 /* A prime large enough to avoid too many colisions. */
224 #define VAROBJ_TABLE_SIZE 227
226 /* Pointer to the varobj hash table (built at run time). */
227 static struct vlist **varobj_table;
231 /* API Implementation */
233 is_root_p (const struct varobj *var)
235 return (var->root->rootvar == var);
239 /* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
242 varobj_ensure_python_env (const struct varobj *var)
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
249 /* Creates a varobj (not its children). */
251 /* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
254 static struct frame_info *
255 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
257 struct frame_info *frame = NULL;
259 if (frame_addr == (CORE_ADDR) 0)
262 for (frame = get_current_frame ();
264 frame = get_prev_frame (frame))
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
276 if (frame_base == frame_addr)
284 varobj_create (char *objname,
285 char *expression, CORE_ADDR frame, enum varobj_type type)
288 struct cleanup *old_chain;
290 /* Fill out a varobj structure for the (root) variable being constructed. */
291 var = new_root_variable ();
292 old_chain = make_cleanup_free_variable (var);
294 if (expression != NULL)
296 struct frame_info *fi;
297 struct frame_id old_id = null_frame_id;
298 const struct block *block;
300 struct value *value = NULL;
303 /* Parse and evaluate the expression, filling in as much of the
304 variable's data as possible. */
306 if (has_stack_frames ())
308 /* Allow creator to specify context of variable. */
309 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
310 fi = get_selected_frame (NULL);
312 /* FIXME: cagney/2002-11-23: This code should be doing a
313 lookup using the frame ID and not just the frame's
314 ``address''. This, of course, means an interface
315 change. However, with out that interface change ISAs,
316 such as the ia64 with its two stacks, won't work.
317 Similar goes for the case where there is a frameless
319 fi = find_frame_addr_in_frame_chain (frame);
324 /* frame = -2 means always use selected frame. */
325 if (type == USE_SELECTED_FRAME)
326 var->root->floating = 1;
332 block = get_frame_block (fi, 0);
333 pc = get_frame_pc (fi);
337 innermost_block = NULL;
338 /* Wrap the call to parse expression, so we can
339 return a sensible error. */
342 var->root->exp = parse_exp_1 (&p, pc, block, 0);
345 CATCH (except, RETURN_MASK_ERROR)
347 do_cleanups (old_chain);
352 /* Don't allow variables to be created for types. */
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
357 do_cleanups (old_chain);
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
365 var->name = xstrdup (expression);
366 /* For a root var, the name and the expr are the same. */
367 var->path_expr = xstrdup (expression);
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
372 Since select_frame is so benign, just call it for all cases. */
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
380 error (_("Failed to find the specified frame"));
382 var->root->frame = get_frame_id (fi);
383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
384 old_id = get_frame_id (get_selected_frame (NULL));
388 /* We definitely need to catch errors here.
389 If evaluate_expression succeeds we got the value we wanted.
390 But if it fails, we still go on with a call to evaluate_type(). */
393 value = evaluate_expression (var->root->exp);
395 CATCH (except, RETURN_MASK_ERROR)
397 /* Error getting the value. Try to at least get the
399 struct value *type_only_value = evaluate_type (var->root->exp);
401 var->type = value_type (type_only_value);
407 int real_type_found = 0;
409 var->type = value_actual_type (value, 0, &real_type_found);
411 value = value_cast (var->type, value);
414 /* Set language info */
415 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
417 install_new_value (var, value, 1 /* Initial assignment */);
419 /* Set ourselves as our root. */
420 var->root->rootvar = var;
422 /* Reset the selected frame. */
423 if (frame_id_p (old_id))
424 select_frame (frame_find_by_id (old_id));
427 /* If the variable object name is null, that means this
428 is a temporary variable, so don't install it. */
430 if ((var != NULL) && (objname != NULL))
432 var->obj_name = xstrdup (objname);
434 /* If a varobj name is duplicated, the install will fail so
436 if (!install_variable (var))
438 do_cleanups (old_chain);
443 discard_cleanups (old_chain);
447 /* Generates an unique name that can be used for a varobj. */
450 varobj_gen_name (void)
455 /* Generate a name for this object. */
457 obj_name = xstrprintf ("var%d", id);
462 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
463 error if OBJNAME cannot be found. */
466 varobj_get_handle (char *objname)
470 unsigned int index = 0;
473 for (chp = objname; *chp; chp++)
475 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
478 cv = *(varobj_table + index);
479 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
483 error (_("Variable object not found"));
488 /* Given the handle, return the name of the object. */
491 varobj_get_objname (const struct varobj *var)
493 return var->obj_name;
496 /* Given the handle, return the expression represented by the object. The
497 result must be freed by the caller. */
500 varobj_get_expression (const struct varobj *var)
502 return name_of_variable (var);
505 /* Deletes a varobj and all its children if only_children == 0,
506 otherwise deletes only the children. If DELLIST is non-NULL, it is
507 assigned a malloc'ed list of all the (malloc'ed) names of the variables
508 that have been deleted (NULL terminated). Returns the number of deleted
512 varobj_delete (struct varobj *var, char ***dellist, int only_children)
516 struct cpstack *result = NULL;
519 /* Initialize a stack for temporary results. */
520 cppush (&result, NULL);
523 /* Delete only the variable children. */
524 delcount = delete_variable (&result, var, 1 /* only the children */ );
526 /* Delete the variable and all its children. */
527 delcount = delete_variable (&result, var, 0 /* parent+children */ );
529 /* We may have been asked to return a list of what has been deleted. */
532 *dellist = XNEWVEC (char *, delcount + 1);
536 *cp = cppop (&result);
537 while ((*cp != NULL) && (mycount > 0))
541 *cp = cppop (&result);
544 if (mycount || (*cp != NULL))
545 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
554 /* Convenience function for varobj_set_visualizer. Instantiate a
555 pretty-printer for a given value. */
557 instantiate_pretty_printer (PyObject *constructor, struct value *value)
559 PyObject *val_obj = NULL;
562 val_obj = value_to_value_object (value);
566 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
573 /* Set/Get variable object display format. */
575 enum varobj_display_formats
576 varobj_set_display_format (struct varobj *var,
577 enum varobj_display_formats format)
584 case FORMAT_HEXADECIMAL:
586 var->format = format;
590 var->format = variable_default_display (var);
593 if (varobj_value_is_changeable_p (var)
594 && var->value && !value_lazy (var->value))
596 xfree (var->print_value);
597 var->print_value = varobj_value_get_print_value (var->value,
604 enum varobj_display_formats
605 varobj_get_display_format (const struct varobj *var)
611 varobj_get_display_hint (const struct varobj *var)
616 struct cleanup *back_to;
618 if (!gdb_python_initialized)
621 back_to = varobj_ensure_python_env (var);
623 if (var->dynamic->pretty_printer != NULL)
624 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
626 do_cleanups (back_to);
632 /* Return true if the varobj has items after TO, false otherwise. */
635 varobj_has_more (const struct varobj *var, int to)
637 if (VEC_length (varobj_p, var->children) > to)
639 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
640 && (var->dynamic->saved_item != NULL));
643 /* If the variable object is bound to a specific thread, that
644 is its evaluation can always be done in context of a frame
645 inside that thread, returns GDB id of the thread -- which
646 is always positive. Otherwise, returns -1. */
648 varobj_get_thread_id (const struct varobj *var)
650 if (var->root->valid_block && var->root->thread_id > 0)
651 return var->root->thread_id;
657 varobj_set_frozen (struct varobj *var, int frozen)
659 /* When a variable is unfrozen, we don't fetch its value.
660 The 'not_fetched' flag remains set, so next -var-update
663 We don't fetch the value, because for structures the client
664 should do -var-update anyway. It would be bad to have different
665 client-size logic for structure and other types. */
666 var->frozen = frozen;
670 varobj_get_frozen (const struct varobj *var)
675 /* A helper function that restricts a range to what is actually
676 available in a VEC. This follows the usual rules for the meaning
677 of FROM and TO -- if either is negative, the entire range is
681 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
683 if (*from < 0 || *to < 0)
686 *to = VEC_length (varobj_p, children);
690 if (*from > VEC_length (varobj_p, children))
691 *from = VEC_length (varobj_p, children);
692 if (*to > VEC_length (varobj_p, children))
693 *to = VEC_length (varobj_p, children);
699 /* A helper for update_dynamic_varobj_children that installs a new
700 child when needed. */
703 install_dynamic_child (struct varobj *var,
704 VEC (varobj_p) **changed,
705 VEC (varobj_p) **type_changed,
706 VEC (varobj_p) **newobj,
707 VEC (varobj_p) **unchanged,
710 struct varobj_item *item)
712 if (VEC_length (varobj_p, var->children) < index + 1)
714 /* There's no child yet. */
715 struct varobj *child = varobj_add_child (var, item);
719 VEC_safe_push (varobj_p, *newobj, child);
725 varobj_p existing = VEC_index (varobj_p, var->children, index);
726 int type_updated = update_type_if_necessary (existing, item->value);
731 VEC_safe_push (varobj_p, *type_changed, existing);
733 if (install_new_value (existing, item->value, 0))
735 if (!type_updated && changed)
736 VEC_safe_push (varobj_p, *changed, existing);
738 else if (!type_updated && unchanged)
739 VEC_safe_push (varobj_p, *unchanged, existing);
746 dynamic_varobj_has_child_method (const struct varobj *var)
748 struct cleanup *back_to;
749 PyObject *printer = var->dynamic->pretty_printer;
752 if (!gdb_python_initialized)
755 back_to = varobj_ensure_python_env (var);
756 result = PyObject_HasAttr (printer, gdbpy_children_cst);
757 do_cleanups (back_to);
762 /* A factory for creating dynamic varobj's iterators. Returns an
763 iterator object suitable for iterating over VAR's children. */
765 static struct varobj_iter *
766 varobj_get_iterator (struct varobj *var)
769 if (var->dynamic->pretty_printer)
770 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
773 gdb_assert_not_reached (_("\
774 requested an iterator from a non-dynamic varobj"));
777 /* Release and clear VAR's saved item, if any. */
780 varobj_clear_saved_item (struct varobj_dynamic *var)
782 if (var->saved_item != NULL)
784 value_free (var->saved_item->value);
785 xfree (var->saved_item);
786 var->saved_item = NULL;
791 update_dynamic_varobj_children (struct varobj *var,
792 VEC (varobj_p) **changed,
793 VEC (varobj_p) **type_changed,
794 VEC (varobj_p) **newobj,
795 VEC (varobj_p) **unchanged,
805 if (update_children || var->dynamic->child_iter == NULL)
807 varobj_iter_delete (var->dynamic->child_iter);
808 var->dynamic->child_iter = varobj_get_iterator (var);
810 varobj_clear_saved_item (var->dynamic);
814 if (var->dynamic->child_iter == NULL)
818 i = VEC_length (varobj_p, var->children);
820 /* We ask for one extra child, so that MI can report whether there
821 are more children. */
822 for (; to < 0 || i < to + 1; ++i)
826 /* See if there was a leftover from last time. */
827 if (var->dynamic->saved_item != NULL)
829 item = var->dynamic->saved_item;
830 var->dynamic->saved_item = NULL;
834 item = varobj_iter_next (var->dynamic->child_iter);
835 /* Release vitem->value so its lifetime is not bound to the
836 execution of a command. */
837 if (item != NULL && item->value != NULL)
838 release_value_or_incref (item->value);
843 /* Iteration is done. Remove iterator from VAR. */
844 varobj_iter_delete (var->dynamic->child_iter);
845 var->dynamic->child_iter = NULL;
848 /* We don't want to push the extra child on any report list. */
849 if (to < 0 || i < to)
851 int can_mention = from < 0 || i >= from;
853 install_dynamic_child (var, can_mention ? changed : NULL,
854 can_mention ? type_changed : NULL,
855 can_mention ? newobj : NULL,
856 can_mention ? unchanged : NULL,
857 can_mention ? cchanged : NULL, i,
864 var->dynamic->saved_item = item;
866 /* We want to truncate the child list just before this
872 if (i < VEC_length (varobj_p, var->children))
877 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
878 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
879 VEC_truncate (varobj_p, var->children, i);
882 /* If there are fewer children than requested, note that the list of
884 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
887 var->num_children = VEC_length (varobj_p, var->children);
893 varobj_get_num_children (struct varobj *var)
895 if (var->num_children == -1)
897 if (varobj_is_dynamic_p (var))
901 /* If we have a dynamic varobj, don't report -1 children.
902 So, try to fetch some children first. */
903 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
907 var->num_children = number_of_children (var);
910 return var->num_children >= 0 ? var->num_children : 0;
913 /* Creates a list of the immediate children of a variable object;
914 the return code is the number of such children or -1 on error. */
917 varobj_list_children (struct varobj *var, int *from, int *to)
920 int i, children_changed;
922 var->dynamic->children_requested = 1;
924 if (varobj_is_dynamic_p (var))
926 /* This, in theory, can result in the number of children changing without
927 frontend noticing. But well, calling -var-list-children on the same
928 varobj twice is not something a sane frontend would do. */
929 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
930 &children_changed, 0, 0, *to);
931 varobj_restrict_range (var->children, from, to);
932 return var->children;
935 if (var->num_children == -1)
936 var->num_children = number_of_children (var);
938 /* If that failed, give up. */
939 if (var->num_children == -1)
940 return var->children;
942 /* If we're called when the list of children is not yet initialized,
943 allocate enough elements in it. */
944 while (VEC_length (varobj_p, var->children) < var->num_children)
945 VEC_safe_push (varobj_p, var->children, NULL);
947 for (i = 0; i < var->num_children; i++)
949 varobj_p existing = VEC_index (varobj_p, var->children, i);
951 if (existing == NULL)
953 /* Either it's the first call to varobj_list_children for
954 this variable object, and the child was never created,
955 or it was explicitly deleted by the client. */
956 name = name_of_child (var, i);
957 existing = create_child (var, i, name);
958 VEC_replace (varobj_p, var->children, i, existing);
962 varobj_restrict_range (var->children, from, to);
963 return var->children;
966 static struct varobj *
967 varobj_add_child (struct varobj *var, struct varobj_item *item)
969 varobj_p v = create_child_with_value (var,
970 VEC_length (varobj_p, var->children),
973 VEC_safe_push (varobj_p, var->children, v);
977 /* Obtain the type of an object Variable as a string similar to the one gdb
978 prints on the console. The caller is responsible for freeing the string.
982 varobj_get_type (struct varobj *var)
984 /* For the "fake" variables, do not return a type. (Its type is
986 Do not return a type for invalid variables as well. */
987 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
990 return type_to_string (var->type);
993 /* Obtain the type of an object variable. */
996 varobj_get_gdb_type (const struct varobj *var)
1001 /* Is VAR a path expression parent, i.e., can it be used to construct
1002 a valid path expression? */
1005 is_path_expr_parent (const struct varobj *var)
1007 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1008 return var->root->lang_ops->is_path_expr_parent (var);
1011 /* Is VAR a path expression parent, i.e., can it be used to construct
1012 a valid path expression? By default we assume any VAR can be a path
1016 varobj_default_is_path_expr_parent (const struct varobj *var)
1021 /* Return the path expression parent for VAR. */
1023 const struct varobj *
1024 varobj_get_path_expr_parent (const struct varobj *var)
1026 const struct varobj *parent = var;
1028 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1029 parent = parent->parent;
1034 /* Return a pointer to the full rooted expression of varobj VAR.
1035 If it has not been computed yet, compute it. */
1037 varobj_get_path_expr (const struct varobj *var)
1039 if (var->path_expr == NULL)
1041 /* For root varobjs, we initialize path_expr
1042 when creating varobj, so here it should be
1044 struct varobj *mutable_var = (struct varobj *) var;
1045 gdb_assert (!is_root_p (var));
1047 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
1050 return var->path_expr;
1053 const struct language_defn *
1054 varobj_get_language (const struct varobj *var)
1056 return var->root->exp->language_defn;
1060 varobj_get_attributes (const struct varobj *var)
1064 if (varobj_editable_p (var))
1065 /* FIXME: define masks for attributes. */
1066 attributes |= 0x00000001; /* Editable */
1071 /* Return true if VAR is a dynamic varobj. */
1074 varobj_is_dynamic_p (const struct varobj *var)
1076 return var->dynamic->pretty_printer != NULL;
1080 varobj_get_formatted_value (struct varobj *var,
1081 enum varobj_display_formats format)
1083 return my_value_of_variable (var, format);
1087 varobj_get_value (struct varobj *var)
1089 return my_value_of_variable (var, var->format);
1092 /* Set the value of an object variable (if it is editable) to the
1093 value of the given expression. */
1094 /* Note: Invokes functions that can call error(). */
1097 varobj_set_value (struct varobj *var, char *expression)
1099 struct value *val = NULL; /* Initialize to keep gcc happy. */
1100 /* The argument "expression" contains the variable's new value.
1101 We need to first construct a legal expression for this -- ugh! */
1102 /* Does this cover all the bases? */
1103 struct expression *exp;
1104 struct value *value = NULL; /* Initialize to keep gcc happy. */
1105 int saved_input_radix = input_radix;
1106 const char *s = expression;
1108 gdb_assert (varobj_editable_p (var));
1110 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1111 exp = parse_exp_1 (&s, 0, 0, 0);
1114 value = evaluate_expression (exp);
1117 CATCH (except, RETURN_MASK_ERROR)
1119 /* We cannot proceed without a valid expression. */
1125 /* All types that are editable must also be changeable. */
1126 gdb_assert (varobj_value_is_changeable_p (var));
1128 /* The value of a changeable variable object must not be lazy. */
1129 gdb_assert (!value_lazy (var->value));
1131 /* Need to coerce the input. We want to check if the
1132 value of the variable object will be different
1133 after assignment, and the first thing value_assign
1134 does is coerce the input.
1135 For example, if we are assigning an array to a pointer variable we
1136 should compare the pointer with the array's address, not with the
1138 value = coerce_array (value);
1140 /* The new value may be lazy. value_assign, or
1141 rather value_contents, will take care of this. */
1144 val = value_assign (var->value, value);
1147 CATCH (except, RETURN_MASK_ERROR)
1153 /* If the value has changed, record it, so that next -var-update can
1154 report this change. If a variable had a value of '1', we've set it
1155 to '333' and then set again to '1', when -var-update will report this
1156 variable as changed -- because the first assignment has set the
1157 'updated' flag. There's no need to optimize that, because return value
1158 of -var-update should be considered an approximation. */
1159 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1160 input_radix = saved_input_radix;
1166 /* A helper function to install a constructor function and visualizer
1167 in a varobj_dynamic. */
1170 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1171 PyObject *visualizer)
1173 Py_XDECREF (var->constructor);
1174 var->constructor = constructor;
1176 Py_XDECREF (var->pretty_printer);
1177 var->pretty_printer = visualizer;
1179 varobj_iter_delete (var->child_iter);
1180 var->child_iter = NULL;
1183 /* Install the default visualizer for VAR. */
1186 install_default_visualizer (struct varobj *var)
1188 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1189 if (CPLUS_FAKE_CHILD (var))
1192 if (pretty_printing)
1194 PyObject *pretty_printer = NULL;
1198 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1199 if (! pretty_printer)
1201 gdbpy_print_stack ();
1202 error (_("Cannot instantiate printer for default visualizer"));
1206 if (pretty_printer == Py_None)
1208 Py_DECREF (pretty_printer);
1209 pretty_printer = NULL;
1212 install_visualizer (var->dynamic, NULL, pretty_printer);
1216 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1217 make a new object. */
1220 construct_visualizer (struct varobj *var, PyObject *constructor)
1222 PyObject *pretty_printer;
1224 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1225 if (CPLUS_FAKE_CHILD (var))
1228 Py_INCREF (constructor);
1229 if (constructor == Py_None)
1230 pretty_printer = NULL;
1233 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1234 if (! pretty_printer)
1236 gdbpy_print_stack ();
1237 Py_DECREF (constructor);
1238 constructor = Py_None;
1239 Py_INCREF (constructor);
1242 if (pretty_printer == Py_None)
1244 Py_DECREF (pretty_printer);
1245 pretty_printer = NULL;
1249 install_visualizer (var->dynamic, constructor, pretty_printer);
1252 #endif /* HAVE_PYTHON */
1254 /* A helper function for install_new_value. This creates and installs
1255 a visualizer for VAR, if appropriate. */
1258 install_new_value_visualizer (struct varobj *var)
1261 /* If the constructor is None, then we want the raw value. If VAR
1262 does not have a value, just skip this. */
1263 if (!gdb_python_initialized)
1266 if (var->dynamic->constructor != Py_None && var->value != NULL)
1268 struct cleanup *cleanup;
1270 cleanup = varobj_ensure_python_env (var);
1272 if (var->dynamic->constructor == NULL)
1273 install_default_visualizer (var);
1275 construct_visualizer (var, var->dynamic->constructor);
1277 do_cleanups (cleanup);
1284 /* When using RTTI to determine variable type it may be changed in runtime when
1285 the variable value is changed. This function checks whether type of varobj
1286 VAR will change when a new value NEW_VALUE is assigned and if it is so
1287 updates the type of VAR. */
1290 update_type_if_necessary (struct varobj *var, struct value *new_value)
1294 struct value_print_options opts;
1296 get_user_print_options (&opts);
1297 if (opts.objectprint)
1299 struct type *new_type;
1300 char *curr_type_str, *new_type_str;
1301 int type_name_changed;
1303 new_type = value_actual_type (new_value, 0, 0);
1304 new_type_str = type_to_string (new_type);
1305 curr_type_str = varobj_get_type (var);
1306 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1307 xfree (curr_type_str);
1308 xfree (new_type_str);
1310 if (type_name_changed)
1312 var->type = new_type;
1314 /* This information may be not valid for a new type. */
1315 varobj_delete (var, NULL, 1);
1316 VEC_free (varobj_p, var->children);
1317 var->num_children = -1;
1326 /* Assign a new value to a variable object. If INITIAL is non-zero,
1327 this is the first assignement after the variable object was just
1328 created, or changed type. In that case, just assign the value
1330 Otherwise, assign the new value, and return 1 if the value is
1331 different from the current one, 0 otherwise. The comparison is
1332 done on textual representation of value. Therefore, some types
1333 need not be compared. E.g. for structures the reported value is
1334 always "{...}", so no comparison is necessary here. If the old
1335 value was NULL and new one is not, or vice versa, we always return 1.
1337 The VALUE parameter should not be released -- the function will
1338 take care of releasing it when needed. */
1340 install_new_value (struct varobj *var, struct value *value, int initial)
1345 int intentionally_not_fetched = 0;
1346 char *print_value = NULL;
1348 /* We need to know the varobj's type to decide if the value should
1349 be fetched or not. C++ fake children (public/protected/private)
1350 don't have a type. */
1351 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1352 changeable = varobj_value_is_changeable_p (var);
1354 /* If the type has custom visualizer, we consider it to be always
1355 changeable. FIXME: need to make sure this behaviour will not
1356 mess up read-sensitive values. */
1357 if (var->dynamic->pretty_printer != NULL)
1360 need_to_fetch = changeable;
1362 /* We are not interested in the address of references, and given
1363 that in C++ a reference is not rebindable, it cannot
1364 meaningfully change. So, get hold of the real value. */
1366 value = coerce_ref (value);
1368 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1369 /* For unions, we need to fetch the value implicitly because
1370 of implementation of union member fetch. When gdb
1371 creates a value for a field and the value of the enclosing
1372 structure is not lazy, it immediately copies the necessary
1373 bytes from the enclosing values. If the enclosing value is
1374 lazy, the call to value_fetch_lazy on the field will read
1375 the data from memory. For unions, that means we'll read the
1376 same memory more than once, which is not desirable. So
1380 /* The new value might be lazy. If the type is changeable,
1381 that is we'll be comparing values of this type, fetch the
1382 value now. Otherwise, on the next update the old value
1383 will be lazy, which means we've lost that old value. */
1384 if (need_to_fetch && value && value_lazy (value))
1386 const struct varobj *parent = var->parent;
1387 int frozen = var->frozen;
1389 for (; !frozen && parent; parent = parent->parent)
1390 frozen |= parent->frozen;
1392 if (frozen && initial)
1394 /* For variables that are frozen, or are children of frozen
1395 variables, we don't do fetch on initial assignment.
1396 For non-initial assignemnt we do the fetch, since it means we're
1397 explicitly asked to compare the new value with the old one. */
1398 intentionally_not_fetched = 1;
1405 value_fetch_lazy (value);
1408 CATCH (except, RETURN_MASK_ERROR)
1410 /* Set the value to NULL, so that for the next -var-update,
1411 we don't try to compare the new value with this value,
1412 that we couldn't even read. */
1419 /* Get a reference now, before possibly passing it to any Python
1420 code that might release it. */
1422 value_incref (value);
1424 /* Below, we'll be comparing string rendering of old and new
1425 values. Don't get string rendering if the value is
1426 lazy -- if it is, the code above has decided that the value
1427 should not be fetched. */
1428 if (value != NULL && !value_lazy (value)
1429 && var->dynamic->pretty_printer == NULL)
1430 print_value = varobj_value_get_print_value (value, var->format, var);
1432 /* If the type is changeable, compare the old and the new values.
1433 If this is the initial assignment, we don't have any old value
1435 if (!initial && changeable)
1437 /* If the value of the varobj was changed by -var-set-value,
1438 then the value in the varobj and in the target is the same.
1439 However, that value is different from the value that the
1440 varobj had after the previous -var-update. So need to the
1441 varobj as changed. */
1446 else if (var->dynamic->pretty_printer == NULL)
1448 /* Try to compare the values. That requires that both
1449 values are non-lazy. */
1450 if (var->not_fetched && value_lazy (var->value))
1452 /* This is a frozen varobj and the value was never read.
1453 Presumably, UI shows some "never read" indicator.
1454 Now that we've fetched the real value, we need to report
1455 this varobj as changed so that UI can show the real
1459 else if (var->value == NULL && value == NULL)
1462 else if (var->value == NULL || value == NULL)
1468 gdb_assert (!value_lazy (var->value));
1469 gdb_assert (!value_lazy (value));
1471 gdb_assert (var->print_value != NULL && print_value != NULL);
1472 if (strcmp (var->print_value, print_value) != 0)
1478 if (!initial && !changeable)
1480 /* For values that are not changeable, we don't compare the values.
1481 However, we want to notice if a value was not NULL and now is NULL,
1482 or vise versa, so that we report when top-level varobjs come in scope
1483 and leave the scope. */
1484 changed = (var->value != NULL) != (value != NULL);
1487 /* We must always keep the new value, since children depend on it. */
1488 if (var->value != NULL && var->value != value)
1489 value_free (var->value);
1491 if (value && value_lazy (value) && intentionally_not_fetched)
1492 var->not_fetched = 1;
1494 var->not_fetched = 0;
1497 install_new_value_visualizer (var);
1499 /* If we installed a pretty-printer, re-compare the printed version
1500 to see if the variable changed. */
1501 if (var->dynamic->pretty_printer != NULL)
1503 xfree (print_value);
1504 print_value = varobj_value_get_print_value (var->value, var->format,
1506 if ((var->print_value == NULL && print_value != NULL)
1507 || (var->print_value != NULL && print_value == NULL)
1508 || (var->print_value != NULL && print_value != NULL
1509 && strcmp (var->print_value, print_value) != 0))
1512 if (var->print_value)
1513 xfree (var->print_value);
1514 var->print_value = print_value;
1516 gdb_assert (!var->value || value_type (var->value));
1521 /* Return the requested range for a varobj. VAR is the varobj. FROM
1522 and TO are out parameters; *FROM and *TO will be set to the
1523 selected sub-range of VAR. If no range was selected using
1524 -var-set-update-range, then both will be -1. */
1526 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1532 /* Set the selected sub-range of children of VAR to start at index
1533 FROM and end at index TO. If either FROM or TO is less than zero,
1534 this is interpreted as a request for all children. */
1536 varobj_set_child_range (struct varobj *var, int from, int to)
1543 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1546 PyObject *mainmod, *globals, *constructor;
1547 struct cleanup *back_to;
1549 if (!gdb_python_initialized)
1552 back_to = varobj_ensure_python_env (var);
1554 mainmod = PyImport_AddModule ("__main__");
1555 globals = PyModule_GetDict (mainmod);
1556 Py_INCREF (globals);
1557 make_cleanup_py_decref (globals);
1559 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1563 gdbpy_print_stack ();
1564 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1567 construct_visualizer (var, constructor);
1568 Py_XDECREF (constructor);
1570 /* If there are any children now, wipe them. */
1571 varobj_delete (var, NULL, 1 /* children only */);
1572 var->num_children = -1;
1574 do_cleanups (back_to);
1576 error (_("Python support required"));
1580 /* If NEW_VALUE is the new value of the given varobj (var), return
1581 non-zero if var has mutated. In other words, if the type of
1582 the new value is different from the type of the varobj's old
1585 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1588 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1589 struct type *new_type)
1591 /* If we haven't previously computed the number of children in var,
1592 it does not matter from the front-end's perspective whether
1593 the type has mutated or not. For all intents and purposes,
1594 it has not mutated. */
1595 if (var->num_children < 0)
1598 if (var->root->lang_ops->value_has_mutated)
1600 /* The varobj module, when installing new values, explicitly strips
1601 references, saying that we're not interested in those addresses.
1602 But detection of mutation happens before installing the new
1603 value, so our value may be a reference that we need to strip
1604 in order to remain consistent. */
1605 if (new_value != NULL)
1606 new_value = coerce_ref (new_value);
1607 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1613 /* Update the values for a variable and its children. This is a
1614 two-pronged attack. First, re-parse the value for the root's
1615 expression to see if it's changed. Then go all the way
1616 through its children, reconstructing them and noting if they've
1619 The EXPLICIT parameter specifies if this call is result
1620 of MI request to update this specific variable, or
1621 result of implicit -var-update *. For implicit request, we don't
1622 update frozen variables.
1624 NOTE: This function may delete the caller's varobj. If it
1625 returns TYPE_CHANGED, then it has done this and VARP will be modified
1626 to point to the new varobj. */
1628 VEC(varobj_update_result) *
1629 varobj_update (struct varobj **varp, int is_explicit)
1631 int type_changed = 0;
1633 struct value *newobj;
1634 VEC (varobj_update_result) *stack = NULL;
1635 VEC (varobj_update_result) *result = NULL;
1637 /* Frozen means frozen -- we don't check for any change in
1638 this varobj, including its going out of scope, or
1639 changing type. One use case for frozen varobjs is
1640 retaining previously evaluated expressions, and we don't
1641 want them to be reevaluated at all. */
1642 if (!is_explicit && (*varp)->frozen)
1645 if (!(*varp)->root->is_valid)
1647 varobj_update_result r = {0};
1650 r.status = VAROBJ_INVALID;
1651 VEC_safe_push (varobj_update_result, result, &r);
1655 if ((*varp)->root->rootvar == *varp)
1657 varobj_update_result r = {0};
1660 r.status = VAROBJ_IN_SCOPE;
1662 /* Update the root variable. value_of_root can return NULL
1663 if the variable is no longer around, i.e. we stepped out of
1664 the frame in which a local existed. We are letting the
1665 value_of_root variable dispose of the varobj if the type
1667 newobj = value_of_root (varp, &type_changed);
1668 if (update_type_if_necessary(*varp, newobj))
1671 r.type_changed = type_changed;
1672 if (install_new_value ((*varp), newobj, type_changed))
1676 r.status = VAROBJ_NOT_IN_SCOPE;
1677 r.value_installed = 1;
1679 if (r.status == VAROBJ_NOT_IN_SCOPE)
1681 if (r.type_changed || r.changed)
1682 VEC_safe_push (varobj_update_result, result, &r);
1686 VEC_safe_push (varobj_update_result, stack, &r);
1690 varobj_update_result r = {0};
1693 VEC_safe_push (varobj_update_result, stack, &r);
1696 /* Walk through the children, reconstructing them all. */
1697 while (!VEC_empty (varobj_update_result, stack))
1699 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1700 struct varobj *v = r.varobj;
1702 VEC_pop (varobj_update_result, stack);
1704 /* Update this variable, unless it's a root, which is already
1706 if (!r.value_installed)
1708 struct type *new_type;
1710 newobj = value_of_child (v->parent, v->index);
1711 if (update_type_if_necessary(v, newobj))
1714 new_type = value_type (newobj);
1716 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1718 if (varobj_value_has_mutated (v, newobj, new_type))
1720 /* The children are no longer valid; delete them now.
1721 Report the fact that its type changed as well. */
1722 varobj_delete (v, NULL, 1 /* only_children */);
1723 v->num_children = -1;
1730 if (install_new_value (v, newobj, r.type_changed))
1737 /* We probably should not get children of a dynamic varobj, but
1738 for which -var-list-children was never invoked. */
1739 if (varobj_is_dynamic_p (v))
1741 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1742 VEC (varobj_p) *newobj = 0;
1743 int i, children_changed = 0;
1748 if (!v->dynamic->children_requested)
1752 /* If we initially did not have potential children, but
1753 now we do, consider the varobj as changed.
1754 Otherwise, if children were never requested, consider
1755 it as unchanged -- presumably, such varobj is not yet
1756 expanded in the UI, so we need not bother getting
1758 if (!varobj_has_more (v, 0))
1760 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1762 if (varobj_has_more (v, 0))
1767 VEC_safe_push (varobj_update_result, result, &r);
1772 /* If update_dynamic_varobj_children returns 0, then we have
1773 a non-conforming pretty-printer, so we skip it. */
1774 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1775 &unchanged, &children_changed, 1,
1778 if (children_changed || newobj)
1780 r.children_changed = 1;
1783 /* Push in reverse order so that the first child is
1784 popped from the work stack first, and so will be
1785 added to result first. This does not affect
1786 correctness, just "nicer". */
1787 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1789 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1790 varobj_update_result r = {0};
1792 /* Type may change only if value was changed. */
1796 r.value_installed = 1;
1797 VEC_safe_push (varobj_update_result, stack, &r);
1799 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1801 varobj_p tmp = VEC_index (varobj_p, changed, i);
1802 varobj_update_result r = {0};
1806 r.value_installed = 1;
1807 VEC_safe_push (varobj_update_result, stack, &r);
1809 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1811 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1815 varobj_update_result r = {0};
1818 r.value_installed = 1;
1819 VEC_safe_push (varobj_update_result, stack, &r);
1822 if (r.changed || r.children_changed)
1823 VEC_safe_push (varobj_update_result, result, &r);
1825 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1826 because NEW has been put into the result vector. */
1827 VEC_free (varobj_p, changed);
1828 VEC_free (varobj_p, type_changed);
1829 VEC_free (varobj_p, unchanged);
1835 /* Push any children. Use reverse order so that the first
1836 child is popped from the work stack first, and so
1837 will be added to result first. This does not
1838 affect correctness, just "nicer". */
1839 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1841 varobj_p c = VEC_index (varobj_p, v->children, i);
1843 /* Child may be NULL if explicitly deleted by -var-delete. */
1844 if (c != NULL && !c->frozen)
1846 varobj_update_result r = {0};
1849 VEC_safe_push (varobj_update_result, stack, &r);
1853 if (r.changed || r.type_changed)
1854 VEC_safe_push (varobj_update_result, result, &r);
1857 VEC_free (varobj_update_result, stack);
1863 /* Helper functions */
1866 * Variable object construction/destruction
1870 delete_variable (struct cpstack **resultp, struct varobj *var,
1871 int only_children_p)
1875 delete_variable_1 (resultp, &delcount, var,
1876 only_children_p, 1 /* remove_from_parent_p */ );
1881 /* Delete the variable object VAR and its children. */
1882 /* IMPORTANT NOTE: If we delete a variable which is a child
1883 and the parent is not removed we dump core. It must be always
1884 initially called with remove_from_parent_p set. */
1886 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1887 struct varobj *var, int only_children_p,
1888 int remove_from_parent_p)
1892 /* Delete any children of this variable, too. */
1893 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1895 varobj_p child = VEC_index (varobj_p, var->children, i);
1899 if (!remove_from_parent_p)
1900 child->parent = NULL;
1901 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1903 VEC_free (varobj_p, var->children);
1905 /* if we were called to delete only the children we are done here. */
1906 if (only_children_p)
1909 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1910 /* If the name is null, this is a temporary variable, that has not
1911 yet been installed, don't report it, it belongs to the caller... */
1912 if (var->obj_name != NULL)
1914 cppush (resultp, xstrdup (var->obj_name));
1915 *delcountp = *delcountp + 1;
1918 /* If this variable has a parent, remove it from its parent's list. */
1919 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1920 (as indicated by remove_from_parent_p) we don't bother doing an
1921 expensive list search to find the element to remove when we are
1922 discarding the list afterwards. */
1923 if ((remove_from_parent_p) && (var->parent != NULL))
1925 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1928 if (var->obj_name != NULL)
1929 uninstall_variable (var);
1931 /* Free memory associated with this variable. */
1932 free_variable (var);
1935 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1937 install_variable (struct varobj *var)
1940 struct vlist *newvl;
1942 unsigned int index = 0;
1945 for (chp = var->obj_name; *chp; chp++)
1947 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1950 cv = *(varobj_table + index);
1951 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1955 error (_("Duplicate variable object name"));
1957 /* Add varobj to hash table. */
1958 newvl = XNEW (struct vlist);
1959 newvl->next = *(varobj_table + index);
1961 *(varobj_table + index) = newvl;
1963 /* If root, add varobj to root list. */
1964 if (is_root_p (var))
1966 /* Add to list of root variables. */
1967 if (rootlist == NULL)
1968 var->root->next = NULL;
1970 var->root->next = rootlist;
1971 rootlist = var->root;
1977 /* Unistall the object VAR. */
1979 uninstall_variable (struct varobj *var)
1983 struct varobj_root *cr;
1984 struct varobj_root *prer;
1986 unsigned int index = 0;
1989 /* Remove varobj from hash table. */
1990 for (chp = var->obj_name; *chp; chp++)
1992 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1995 cv = *(varobj_table + index);
1997 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2004 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2009 ("Assertion failed: Could not find variable object \"%s\" to delete",
2015 *(varobj_table + index) = cv->next;
2017 prev->next = cv->next;
2021 /* If root, remove varobj from root list. */
2022 if (is_root_p (var))
2024 /* Remove from list of root variables. */
2025 if (rootlist == var->root)
2026 rootlist = var->root->next;
2031 while ((cr != NULL) && (cr->rootvar != var))
2038 warning (_("Assertion failed: Could not find "
2039 "varobj \"%s\" in root list"),
2046 prer->next = cr->next;
2052 /* Create and install a child of the parent of the given name.
2054 The created VAROBJ takes ownership of the allocated NAME. */
2056 static struct varobj *
2057 create_child (struct varobj *parent, int index, char *name)
2059 struct varobj_item item;
2062 item.value = value_of_child (parent, index);
2064 return create_child_with_value (parent, index, &item);
2067 static struct varobj *
2068 create_child_with_value (struct varobj *parent, int index,
2069 struct varobj_item *item)
2071 struct varobj *child;
2074 child = new_variable ();
2076 /* NAME is allocated by caller. */
2077 child->name = item->name;
2078 child->index = index;
2079 child->parent = parent;
2080 child->root = parent->root;
2082 if (varobj_is_anonymous_child (child))
2083 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2085 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2086 child->obj_name = childs_name;
2088 install_variable (child);
2090 /* Compute the type of the child. Must do this before
2091 calling install_new_value. */
2092 if (item->value != NULL)
2093 /* If the child had no evaluation errors, var->value
2094 will be non-NULL and contain a valid type. */
2095 child->type = value_actual_type (item->value, 0, NULL);
2097 /* Otherwise, we must compute the type. */
2098 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2100 install_new_value (child, item->value, 1);
2107 * Miscellaneous utility functions.
2110 /* Allocate memory and initialize a new variable. */
2111 static struct varobj *
2116 var = XNEW (struct varobj);
2118 var->path_expr = NULL;
2119 var->obj_name = NULL;
2123 var->num_children = -1;
2125 var->children = NULL;
2126 var->format = FORMAT_NATURAL;
2129 var->print_value = NULL;
2131 var->not_fetched = 0;
2132 var->dynamic = XNEW (struct varobj_dynamic);
2133 var->dynamic->children_requested = 0;
2136 var->dynamic->constructor = 0;
2137 var->dynamic->pretty_printer = 0;
2138 var->dynamic->child_iter = 0;
2139 var->dynamic->saved_item = 0;
2144 /* Allocate memory and initialize a new root variable. */
2145 static struct varobj *
2146 new_root_variable (void)
2148 struct varobj *var = new_variable ();
2150 var->root = XNEW (struct varobj_root);
2151 var->root->lang_ops = NULL;
2152 var->root->exp = NULL;
2153 var->root->valid_block = NULL;
2154 var->root->frame = null_frame_id;
2155 var->root->floating = 0;
2156 var->root->rootvar = NULL;
2157 var->root->is_valid = 1;
2162 /* Free any allocated memory associated with VAR. */
2164 free_variable (struct varobj *var)
2167 if (var->dynamic->pretty_printer != NULL)
2169 struct cleanup *cleanup = varobj_ensure_python_env (var);
2171 Py_XDECREF (var->dynamic->constructor);
2172 Py_XDECREF (var->dynamic->pretty_printer);
2173 do_cleanups (cleanup);
2177 varobj_iter_delete (var->dynamic->child_iter);
2178 varobj_clear_saved_item (var->dynamic);
2179 value_free (var->value);
2181 /* Free the expression if this is a root variable. */
2182 if (is_root_p (var))
2184 xfree (var->root->exp);
2189 xfree (var->obj_name);
2190 xfree (var->print_value);
2191 xfree (var->path_expr);
2192 xfree (var->dynamic);
2197 do_free_variable_cleanup (void *var)
2199 free_variable (var);
2202 static struct cleanup *
2203 make_cleanup_free_variable (struct varobj *var)
2205 return make_cleanup (do_free_variable_cleanup, var);
2208 /* Return the type of the value that's stored in VAR,
2209 or that would have being stored there if the
2210 value were accessible.
2212 This differs from VAR->type in that VAR->type is always
2213 the true type of the expession in the source language.
2214 The return value of this function is the type we're
2215 actually storing in varobj, and using for displaying
2216 the values and for comparing previous and new values.
2218 For example, top-level references are always stripped. */
2220 varobj_get_value_type (const struct varobj *var)
2225 type = value_type (var->value);
2229 type = check_typedef (type);
2231 if (TYPE_CODE (type) == TYPE_CODE_REF)
2232 type = get_target_type (type);
2234 type = check_typedef (type);
2239 /* What is the default display for this variable? We assume that
2240 everything is "natural". Any exceptions? */
2241 static enum varobj_display_formats
2242 variable_default_display (struct varobj *var)
2244 return FORMAT_NATURAL;
2247 /* FIXME: The following should be generic for any pointer. */
2249 cppush (struct cpstack **pstack, char *name)
2253 s = XNEW (struct cpstack);
2259 /* FIXME: The following should be generic for any pointer. */
2261 cppop (struct cpstack **pstack)
2266 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2271 *pstack = (*pstack)->next;
2278 * Language-dependencies
2281 /* Common entry points */
2283 /* Return the number of children for a given variable.
2284 The result of this function is defined by the language
2285 implementation. The number of children returned by this function
2286 is the number of children that the user will see in the variable
2289 number_of_children (const struct varobj *var)
2291 return (*var->root->lang_ops->number_of_children) (var);
2294 /* What is the expression for the root varobj VAR? Returns a malloc'd
2297 name_of_variable (const struct varobj *var)
2299 return (*var->root->lang_ops->name_of_variable) (var);
2302 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2305 name_of_child (struct varobj *var, int index)
2307 return (*var->root->lang_ops->name_of_child) (var, index);
2310 /* If frame associated with VAR can be found, switch
2311 to it and return 1. Otherwise, return 0. */
2314 check_scope (const struct varobj *var)
2316 struct frame_info *fi;
2319 fi = frame_find_by_id (var->root->frame);
2324 CORE_ADDR pc = get_frame_pc (fi);
2326 if (pc < BLOCK_START (var->root->valid_block) ||
2327 pc >= BLOCK_END (var->root->valid_block))
2335 /* Helper function to value_of_root. */
2337 static struct value *
2338 value_of_root_1 (struct varobj **var_handle)
2340 struct value *new_val = NULL;
2341 struct varobj *var = *var_handle;
2342 int within_scope = 0;
2343 struct cleanup *back_to;
2345 /* Only root variables can be updated... */
2346 if (!is_root_p (var))
2347 /* Not a root var. */
2350 back_to = make_cleanup_restore_current_thread ();
2352 /* Determine whether the variable is still around. */
2353 if (var->root->valid_block == NULL || var->root->floating)
2355 else if (var->root->thread_id == 0)
2357 /* The program was single-threaded when the variable object was
2358 created. Technically, it's possible that the program became
2359 multi-threaded since then, but we don't support such
2361 within_scope = check_scope (var);
2365 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2366 if (in_thread_list (ptid))
2368 switch_to_thread (ptid);
2369 within_scope = check_scope (var);
2376 /* We need to catch errors here, because if evaluate
2377 expression fails we want to just return NULL. */
2380 new_val = evaluate_expression (var->root->exp);
2382 CATCH (except, RETURN_MASK_ERROR)
2388 do_cleanups (back_to);
2393 /* What is the ``struct value *'' of the root variable VAR?
2394 For floating variable object, evaluation can get us a value
2395 of different type from what is stored in varobj already. In
2397 - *type_changed will be set to 1
2398 - old varobj will be freed, and new one will be
2399 created, with the same name.
2400 - *var_handle will be set to the new varobj
2401 Otherwise, *type_changed will be set to 0. */
2402 static struct value *
2403 value_of_root (struct varobj **var_handle, int *type_changed)
2407 if (var_handle == NULL)
2412 /* This should really be an exception, since this should
2413 only get called with a root variable. */
2415 if (!is_root_p (var))
2418 if (var->root->floating)
2420 struct varobj *tmp_var;
2421 char *old_type, *new_type;
2423 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2424 USE_SELECTED_FRAME);
2425 if (tmp_var == NULL)
2429 old_type = varobj_get_type (var);
2430 new_type = varobj_get_type (tmp_var);
2431 if (strcmp (old_type, new_type) == 0)
2433 /* The expression presently stored inside var->root->exp
2434 remembers the locations of local variables relatively to
2435 the frame where the expression was created (in DWARF location
2436 button, for example). Naturally, those locations are not
2437 correct in other frames, so update the expression. */
2439 struct expression *tmp_exp = var->root->exp;
2441 var->root->exp = tmp_var->root->exp;
2442 tmp_var->root->exp = tmp_exp;
2444 varobj_delete (tmp_var, NULL, 0);
2449 tmp_var->obj_name = xstrdup (var->obj_name);
2450 tmp_var->from = var->from;
2451 tmp_var->to = var->to;
2452 varobj_delete (var, NULL, 0);
2454 install_variable (tmp_var);
2455 *var_handle = tmp_var;
2468 struct value *value;
2470 value = value_of_root_1 (var_handle);
2471 if (var->value == NULL || value == NULL)
2473 /* For root varobj-s, a NULL value indicates a scoping issue.
2474 So, nothing to do in terms of checking for mutations. */
2476 else if (varobj_value_has_mutated (var, value, value_type (value)))
2478 /* The type has mutated, so the children are no longer valid.
2479 Just delete them, and tell our caller that the type has
2481 varobj_delete (var, NULL, 1 /* only_children */);
2482 var->num_children = -1;
2491 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2492 static struct value *
2493 value_of_child (const struct varobj *parent, int index)
2495 struct value *value;
2497 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2502 /* GDB already has a command called "value_of_variable". Sigh. */
2504 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2506 if (var->root->is_valid)
2508 if (var->dynamic->pretty_printer != NULL)
2509 return varobj_value_get_print_value (var->value, var->format, var);
2510 return (*var->root->lang_ops->value_of_variable) (var, format);
2517 varobj_formatted_print_options (struct value_print_options *opts,
2518 enum varobj_display_formats format)
2520 get_formatted_print_options (opts, format_code[(int) format]);
2521 opts->deref_ref = 0;
2526 varobj_value_get_print_value (struct value *value,
2527 enum varobj_display_formats format,
2528 const struct varobj *var)
2530 struct ui_file *stb;
2531 struct cleanup *old_chain;
2532 char *thevalue = NULL;
2533 struct value_print_options opts;
2534 struct type *type = NULL;
2536 char *encoding = NULL;
2537 struct gdbarch *gdbarch = NULL;
2538 /* Initialize it just to avoid a GCC false warning. */
2539 CORE_ADDR str_addr = 0;
2540 int string_print = 0;
2545 stb = mem_fileopen ();
2546 old_chain = make_cleanup_ui_file_delete (stb);
2548 gdbarch = get_type_arch (value_type (value));
2550 if (gdb_python_initialized)
2552 PyObject *value_formatter = var->dynamic->pretty_printer;
2554 varobj_ensure_python_env (var);
2556 if (value_formatter)
2558 /* First check to see if we have any children at all. If so,
2559 we simply return {...}. */
2560 if (dynamic_varobj_has_child_method (var))
2562 do_cleanups (old_chain);
2563 return xstrdup ("{...}");
2566 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2568 struct value *replacement;
2569 PyObject *output = NULL;
2571 output = apply_varobj_pretty_printer (value_formatter,
2575 /* If we have string like output ... */
2578 make_cleanup_py_decref (output);
2580 /* If this is a lazy string, extract it. For lazy
2581 strings we always print as a string, so set
2583 if (gdbpy_is_lazy_string (output))
2585 gdbpy_extract_lazy_string (output, &str_addr, &type,
2587 make_cleanup (free_current_contents, &encoding);
2592 /* If it is a regular (non-lazy) string, extract
2593 it and copy the contents into THEVALUE. If the
2594 hint says to print it as a string, set
2595 string_print. Otherwise just return the extracted
2596 string as a value. */
2598 char *s = python_string_to_target_string (output);
2604 hint = gdbpy_get_display_hint (value_formatter);
2607 if (!strcmp (hint, "string"))
2613 thevalue = (char *) xmemdup (s, len + 1, len + 1);
2614 type = builtin_type (gdbarch)->builtin_char;
2619 do_cleanups (old_chain);
2623 make_cleanup (xfree, thevalue);
2626 gdbpy_print_stack ();
2629 /* If the printer returned a replacement value, set VALUE
2630 to REPLACEMENT. If there is not a replacement value,
2631 just use the value passed to this function. */
2633 value = replacement;
2639 varobj_formatted_print_options (&opts, format);
2641 /* If the THEVALUE has contents, it is a regular string. */
2643 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2644 else if (string_print)
2645 /* Otherwise, if string_print is set, and it is not a regular
2646 string, it is a lazy string. */
2647 val_print_string (type, encoding, str_addr, len, stb, &opts);
2649 /* All other cases. */
2650 common_val_print (value, stb, 0, &opts, current_language);
2652 thevalue = ui_file_xstrdup (stb, NULL);
2654 do_cleanups (old_chain);
2659 varobj_editable_p (const struct varobj *var)
2663 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2666 type = varobj_get_value_type (var);
2668 switch (TYPE_CODE (type))
2670 case TYPE_CODE_STRUCT:
2671 case TYPE_CODE_UNION:
2672 case TYPE_CODE_ARRAY:
2673 case TYPE_CODE_FUNC:
2674 case TYPE_CODE_METHOD:
2684 /* Call VAR's value_is_changeable_p language-specific callback. */
2687 varobj_value_is_changeable_p (const struct varobj *var)
2689 return var->root->lang_ops->value_is_changeable_p (var);
2692 /* Return 1 if that varobj is floating, that is is always evaluated in the
2693 selected frame, and not bound to thread/frame. Such variable objects
2694 are created using '@' as frame specifier to -var-create. */
2696 varobj_floating_p (const struct varobj *var)
2698 return var->root->floating;
2701 /* Implement the "value_is_changeable_p" varobj callback for most
2705 varobj_default_value_is_changeable_p (const struct varobj *var)
2710 if (CPLUS_FAKE_CHILD (var))
2713 type = varobj_get_value_type (var);
2715 switch (TYPE_CODE (type))
2717 case TYPE_CODE_STRUCT:
2718 case TYPE_CODE_UNION:
2719 case TYPE_CODE_ARRAY:
2730 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2731 with an arbitrary caller supplied DATA pointer. */
2734 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2736 struct varobj_root *var_root, *var_root_next;
2738 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2740 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2742 var_root_next = var_root->next;
2744 (*func) (var_root->rootvar, data);
2748 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2749 defined on globals. It is a helper for varobj_invalidate.
2751 This function is called after changing the symbol file, in this case the
2752 pointers to "struct type" stored by the varobj are no longer valid. All
2753 varobj must be either re-evaluated, or marked as invalid here. */
2756 varobj_invalidate_iter (struct varobj *var, void *unused)
2758 /* global and floating var must be re-evaluated. */
2759 if (var->root->floating || var->root->valid_block == NULL)
2761 struct varobj *tmp_var;
2763 /* Try to create a varobj with same expression. If we succeed
2764 replace the old varobj, otherwise invalidate it. */
2765 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2767 if (tmp_var != NULL)
2769 tmp_var->obj_name = xstrdup (var->obj_name);
2770 varobj_delete (var, NULL, 0);
2771 install_variable (tmp_var);
2774 var->root->is_valid = 0;
2776 else /* locals must be invalidated. */
2777 var->root->is_valid = 0;
2780 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2781 are defined on globals.
2782 Invalidated varobjs will be always printed in_scope="invalid". */
2785 varobj_invalidate (void)
2787 all_root_varobjs (varobj_invalidate_iter, NULL);
2790 extern void _initialize_varobj (void);
2792 _initialize_varobj (void)
2794 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2796 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2798 _("Set varobj debugging."),
2799 _("Show varobj debugging."),
2800 _("When non-zero, varobj debugging is enabled."),
2801 NULL, show_varobjdebug,
2802 &setdebuglist, &showdebuglist);