1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include "exceptions.h"
21 #include "expression.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdb_regex.h"
34 #include "gdbthread.h"
36 #include "ada-varobj.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
46 /* The names of varobjs representing anonymous structs or unions. */
47 #define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48 #define ANONYMOUS_UNION_NAME _("<anonymous union>")
50 /* Non-zero if we want to see trace of varobj level stuff. */
52 unsigned int varobjdebug = 0;
54 show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
60 /* String representations of gdb's format codes. */
61 char *varobj_format_string[] =
62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
64 /* String representations of gdb's known languages. */
65 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
67 /* True if we want to allow Python-based pretty-printing. */
68 static int pretty_printing = 0;
71 varobj_enable_pretty_printing (void)
78 /* Every root variable has one of these structures saved in its
79 varobj. Members which must be free'd are noted. */
83 /* Alloc'd expression for this parent. */
84 struct expression *exp;
86 /* Block for which this expression is valid. */
87 const struct block *valid_block;
89 /* The frame for this expression. This field is set iff valid_block is
91 struct frame_id frame;
93 /* The thread ID that this varobj_root belong to. This field
94 is only valid if valid_block is not NULL.
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
102 always updated in the specific scope/thread/frame. */
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
109 /* Language info for this variable and its children. */
110 struct language_specific *lang;
112 /* The varobj for this root node. */
113 struct varobj *rootvar;
115 /* Next root variable */
116 struct varobj_root *next;
119 /* Every variable in the system has a structure of this type defined
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
125 /* Alloc'd name of the variable for this object. If this variable is a
126 child, then this name will be the child's source name.
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
139 /* Index of this variable in its parent or -1. */
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
153 /* The number of (immediate) children this variable has. */
156 /* If this object is a child, this points to its immediate parent. */
157 struct varobj *parent;
159 /* Children of this object. */
160 VEC (varobj_p) *children;
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
166 int children_requested;
168 /* Description of the root variable. Points to root variable for
170 struct varobj_root *root;
172 /* The format of the output for this object. */
173 enum varobj_display_formats format;
175 /* Was this variable updated via a varobj_set_value operation. */
178 /* Last print value. */
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
206 /* The iterator returned by the printer's 'children' method, or NULL
208 PyObject *child_iter;
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
221 struct cpstack *next;
224 /* A list of varobjs */
232 /* Private function prototypes */
234 /* Helper functions for the above subcommands. */
236 static int delete_variable (struct cpstack **, struct varobj *, int);
238 static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
241 static int install_variable (struct varobj *);
243 static void uninstall_variable (struct varobj *);
245 static struct varobj *create_child (struct varobj *, int, char *);
247 static struct varobj *
248 create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
251 /* Utility routines */
253 static struct varobj *new_variable (void);
255 static struct varobj *new_root_variable (void);
257 static void free_variable (struct varobj *var);
259 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
261 static struct type *get_type (struct varobj *var);
263 static struct type *get_value_type (struct varobj *var);
265 static struct type *get_target_type (struct type *);
267 static enum varobj_display_formats variable_default_display (struct varobj *);
269 static void cppush (struct cpstack **pstack, char *name);
271 static char *cppop (struct cpstack **pstack);
273 static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
276 static int install_new_value (struct varobj *var, struct value *value,
279 /* Language-specific routines. */
281 static enum varobj_languages variable_language (struct varobj *var);
283 static int number_of_children (struct varobj *);
285 static char *name_of_variable (struct varobj *);
287 static char *name_of_child (struct varobj *, int);
289 static struct value *value_of_root (struct varobj **var_handle, int *);
291 static struct value *value_of_child (struct varobj *parent, int index);
293 static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
296 static char *value_get_print_value (struct value *value,
297 enum varobj_display_formats format,
300 static int varobj_value_is_changeable_p (struct varobj *var);
302 static int is_root_p (struct varobj *var);
306 static struct varobj *varobj_add_child (struct varobj *var,
308 struct value *value);
310 #endif /* HAVE_PYTHON */
312 static int default_value_is_changeable_p (struct varobj *var);
314 /* C implementation */
316 static int c_number_of_children (struct varobj *var);
318 static char *c_name_of_variable (struct varobj *parent);
320 static char *c_name_of_child (struct varobj *parent, int index);
322 static char *c_path_expr_of_child (struct varobj *child);
324 static struct value *c_value_of_root (struct varobj **var_handle);
326 static struct value *c_value_of_child (struct varobj *parent, int index);
328 static struct type *c_type_of_child (struct varobj *parent, int index);
330 static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
333 /* C++ implementation */
335 static int cplus_number_of_children (struct varobj *var);
337 static void cplus_class_num_children (struct type *type, int children[3]);
339 static char *cplus_name_of_variable (struct varobj *parent);
341 static char *cplus_name_of_child (struct varobj *parent, int index);
343 static char *cplus_path_expr_of_child (struct varobj *child);
345 static struct value *cplus_value_of_root (struct varobj **var_handle);
347 static struct value *cplus_value_of_child (struct varobj *parent, int index);
349 static struct type *cplus_type_of_child (struct varobj *parent, int index);
351 static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
354 /* Java implementation */
356 static int java_number_of_children (struct varobj *var);
358 static char *java_name_of_variable (struct varobj *parent);
360 static char *java_name_of_child (struct varobj *parent, int index);
362 static char *java_path_expr_of_child (struct varobj *child);
364 static struct value *java_value_of_root (struct varobj **var_handle);
366 static struct value *java_value_of_child (struct varobj *parent, int index);
368 static struct type *java_type_of_child (struct varobj *parent, int index);
370 static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
373 /* Ada implementation */
375 static int ada_number_of_children (struct varobj *var);
377 static char *ada_name_of_variable (struct varobj *parent);
379 static char *ada_name_of_child (struct varobj *parent, int index);
381 static char *ada_path_expr_of_child (struct varobj *child);
383 static struct value *ada_value_of_root (struct varobj **var_handle);
385 static struct value *ada_value_of_child (struct varobj *parent, int index);
387 static struct type *ada_type_of_child (struct varobj *parent, int index);
389 static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
392 static int ada_value_is_changeable_p (struct varobj *var);
394 static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
397 /* The language specific vector */
399 struct language_specific
402 /* The language of this variable. */
403 enum varobj_languages language;
405 /* The number of children of PARENT. */
406 int (*number_of_children) (struct varobj * parent);
408 /* The name (expression) of a root varobj. */
409 char *(*name_of_variable) (struct varobj * parent);
411 /* The name of the INDEX'th child of PARENT. */
412 char *(*name_of_child) (struct varobj * parent, int index);
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
418 /* The ``struct value *'' of the root variable ROOT. */
419 struct value *(*value_of_root) (struct varobj ** root_handle);
421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
422 struct value *(*value_of_child) (struct varobj * parent, int index);
424 /* The type of the INDEX'th child of PARENT. */
425 struct type *(*type_of_child) (struct varobj * parent, int index);
427 /* The current value of VAR. */
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
441 /* Return nonzero if the type of VAR has mutated.
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
457 /* Array of known source language routines. */
458 static struct language_specific languages[vlang_end] = {
459 /* Unknown (try treating as C). */
462 c_number_of_children,
465 c_path_expr_of_child,
470 default_value_is_changeable_p,
471 NULL /* value_has_mutated */}
476 c_number_of_children,
479 c_path_expr_of_child,
484 default_value_is_changeable_p,
485 NULL /* value_has_mutated */}
490 cplus_number_of_children,
491 cplus_name_of_variable,
493 cplus_path_expr_of_child,
495 cplus_value_of_child,
497 cplus_value_of_variable,
498 default_value_is_changeable_p,
499 NULL /* value_has_mutated */}
504 java_number_of_children,
505 java_name_of_variable,
507 java_path_expr_of_child,
511 java_value_of_variable,
512 default_value_is_changeable_p,
513 NULL /* value_has_mutated */},
517 ada_number_of_children,
518 ada_name_of_variable,
520 ada_path_expr_of_child,
524 ada_value_of_variable,
525 ada_value_is_changeable_p,
526 ada_value_has_mutated}
529 /* A little convenience enum for dealing with C++/Java. */
532 v_public = 0, v_private, v_protected
537 /* Mappings of varobj_display_formats enums to gdb's format codes. */
538 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
540 /* Header of the list of root variable objects. */
541 static struct varobj_root *rootlist;
543 /* Prime number indicating the number of buckets in the hash table. */
544 /* A prime large enough to avoid too many colisions. */
545 #define VAROBJ_TABLE_SIZE 227
547 /* Pointer to the varobj hash table (built at run time). */
548 static struct vlist **varobj_table;
550 /* Is the variable X one of our "fake" children? */
551 #define CPLUS_FAKE_CHILD(x) \
552 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
555 /* API Implementation */
557 is_root_p (struct varobj *var)
559 return (var->root->rootvar == var);
563 /* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
565 static struct cleanup *
566 varobj_ensure_python_env (struct varobj *var)
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
573 /* Creates a varobj (not its children). */
575 /* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
578 static struct frame_info *
579 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
581 struct frame_info *frame = NULL;
583 if (frame_addr == (CORE_ADDR) 0)
586 for (frame = get_current_frame ();
588 frame = get_prev_frame (frame))
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
600 if (frame_base == frame_addr)
608 varobj_create (char *objname,
609 char *expression, CORE_ADDR frame, enum varobj_type type)
612 struct cleanup *old_chain;
614 /* Fill out a varobj structure for the (root) variable being constructed. */
615 var = new_root_variable ();
616 old_chain = make_cleanup_free_variable (var);
618 if (expression != NULL)
620 struct frame_info *fi;
621 struct frame_id old_id = null_frame_id;
624 enum varobj_languages lang;
625 struct value *value = NULL;
626 volatile struct gdb_exception except;
629 /* Parse and evaluate the expression, filling in as much of the
630 variable's data as possible. */
632 if (has_stack_frames ())
634 /* Allow creator to specify context of variable. */
635 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
636 fi = get_selected_frame (NULL);
638 /* FIXME: cagney/2002-11-23: This code should be doing a
639 lookup using the frame ID and not just the frame's
640 ``address''. This, of course, means an interface
641 change. However, with out that interface change ISAs,
642 such as the ia64 with its two stacks, won't work.
643 Similar goes for the case where there is a frameless
645 fi = find_frame_addr_in_frame_chain (frame);
650 /* frame = -2 means always use selected frame. */
651 if (type == USE_SELECTED_FRAME)
652 var->root->floating = 1;
658 block = get_frame_block (fi, 0);
659 pc = get_frame_pc (fi);
663 innermost_block = NULL;
664 /* Wrap the call to parse expression, so we can
665 return a sensible error. */
666 TRY_CATCH (except, RETURN_MASK_ERROR)
668 var->root->exp = parse_exp_1 (&p, pc, block, 0);
671 if (except.reason < 0)
673 do_cleanups (old_chain);
677 /* Don't allow variables to be created for types. */
678 if (var->root->exp->elts[0].opcode == OP_TYPE
679 || var->root->exp->elts[0].opcode == OP_TYPEOF
680 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
682 do_cleanups (old_chain);
683 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
684 " as an expression.\n");
688 var->format = variable_default_display (var);
689 var->root->valid_block = innermost_block;
690 var->name = xstrdup (expression);
691 /* For a root var, the name and the expr are the same. */
692 var->path_expr = xstrdup (expression);
694 /* When the frame is different from the current frame,
695 we must select the appropriate frame before parsing
696 the expression, otherwise the value will not be current.
697 Since select_frame is so benign, just call it for all cases. */
700 /* User could specify explicit FRAME-ADDR which was not found but
701 EXPRESSION is frame specific and we would not be able to evaluate
702 it correctly next time. With VALID_BLOCK set we must also set
703 FRAME and THREAD_ID. */
705 error (_("Failed to find the specified frame"));
707 var->root->frame = get_frame_id (fi);
708 var->root->thread_id = pid_to_thread_id (inferior_ptid);
709 old_id = get_frame_id (get_selected_frame (NULL));
713 /* We definitely need to catch errors here.
714 If evaluate_expression succeeds we got the value we wanted.
715 But if it fails, we still go on with a call to evaluate_type(). */
716 TRY_CATCH (except, RETURN_MASK_ERROR)
718 value = evaluate_expression (var->root->exp);
721 if (except.reason < 0)
723 /* Error getting the value. Try to at least get the
725 struct value *type_only_value = evaluate_type (var->root->exp);
727 var->type = value_type (type_only_value);
731 int real_type_found = 0;
733 var->type = value_actual_type (value, 0, &real_type_found);
735 value = value_cast (var->type, value);
738 /* Set language info */
739 lang = variable_language (var);
740 var->root->lang = &languages[lang];
742 install_new_value (var, value, 1 /* Initial assignment */);
744 /* Set ourselves as our root. */
745 var->root->rootvar = var;
747 /* Reset the selected frame. */
748 if (frame_id_p (old_id))
749 select_frame (frame_find_by_id (old_id));
752 /* If the variable object name is null, that means this
753 is a temporary variable, so don't install it. */
755 if ((var != NULL) && (objname != NULL))
757 var->obj_name = xstrdup (objname);
759 /* If a varobj name is duplicated, the install will fail so
761 if (!install_variable (var))
763 do_cleanups (old_chain);
768 discard_cleanups (old_chain);
772 /* Generates an unique name that can be used for a varobj. */
775 varobj_gen_name (void)
780 /* Generate a name for this object. */
782 obj_name = xstrprintf ("var%d", id);
787 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
788 error if OBJNAME cannot be found. */
791 varobj_get_handle (char *objname)
795 unsigned int index = 0;
798 for (chp = objname; *chp; chp++)
800 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
803 cv = *(varobj_table + index);
804 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
808 error (_("Variable object not found"));
813 /* Given the handle, return the name of the object. */
816 varobj_get_objname (struct varobj *var)
818 return var->obj_name;
821 /* Given the handle, return the expression represented by the object. */
824 varobj_get_expression (struct varobj *var)
826 return name_of_variable (var);
829 /* Deletes a varobj and all its children if only_children == 0,
830 otherwise deletes only the children; returns a malloc'ed list of
831 all the (malloc'ed) names of the variables that have been deleted
832 (NULL terminated). */
835 varobj_delete (struct varobj *var, char ***dellist, int only_children)
839 struct cpstack *result = NULL;
842 /* Initialize a stack for temporary results. */
843 cppush (&result, NULL);
846 /* Delete only the variable children. */
847 delcount = delete_variable (&result, var, 1 /* only the children */ );
849 /* Delete the variable and all its children. */
850 delcount = delete_variable (&result, var, 0 /* parent+children */ );
852 /* We may have been asked to return a list of what has been deleted. */
855 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
859 *cp = cppop (&result);
860 while ((*cp != NULL) && (mycount > 0))
864 *cp = cppop (&result);
867 if (mycount || (*cp != NULL))
868 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
877 /* Convenience function for varobj_set_visualizer. Instantiate a
878 pretty-printer for a given value. */
880 instantiate_pretty_printer (PyObject *constructor, struct value *value)
882 PyObject *val_obj = NULL;
885 val_obj = value_to_value_object (value);
889 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
896 /* Set/Get variable object display format. */
898 enum varobj_display_formats
899 varobj_set_display_format (struct varobj *var,
900 enum varobj_display_formats format)
907 case FORMAT_HEXADECIMAL:
909 var->format = format;
913 var->format = variable_default_display (var);
916 if (varobj_value_is_changeable_p (var)
917 && var->value && !value_lazy (var->value))
919 xfree (var->print_value);
920 var->print_value = value_get_print_value (var->value, var->format, var);
926 enum varobj_display_formats
927 varobj_get_display_format (struct varobj *var)
933 varobj_get_display_hint (struct varobj *var)
938 struct cleanup *back_to;
940 if (!gdb_python_initialized)
943 back_to = varobj_ensure_python_env (var);
945 if (var->pretty_printer)
946 result = gdbpy_get_display_hint (var->pretty_printer);
948 do_cleanups (back_to);
954 /* Return true if the varobj has items after TO, false otherwise. */
957 varobj_has_more (struct varobj *var, int to)
959 if (VEC_length (varobj_p, var->children) > to)
961 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
962 && var->saved_item != NULL);
965 /* If the variable object is bound to a specific thread, that
966 is its evaluation can always be done in context of a frame
967 inside that thread, returns GDB id of the thread -- which
968 is always positive. Otherwise, returns -1. */
970 varobj_get_thread_id (struct varobj *var)
972 if (var->root->valid_block && var->root->thread_id > 0)
973 return var->root->thread_id;
979 varobj_set_frozen (struct varobj *var, int frozen)
981 /* When a variable is unfrozen, we don't fetch its value.
982 The 'not_fetched' flag remains set, so next -var-update
985 We don't fetch the value, because for structures the client
986 should do -var-update anyway. It would be bad to have different
987 client-size logic for structure and other types. */
988 var->frozen = frozen;
992 varobj_get_frozen (struct varobj *var)
997 /* A helper function that restricts a range to what is actually
998 available in a VEC. This follows the usual rules for the meaning
999 of FROM and TO -- if either is negative, the entire range is
1003 restrict_range (VEC (varobj_p) *children, int *from, int *to)
1005 if (*from < 0 || *to < 0)
1008 *to = VEC_length (varobj_p, children);
1012 if (*from > VEC_length (varobj_p, children))
1013 *from = VEC_length (varobj_p, children);
1014 if (*to > VEC_length (varobj_p, children))
1015 *to = VEC_length (varobj_p, children);
1023 /* A helper for update_dynamic_varobj_children that installs a new
1024 child when needed. */
1027 install_dynamic_child (struct varobj *var,
1028 VEC (varobj_p) **changed,
1029 VEC (varobj_p) **type_changed,
1030 VEC (varobj_p) **new,
1031 VEC (varobj_p) **unchanged,
1035 struct value *value)
1037 if (VEC_length (varobj_p, var->children) < index + 1)
1039 /* There's no child yet. */
1040 struct varobj *child = varobj_add_child (var, name, value);
1044 VEC_safe_push (varobj_p, *new, child);
1050 varobj_p existing = VEC_index (varobj_p, var->children, index);
1052 int type_updated = update_type_if_necessary (existing, value);
1056 VEC_safe_push (varobj_p, *type_changed, existing);
1058 if (install_new_value (existing, value, 0))
1060 if (!type_updated && changed)
1061 VEC_safe_push (varobj_p, *changed, existing);
1063 else if (!type_updated && unchanged)
1064 VEC_safe_push (varobj_p, *unchanged, existing);
1069 dynamic_varobj_has_child_method (struct varobj *var)
1071 struct cleanup *back_to;
1072 PyObject *printer = var->pretty_printer;
1075 if (!gdb_python_initialized)
1078 back_to = varobj_ensure_python_env (var);
1079 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1080 do_cleanups (back_to);
1087 update_dynamic_varobj_children (struct varobj *var,
1088 VEC (varobj_p) **changed,
1089 VEC (varobj_p) **type_changed,
1090 VEC (varobj_p) **new,
1091 VEC (varobj_p) **unchanged,
1093 int update_children,
1098 struct cleanup *back_to;
1101 PyObject *printer = var->pretty_printer;
1103 if (!gdb_python_initialized)
1106 back_to = varobj_ensure_python_env (var);
1109 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1111 do_cleanups (back_to);
1115 if (update_children || !var->child_iter)
1117 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1122 gdbpy_print_stack ();
1123 error (_("Null value returned for children"));
1126 make_cleanup_py_decref (children);
1128 Py_XDECREF (var->child_iter);
1129 var->child_iter = PyObject_GetIter (children);
1130 if (!var->child_iter)
1132 gdbpy_print_stack ();
1133 error (_("Could not get children iterator"));
1136 Py_XDECREF (var->saved_item);
1137 var->saved_item = NULL;
1142 i = VEC_length (varobj_p, var->children);
1144 /* We ask for one extra child, so that MI can report whether there
1145 are more children. */
1146 for (; to < 0 || i < to + 1; ++i)
1151 /* See if there was a leftover from last time. */
1152 if (var->saved_item)
1154 item = var->saved_item;
1155 var->saved_item = NULL;
1158 item = PyIter_Next (var->child_iter);
1162 /* Normal end of iteration. */
1163 if (!PyErr_Occurred ())
1166 /* If we got a memory error, just use the text as the
1168 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1170 PyObject *type, *value, *trace;
1171 char *name_str, *value_str;
1173 PyErr_Fetch (&type, &value, &trace);
1174 value_str = gdbpy_exception_to_string (type, value);
1180 gdbpy_print_stack ();
1184 name_str = xstrprintf ("<error at %d>", i);
1185 item = Py_BuildValue ("(ss)", name_str, value_str);
1190 gdbpy_print_stack ();
1198 /* Any other kind of error. */
1199 gdbpy_print_stack ();
1204 /* We don't want to push the extra child on any report list. */
1205 if (to < 0 || i < to)
1210 struct cleanup *inner;
1211 int can_mention = from < 0 || i >= from;
1213 inner = make_cleanup_py_decref (item);
1215 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1217 gdbpy_print_stack ();
1218 error (_("Invalid item from the child list"));
1221 v = convert_value_from_python (py_v);
1223 gdbpy_print_stack ();
1224 install_dynamic_child (var, can_mention ? changed : NULL,
1225 can_mention ? type_changed : NULL,
1226 can_mention ? new : NULL,
1227 can_mention ? unchanged : NULL,
1228 can_mention ? cchanged : NULL, i, name, v);
1229 do_cleanups (inner);
1233 Py_XDECREF (var->saved_item);
1234 var->saved_item = item;
1236 /* We want to truncate the child list just before this
1245 if (i < VEC_length (varobj_p, var->children))
1250 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1251 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1252 VEC_truncate (varobj_p, var->children, i);
1255 /* If there are fewer children than requested, note that the list of
1256 children changed. */
1257 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1260 var->num_children = VEC_length (varobj_p, var->children);
1262 do_cleanups (back_to);
1266 gdb_assert_not_reached ("should never be called if Python is not enabled");
1271 varobj_get_num_children (struct varobj *var)
1273 if (var->num_children == -1)
1275 if (var->pretty_printer)
1279 /* If we have a dynamic varobj, don't report -1 children.
1280 So, try to fetch some children first. */
1281 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
1285 var->num_children = number_of_children (var);
1288 return var->num_children >= 0 ? var->num_children : 0;
1291 /* Creates a list of the immediate children of a variable object;
1292 the return code is the number of such children or -1 on error. */
1295 varobj_list_children (struct varobj *var, int *from, int *to)
1298 int i, children_changed;
1300 var->children_requested = 1;
1302 if (var->pretty_printer)
1304 /* This, in theory, can result in the number of children changing without
1305 frontend noticing. But well, calling -var-list-children on the same
1306 varobj twice is not something a sane frontend would do. */
1307 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1308 &children_changed, 0, 0, *to);
1309 restrict_range (var->children, from, to);
1310 return var->children;
1313 if (var->num_children == -1)
1314 var->num_children = number_of_children (var);
1316 /* If that failed, give up. */
1317 if (var->num_children == -1)
1318 return var->children;
1320 /* If we're called when the list of children is not yet initialized,
1321 allocate enough elements in it. */
1322 while (VEC_length (varobj_p, var->children) < var->num_children)
1323 VEC_safe_push (varobj_p, var->children, NULL);
1325 for (i = 0; i < var->num_children; i++)
1327 varobj_p existing = VEC_index (varobj_p, var->children, i);
1329 if (existing == NULL)
1331 /* Either it's the first call to varobj_list_children for
1332 this variable object, and the child was never created,
1333 or it was explicitly deleted by the client. */
1334 name = name_of_child (var, i);
1335 existing = create_child (var, i, name);
1336 VEC_replace (varobj_p, var->children, i, existing);
1340 restrict_range (var->children, from, to);
1341 return var->children;
1346 static struct varobj *
1347 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1349 varobj_p v = create_child_with_value (var,
1350 VEC_length (varobj_p, var->children),
1353 VEC_safe_push (varobj_p, var->children, v);
1357 #endif /* HAVE_PYTHON */
1359 /* Obtain the type of an object Variable as a string similar to the one gdb
1360 prints on the console. */
1363 varobj_get_type (struct varobj *var)
1365 /* For the "fake" variables, do not return a type. (It's type is
1367 Do not return a type for invalid variables as well. */
1368 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1371 return type_to_string (var->type);
1374 /* Obtain the type of an object variable. */
1377 varobj_get_gdb_type (struct varobj *var)
1382 /* Is VAR a path expression parent, i.e., can it be used to construct
1383 a valid path expression? */
1386 is_path_expr_parent (struct varobj *var)
1390 /* "Fake" children are not path_expr parents. */
1391 if (CPLUS_FAKE_CHILD (var))
1394 type = get_value_type (var);
1396 /* Anonymous unions and structs are also not path_expr parents. */
1397 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1398 || TYPE_CODE (type) == TYPE_CODE_UNION)
1399 && TYPE_NAME (type) == NULL);
1402 /* Return the path expression parent for VAR. */
1404 static struct varobj *
1405 get_path_expr_parent (struct varobj *var)
1407 struct varobj *parent = var;
1409 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1410 parent = parent->parent;
1415 /* Return a pointer to the full rooted expression of varobj VAR.
1416 If it has not been computed yet, compute it. */
1418 varobj_get_path_expr (struct varobj *var)
1420 if (var->path_expr != NULL)
1421 return var->path_expr;
1424 /* For root varobjs, we initialize path_expr
1425 when creating varobj, so here it should be
1427 gdb_assert (!is_root_p (var));
1428 return (*var->root->lang->path_expr_of_child) (var);
1432 enum varobj_languages
1433 varobj_get_language (struct varobj *var)
1435 return variable_language (var);
1439 varobj_get_attributes (struct varobj *var)
1443 if (varobj_editable_p (var))
1444 /* FIXME: define masks for attributes. */
1445 attributes |= 0x00000001; /* Editable */
1451 varobj_pretty_printed_p (struct varobj *var)
1453 return var->pretty_printer != NULL;
1457 varobj_get_formatted_value (struct varobj *var,
1458 enum varobj_display_formats format)
1460 return my_value_of_variable (var, format);
1464 varobj_get_value (struct varobj *var)
1466 return my_value_of_variable (var, var->format);
1469 /* Set the value of an object variable (if it is editable) to the
1470 value of the given expression. */
1471 /* Note: Invokes functions that can call error(). */
1474 varobj_set_value (struct varobj *var, char *expression)
1476 struct value *val = NULL; /* Initialize to keep gcc happy. */
1477 /* The argument "expression" contains the variable's new value.
1478 We need to first construct a legal expression for this -- ugh! */
1479 /* Does this cover all the bases? */
1480 struct expression *exp;
1481 struct value *value = NULL; /* Initialize to keep gcc happy. */
1482 int saved_input_radix = input_radix;
1483 const char *s = expression;
1484 volatile struct gdb_exception except;
1486 gdb_assert (varobj_editable_p (var));
1488 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1489 exp = parse_exp_1 (&s, 0, 0, 0);
1490 TRY_CATCH (except, RETURN_MASK_ERROR)
1492 value = evaluate_expression (exp);
1495 if (except.reason < 0)
1497 /* We cannot proceed without a valid expression. */
1502 /* All types that are editable must also be changeable. */
1503 gdb_assert (varobj_value_is_changeable_p (var));
1505 /* The value of a changeable variable object must not be lazy. */
1506 gdb_assert (!value_lazy (var->value));
1508 /* Need to coerce the input. We want to check if the
1509 value of the variable object will be different
1510 after assignment, and the first thing value_assign
1511 does is coerce the input.
1512 For example, if we are assigning an array to a pointer variable we
1513 should compare the pointer with the array's address, not with the
1515 value = coerce_array (value);
1517 /* The new value may be lazy. value_assign, or
1518 rather value_contents, will take care of this. */
1519 TRY_CATCH (except, RETURN_MASK_ERROR)
1521 val = value_assign (var->value, value);
1524 if (except.reason < 0)
1527 /* If the value has changed, record it, so that next -var-update can
1528 report this change. If a variable had a value of '1', we've set it
1529 to '333' and then set again to '1', when -var-update will report this
1530 variable as changed -- because the first assignment has set the
1531 'updated' flag. There's no need to optimize that, because return value
1532 of -var-update should be considered an approximation. */
1533 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1534 input_radix = saved_input_radix;
1540 /* A helper function to install a constructor function and visualizer
1544 install_visualizer (struct varobj *var, PyObject *constructor,
1545 PyObject *visualizer)
1547 Py_XDECREF (var->constructor);
1548 var->constructor = constructor;
1550 Py_XDECREF (var->pretty_printer);
1551 var->pretty_printer = visualizer;
1553 Py_XDECREF (var->child_iter);
1554 var->child_iter = NULL;
1557 /* Install the default visualizer for VAR. */
1560 install_default_visualizer (struct varobj *var)
1562 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1563 if (CPLUS_FAKE_CHILD (var))
1566 if (pretty_printing)
1568 PyObject *pretty_printer = NULL;
1572 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1573 if (! pretty_printer)
1575 gdbpy_print_stack ();
1576 error (_("Cannot instantiate printer for default visualizer"));
1580 if (pretty_printer == Py_None)
1582 Py_DECREF (pretty_printer);
1583 pretty_printer = NULL;
1586 install_visualizer (var, NULL, pretty_printer);
1590 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1591 make a new object. */
1594 construct_visualizer (struct varobj *var, PyObject *constructor)
1596 PyObject *pretty_printer;
1598 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1599 if (CPLUS_FAKE_CHILD (var))
1602 Py_INCREF (constructor);
1603 if (constructor == Py_None)
1604 pretty_printer = NULL;
1607 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1608 if (! pretty_printer)
1610 gdbpy_print_stack ();
1611 Py_DECREF (constructor);
1612 constructor = Py_None;
1613 Py_INCREF (constructor);
1616 if (pretty_printer == Py_None)
1618 Py_DECREF (pretty_printer);
1619 pretty_printer = NULL;
1623 install_visualizer (var, constructor, pretty_printer);
1626 #endif /* HAVE_PYTHON */
1628 /* A helper function for install_new_value. This creates and installs
1629 a visualizer for VAR, if appropriate. */
1632 install_new_value_visualizer (struct varobj *var)
1635 /* If the constructor is None, then we want the raw value. If VAR
1636 does not have a value, just skip this. */
1637 if (!gdb_python_initialized)
1640 if (var->constructor != Py_None && var->value)
1642 struct cleanup *cleanup;
1644 cleanup = varobj_ensure_python_env (var);
1646 if (!var->constructor)
1647 install_default_visualizer (var);
1649 construct_visualizer (var, var->constructor);
1651 do_cleanups (cleanup);
1658 /* When using RTTI to determine variable type it may be changed in runtime when
1659 the variable value is changed. This function checks whether type of varobj
1660 VAR will change when a new value NEW_VALUE is assigned and if it is so
1661 updates the type of VAR. */
1664 update_type_if_necessary (struct varobj *var, struct value *new_value)
1668 struct value_print_options opts;
1670 get_user_print_options (&opts);
1671 if (opts.objectprint)
1673 struct type *new_type;
1674 char *curr_type_str, *new_type_str;
1676 new_type = value_actual_type (new_value, 0, 0);
1677 new_type_str = type_to_string (new_type);
1678 curr_type_str = varobj_get_type (var);
1679 if (strcmp (curr_type_str, new_type_str) != 0)
1681 var->type = new_type;
1683 /* This information may be not valid for a new type. */
1684 varobj_delete (var, NULL, 1);
1685 VEC_free (varobj_p, var->children);
1686 var->num_children = -1;
1695 /* Assign a new value to a variable object. If INITIAL is non-zero,
1696 this is the first assignement after the variable object was just
1697 created, or changed type. In that case, just assign the value
1699 Otherwise, assign the new value, and return 1 if the value is
1700 different from the current one, 0 otherwise. The comparison is
1701 done on textual representation of value. Therefore, some types
1702 need not be compared. E.g. for structures the reported value is
1703 always "{...}", so no comparison is necessary here. If the old
1704 value was NULL and new one is not, or vice versa, we always return 1.
1706 The VALUE parameter should not be released -- the function will
1707 take care of releasing it when needed. */
1709 install_new_value (struct varobj *var, struct value *value, int initial)
1714 int intentionally_not_fetched = 0;
1715 char *print_value = NULL;
1717 /* We need to know the varobj's type to decide if the value should
1718 be fetched or not. C++ fake children (public/protected/private)
1719 don't have a type. */
1720 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1721 changeable = varobj_value_is_changeable_p (var);
1723 /* If the type has custom visualizer, we consider it to be always
1724 changeable. FIXME: need to make sure this behaviour will not
1725 mess up read-sensitive values. */
1726 if (var->pretty_printer)
1729 need_to_fetch = changeable;
1731 /* We are not interested in the address of references, and given
1732 that in C++ a reference is not rebindable, it cannot
1733 meaningfully change. So, get hold of the real value. */
1735 value = coerce_ref (value);
1737 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1738 /* For unions, we need to fetch the value implicitly because
1739 of implementation of union member fetch. When gdb
1740 creates a value for a field and the value of the enclosing
1741 structure is not lazy, it immediately copies the necessary
1742 bytes from the enclosing values. If the enclosing value is
1743 lazy, the call to value_fetch_lazy on the field will read
1744 the data from memory. For unions, that means we'll read the
1745 same memory more than once, which is not desirable. So
1749 /* The new value might be lazy. If the type is changeable,
1750 that is we'll be comparing values of this type, fetch the
1751 value now. Otherwise, on the next update the old value
1752 will be lazy, which means we've lost that old value. */
1753 if (need_to_fetch && value && value_lazy (value))
1755 struct varobj *parent = var->parent;
1756 int frozen = var->frozen;
1758 for (; !frozen && parent; parent = parent->parent)
1759 frozen |= parent->frozen;
1761 if (frozen && initial)
1763 /* For variables that are frozen, or are children of frozen
1764 variables, we don't do fetch on initial assignment.
1765 For non-initial assignemnt we do the fetch, since it means we're
1766 explicitly asked to compare the new value with the old one. */
1767 intentionally_not_fetched = 1;
1771 volatile struct gdb_exception except;
1773 TRY_CATCH (except, RETURN_MASK_ERROR)
1775 value_fetch_lazy (value);
1778 if (except.reason < 0)
1780 /* Set the value to NULL, so that for the next -var-update,
1781 we don't try to compare the new value with this value,
1782 that we couldn't even read. */
1788 /* Get a reference now, before possibly passing it to any Python
1789 code that might release it. */
1791 value_incref (value);
1793 /* Below, we'll be comparing string rendering of old and new
1794 values. Don't get string rendering if the value is
1795 lazy -- if it is, the code above has decided that the value
1796 should not be fetched. */
1797 if (value && !value_lazy (value) && !var->pretty_printer)
1798 print_value = value_get_print_value (value, var->format, var);
1800 /* If the type is changeable, compare the old and the new values.
1801 If this is the initial assignment, we don't have any old value
1803 if (!initial && changeable)
1805 /* If the value of the varobj was changed by -var-set-value,
1806 then the value in the varobj and in the target is the same.
1807 However, that value is different from the value that the
1808 varobj had after the previous -var-update. So need to the
1809 varobj as changed. */
1814 else if (! var->pretty_printer)
1816 /* Try to compare the values. That requires that both
1817 values are non-lazy. */
1818 if (var->not_fetched && value_lazy (var->value))
1820 /* This is a frozen varobj and the value was never read.
1821 Presumably, UI shows some "never read" indicator.
1822 Now that we've fetched the real value, we need to report
1823 this varobj as changed so that UI can show the real
1827 else if (var->value == NULL && value == NULL)
1830 else if (var->value == NULL || value == NULL)
1836 gdb_assert (!value_lazy (var->value));
1837 gdb_assert (!value_lazy (value));
1839 gdb_assert (var->print_value != NULL && print_value != NULL);
1840 if (strcmp (var->print_value, print_value) != 0)
1846 if (!initial && !changeable)
1848 /* For values that are not changeable, we don't compare the values.
1849 However, we want to notice if a value was not NULL and now is NULL,
1850 or vise versa, so that we report when top-level varobjs come in scope
1851 and leave the scope. */
1852 changed = (var->value != NULL) != (value != NULL);
1855 /* We must always keep the new value, since children depend on it. */
1856 if (var->value != NULL && var->value != value)
1857 value_free (var->value);
1859 if (value && value_lazy (value) && intentionally_not_fetched)
1860 var->not_fetched = 1;
1862 var->not_fetched = 0;
1865 install_new_value_visualizer (var);
1867 /* If we installed a pretty-printer, re-compare the printed version
1868 to see if the variable changed. */
1869 if (var->pretty_printer)
1871 xfree (print_value);
1872 print_value = value_get_print_value (var->value, var->format, var);
1873 if ((var->print_value == NULL && print_value != NULL)
1874 || (var->print_value != NULL && print_value == NULL)
1875 || (var->print_value != NULL && print_value != NULL
1876 && strcmp (var->print_value, print_value) != 0))
1879 if (var->print_value)
1880 xfree (var->print_value);
1881 var->print_value = print_value;
1883 gdb_assert (!var->value || value_type (var->value));
1888 /* Return the requested range for a varobj. VAR is the varobj. FROM
1889 and TO are out parameters; *FROM and *TO will be set to the
1890 selected sub-range of VAR. If no range was selected using
1891 -var-set-update-range, then both will be -1. */
1893 varobj_get_child_range (struct varobj *var, int *from, int *to)
1899 /* Set the selected sub-range of children of VAR to start at index
1900 FROM and end at index TO. If either FROM or TO is less than zero,
1901 this is interpreted as a request for all children. */
1903 varobj_set_child_range (struct varobj *var, int from, int to)
1910 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1913 PyObject *mainmod, *globals, *constructor;
1914 struct cleanup *back_to;
1916 if (!gdb_python_initialized)
1919 back_to = varobj_ensure_python_env (var);
1921 mainmod = PyImport_AddModule ("__main__");
1922 globals = PyModule_GetDict (mainmod);
1923 Py_INCREF (globals);
1924 make_cleanup_py_decref (globals);
1926 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1930 gdbpy_print_stack ();
1931 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1934 construct_visualizer (var, constructor);
1935 Py_XDECREF (constructor);
1937 /* If there are any children now, wipe them. */
1938 varobj_delete (var, NULL, 1 /* children only */);
1939 var->num_children = -1;
1941 do_cleanups (back_to);
1943 error (_("Python support required"));
1947 /* If NEW_VALUE is the new value of the given varobj (var), return
1948 non-zero if var has mutated. In other words, if the type of
1949 the new value is different from the type of the varobj's old
1952 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1955 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1956 struct type *new_type)
1958 /* If we haven't previously computed the number of children in var,
1959 it does not matter from the front-end's perspective whether
1960 the type has mutated or not. For all intents and purposes,
1961 it has not mutated. */
1962 if (var->num_children < 0)
1965 if (var->root->lang->value_has_mutated)
1966 return var->root->lang->value_has_mutated (var, new_value, new_type);
1971 /* Update the values for a variable and its children. This is a
1972 two-pronged attack. First, re-parse the value for the root's
1973 expression to see if it's changed. Then go all the way
1974 through its children, reconstructing them and noting if they've
1977 The EXPLICIT parameter specifies if this call is result
1978 of MI request to update this specific variable, or
1979 result of implicit -var-update *. For implicit request, we don't
1980 update frozen variables.
1982 NOTE: This function may delete the caller's varobj. If it
1983 returns TYPE_CHANGED, then it has done this and VARP will be modified
1984 to point to the new varobj. */
1986 VEC(varobj_update_result) *
1987 varobj_update (struct varobj **varp, int explicit)
1989 int type_changed = 0;
1992 VEC (varobj_update_result) *stack = NULL;
1993 VEC (varobj_update_result) *result = NULL;
1995 /* Frozen means frozen -- we don't check for any change in
1996 this varobj, including its going out of scope, or
1997 changing type. One use case for frozen varobjs is
1998 retaining previously evaluated expressions, and we don't
1999 want them to be reevaluated at all. */
2000 if (!explicit && (*varp)->frozen)
2003 if (!(*varp)->root->is_valid)
2005 varobj_update_result r = {0};
2008 r.status = VAROBJ_INVALID;
2009 VEC_safe_push (varobj_update_result, result, &r);
2013 if ((*varp)->root->rootvar == *varp)
2015 varobj_update_result r = {0};
2018 r.status = VAROBJ_IN_SCOPE;
2020 /* Update the root variable. value_of_root can return NULL
2021 if the variable is no longer around, i.e. we stepped out of
2022 the frame in which a local existed. We are letting the
2023 value_of_root variable dispose of the varobj if the type
2025 new = value_of_root (varp, &type_changed);
2026 if (update_type_if_necessary(*varp, new))
2029 r.type_changed = type_changed;
2030 if (install_new_value ((*varp), new, type_changed))
2034 r.status = VAROBJ_NOT_IN_SCOPE;
2035 r.value_installed = 1;
2037 if (r.status == VAROBJ_NOT_IN_SCOPE)
2039 if (r.type_changed || r.changed)
2040 VEC_safe_push (varobj_update_result, result, &r);
2044 VEC_safe_push (varobj_update_result, stack, &r);
2048 varobj_update_result r = {0};
2051 VEC_safe_push (varobj_update_result, stack, &r);
2054 /* Walk through the children, reconstructing them all. */
2055 while (!VEC_empty (varobj_update_result, stack))
2057 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2058 struct varobj *v = r.varobj;
2060 VEC_pop (varobj_update_result, stack);
2062 /* Update this variable, unless it's a root, which is already
2064 if (!r.value_installed)
2066 struct type *new_type;
2068 new = value_of_child (v->parent, v->index);
2069 if (update_type_if_necessary(v, new))
2072 new_type = value_type (new);
2074 new_type = v->root->lang->type_of_child (v->parent, v->index);
2076 if (varobj_value_has_mutated (v, new, new_type))
2078 /* The children are no longer valid; delete them now.
2079 Report the fact that its type changed as well. */
2080 varobj_delete (v, NULL, 1 /* only_children */);
2081 v->num_children = -1;
2088 if (install_new_value (v, new, r.type_changed))
2095 /* We probably should not get children of a varobj that has a
2096 pretty-printer, but for which -var-list-children was never
2098 if (v->pretty_printer)
2100 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2101 VEC (varobj_p) *new = 0;
2102 int i, children_changed = 0;
2107 if (!v->children_requested)
2111 /* If we initially did not have potential children, but
2112 now we do, consider the varobj as changed.
2113 Otherwise, if children were never requested, consider
2114 it as unchanged -- presumably, such varobj is not yet
2115 expanded in the UI, so we need not bother getting
2117 if (!varobj_has_more (v, 0))
2119 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
2121 if (varobj_has_more (v, 0))
2126 VEC_safe_push (varobj_update_result, result, &r);
2131 /* If update_dynamic_varobj_children returns 0, then we have
2132 a non-conforming pretty-printer, so we skip it. */
2133 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2134 &unchanged, &children_changed, 1,
2137 if (children_changed || new)
2139 r.children_changed = 1;
2142 /* Push in reverse order so that the first child is
2143 popped from the work stack first, and so will be
2144 added to result first. This does not affect
2145 correctness, just "nicer". */
2146 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2148 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2149 varobj_update_result r = {0};
2151 /* Type may change only if value was changed. */
2155 r.value_installed = 1;
2156 VEC_safe_push (varobj_update_result, stack, &r);
2158 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
2160 varobj_p tmp = VEC_index (varobj_p, changed, i);
2161 varobj_update_result r = {0};
2165 r.value_installed = 1;
2166 VEC_safe_push (varobj_update_result, stack, &r);
2168 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2170 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
2174 varobj_update_result r = {0};
2177 r.value_installed = 1;
2178 VEC_safe_push (varobj_update_result, stack, &r);
2181 if (r.changed || r.children_changed)
2182 VEC_safe_push (varobj_update_result, result, &r);
2184 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2185 because NEW has been put into the result vector. */
2186 VEC_free (varobj_p, changed);
2187 VEC_free (varobj_p, type_changed);
2188 VEC_free (varobj_p, unchanged);
2194 /* Push any children. Use reverse order so that the first
2195 child is popped from the work stack first, and so
2196 will be added to result first. This does not
2197 affect correctness, just "nicer". */
2198 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
2200 varobj_p c = VEC_index (varobj_p, v->children, i);
2202 /* Child may be NULL if explicitly deleted by -var-delete. */
2203 if (c != NULL && !c->frozen)
2205 varobj_update_result r = {0};
2208 VEC_safe_push (varobj_update_result, stack, &r);
2212 if (r.changed || r.type_changed)
2213 VEC_safe_push (varobj_update_result, result, &r);
2216 VEC_free (varobj_update_result, stack);
2222 /* Helper functions */
2225 * Variable object construction/destruction
2229 delete_variable (struct cpstack **resultp, struct varobj *var,
2230 int only_children_p)
2234 delete_variable_1 (resultp, &delcount, var,
2235 only_children_p, 1 /* remove_from_parent_p */ );
2240 /* Delete the variable object VAR and its children. */
2241 /* IMPORTANT NOTE: If we delete a variable which is a child
2242 and the parent is not removed we dump core. It must be always
2243 initially called with remove_from_parent_p set. */
2245 delete_variable_1 (struct cpstack **resultp, int *delcountp,
2246 struct varobj *var, int only_children_p,
2247 int remove_from_parent_p)
2251 /* Delete any children of this variable, too. */
2252 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2254 varobj_p child = VEC_index (varobj_p, var->children, i);
2258 if (!remove_from_parent_p)
2259 child->parent = NULL;
2260 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2262 VEC_free (varobj_p, var->children);
2264 /* if we were called to delete only the children we are done here. */
2265 if (only_children_p)
2268 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2269 /* If the name is null, this is a temporary variable, that has not
2270 yet been installed, don't report it, it belongs to the caller... */
2271 if (var->obj_name != NULL)
2273 cppush (resultp, xstrdup (var->obj_name));
2274 *delcountp = *delcountp + 1;
2277 /* If this variable has a parent, remove it from its parent's list. */
2278 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2279 (as indicated by remove_from_parent_p) we don't bother doing an
2280 expensive list search to find the element to remove when we are
2281 discarding the list afterwards. */
2282 if ((remove_from_parent_p) && (var->parent != NULL))
2284 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2287 if (var->obj_name != NULL)
2288 uninstall_variable (var);
2290 /* Free memory associated with this variable. */
2291 free_variable (var);
2294 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2296 install_variable (struct varobj *var)
2299 struct vlist *newvl;
2301 unsigned int index = 0;
2304 for (chp = var->obj_name; *chp; chp++)
2306 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2309 cv = *(varobj_table + index);
2310 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2314 error (_("Duplicate variable object name"));
2316 /* Add varobj to hash table. */
2317 newvl = xmalloc (sizeof (struct vlist));
2318 newvl->next = *(varobj_table + index);
2320 *(varobj_table + index) = newvl;
2322 /* If root, add varobj to root list. */
2323 if (is_root_p (var))
2325 /* Add to list of root variables. */
2326 if (rootlist == NULL)
2327 var->root->next = NULL;
2329 var->root->next = rootlist;
2330 rootlist = var->root;
2336 /* Unistall the object VAR. */
2338 uninstall_variable (struct varobj *var)
2342 struct varobj_root *cr;
2343 struct varobj_root *prer;
2345 unsigned int index = 0;
2348 /* Remove varobj from hash table. */
2349 for (chp = var->obj_name; *chp; chp++)
2351 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2354 cv = *(varobj_table + index);
2356 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2363 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2368 ("Assertion failed: Could not find variable object \"%s\" to delete",
2374 *(varobj_table + index) = cv->next;
2376 prev->next = cv->next;
2380 /* If root, remove varobj from root list. */
2381 if (is_root_p (var))
2383 /* Remove from list of root variables. */
2384 if (rootlist == var->root)
2385 rootlist = var->root->next;
2390 while ((cr != NULL) && (cr->rootvar != var))
2397 warning (_("Assertion failed: Could not find "
2398 "varobj \"%s\" in root list"),
2405 prer->next = cr->next;
2411 /* Create and install a child of the parent of the given name. */
2412 static struct varobj *
2413 create_child (struct varobj *parent, int index, char *name)
2415 return create_child_with_value (parent, index, name,
2416 value_of_child (parent, index));
2419 /* Does CHILD represent a child with no name? This happens when
2420 the child is an anonmous struct or union and it has no field name
2421 in its parent variable.
2423 This has already been determined by *_describe_child. The easiest
2424 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2427 is_anonymous_child (struct varobj *child)
2429 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2430 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2433 static struct varobj *
2434 create_child_with_value (struct varobj *parent, int index, const char *name,
2435 struct value *value)
2437 struct varobj *child;
2440 child = new_variable ();
2442 /* Name is allocated by name_of_child. */
2443 /* FIXME: xstrdup should not be here. */
2444 child->name = xstrdup (name);
2445 child->index = index;
2446 child->parent = parent;
2447 child->root = parent->root;
2449 if (is_anonymous_child (child))
2450 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2452 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2453 child->obj_name = childs_name;
2455 install_variable (child);
2457 /* Compute the type of the child. Must do this before
2458 calling install_new_value. */
2460 /* If the child had no evaluation errors, var->value
2461 will be non-NULL and contain a valid type. */
2462 child->type = value_actual_type (value, 0, NULL);
2464 /* Otherwise, we must compute the type. */
2465 child->type = (*child->root->lang->type_of_child) (child->parent,
2467 install_new_value (child, value, 1);
2474 * Miscellaneous utility functions.
2477 /* Allocate memory and initialize a new variable. */
2478 static struct varobj *
2483 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2485 var->path_expr = NULL;
2486 var->obj_name = NULL;
2490 var->num_children = -1;
2492 var->children = NULL;
2496 var->print_value = NULL;
2498 var->not_fetched = 0;
2499 var->children_requested = 0;
2502 var->constructor = 0;
2503 var->pretty_printer = 0;
2504 var->child_iter = 0;
2505 var->saved_item = 0;
2510 /* Allocate memory and initialize a new root variable. */
2511 static struct varobj *
2512 new_root_variable (void)
2514 struct varobj *var = new_variable ();
2516 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2517 var->root->lang = NULL;
2518 var->root->exp = NULL;
2519 var->root->valid_block = NULL;
2520 var->root->frame = null_frame_id;
2521 var->root->floating = 0;
2522 var->root->rootvar = NULL;
2523 var->root->is_valid = 1;
2528 /* Free any allocated memory associated with VAR. */
2530 free_variable (struct varobj *var)
2533 if (var->pretty_printer)
2535 struct cleanup *cleanup = varobj_ensure_python_env (var);
2536 Py_XDECREF (var->constructor);
2537 Py_XDECREF (var->pretty_printer);
2538 Py_XDECREF (var->child_iter);
2539 Py_XDECREF (var->saved_item);
2540 do_cleanups (cleanup);
2544 value_free (var->value);
2546 /* Free the expression if this is a root variable. */
2547 if (is_root_p (var))
2549 xfree (var->root->exp);
2554 xfree (var->obj_name);
2555 xfree (var->print_value);
2556 xfree (var->path_expr);
2561 do_free_variable_cleanup (void *var)
2563 free_variable (var);
2566 static struct cleanup *
2567 make_cleanup_free_variable (struct varobj *var)
2569 return make_cleanup (do_free_variable_cleanup, var);
2572 /* This returns the type of the variable. It also skips past typedefs
2573 to return the real type of the variable.
2575 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2576 except within get_target_type and get_type. */
2577 static struct type *
2578 get_type (struct varobj *var)
2584 type = check_typedef (type);
2589 /* Return the type of the value that's stored in VAR,
2590 or that would have being stored there if the
2591 value were accessible.
2593 This differs from VAR->type in that VAR->type is always
2594 the true type of the expession in the source language.
2595 The return value of this function is the type we're
2596 actually storing in varobj, and using for displaying
2597 the values and for comparing previous and new values.
2599 For example, top-level references are always stripped. */
2600 static struct type *
2601 get_value_type (struct varobj *var)
2606 type = value_type (var->value);
2610 type = check_typedef (type);
2612 if (TYPE_CODE (type) == TYPE_CODE_REF)
2613 type = get_target_type (type);
2615 type = check_typedef (type);
2620 /* This returns the target type (or NULL) of TYPE, also skipping
2621 past typedefs, just like get_type ().
2623 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2624 except within get_target_type and get_type. */
2625 static struct type *
2626 get_target_type (struct type *type)
2630 type = TYPE_TARGET_TYPE (type);
2632 type = check_typedef (type);
2638 /* What is the default display for this variable? We assume that
2639 everything is "natural". Any exceptions? */
2640 static enum varobj_display_formats
2641 variable_default_display (struct varobj *var)
2643 return FORMAT_NATURAL;
2646 /* FIXME: The following should be generic for any pointer. */
2648 cppush (struct cpstack **pstack, char *name)
2652 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2658 /* FIXME: The following should be generic for any pointer. */
2660 cppop (struct cpstack **pstack)
2665 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2670 *pstack = (*pstack)->next;
2677 * Language-dependencies
2680 /* Common entry points */
2682 /* Get the language of variable VAR. */
2683 static enum varobj_languages
2684 variable_language (struct varobj *var)
2686 enum varobj_languages lang;
2688 switch (var->root->exp->language_defn->la_language)
2694 case language_cplus:
2708 /* Return the number of children for a given variable.
2709 The result of this function is defined by the language
2710 implementation. The number of children returned by this function
2711 is the number of children that the user will see in the variable
2714 number_of_children (struct varobj *var)
2716 return (*var->root->lang->number_of_children) (var);
2719 /* What is the expression for the root varobj VAR? Returns a malloc'd
2722 name_of_variable (struct varobj *var)
2724 return (*var->root->lang->name_of_variable) (var);
2727 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2730 name_of_child (struct varobj *var, int index)
2732 return (*var->root->lang->name_of_child) (var, index);
2735 /* What is the ``struct value *'' of the root variable VAR?
2736 For floating variable object, evaluation can get us a value
2737 of different type from what is stored in varobj already. In
2739 - *type_changed will be set to 1
2740 - old varobj will be freed, and new one will be
2741 created, with the same name.
2742 - *var_handle will be set to the new varobj
2743 Otherwise, *type_changed will be set to 0. */
2744 static struct value *
2745 value_of_root (struct varobj **var_handle, int *type_changed)
2749 if (var_handle == NULL)
2754 /* This should really be an exception, since this should
2755 only get called with a root variable. */
2757 if (!is_root_p (var))
2760 if (var->root->floating)
2762 struct varobj *tmp_var;
2763 char *old_type, *new_type;
2765 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2766 USE_SELECTED_FRAME);
2767 if (tmp_var == NULL)
2771 old_type = varobj_get_type (var);
2772 new_type = varobj_get_type (tmp_var);
2773 if (strcmp (old_type, new_type) == 0)
2775 /* The expression presently stored inside var->root->exp
2776 remembers the locations of local variables relatively to
2777 the frame where the expression was created (in DWARF location
2778 button, for example). Naturally, those locations are not
2779 correct in other frames, so update the expression. */
2781 struct expression *tmp_exp = var->root->exp;
2783 var->root->exp = tmp_var->root->exp;
2784 tmp_var->root->exp = tmp_exp;
2786 varobj_delete (tmp_var, NULL, 0);
2791 tmp_var->obj_name = xstrdup (var->obj_name);
2792 tmp_var->from = var->from;
2793 tmp_var->to = var->to;
2794 varobj_delete (var, NULL, 0);
2796 install_variable (tmp_var);
2797 *var_handle = tmp_var;
2810 struct value *value;
2812 value = (*var->root->lang->value_of_root) (var_handle);
2813 if (var->value == NULL || value == NULL)
2815 /* For root varobj-s, a NULL value indicates a scoping issue.
2816 So, nothing to do in terms of checking for mutations. */
2818 else if (varobj_value_has_mutated (var, value, value_type (value)))
2820 /* The type has mutated, so the children are no longer valid.
2821 Just delete them, and tell our caller that the type has
2823 varobj_delete (var, NULL, 1 /* only_children */);
2824 var->num_children = -1;
2833 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2834 static struct value *
2835 value_of_child (struct varobj *parent, int index)
2837 struct value *value;
2839 value = (*parent->root->lang->value_of_child) (parent, index);
2844 /* GDB already has a command called "value_of_variable". Sigh. */
2846 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2848 if (var->root->is_valid)
2850 if (var->pretty_printer)
2851 return value_get_print_value (var->value, var->format, var);
2852 return (*var->root->lang->value_of_variable) (var, format);
2859 value_get_print_value (struct value *value, enum varobj_display_formats format,
2862 struct ui_file *stb;
2863 struct cleanup *old_chain;
2864 char *thevalue = NULL;
2865 struct value_print_options opts;
2866 struct type *type = NULL;
2868 char *encoding = NULL;
2869 struct gdbarch *gdbarch = NULL;
2870 /* Initialize it just to avoid a GCC false warning. */
2871 CORE_ADDR str_addr = 0;
2872 int string_print = 0;
2877 stb = mem_fileopen ();
2878 old_chain = make_cleanup_ui_file_delete (stb);
2880 gdbarch = get_type_arch (value_type (value));
2882 if (gdb_python_initialized)
2884 PyObject *value_formatter = var->pretty_printer;
2886 varobj_ensure_python_env (var);
2888 if (value_formatter)
2890 /* First check to see if we have any children at all. If so,
2891 we simply return {...}. */
2892 if (dynamic_varobj_has_child_method (var))
2894 do_cleanups (old_chain);
2895 return xstrdup ("{...}");
2898 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2900 struct value *replacement;
2901 PyObject *output = NULL;
2903 output = apply_varobj_pretty_printer (value_formatter,
2907 /* If we have string like output ... */
2910 make_cleanup_py_decref (output);
2912 /* If this is a lazy string, extract it. For lazy
2913 strings we always print as a string, so set
2915 if (gdbpy_is_lazy_string (output))
2917 gdbpy_extract_lazy_string (output, &str_addr, &type,
2919 make_cleanup (free_current_contents, &encoding);
2924 /* If it is a regular (non-lazy) string, extract
2925 it and copy the contents into THEVALUE. If the
2926 hint says to print it as a string, set
2927 string_print. Otherwise just return the extracted
2928 string as a value. */
2930 char *s = python_string_to_target_string (output);
2936 hint = gdbpy_get_display_hint (value_formatter);
2939 if (!strcmp (hint, "string"))
2945 thevalue = xmemdup (s, len + 1, len + 1);
2946 type = builtin_type (gdbarch)->builtin_char;
2951 do_cleanups (old_chain);
2955 make_cleanup (xfree, thevalue);
2958 gdbpy_print_stack ();
2961 /* If the printer returned a replacement value, set VALUE
2962 to REPLACEMENT. If there is not a replacement value,
2963 just use the value passed to this function. */
2965 value = replacement;
2971 get_formatted_print_options (&opts, format_code[(int) format]);
2975 /* If the THEVALUE has contents, it is a regular string. */
2977 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2978 else if (string_print)
2979 /* Otherwise, if string_print is set, and it is not a regular
2980 string, it is a lazy string. */
2981 val_print_string (type, encoding, str_addr, len, stb, &opts);
2983 /* All other cases. */
2984 common_val_print (value, stb, 0, &opts, current_language);
2986 thevalue = ui_file_xstrdup (stb, NULL);
2988 do_cleanups (old_chain);
2993 varobj_editable_p (struct varobj *var)
2997 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
3000 type = get_value_type (var);
3002 switch (TYPE_CODE (type))
3004 case TYPE_CODE_STRUCT:
3005 case TYPE_CODE_UNION:
3006 case TYPE_CODE_ARRAY:
3007 case TYPE_CODE_FUNC:
3008 case TYPE_CODE_METHOD:
3018 /* Call VAR's value_is_changeable_p language-specific callback. */
3021 varobj_value_is_changeable_p (struct varobj *var)
3023 return var->root->lang->value_is_changeable_p (var);
3026 /* Return 1 if that varobj is floating, that is is always evaluated in the
3027 selected frame, and not bound to thread/frame. Such variable objects
3028 are created using '@' as frame specifier to -var-create. */
3030 varobj_floating_p (struct varobj *var)
3032 return var->root->floating;
3035 /* Given the value and the type of a variable object,
3036 adjust the value and type to those necessary
3037 for getting children of the variable object.
3038 This includes dereferencing top-level references
3039 to all types and dereferencing pointers to
3042 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3043 value will be fetched and if it differs from static type
3044 the value will be casted to it.
3046 Both TYPE and *TYPE should be non-null. VALUE
3047 can be null if we want to only translate type.
3048 *VALUE can be null as well -- if the parent
3051 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
3052 depending on whether pointer was dereferenced
3053 in this function. */
3055 adjust_value_for_child_access (struct value **value,
3058 int lookup_actual_type)
3060 gdb_assert (type && *type);
3065 *type = check_typedef (*type);
3067 /* The type of value stored in varobj, that is passed
3068 to us, is already supposed to be
3069 reference-stripped. */
3071 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3073 /* Pointers to structures are treated just like
3074 structures when accessing children. Don't
3075 dererences pointers to other types. */
3076 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3078 struct type *target_type = get_target_type (*type);
3079 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3080 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3082 if (value && *value)
3084 volatile struct gdb_exception except;
3086 TRY_CATCH (except, RETURN_MASK_ERROR)
3088 *value = value_ind (*value);
3091 if (except.reason < 0)
3094 *type = target_type;
3100 /* The 'get_target_type' function calls check_typedef on
3101 result, so we can immediately check type code. No
3102 need to call check_typedef here. */
3104 /* Access a real type of the value (if necessary and possible). */
3105 if (value && *value && lookup_actual_type)
3107 struct type *enclosing_type;
3108 int real_type_found = 0;
3110 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3111 if (real_type_found)
3113 *type = enclosing_type;
3114 *value = value_cast (enclosing_type, *value);
3119 /* Implement the "value_is_changeable_p" varobj callback for most
3123 default_value_is_changeable_p (struct varobj *var)
3128 if (CPLUS_FAKE_CHILD (var))
3131 type = get_value_type (var);
3133 switch (TYPE_CODE (type))
3135 case TYPE_CODE_STRUCT:
3136 case TYPE_CODE_UNION:
3137 case TYPE_CODE_ARRAY:
3151 c_number_of_children (struct varobj *var)
3153 struct type *type = get_value_type (var);
3155 struct type *target;
3157 adjust_value_for_child_access (NULL, &type, NULL, 0);
3158 target = get_target_type (type);
3160 switch (TYPE_CODE (type))
3162 case TYPE_CODE_ARRAY:
3163 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
3164 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
3165 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3167 /* If we don't know how many elements there are, don't display
3172 case TYPE_CODE_STRUCT:
3173 case TYPE_CODE_UNION:
3174 children = TYPE_NFIELDS (type);
3178 /* The type here is a pointer to non-struct. Typically, pointers
3179 have one child, except for function ptrs, which have no children,
3180 and except for void*, as we don't know what to show.
3182 We can show char* so we allow it to be dereferenced. If you decide
3183 to test for it, please mind that a little magic is necessary to
3184 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
3185 TYPE_NAME == "char". */
3186 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3187 || TYPE_CODE (target) == TYPE_CODE_VOID)
3194 /* Other types have no children. */
3202 c_name_of_variable (struct varobj *parent)
3204 return xstrdup (parent->name);
3207 /* Return the value of element TYPE_INDEX of a structure
3208 value VALUE. VALUE's type should be a structure,
3209 or union, or a typedef to struct/union.
3211 Returns NULL if getting the value fails. Never throws. */
3212 static struct value *
3213 value_struct_element_index (struct value *value, int type_index)
3215 struct value *result = NULL;
3216 volatile struct gdb_exception e;
3217 struct type *type = value_type (value);
3219 type = check_typedef (type);
3221 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3222 || TYPE_CODE (type) == TYPE_CODE_UNION);
3224 TRY_CATCH (e, RETURN_MASK_ERROR)
3226 if (field_is_static (&TYPE_FIELD (type, type_index)))
3227 result = value_static_field (type, type_index);
3229 result = value_primitive_field (value, 0, type_index, type);
3241 /* Obtain the information about child INDEX of the variable
3243 If CNAME is not null, sets *CNAME to the name of the child relative
3245 If CVALUE is not null, sets *CVALUE to the value of the child.
3246 If CTYPE is not null, sets *CTYPE to the type of the child.
3248 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3249 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3252 c_describe_child (struct varobj *parent, int index,
3253 char **cname, struct value **cvalue, struct type **ctype,
3254 char **cfull_expression)
3256 struct value *value = parent->value;
3257 struct type *type = get_value_type (parent);
3258 char *parent_expression = NULL;
3260 volatile struct gdb_exception except;
3268 if (cfull_expression)
3270 *cfull_expression = NULL;
3271 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
3273 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
3275 switch (TYPE_CODE (type))
3277 case TYPE_CODE_ARRAY:
3280 = xstrdup (int_string (index
3281 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3284 if (cvalue && value)
3286 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
3288 TRY_CATCH (except, RETURN_MASK_ERROR)
3290 *cvalue = value_subscript (value, real_index);
3295 *ctype = get_target_type (type);
3297 if (cfull_expression)
3299 xstrprintf ("(%s)[%s]", parent_expression,
3301 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3307 case TYPE_CODE_STRUCT:
3308 case TYPE_CODE_UNION:
3310 const char *field_name;
3312 /* If the type is anonymous and the field has no name,
3313 set an appropriate name. */
3314 field_name = TYPE_FIELD_NAME (type, index);
3315 if (field_name == NULL || *field_name == '\0')
3319 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3320 == TYPE_CODE_STRUCT)
3321 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3323 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3326 if (cfull_expression)
3327 *cfull_expression = xstrdup ("");
3332 *cname = xstrdup (field_name);
3334 if (cfull_expression)
3336 char *join = was_ptr ? "->" : ".";
3338 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3343 if (cvalue && value)
3345 /* For C, varobj index is the same as type index. */
3346 *cvalue = value_struct_element_index (value, index);
3350 *ctype = TYPE_FIELD_TYPE (type, index);
3356 *cname = xstrprintf ("*%s", parent->name);
3358 if (cvalue && value)
3360 TRY_CATCH (except, RETURN_MASK_ERROR)
3362 *cvalue = value_ind (value);
3365 if (except.reason < 0)
3369 /* Don't use get_target_type because it calls
3370 check_typedef and here, we want to show the true
3371 declared type of the variable. */
3373 *ctype = TYPE_TARGET_TYPE (type);
3375 if (cfull_expression)
3376 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
3381 /* This should not happen. */
3383 *cname = xstrdup ("???");
3384 if (cfull_expression)
3385 *cfull_expression = xstrdup ("???");
3386 /* Don't set value and type, we don't know then. */
3391 c_name_of_child (struct varobj *parent, int index)
3395 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3400 c_path_expr_of_child (struct varobj *child)
3402 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3404 return child->path_expr;
3407 /* If frame associated with VAR can be found, switch
3408 to it and return 1. Otherwise, return 0. */
3410 check_scope (struct varobj *var)
3412 struct frame_info *fi;
3415 fi = frame_find_by_id (var->root->frame);
3420 CORE_ADDR pc = get_frame_pc (fi);
3422 if (pc < BLOCK_START (var->root->valid_block) ||
3423 pc >= BLOCK_END (var->root->valid_block))
3431 static struct value *
3432 c_value_of_root (struct varobj **var_handle)
3434 struct value *new_val = NULL;
3435 struct varobj *var = *var_handle;
3436 int within_scope = 0;
3437 struct cleanup *back_to;
3439 /* Only root variables can be updated... */
3440 if (!is_root_p (var))
3441 /* Not a root var. */
3444 back_to = make_cleanup_restore_current_thread ();
3446 /* Determine whether the variable is still around. */
3447 if (var->root->valid_block == NULL || var->root->floating)
3449 else if (var->root->thread_id == 0)
3451 /* The program was single-threaded when the variable object was
3452 created. Technically, it's possible that the program became
3453 multi-threaded since then, but we don't support such
3455 within_scope = check_scope (var);
3459 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3460 if (in_thread_list (ptid))
3462 switch_to_thread (ptid);
3463 within_scope = check_scope (var);
3469 volatile struct gdb_exception except;
3471 /* We need to catch errors here, because if evaluate
3472 expression fails we want to just return NULL. */
3473 TRY_CATCH (except, RETURN_MASK_ERROR)
3475 new_val = evaluate_expression (var->root->exp);
3479 do_cleanups (back_to);
3484 static struct value *
3485 c_value_of_child (struct varobj *parent, int index)
3487 struct value *value = NULL;
3489 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3493 static struct type *
3494 c_type_of_child (struct varobj *parent, int index)
3496 struct type *type = NULL;
3498 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3503 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3505 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3506 it will print out its children instead of "{...}". So we need to
3507 catch that case explicitly. */
3508 struct type *type = get_type (var);
3510 /* Strip top-level references. */
3511 while (TYPE_CODE (type) == TYPE_CODE_REF)
3512 type = check_typedef (TYPE_TARGET_TYPE (type));
3514 switch (TYPE_CODE (type))
3516 case TYPE_CODE_STRUCT:
3517 case TYPE_CODE_UNION:
3518 return xstrdup ("{...}");
3521 case TYPE_CODE_ARRAY:
3525 number = xstrprintf ("[%d]", var->num_children);
3532 if (var->value == NULL)
3534 /* This can happen if we attempt to get the value of a struct
3535 member when the parent is an invalid pointer. This is an
3536 error condition, so we should tell the caller. */
3541 if (var->not_fetched && value_lazy (var->value))
3542 /* Frozen variable and no value yet. We don't
3543 implicitly fetch the value. MI response will
3544 use empty string for the value, which is OK. */
3547 gdb_assert (varobj_value_is_changeable_p (var));
3548 gdb_assert (!value_lazy (var->value));
3550 /* If the specified format is the current one,
3551 we can reuse print_value. */
3552 if (format == var->format)
3553 return xstrdup (var->print_value);
3555 return value_get_print_value (var->value, format, var);
3565 cplus_number_of_children (struct varobj *var)
3567 struct value *value = NULL;
3569 int children, dont_know;
3570 int lookup_actual_type = 0;
3571 struct value_print_options opts;
3576 get_user_print_options (&opts);
3578 if (!CPLUS_FAKE_CHILD (var))
3580 type = get_value_type (var);
3582 /* It is necessary to access a real type (via RTTI). */
3583 if (opts.objectprint)
3586 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3587 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3589 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3591 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3592 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3596 cplus_class_num_children (type, kids);
3597 if (kids[v_public] != 0)
3599 if (kids[v_private] != 0)
3601 if (kids[v_protected] != 0)
3604 /* Add any baseclasses. */
3605 children += TYPE_N_BASECLASSES (type);
3608 /* FIXME: save children in var. */
3615 type = get_value_type (var->parent);
3617 /* It is necessary to access a real type (via RTTI). */
3618 if (opts.objectprint)
3620 struct varobj *parent = var->parent;
3622 value = parent->value;
3623 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3624 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3626 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3628 cplus_class_num_children (type, kids);
3629 if (strcmp (var->name, "public") == 0)
3630 children = kids[v_public];
3631 else if (strcmp (var->name, "private") == 0)
3632 children = kids[v_private];
3634 children = kids[v_protected];
3639 children = c_number_of_children (var);
3644 /* Compute # of public, private, and protected variables in this class.
3645 That means we need to descend into all baseclasses and find out
3646 how many are there, too. */
3648 cplus_class_num_children (struct type *type, int children[3])
3650 int i, vptr_fieldno;
3651 struct type *basetype = NULL;
3653 children[v_public] = 0;
3654 children[v_private] = 0;
3655 children[v_protected] = 0;
3657 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3658 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3660 /* If we have a virtual table pointer, omit it. Even if virtual
3661 table pointers are not specifically marked in the debug info,
3662 they should be artificial. */
3663 if ((type == basetype && i == vptr_fieldno)
3664 || TYPE_FIELD_ARTIFICIAL (type, i))
3667 if (TYPE_FIELD_PROTECTED (type, i))
3668 children[v_protected]++;
3669 else if (TYPE_FIELD_PRIVATE (type, i))
3670 children[v_private]++;
3672 children[v_public]++;
3677 cplus_name_of_variable (struct varobj *parent)
3679 return c_name_of_variable (parent);
3682 enum accessibility { private_field, protected_field, public_field };
3684 /* Check if field INDEX of TYPE has the specified accessibility.
3685 Return 0 if so and 1 otherwise. */
3687 match_accessibility (struct type *type, int index, enum accessibility acc)
3689 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3691 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3693 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3694 && !TYPE_FIELD_PROTECTED (type, index))
3701 cplus_describe_child (struct varobj *parent, int index,
3702 char **cname, struct value **cvalue, struct type **ctype,
3703 char **cfull_expression)
3705 struct value *value;
3708 int lookup_actual_type = 0;
3709 char *parent_expression = NULL;
3711 struct value_print_options opts;
3719 if (cfull_expression)
3720 *cfull_expression = NULL;
3722 get_user_print_options (&opts);
3724 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3725 if (opts.objectprint)
3726 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3727 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3729 type = get_value_type (var);
3730 if (cfull_expression)
3731 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
3733 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
3735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3736 || TYPE_CODE (type) == TYPE_CODE_UNION)
3738 char *join = was_ptr ? "->" : ".";
3740 if (CPLUS_FAKE_CHILD (parent))
3742 /* The fields of the class type are ordered as they
3743 appear in the class. We are given an index for a
3744 particular access control type ("public","protected",
3745 or "private"). We must skip over fields that don't
3746 have the access control we are looking for to properly
3747 find the indexed field. */
3748 int type_index = TYPE_N_BASECLASSES (type);
3749 enum accessibility acc = public_field;
3751 struct type *basetype = NULL;
3752 const char *field_name;
3754 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3755 if (strcmp (parent->name, "private") == 0)
3756 acc = private_field;
3757 else if (strcmp (parent->name, "protected") == 0)
3758 acc = protected_field;
3762 if ((type == basetype && type_index == vptr_fieldno)
3763 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3765 else if (match_accessibility (type, type_index, acc))
3771 /* If the type is anonymous and the field has no name,
3772 set an appopriate name. */
3773 field_name = TYPE_FIELD_NAME (type, type_index);
3774 if (field_name == NULL || *field_name == '\0')
3778 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3779 == TYPE_CODE_STRUCT)
3780 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3781 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3783 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3786 if (cfull_expression)
3787 *cfull_expression = xstrdup ("");
3792 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3794 if (cfull_expression)
3796 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3800 if (cvalue && value)
3801 *cvalue = value_struct_element_index (value, type_index);
3804 *ctype = TYPE_FIELD_TYPE (type, type_index);
3806 else if (index < TYPE_N_BASECLASSES (type))
3808 /* This is a baseclass. */
3810 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3812 if (cvalue && value)
3813 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3817 *ctype = TYPE_FIELD_TYPE (type, index);
3820 if (cfull_expression)
3822 char *ptr = was_ptr ? "*" : "";
3824 /* Cast the parent to the base' type. Note that in gdb,
3827 will create an lvalue, for all appearences, so we don't
3828 need to use more fancy:
3832 When we are in the scope of the base class or of one
3833 of its children, the type field name will be interpreted
3834 as a constructor, if it exists. Therefore, we must
3835 indicate that the name is a class name by using the
3836 'class' keyword. See PR mi/11912 */
3837 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
3839 TYPE_FIELD_NAME (type, index),
3846 char *access = NULL;
3849 cplus_class_num_children (type, children);
3851 /* Everything beyond the baseclasses can
3852 only be "public", "private", or "protected"
3854 The special "fake" children are always output by varobj in
3855 this order. So if INDEX == 2, it MUST be "protected". */
3856 index -= TYPE_N_BASECLASSES (type);
3860 if (children[v_public] > 0)
3862 else if (children[v_private] > 0)
3865 access = "protected";
3868 if (children[v_public] > 0)
3870 if (children[v_private] > 0)
3873 access = "protected";
3875 else if (children[v_private] > 0)
3876 access = "protected";
3879 /* Must be protected. */
3880 access = "protected";
3887 gdb_assert (access);
3889 *cname = xstrdup (access);
3891 /* Value and type and full expression are null here. */
3896 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3901 cplus_name_of_child (struct varobj *parent, int index)
3905 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3910 cplus_path_expr_of_child (struct varobj *child)
3912 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3914 return child->path_expr;
3917 static struct value *
3918 cplus_value_of_root (struct varobj **var_handle)
3920 return c_value_of_root (var_handle);
3923 static struct value *
3924 cplus_value_of_child (struct varobj *parent, int index)
3926 struct value *value = NULL;
3928 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3932 static struct type *
3933 cplus_type_of_child (struct varobj *parent, int index)
3935 struct type *type = NULL;
3937 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3942 cplus_value_of_variable (struct varobj *var,
3943 enum varobj_display_formats format)
3946 /* If we have one of our special types, don't print out
3948 if (CPLUS_FAKE_CHILD (var))
3949 return xstrdup ("");
3951 return c_value_of_variable (var, format);
3957 java_number_of_children (struct varobj *var)
3959 return cplus_number_of_children (var);
3963 java_name_of_variable (struct varobj *parent)
3967 name = cplus_name_of_variable (parent);
3968 /* If the name has "-" in it, it is because we
3969 needed to escape periods in the name... */
3972 while (*p != '\000')
3983 java_name_of_child (struct varobj *parent, int index)
3987 name = cplus_name_of_child (parent, index);
3988 /* Escape any periods in the name... */
3991 while (*p != '\000')
4002 java_path_expr_of_child (struct varobj *child)
4007 static struct value *
4008 java_value_of_root (struct varobj **var_handle)
4010 return cplus_value_of_root (var_handle);
4013 static struct value *
4014 java_value_of_child (struct varobj *parent, int index)
4016 return cplus_value_of_child (parent, index);
4019 static struct type *
4020 java_type_of_child (struct varobj *parent, int index)
4022 return cplus_type_of_child (parent, index);
4026 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4028 return cplus_value_of_variable (var, format);
4031 /* Ada specific callbacks for VAROBJs. */
4034 ada_number_of_children (struct varobj *var)
4036 return ada_varobj_get_number_of_children (var->value, var->type);
4040 ada_name_of_variable (struct varobj *parent)
4042 return c_name_of_variable (parent);
4046 ada_name_of_child (struct varobj *parent, int index)
4048 return ada_varobj_get_name_of_child (parent->value, parent->type,
4049 parent->name, index);
4053 ada_path_expr_of_child (struct varobj *child)
4055 struct varobj *parent = child->parent;
4056 const char *parent_path_expr = varobj_get_path_expr (parent);
4058 return ada_varobj_get_path_expr_of_child (parent->value,
4065 static struct value *
4066 ada_value_of_root (struct varobj **var_handle)
4068 return c_value_of_root (var_handle);
4071 static struct value *
4072 ada_value_of_child (struct varobj *parent, int index)
4074 return ada_varobj_get_value_of_child (parent->value, parent->type,
4075 parent->name, index);
4078 static struct type *
4079 ada_type_of_child (struct varobj *parent, int index)
4081 return ada_varobj_get_type_of_child (parent->value, parent->type,
4086 ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4088 struct value_print_options opts;
4090 get_formatted_print_options (&opts, format_code[(int) format]);
4094 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
4097 /* Implement the "value_is_changeable_p" routine for Ada. */
4100 ada_value_is_changeable_p (struct varobj *var)
4102 struct type *type = var->value ? value_type (var->value) : var->type;
4104 if (ada_is_array_descriptor_type (type)
4105 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4107 /* This is in reality a pointer to an unconstrained array.
4108 its value is changeable. */
4112 if (ada_is_string_type (type))
4114 /* We display the contents of the string in the array's
4115 "value" field. The contents can change, so consider
4116 that the array is changeable. */
4120 return default_value_is_changeable_p (var);
4123 /* Implement the "value_has_mutated" routine for Ada. */
4126 ada_value_has_mutated (struct varobj *var, struct value *new_val,
4127 struct type *new_type)
4133 /* If the number of fields have changed, then for sure the type
4135 if (ada_varobj_get_number_of_children (new_val, new_type)
4136 != var->num_children)
4139 /* If the number of fields have remained the same, then we need
4140 to check the name of each field. If they remain the same,
4141 then chances are the type hasn't mutated. This is technically
4142 an incomplete test, as the child's type might have changed
4143 despite the fact that the name remains the same. But we'll
4144 handle this situation by saying that the child has mutated,
4147 If only part (or none!) of the children have been fetched,
4148 then only check the ones we fetched. It does not matter
4149 to the frontend whether a child that it has not fetched yet
4150 has mutated or not. So just assume it hasn't. */
4152 restrict_range (var->children, &from, &to);
4153 for (i = from; i < to; i++)
4154 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4156 VEC_index (varobj_p, var->children, i)->name) != 0)
4162 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4163 with an arbitrary caller supplied DATA pointer. */
4166 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4168 struct varobj_root *var_root, *var_root_next;
4170 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4172 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4174 var_root_next = var_root->next;
4176 (*func) (var_root->rootvar, data);
4180 extern void _initialize_varobj (void);
4182 _initialize_varobj (void)
4184 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4186 varobj_table = xmalloc (sizeof_table);
4187 memset (varobj_table, 0, sizeof_table);
4189 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
4191 _("Set varobj debugging."),
4192 _("Show varobj debugging."),
4193 _("When non-zero, varobj debugging is enabled."),
4194 NULL, show_varobjdebug,
4195 &setlist, &showlist);
4198 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4199 defined on globals. It is a helper for varobj_invalidate.
4201 This function is called after changing the symbol file, in this case the
4202 pointers to "struct type" stored by the varobj are no longer valid. All
4203 varobj must be either re-evaluated, or marked as invalid here. */
4206 varobj_invalidate_iter (struct varobj *var, void *unused)
4208 /* global and floating var must be re-evaluated. */
4209 if (var->root->floating || var->root->valid_block == NULL)
4211 struct varobj *tmp_var;
4213 /* Try to create a varobj with same expression. If we succeed
4214 replace the old varobj, otherwise invalidate it. */
4215 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4217 if (tmp_var != NULL)
4219 tmp_var->obj_name = xstrdup (var->obj_name);
4220 varobj_delete (var, NULL, 0);
4221 install_variable (tmp_var);
4224 var->root->is_valid = 0;
4226 else /* locals must be invalidated. */
4227 var->root->is_valid = 0;
4230 /* Invalidate the varobjs that are tied to locals and re-create the ones that
4231 are defined on globals.
4232 Invalidated varobjs will be always printed in_scope="invalid". */
4235 varobj_invalidate (void)
4237 all_root_varobjs (varobj_invalidate_iter, NULL);