1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
29 #include "common/vec.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
36 #include "python/python.h"
37 #include "python/python-internal.h"
42 /* Non-zero if we want to see trace of varobj level stuff. */
44 unsigned int varobjdebug = 0;
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52 /* String representations of gdb's format codes. */
53 const char *varobj_format_string[] =
54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
56 /* True if we want to allow Python-based pretty-printing. */
57 static bool pretty_printing = false;
60 varobj_enable_pretty_printing (void)
62 pretty_printing = true;
67 /* Every root variable has one of these structures saved in its
71 /* The expression for this parent. */
74 /* Block for which this expression is valid. */
75 const struct block *valid_block = NULL;
77 /* The frame for this expression. This field is set iff valid_block is
79 struct frame_id frame = null_frame_id;
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
88 /* If true, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 bool floating = false;
93 /* Flag that indicates validity: set to false when this varobj_root refers
94 to symbols that do not exist anymore. */
97 /* Language-related operations for this variable and its
99 const struct lang_varobj_ops *lang_ops = NULL;
101 /* The varobj for this root node. */
102 struct varobj *rootvar = NULL;
104 /* Next root variable */
105 struct varobj_root *next = NULL;
108 /* Dynamic part of varobj. */
110 struct varobj_dynamic
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
116 bool children_requested = false;
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor = NULL;
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer = NULL;
127 /* The iterator returned by the printer's 'children' method, or NULL
129 struct varobj_iter *child_iter = NULL;
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item = NULL;
139 /* A list of varobjs */
147 /* Private function prototypes */
149 /* Helper functions for the above subcommands. */
151 static int delete_variable (struct varobj *, bool);
153 static void delete_variable_1 (int *, struct varobj *, bool, bool);
155 static bool install_variable (struct varobj *);
157 static void uninstall_variable (struct varobj *);
159 static struct varobj *create_child (struct varobj *, int, std::string &);
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
165 /* Utility routines */
167 static enum varobj_display_formats variable_default_display (struct varobj *);
169 static bool update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
172 static bool install_new_value (struct varobj *var, struct value *value,
175 /* Language-specific routines. */
177 static int number_of_children (const struct varobj *);
179 static std::string name_of_variable (const struct varobj *);
181 static std::string name_of_child (struct varobj *, int);
183 static struct value *value_of_root (struct varobj **var_handle, bool *);
185 static struct value *value_of_child (const struct varobj *parent, int index);
187 static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
190 static bool is_root_p (const struct varobj *var);
192 static struct varobj *varobj_add_child (struct varobj *var,
193 struct varobj_item *item);
197 /* Mappings of varobj_display_formats enums to gdb's format codes. */
198 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
200 /* Header of the list of root variable objects. */
201 static struct varobj_root *rootlist;
203 /* Prime number indicating the number of buckets in the hash table. */
204 /* A prime large enough to avoid too many collisions. */
205 #define VAROBJ_TABLE_SIZE 227
207 /* Pointer to the varobj hash table (built at run time). */
208 static struct vlist **varobj_table;
212 /* API Implementation */
214 is_root_p (const struct varobj *var)
216 return (var->root->rootvar == var);
221 /* See python-internal.h. */
222 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
229 /* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232 static struct frame_info *
233 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235 struct frame_info *frame = NULL;
237 if (frame_addr == (CORE_ADDR) 0)
240 for (frame = get_current_frame ();
242 frame = get_prev_frame (frame))
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254 if (frame_base == frame_addr)
261 /* Creates a varobj (not its children). */
264 varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
267 /* Fill out a varobj structure for the (root) variable being constructed. */
268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
270 if (expression != NULL)
272 struct frame_info *fi;
273 struct frame_id old_id = null_frame_id;
274 const struct block *block;
276 struct value *value = NULL;
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
282 if (has_stack_frames ())
284 /* Allow creator to specify context of variable. */
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
295 fi = find_frame_addr_in_frame_chain (frame);
300 if (type == USE_SELECTED_FRAME)
301 var->root->floating = true;
307 block = get_frame_block (fi, 0);
308 pc = get_frame_pc (fi);
312 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
313 | INNERMOST_BLOCK_FOR_REGISTERS);
314 /* Wrap the call to parse expression, so we can
315 return a sensible error. */
318 var->root->exp = parse_exp_1 (&p, pc, block, 0);
321 CATCH (except, RETURN_MASK_ERROR)
327 /* Don't allow variables to be created for types. */
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
337 var->format = variable_default_display (var.get ());
338 var->root->valid_block =
339 var->root->floating ? NULL : innermost_block.block ();
340 var->name = expression;
341 /* For a root var, the name and the expr are the same. */
342 var->path_expr = expression;
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
347 Since select_frame is so benign, just call it for all cases. */
348 if (var->root->valid_block)
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
355 error (_("Failed to find the specified frame"));
357 var->root->frame = get_frame_id (fi);
358 var->root->thread_id = inferior_thread ()->global_num;
359 old_id = get_frame_id (get_selected_frame (NULL));
363 /* We definitely need to catch errors here.
364 If evaluate_expression succeeds we got the value we wanted.
365 But if it fails, we still go on with a call to evaluate_type(). */
368 value = evaluate_expression (var->root->exp.get ());
370 CATCH (except, RETURN_MASK_ERROR)
372 /* Error getting the value. Try to at least get the
374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
376 var->type = value_type (type_only_value);
382 int real_type_found = 0;
384 var->type = value_actual_type (value, 0, &real_type_found);
386 value = value_cast (var->type, value);
389 /* Set language info */
390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
392 install_new_value (var.get (), value, 1 /* Initial assignment */);
394 /* Set ourselves as our root. */
395 var->root->rootvar = var.get ();
397 /* Reset the selected frame. */
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
402 /* If the variable object name is null, that means this
403 is a temporary variable, so don't install it. */
405 if ((var != NULL) && (objname != NULL))
407 var->obj_name = objname;
409 /* If a varobj name is duplicated, the install will fail so
411 if (!install_variable (var.get ()))
415 return var.release ();
418 /* Generates an unique name that can be used for a varobj. */
421 varobj_gen_name (void)
425 /* Generate a name for this object. */
427 return string_printf ("var%d", id);
430 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
434 varobj_get_handle (const char *objname)
438 unsigned int index = 0;
441 for (chp = objname; *chp; chp++)
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
446 cv = *(varobj_table + index);
447 while (cv != NULL && cv->var->obj_name != objname)
451 error (_("Variable object not found"));
456 /* Given the handle, return the name of the object. */
459 varobj_get_objname (const struct varobj *var)
461 return var->obj_name.c_str ();
464 /* Given the handle, return the expression represented by the
468 varobj_get_expression (const struct varobj *var)
470 return name_of_variable (var);
476 varobj_delete (struct varobj *var, bool only_children)
478 return delete_variable (var, only_children);
483 /* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
486 instantiate_pretty_printer (PyObject *constructor, struct value *value)
488 PyObject *val_obj = NULL;
491 val_obj = value_to_value_object (value);
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
502 /* Set/Get variable object display format. */
504 enum varobj_display_formats
505 varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
513 case FORMAT_HEXADECIMAL:
515 case FORMAT_ZHEXADECIMAL:
516 var->format = format;
520 var->format = variable_default_display (var);
523 if (varobj_value_is_changeable_p (var)
524 && var->value != nullptr && !value_lazy (var->value.get ()))
526 var->print_value = varobj_value_get_print_value (var->value.get (),
533 enum varobj_display_formats
534 varobj_get_display_format (const struct varobj *var)
539 gdb::unique_xmalloc_ptr<char>
540 varobj_get_display_hint (const struct varobj *var)
542 gdb::unique_xmalloc_ptr<char> result;
545 if (!gdb_python_initialized)
548 gdbpy_enter_varobj enter_py (var);
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
557 /* Return true if the varobj has items after TO, false otherwise. */
560 varobj_has_more (const struct varobj *var, int to)
562 if (var->children.size () > to)
565 return ((to == -1 || var->children.size () == to)
566 && (var->dynamic->saved_item != NULL));
569 /* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
572 is always positive. Otherwise, returns -1. */
574 varobj_get_thread_id (const struct varobj *var)
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
583 varobj_set_frozen (struct varobj *var, bool frozen)
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
596 varobj_get_frozen (const struct varobj *var)
601 /* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
607 varobj_restrict_range (const std::vector<varobj *> &children,
610 int len = children.size ();
612 if (*from < 0 || *to < 0)
628 /* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
632 install_dynamic_child (struct varobj *var,
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
639 struct varobj_item *item)
641 if (var->children.size () < index + 1)
643 /* There's no child yet. */
644 struct varobj *child = varobj_add_child (var, item);
648 newobj->push_back (child);
654 varobj *existing = var->children[index];
655 bool type_updated = update_type_if_necessary (existing, item->value);
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
662 if (install_new_value (existing, item->value, 0))
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
675 dynamic_varobj_has_child_method (const struct varobj *var)
677 PyObject *printer = var->dynamic->pretty_printer;
679 if (!gdb_python_initialized)
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
687 /* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
690 static struct varobj_iter *
691 varobj_get_iterator (struct varobj *var)
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
698 gdb_assert_not_reached (_("\
699 requested an iterator from a non-dynamic varobj"));
702 /* Release and clear VAR's saved item, if any. */
705 varobj_clear_saved_item (struct varobj_dynamic *var)
707 if (var->saved_item != NULL)
709 value_decref (var->saved_item->value);
710 delete var->saved_item;
711 var->saved_item = NULL;
716 update_dynamic_varobj_children (struct varobj *var,
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
722 bool update_children,
730 if (update_children || var->dynamic->child_iter == NULL)
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
735 varobj_clear_saved_item (var->dynamic);
739 if (var->dynamic->child_iter == NULL)
743 i = var->children.size ();
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
751 /* See if there was a leftover from last time. */
752 if (var->dynamic->saved_item != NULL)
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
759 item = varobj_iter_next (var->dynamic->child_iter);
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
763 release_value (item->value).release ();
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
776 bool can_mention = from < 0 || i >= from;
778 install_dynamic_child (var, can_mention ? changed : NULL,
779 can_mention ? type_changed : NULL,
780 can_mention ? newobj : NULL,
781 can_mention ? unchanged : NULL,
782 can_mention ? cchanged : NULL, i,
789 var->dynamic->saved_item = item;
791 /* We want to truncate the child list just before this
797 if (i < var->children.size ())
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
803 var->children.resize (i);
806 /* If there are fewer children than requested, note that the list of
808 if (to >= 0 && var->children.size () < to)
811 var->num_children = var->children.size ();
817 varobj_get_num_children (struct varobj *var)
819 if (var->num_children == -1)
821 if (varobj_is_dynamic_p (var))
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
831 var->num_children = number_of_children (var);
834 return var->num_children >= 0 ? var->num_children : 0;
837 /* Creates a list of the immediate children of a variable object;
838 the return code is the number of such children or -1 on error. */
840 const std::vector<varobj *> &
841 varobj_list_children (struct varobj *var, int *from, int *to)
843 var->dynamic->children_requested = true;
845 if (varobj_is_dynamic_p (var))
847 bool children_changed;
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
853 &children_changed, false, 0, *to);
854 varobj_restrict_range (var->children, from, to);
855 return var->children;
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
861 /* If that failed, give up. */
862 if (var->num_children == -1)
863 return var->children;
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
870 for (int i = 0; i < var->num_children; i++)
872 if (var->children[i] == NULL)
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
877 std::string name = name_of_child (var, i);
878 var->children[i] = create_child (var, i, name);
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
886 static struct varobj *
887 varobj_add_child (struct varobj *var, struct varobj_item *item)
889 varobj *v = create_child_with_value (var, var->children.size (), item);
891 var->children.push_back (v);
896 /* Obtain the type of an object Variable as a string similar to the one gdb
897 prints on the console. The caller is responsible for freeing the string.
901 varobj_get_type (struct varobj *var)
903 /* For the "fake" variables, do not return a type. (Its type is
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
907 return std::string ();
909 return type_to_string (var->type);
912 /* Obtain the type of an object variable. */
915 varobj_get_gdb_type (const struct varobj *var)
920 /* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
924 is_path_expr_parent (const struct varobj *var)
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
930 /* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
935 varobj_default_is_path_expr_parent (const struct varobj *var)
940 /* Return the path expression parent for VAR. */
942 const struct varobj *
943 varobj_get_path_expr_parent (const struct varobj *var)
945 const struct varobj *parent = var;
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
950 /* Computation of full rooted expression for children of dynamic
951 varobjs is not supported. */
952 if (varobj_is_dynamic_p (parent))
953 error (_("Invalid variable object (child of a dynamic varobj)"));
958 /* Return a pointer to the full rooted expression of varobj VAR.
959 If it has not been computed yet, compute it. */
962 varobj_get_path_expr (const struct varobj *var)
964 if (var->path_expr.empty ())
966 /* For root varobjs, we initialize path_expr
967 when creating varobj, so here it should be
969 struct varobj *mutable_var = (struct varobj *) var;
970 gdb_assert (!is_root_p (var));
972 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
975 return var->path_expr.c_str ();
978 const struct language_defn *
979 varobj_get_language (const struct varobj *var)
981 return var->root->exp->language_defn;
985 varobj_get_attributes (const struct varobj *var)
989 if (varobj_editable_p (var))
990 /* FIXME: define masks for attributes. */
991 attributes |= 0x00000001; /* Editable */
996 /* Return true if VAR is a dynamic varobj. */
999 varobj_is_dynamic_p (const struct varobj *var)
1001 return var->dynamic->pretty_printer != NULL;
1005 varobj_get_formatted_value (struct varobj *var,
1006 enum varobj_display_formats format)
1008 return my_value_of_variable (var, format);
1012 varobj_get_value (struct varobj *var)
1014 return my_value_of_variable (var, var->format);
1017 /* Set the value of an object variable (if it is editable) to the
1018 value of the given expression. */
1019 /* Note: Invokes functions that can call error(). */
1022 varobj_set_value (struct varobj *var, const char *expression)
1024 struct value *val = NULL; /* Initialize to keep gcc happy. */
1025 /* The argument "expression" contains the variable's new value.
1026 We need to first construct a legal expression for this -- ugh! */
1027 /* Does this cover all the bases? */
1028 struct value *value = NULL; /* Initialize to keep gcc happy. */
1029 int saved_input_radix = input_radix;
1030 const char *s = expression;
1032 gdb_assert (varobj_editable_p (var));
1034 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1035 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1038 value = evaluate_expression (exp.get ());
1041 CATCH (except, RETURN_MASK_ERROR)
1043 /* We cannot proceed without a valid expression. */
1048 /* All types that are editable must also be changeable. */
1049 gdb_assert (varobj_value_is_changeable_p (var));
1051 /* The value of a changeable variable object must not be lazy. */
1052 gdb_assert (!value_lazy (var->value.get ()));
1054 /* Need to coerce the input. We want to check if the
1055 value of the variable object will be different
1056 after assignment, and the first thing value_assign
1057 does is coerce the input.
1058 For example, if we are assigning an array to a pointer variable we
1059 should compare the pointer with the array's address, not with the
1061 value = coerce_array (value);
1063 /* The new value may be lazy. value_assign, or
1064 rather value_contents, will take care of this. */
1067 val = value_assign (var->value.get (), value);
1070 CATCH (except, RETURN_MASK_ERROR)
1076 /* If the value has changed, record it, so that next -var-update can
1077 report this change. If a variable had a value of '1', we've set it
1078 to '333' and then set again to '1', when -var-update will report this
1079 variable as changed -- because the first assignment has set the
1080 'updated' flag. There's no need to optimize that, because return value
1081 of -var-update should be considered an approximation. */
1082 var->updated = install_new_value (var, val, false /* Compare values. */);
1083 input_radix = saved_input_radix;
1089 /* A helper function to install a constructor function and visualizer
1090 in a varobj_dynamic. */
1093 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1094 PyObject *visualizer)
1096 Py_XDECREF (var->constructor);
1097 var->constructor = constructor;
1099 Py_XDECREF (var->pretty_printer);
1100 var->pretty_printer = visualizer;
1102 varobj_iter_delete (var->child_iter);
1103 var->child_iter = NULL;
1106 /* Install the default visualizer for VAR. */
1109 install_default_visualizer (struct varobj *var)
1111 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1112 if (CPLUS_FAKE_CHILD (var))
1115 if (pretty_printing)
1117 gdbpy_ref<> pretty_printer;
1119 if (var->value != nullptr)
1121 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1122 if (pretty_printer == nullptr)
1124 gdbpy_print_stack ();
1125 error (_("Cannot instantiate printer for default visualizer"));
1129 if (pretty_printer == Py_None)
1130 pretty_printer.release ();
1132 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
1136 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1137 make a new object. */
1140 construct_visualizer (struct varobj *var, PyObject *constructor)
1142 PyObject *pretty_printer;
1144 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1145 if (CPLUS_FAKE_CHILD (var))
1148 Py_INCREF (constructor);
1149 if (constructor == Py_None)
1150 pretty_printer = NULL;
1153 pretty_printer = instantiate_pretty_printer (constructor,
1155 if (! pretty_printer)
1157 gdbpy_print_stack ();
1158 Py_DECREF (constructor);
1159 constructor = Py_None;
1160 Py_INCREF (constructor);
1163 if (pretty_printer == Py_None)
1165 Py_DECREF (pretty_printer);
1166 pretty_printer = NULL;
1170 install_visualizer (var->dynamic, constructor, pretty_printer);
1173 #endif /* HAVE_PYTHON */
1175 /* A helper function for install_new_value. This creates and installs
1176 a visualizer for VAR, if appropriate. */
1179 install_new_value_visualizer (struct varobj *var)
1182 /* If the constructor is None, then we want the raw value. If VAR
1183 does not have a value, just skip this. */
1184 if (!gdb_python_initialized)
1187 if (var->dynamic->constructor != Py_None && var->value != NULL)
1189 gdbpy_enter_varobj enter_py (var);
1191 if (var->dynamic->constructor == NULL)
1192 install_default_visualizer (var);
1194 construct_visualizer (var, var->dynamic->constructor);
1201 /* When using RTTI to determine variable type it may be changed in runtime when
1202 the variable value is changed. This function checks whether type of varobj
1203 VAR will change when a new value NEW_VALUE is assigned and if it is so
1204 updates the type of VAR. */
1207 update_type_if_necessary (struct varobj *var, struct value *new_value)
1211 struct value_print_options opts;
1213 get_user_print_options (&opts);
1214 if (opts.objectprint)
1216 struct type *new_type = value_actual_type (new_value, 0, 0);
1217 std::string new_type_str = type_to_string (new_type);
1218 std::string curr_type_str = varobj_get_type (var);
1220 /* Did the type name change? */
1221 if (curr_type_str != new_type_str)
1223 var->type = new_type;
1225 /* This information may be not valid for a new type. */
1226 varobj_delete (var, 1);
1227 var->children.clear ();
1228 var->num_children = -1;
1237 /* Assign a new value to a variable object. If INITIAL is true,
1238 this is the first assignment after the variable object was just
1239 created, or changed type. In that case, just assign the value
1241 Otherwise, assign the new value, and return true if the value is
1242 different from the current one, false otherwise. The comparison is
1243 done on textual representation of value. Therefore, some types
1244 need not be compared. E.g. for structures the reported value is
1245 always "{...}", so no comparison is necessary here. If the old
1246 value was NULL and new one is not, or vice versa, we always return true.
1248 The VALUE parameter should not be released -- the function will
1249 take care of releasing it when needed. */
1251 install_new_value (struct varobj *var, struct value *value, bool initial)
1255 bool changed = false;
1256 bool intentionally_not_fetched = false;
1258 /* We need to know the varobj's type to decide if the value should
1259 be fetched or not. C++ fake children (public/protected/private)
1260 don't have a type. */
1261 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1262 changeable = varobj_value_is_changeable_p (var);
1264 /* If the type has custom visualizer, we consider it to be always
1265 changeable. FIXME: need to make sure this behaviour will not
1266 mess up read-sensitive values. */
1267 if (var->dynamic->pretty_printer != NULL)
1270 need_to_fetch = changeable;
1272 /* We are not interested in the address of references, and given
1273 that in C++ a reference is not rebindable, it cannot
1274 meaningfully change. So, get hold of the real value. */
1276 value = coerce_ref (value);
1278 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1279 /* For unions, we need to fetch the value implicitly because
1280 of implementation of union member fetch. When gdb
1281 creates a value for a field and the value of the enclosing
1282 structure is not lazy, it immediately copies the necessary
1283 bytes from the enclosing values. If the enclosing value is
1284 lazy, the call to value_fetch_lazy on the field will read
1285 the data from memory. For unions, that means we'll read the
1286 same memory more than once, which is not desirable. So
1288 need_to_fetch = true;
1290 /* The new value might be lazy. If the type is changeable,
1291 that is we'll be comparing values of this type, fetch the
1292 value now. Otherwise, on the next update the old value
1293 will be lazy, which means we've lost that old value. */
1294 if (need_to_fetch && value && value_lazy (value))
1296 const struct varobj *parent = var->parent;
1297 bool frozen = var->frozen;
1299 for (; !frozen && parent; parent = parent->parent)
1300 frozen |= parent->frozen;
1302 if (frozen && initial)
1304 /* For variables that are frozen, or are children of frozen
1305 variables, we don't do fetch on initial assignment.
1306 For non-initial assignemnt we do the fetch, since it means we're
1307 explicitly asked to compare the new value with the old one. */
1308 intentionally_not_fetched = true;
1315 value_fetch_lazy (value);
1318 CATCH (except, RETURN_MASK_ERROR)
1320 /* Set the value to NULL, so that for the next -var-update,
1321 we don't try to compare the new value with this value,
1322 that we couldn't even read. */
1329 /* Get a reference now, before possibly passing it to any Python
1330 code that might release it. */
1331 value_ref_ptr value_holder;
1333 value_holder = value_ref_ptr::new_reference (value);
1335 /* Below, we'll be comparing string rendering of old and new
1336 values. Don't get string rendering if the value is
1337 lazy -- if it is, the code above has decided that the value
1338 should not be fetched. */
1339 std::string print_value;
1340 if (value != NULL && !value_lazy (value)
1341 && var->dynamic->pretty_printer == NULL)
1342 print_value = varobj_value_get_print_value (value, var->format, var);
1344 /* If the type is changeable, compare the old and the new values.
1345 If this is the initial assignment, we don't have any old value
1347 if (!initial && changeable)
1349 /* If the value of the varobj was changed by -var-set-value,
1350 then the value in the varobj and in the target is the same.
1351 However, that value is different from the value that the
1352 varobj had after the previous -var-update. So need to the
1353 varobj as changed. */
1356 else if (var->dynamic->pretty_printer == NULL)
1358 /* Try to compare the values. That requires that both
1359 values are non-lazy. */
1360 if (var->not_fetched && value_lazy (var->value.get ()))
1362 /* This is a frozen varobj and the value was never read.
1363 Presumably, UI shows some "never read" indicator.
1364 Now that we've fetched the real value, we need to report
1365 this varobj as changed so that UI can show the real
1369 else if (var->value == NULL && value == NULL)
1372 else if (var->value == NULL || value == NULL)
1378 gdb_assert (!value_lazy (var->value.get ()));
1379 gdb_assert (!value_lazy (value));
1381 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1382 if (var->print_value != print_value)
1388 if (!initial && !changeable)
1390 /* For values that are not changeable, we don't compare the values.
1391 However, we want to notice if a value was not NULL and now is NULL,
1392 or vise versa, so that we report when top-level varobjs come in scope
1393 and leave the scope. */
1394 changed = (var->value != NULL) != (value != NULL);
1397 /* We must always keep the new value, since children depend on it. */
1398 var->value = value_holder;
1399 if (value && value_lazy (value) && intentionally_not_fetched)
1400 var->not_fetched = true;
1402 var->not_fetched = false;
1403 var->updated = false;
1405 install_new_value_visualizer (var);
1407 /* If we installed a pretty-printer, re-compare the printed version
1408 to see if the variable changed. */
1409 if (var->dynamic->pretty_printer != NULL)
1411 print_value = varobj_value_get_print_value (var->value.get (),
1413 if ((var->print_value.empty () && !print_value.empty ())
1414 || (!var->print_value.empty () && print_value.empty ())
1415 || (!var->print_value.empty () && !print_value.empty ()
1416 && var->print_value != print_value))
1419 var->print_value = print_value;
1421 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1426 /* Return the requested range for a varobj. VAR is the varobj. FROM
1427 and TO are out parameters; *FROM and *TO will be set to the
1428 selected sub-range of VAR. If no range was selected using
1429 -var-set-update-range, then both will be -1. */
1431 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1437 /* Set the selected sub-range of children of VAR to start at index
1438 FROM and end at index TO. If either FROM or TO is less than zero,
1439 this is interpreted as a request for all children. */
1441 varobj_set_child_range (struct varobj *var, int from, int to)
1448 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1453 if (!gdb_python_initialized)
1456 gdbpy_enter_varobj enter_py (var);
1458 mainmod = PyImport_AddModule ("__main__");
1460 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1461 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1462 globals.get (), globals.get ()));
1464 if (constructor == NULL)
1466 gdbpy_print_stack ();
1467 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1470 construct_visualizer (var, constructor.get ());
1472 /* If there are any children now, wipe them. */
1473 varobj_delete (var, 1 /* children only */);
1474 var->num_children = -1;
1476 error (_("Python support required"));
1480 /* If NEW_VALUE is the new value of the given varobj (var), return
1481 true if var has mutated. In other words, if the type of
1482 the new value is different from the type of the varobj's old
1485 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1488 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1489 struct type *new_type)
1491 /* If we haven't previously computed the number of children in var,
1492 it does not matter from the front-end's perspective whether
1493 the type has mutated or not. For all intents and purposes,
1494 it has not mutated. */
1495 if (var->num_children < 0)
1498 if (var->root->lang_ops->value_has_mutated != NULL)
1500 /* The varobj module, when installing new values, explicitly strips
1501 references, saying that we're not interested in those addresses.
1502 But detection of mutation happens before installing the new
1503 value, so our value may be a reference that we need to strip
1504 in order to remain consistent. */
1505 if (new_value != NULL)
1506 new_value = coerce_ref (new_value);
1507 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1513 /* Update the values for a variable and its children. This is a
1514 two-pronged attack. First, re-parse the value for the root's
1515 expression to see if it's changed. Then go all the way
1516 through its children, reconstructing them and noting if they've
1519 The IS_EXPLICIT parameter specifies if this call is result
1520 of MI request to update this specific variable, or
1521 result of implicit -var-update *. For implicit request, we don't
1522 update frozen variables.
1524 NOTE: This function may delete the caller's varobj. If it
1525 returns TYPE_CHANGED, then it has done this and VARP will be modified
1526 to point to the new varobj. */
1528 std::vector<varobj_update_result>
1529 varobj_update (struct varobj **varp, bool is_explicit)
1531 bool type_changed = false;
1532 struct value *newobj;
1533 std::vector<varobj_update_result> stack;
1534 std::vector<varobj_update_result> result;
1536 /* Frozen means frozen -- we don't check for any change in
1537 this varobj, including its going out of scope, or
1538 changing type. One use case for frozen varobjs is
1539 retaining previously evaluated expressions, and we don't
1540 want them to be reevaluated at all. */
1541 if (!is_explicit && (*varp)->frozen)
1544 if (!(*varp)->root->is_valid)
1546 result.emplace_back (*varp, VAROBJ_INVALID);
1550 if ((*varp)->root->rootvar == *varp)
1552 varobj_update_result r (*varp);
1554 /* Update the root variable. value_of_root can return NULL
1555 if the variable is no longer around, i.e. we stepped out of
1556 the frame in which a local existed. We are letting the
1557 value_of_root variable dispose of the varobj if the type
1559 newobj = value_of_root (varp, &type_changed);
1560 if (update_type_if_necessary (*varp, newobj))
1561 type_changed = true;
1563 r.type_changed = type_changed;
1564 if (install_new_value ((*varp), newobj, type_changed))
1568 r.status = VAROBJ_NOT_IN_SCOPE;
1569 r.value_installed = true;
1571 if (r.status == VAROBJ_NOT_IN_SCOPE)
1573 if (r.type_changed || r.changed)
1574 result.push_back (std::move (r));
1579 stack.push_back (std::move (r));
1582 stack.emplace_back (*varp);
1584 /* Walk through the children, reconstructing them all. */
1585 while (!stack.empty ())
1587 varobj_update_result r = std::move (stack.back ());
1589 struct varobj *v = r.varobj;
1591 /* Update this variable, unless it's a root, which is already
1593 if (!r.value_installed)
1595 struct type *new_type;
1597 newobj = value_of_child (v->parent, v->index);
1598 if (update_type_if_necessary (v, newobj))
1599 r.type_changed = true;
1601 new_type = value_type (newobj);
1603 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1605 if (varobj_value_has_mutated (v, newobj, new_type))
1607 /* The children are no longer valid; delete them now.
1608 Report the fact that its type changed as well. */
1609 varobj_delete (v, 1 /* only_children */);
1610 v->num_children = -1;
1614 r.type_changed = true;
1617 if (install_new_value (v, newobj, r.type_changed))
1624 /* We probably should not get children of a dynamic varobj, but
1625 for which -var-list-children was never invoked. */
1626 if (varobj_is_dynamic_p (v))
1628 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
1629 bool children_changed = false;
1634 if (!v->dynamic->children_requested)
1638 /* If we initially did not have potential children, but
1639 now we do, consider the varobj as changed.
1640 Otherwise, if children were never requested, consider
1641 it as unchanged -- presumably, such varobj is not yet
1642 expanded in the UI, so we need not bother getting
1644 if (!varobj_has_more (v, 0))
1646 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1647 &dummy, false, 0, 0);
1648 if (varobj_has_more (v, 0))
1653 result.push_back (std::move (r));
1658 /* If update_dynamic_varobj_children returns false, then we have
1659 a non-conforming pretty-printer, so we skip it. */
1660 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1662 &unchanged, &children_changed,
1663 true, v->from, v->to))
1665 if (children_changed || !newobj_vec.empty ())
1667 r.children_changed = true;
1668 r.newobj = std::move (newobj_vec);
1670 /* Push in reverse order so that the first child is
1671 popped from the work stack first, and so will be
1672 added to result first. This does not affect
1673 correctness, just "nicer". */
1674 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
1676 varobj_update_result item (type_changed_vec[i]);
1678 /* Type may change only if value was changed. */
1679 item.changed = true;
1680 item.type_changed = true;
1681 item.value_installed = true;
1683 stack.push_back (std::move (item));
1685 for (int i = changed.size () - 1; i >= 0; --i)
1687 varobj_update_result item (changed[i]);
1689 item.changed = true;
1690 item.value_installed = true;
1692 stack.push_back (std::move (item));
1694 for (int i = unchanged.size () - 1; i >= 0; --i)
1696 if (!unchanged[i]->frozen)
1698 varobj_update_result item (unchanged[i]);
1700 item.value_installed = true;
1702 stack.push_back (std::move (item));
1705 if (r.changed || r.children_changed)
1706 result.push_back (std::move (r));
1712 /* Push any children. Use reverse order so that the first
1713 child is popped from the work stack first, and so
1714 will be added to result first. This does not
1715 affect correctness, just "nicer". */
1716 for (int i = v->children.size () - 1; i >= 0; --i)
1718 varobj *c = v->children[i];
1720 /* Child may be NULL if explicitly deleted by -var-delete. */
1721 if (c != NULL && !c->frozen)
1722 stack.emplace_back (c);
1725 if (r.changed || r.type_changed)
1726 result.push_back (std::move (r));
1732 /* Helper functions */
1735 * Variable object construction/destruction
1739 delete_variable (struct varobj *var, bool only_children_p)
1743 delete_variable_1 (&delcount, var, only_children_p,
1744 true /* remove_from_parent_p */ );
1749 /* Delete the variable object VAR and its children. */
1750 /* IMPORTANT NOTE: If we delete a variable which is a child
1751 and the parent is not removed we dump core. It must be always
1752 initially called with remove_from_parent_p set. */
1754 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1755 bool remove_from_parent_p)
1757 /* Delete any children of this variable, too. */
1758 for (varobj *child : var->children)
1763 if (!remove_from_parent_p)
1764 child->parent = NULL;
1766 delete_variable_1 (delcountp, child, false, only_children_p);
1768 var->children.clear ();
1770 /* if we were called to delete only the children we are done here. */
1771 if (only_children_p)
1774 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1775 /* If the name is empty, this is a temporary variable, that has not
1776 yet been installed, don't report it, it belongs to the caller... */
1777 if (!var->obj_name.empty ())
1779 *delcountp = *delcountp + 1;
1782 /* If this variable has a parent, remove it from its parent's list. */
1783 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1784 (as indicated by remove_from_parent_p) we don't bother doing an
1785 expensive list search to find the element to remove when we are
1786 discarding the list afterwards. */
1787 if ((remove_from_parent_p) && (var->parent != NULL))
1788 var->parent->children[var->index] = NULL;
1790 if (!var->obj_name.empty ())
1791 uninstall_variable (var);
1793 /* Free memory associated with this variable. */
1797 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1799 install_variable (struct varobj *var)
1802 struct vlist *newvl;
1804 unsigned int index = 0;
1807 for (chp = var->obj_name.c_str (); *chp; chp++)
1809 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1812 cv = *(varobj_table + index);
1813 while (cv != NULL && cv->var->obj_name != var->obj_name)
1817 error (_("Duplicate variable object name"));
1819 /* Add varobj to hash table. */
1820 newvl = XNEW (struct vlist);
1821 newvl->next = *(varobj_table + index);
1823 *(varobj_table + index) = newvl;
1825 /* If root, add varobj to root list. */
1826 if (is_root_p (var))
1828 /* Add to list of root variables. */
1829 if (rootlist == NULL)
1830 var->root->next = NULL;
1832 var->root->next = rootlist;
1833 rootlist = var->root;
1836 return true; /* OK */
1839 /* Unistall the object VAR. */
1841 uninstall_variable (struct varobj *var)
1845 struct varobj_root *cr;
1846 struct varobj_root *prer;
1848 unsigned int index = 0;
1851 /* Remove varobj from hash table. */
1852 for (chp = var->obj_name.c_str (); *chp; chp++)
1854 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1857 cv = *(varobj_table + index);
1859 while (cv != NULL && cv->var->obj_name != var->obj_name)
1866 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1871 ("Assertion failed: Could not find variable object \"%s\" to delete",
1872 var->obj_name.c_str ());
1877 *(varobj_table + index) = cv->next;
1879 prev->next = cv->next;
1883 /* If root, remove varobj from root list. */
1884 if (is_root_p (var))
1886 /* Remove from list of root variables. */
1887 if (rootlist == var->root)
1888 rootlist = var->root->next;
1893 while ((cr != NULL) && (cr->rootvar != var))
1900 warning (_("Assertion failed: Could not find "
1901 "varobj \"%s\" in root list"),
1902 var->obj_name.c_str ());
1908 prer->next = cr->next;
1914 /* Create and install a child of the parent of the given name.
1916 The created VAROBJ takes ownership of the allocated NAME. */
1918 static struct varobj *
1919 create_child (struct varobj *parent, int index, std::string &name)
1921 struct varobj_item item;
1923 std::swap (item.name, name);
1924 item.value = value_of_child (parent, index);
1926 return create_child_with_value (parent, index, &item);
1929 static struct varobj *
1930 create_child_with_value (struct varobj *parent, int index,
1931 struct varobj_item *item)
1933 varobj *child = new varobj (parent->root);
1935 /* NAME is allocated by caller. */
1936 std::swap (child->name, item->name);
1937 child->index = index;
1938 child->parent = parent;
1940 if (varobj_is_anonymous_child (child))
1941 child->obj_name = string_printf ("%s.%d_anonymous",
1942 parent->obj_name.c_str (), index);
1944 child->obj_name = string_printf ("%s.%s",
1945 parent->obj_name.c_str (),
1946 child->name.c_str ());
1948 install_variable (child);
1950 /* Compute the type of the child. Must do this before
1951 calling install_new_value. */
1952 if (item->value != NULL)
1953 /* If the child had no evaluation errors, var->value
1954 will be non-NULL and contain a valid type. */
1955 child->type = value_actual_type (item->value, 0, NULL);
1957 /* Otherwise, we must compute the type. */
1958 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1960 install_new_value (child, item->value, 1);
1967 * Miscellaneous utility functions.
1970 /* Allocate memory and initialize a new variable. */
1971 varobj::varobj (varobj_root *root_)
1972 : root (root_), dynamic (new varobj_dynamic)
1976 /* Free any allocated memory associated with VAR. */
1983 if (var->dynamic->pretty_printer != NULL)
1985 gdbpy_enter_varobj enter_py (var);
1987 Py_XDECREF (var->dynamic->constructor);
1988 Py_XDECREF (var->dynamic->pretty_printer);
1992 varobj_iter_delete (var->dynamic->child_iter);
1993 varobj_clear_saved_item (var->dynamic);
1995 if (is_root_p (var))
1998 delete var->dynamic;
2001 /* Return the type of the value that's stored in VAR,
2002 or that would have being stored there if the
2003 value were accessible.
2005 This differs from VAR->type in that VAR->type is always
2006 the true type of the expession in the source language.
2007 The return value of this function is the type we're
2008 actually storing in varobj, and using for displaying
2009 the values and for comparing previous and new values.
2011 For example, top-level references are always stripped. */
2013 varobj_get_value_type (const struct varobj *var)
2017 if (var->value != nullptr)
2018 type = value_type (var->value.get ());
2022 type = check_typedef (type);
2024 if (TYPE_IS_REFERENCE (type))
2025 type = get_target_type (type);
2027 type = check_typedef (type);
2032 /* What is the default display for this variable? We assume that
2033 everything is "natural". Any exceptions? */
2034 static enum varobj_display_formats
2035 variable_default_display (struct varobj *var)
2037 return FORMAT_NATURAL;
2041 * Language-dependencies
2044 /* Common entry points */
2046 /* Return the number of children for a given variable.
2047 The result of this function is defined by the language
2048 implementation. The number of children returned by this function
2049 is the number of children that the user will see in the variable
2052 number_of_children (const struct varobj *var)
2054 return (*var->root->lang_ops->number_of_children) (var);
2057 /* What is the expression for the root varobj VAR? */
2060 name_of_variable (const struct varobj *var)
2062 return (*var->root->lang_ops->name_of_variable) (var);
2065 /* What is the name of the INDEX'th child of VAR? */
2068 name_of_child (struct varobj *var, int index)
2070 return (*var->root->lang_ops->name_of_child) (var, index);
2073 /* If frame associated with VAR can be found, switch
2074 to it and return true. Otherwise, return false. */
2077 check_scope (const struct varobj *var)
2079 struct frame_info *fi;
2082 fi = frame_find_by_id (var->root->frame);
2087 CORE_ADDR pc = get_frame_pc (fi);
2089 if (pc < BLOCK_START (var->root->valid_block) ||
2090 pc >= BLOCK_END (var->root->valid_block))
2098 /* Helper function to value_of_root. */
2100 static struct value *
2101 value_of_root_1 (struct varobj **var_handle)
2103 struct value *new_val = NULL;
2104 struct varobj *var = *var_handle;
2105 bool within_scope = false;
2107 /* Only root variables can be updated... */
2108 if (!is_root_p (var))
2109 /* Not a root var. */
2112 scoped_restore_current_thread restore_thread;
2114 /* Determine whether the variable is still around. */
2115 if (var->root->valid_block == NULL || var->root->floating)
2116 within_scope = true;
2117 else if (var->root->thread_id == 0)
2119 /* The program was single-threaded when the variable object was
2120 created. Technically, it's possible that the program became
2121 multi-threaded since then, but we don't support such
2123 within_scope = check_scope (var);
2127 thread_info *thread = find_thread_global_id (var->root->thread_id);
2131 switch_to_thread (thread);
2132 within_scope = check_scope (var);
2139 /* We need to catch errors here, because if evaluate
2140 expression fails we want to just return NULL. */
2143 new_val = evaluate_expression (var->root->exp.get ());
2145 CATCH (except, RETURN_MASK_ERROR)
2154 /* What is the ``struct value *'' of the root variable VAR?
2155 For floating variable object, evaluation can get us a value
2156 of different type from what is stored in varobj already. In
2158 - *type_changed will be set to 1
2159 - old varobj will be freed, and new one will be
2160 created, with the same name.
2161 - *var_handle will be set to the new varobj
2162 Otherwise, *type_changed will be set to 0. */
2163 static struct value *
2164 value_of_root (struct varobj **var_handle, bool *type_changed)
2168 if (var_handle == NULL)
2173 /* This should really be an exception, since this should
2174 only get called with a root variable. */
2176 if (!is_root_p (var))
2179 if (var->root->floating)
2181 struct varobj *tmp_var;
2183 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2184 USE_SELECTED_FRAME);
2185 if (tmp_var == NULL)
2189 std::string old_type = varobj_get_type (var);
2190 std::string new_type = varobj_get_type (tmp_var);
2191 if (old_type == new_type)
2193 /* The expression presently stored inside var->root->exp
2194 remembers the locations of local variables relatively to
2195 the frame where the expression was created (in DWARF location
2196 button, for example). Naturally, those locations are not
2197 correct in other frames, so update the expression. */
2199 std::swap (var->root->exp, tmp_var->root->exp);
2201 varobj_delete (tmp_var, 0);
2206 tmp_var->obj_name = var->obj_name;
2207 tmp_var->from = var->from;
2208 tmp_var->to = var->to;
2209 varobj_delete (var, 0);
2211 install_variable (tmp_var);
2212 *var_handle = tmp_var;
2214 *type_changed = true;
2223 struct value *value;
2225 value = value_of_root_1 (var_handle);
2226 if (var->value == NULL || value == NULL)
2228 /* For root varobj-s, a NULL value indicates a scoping issue.
2229 So, nothing to do in terms of checking for mutations. */
2231 else if (varobj_value_has_mutated (var, value, value_type (value)))
2233 /* The type has mutated, so the children are no longer valid.
2234 Just delete them, and tell our caller that the type has
2236 varobj_delete (var, 1 /* only_children */);
2237 var->num_children = -1;
2240 *type_changed = true;
2246 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2247 static struct value *
2248 value_of_child (const struct varobj *parent, int index)
2250 struct value *value;
2252 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2257 /* GDB already has a command called "value_of_variable". Sigh. */
2259 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2261 if (var->root->is_valid)
2263 if (var->dynamic->pretty_printer != NULL)
2264 return varobj_value_get_print_value (var->value.get (), var->format,
2266 return (*var->root->lang_ops->value_of_variable) (var, format);
2269 return std::string ();
2273 varobj_formatted_print_options (struct value_print_options *opts,
2274 enum varobj_display_formats format)
2276 get_formatted_print_options (opts, format_code[(int) format]);
2277 opts->deref_ref = 0;
2278 opts->raw = !pretty_printing;
2282 varobj_value_get_print_value (struct value *value,
2283 enum varobj_display_formats format,
2284 const struct varobj *var)
2286 struct value_print_options opts;
2287 struct type *type = NULL;
2289 gdb::unique_xmalloc_ptr<char> encoding;
2290 /* Initialize it just to avoid a GCC false warning. */
2291 CORE_ADDR str_addr = 0;
2292 bool string_print = false;
2295 return std::string ();
2298 std::string thevalue;
2301 if (gdb_python_initialized)
2303 PyObject *value_formatter = var->dynamic->pretty_printer;
2305 gdbpy_enter_varobj enter_py (var);
2307 if (value_formatter)
2309 /* First check to see if we have any children at all. If so,
2310 we simply return {...}. */
2311 if (dynamic_varobj_has_child_method (var))
2314 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2316 struct value *replacement;
2318 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2322 /* If we have string like output ... */
2325 /* If this is a lazy string, extract it. For lazy
2326 strings we always print as a string, so set
2328 if (gdbpy_is_lazy_string (output.get ()))
2330 gdbpy_extract_lazy_string (output.get (), &str_addr,
2331 &type, &len, &encoding);
2332 string_print = true;
2336 /* If it is a regular (non-lazy) string, extract
2337 it and copy the contents into THEVALUE. If the
2338 hint says to print it as a string, set
2339 string_print. Otherwise just return the extracted
2340 string as a value. */
2342 gdb::unique_xmalloc_ptr<char> s
2343 = python_string_to_target_string (output.get ());
2347 struct gdbarch *gdbarch;
2349 gdb::unique_xmalloc_ptr<char> hint
2350 = gdbpy_get_display_hint (value_formatter);
2353 if (!strcmp (hint.get (), "string"))
2354 string_print = true;
2357 thevalue = std::string (s.get ());
2358 len = thevalue.size ();
2359 gdbarch = get_type_arch (value_type (value));
2360 type = builtin_type (gdbarch)->builtin_char;
2366 gdbpy_print_stack ();
2369 /* If the printer returned a replacement value, set VALUE
2370 to REPLACEMENT. If there is not a replacement value,
2371 just use the value passed to this function. */
2373 value = replacement;
2379 varobj_formatted_print_options (&opts, format);
2381 /* If the THEVALUE has contents, it is a regular string. */
2382 if (!thevalue.empty ())
2383 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2384 len, encoding.get (), 0, &opts);
2385 else if (string_print)
2386 /* Otherwise, if string_print is set, and it is not a regular
2387 string, it is a lazy string. */
2388 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2390 /* All other cases. */
2391 common_val_print (value, &stb, 0, &opts, current_language);
2393 return std::move (stb.string ());
2397 varobj_editable_p (const struct varobj *var)
2401 if (!(var->root->is_valid && var->value != nullptr
2402 && VALUE_LVAL (var->value.get ())))
2405 type = varobj_get_value_type (var);
2407 switch (TYPE_CODE (type))
2409 case TYPE_CODE_STRUCT:
2410 case TYPE_CODE_UNION:
2411 case TYPE_CODE_ARRAY:
2412 case TYPE_CODE_FUNC:
2413 case TYPE_CODE_METHOD:
2423 /* Call VAR's value_is_changeable_p language-specific callback. */
2426 varobj_value_is_changeable_p (const struct varobj *var)
2428 return var->root->lang_ops->value_is_changeable_p (var);
2431 /* Return true if that varobj is floating, that is is always evaluated in the
2432 selected frame, and not bound to thread/frame. Such variable objects
2433 are created using '@' as frame specifier to -var-create. */
2435 varobj_floating_p (const struct varobj *var)
2437 return var->root->floating;
2440 /* Implement the "value_is_changeable_p" varobj callback for most
2444 varobj_default_value_is_changeable_p (const struct varobj *var)
2449 if (CPLUS_FAKE_CHILD (var))
2452 type = varobj_get_value_type (var);
2454 switch (TYPE_CODE (type))
2456 case TYPE_CODE_STRUCT:
2457 case TYPE_CODE_UNION:
2458 case TYPE_CODE_ARRAY:
2469 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2470 with an arbitrary caller supplied DATA pointer. */
2473 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2475 struct varobj_root *var_root, *var_root_next;
2477 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2479 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2481 var_root_next = var_root->next;
2483 (*func) (var_root->rootvar, data);
2487 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2488 defined on globals. It is a helper for varobj_invalidate.
2490 This function is called after changing the symbol file, in this case the
2491 pointers to "struct type" stored by the varobj are no longer valid. All
2492 varobj must be either re-evaluated, or marked as invalid here. */
2495 varobj_invalidate_iter (struct varobj *var, void *unused)
2497 /* global and floating var must be re-evaluated. */
2498 if (var->root->floating || var->root->valid_block == NULL)
2500 struct varobj *tmp_var;
2502 /* Try to create a varobj with same expression. If we succeed
2503 replace the old varobj, otherwise invalidate it. */
2504 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2506 if (tmp_var != NULL)
2508 tmp_var->obj_name = var->obj_name;
2509 varobj_delete (var, 0);
2510 install_variable (tmp_var);
2513 var->root->is_valid = false;
2515 else /* locals must be invalidated. */
2516 var->root->is_valid = false;
2519 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2520 are defined on globals.
2521 Invalidated varobjs will be always printed in_scope="invalid". */
2524 varobj_invalidate (void)
2526 all_root_varobjs (varobj_invalidate_iter, NULL);
2530 _initialize_varobj (void)
2532 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2534 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2536 _("Set varobj debugging."),
2537 _("Show varobj debugging."),
2538 _("When non-zero, varobj debugging is enabled."),
2539 NULL, show_varobjdebug,
2540 &setdebuglist, &showdebuglist);