1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
29 #include "gdbsupport/vec.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
33 #include "parser-defs.h"
37 #include "python/python.h"
38 #include "python/python-internal.h"
43 /* Non-zero if we want to see trace of varobj level stuff. */
45 unsigned int varobjdebug = 0;
47 show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 /* String representations of gdb's format codes. */
54 const char *varobj_format_string[] =
55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
57 /* True if we want to allow Python-based pretty-printing. */
58 static bool pretty_printing = false;
61 varobj_enable_pretty_printing (void)
63 pretty_printing = true;
68 /* Every root variable has one of these structures saved in its
72 /* The expression for this parent. */
75 /* Block for which this expression is valid. */
76 const struct block *valid_block = NULL;
78 /* The frame for this expression. This field is set iff valid_block is
80 struct frame_id frame = null_frame_id;
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
89 /* If true, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
92 bool floating = false;
94 /* Flag that indicates validity: set to false when this varobj_root refers
95 to symbols that do not exist anymore. */
98 /* Language-related operations for this variable and its
100 const struct lang_varobj_ops *lang_ops = NULL;
102 /* The varobj for this root node. */
103 struct varobj *rootvar = NULL;
105 /* Next root variable */
106 struct varobj_root *next = NULL;
109 /* Dynamic part of varobj. */
111 struct varobj_dynamic
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
117 bool children_requested = false;
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor = NULL;
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer = NULL;
128 /* The iterator returned by the printer's 'children' method, or NULL
130 struct varobj_iter *child_iter = NULL;
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item = NULL;
140 /* A list of varobjs */
148 /* Private function prototypes */
150 /* Helper functions for the above subcommands. */
152 static int delete_variable (struct varobj *, bool);
154 static void delete_variable_1 (int *, struct varobj *, bool, bool);
156 static bool install_variable (struct varobj *);
158 static void uninstall_variable (struct varobj *);
160 static struct varobj *create_child (struct varobj *, int, std::string &);
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
166 /* Utility routines */
168 static enum varobj_display_formats variable_default_display (struct varobj *);
170 static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
173 static bool install_new_value (struct varobj *var, struct value *value,
176 /* Language-specific routines. */
178 static int number_of_children (const struct varobj *);
180 static std::string name_of_variable (const struct varobj *);
182 static std::string name_of_child (struct varobj *, int);
184 static struct value *value_of_root (struct varobj **var_handle, bool *);
186 static struct value *value_of_child (const struct varobj *parent, int index);
188 static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
191 static bool is_root_p (const struct varobj *var);
193 static struct varobj *varobj_add_child (struct varobj *var,
194 struct varobj_item *item);
198 /* Mappings of varobj_display_formats enums to gdb's format codes. */
199 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
201 /* Header of the list of root variable objects. */
202 static struct varobj_root *rootlist;
204 /* Prime number indicating the number of buckets in the hash table. */
205 /* A prime large enough to avoid too many collisions. */
206 #define VAROBJ_TABLE_SIZE 227
208 /* Pointer to the varobj hash table (built at run time). */
209 static struct vlist **varobj_table;
213 /* API Implementation */
215 is_root_p (const struct varobj *var)
217 return (var->root->rootvar == var);
222 /* See python-internal.h. */
223 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
230 /* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
233 static struct frame_info *
234 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
236 struct frame_info *frame = NULL;
238 if (frame_addr == (CORE_ADDR) 0)
241 for (frame = get_current_frame ();
243 frame = get_prev_frame (frame))
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
255 if (frame_base == frame_addr)
262 /* Creates a varobj (not its children). */
265 varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
268 /* Fill out a varobj structure for the (root) variable being constructed. */
269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
271 if (expression != NULL)
273 struct frame_info *fi;
274 struct frame_id old_id = null_frame_id;
275 const struct block *block;
277 struct value *value = NULL;
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
283 if (has_stack_frames ())
285 /* Allow creator to specify context of variable. */
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
296 fi = find_frame_addr_in_frame_chain (frame);
301 if (type == USE_SELECTED_FRAME)
302 var->root->floating = true;
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
314 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
315 | INNERMOST_BLOCK_FOR_REGISTERS);
316 /* Wrap the call to parse expression, so we can
317 return a sensible error. */
320 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
323 catch (const gdb_exception_error &except)
328 /* Don't allow variables to be created for types. */
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
338 var->format = variable_default_display (var.get ());
339 var->root->valid_block =
340 var->root->floating ? NULL : tracker.block ();
341 var->name = expression;
342 /* For a root var, the name and the expr are the same. */
343 var->path_expr = expression;
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
348 Since select_frame is so benign, just call it for all cases. */
349 if (var->root->valid_block)
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
356 error (_("Failed to find the specified frame"));
358 var->root->frame = get_frame_id (fi);
359 var->root->thread_id = inferior_thread ()->global_num;
360 old_id = get_frame_id (get_selected_frame (NULL));
364 /* We definitely need to catch errors here.
365 If evaluate_expression succeeds we got the value we wanted.
366 But if it fails, we still go on with a call to evaluate_type(). */
369 value = evaluate_expression (var->root->exp.get ());
371 catch (const gdb_exception_error &except)
373 /* Error getting the value. Try to at least get the
375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
377 var->type = value_type (type_only_value);
382 int real_type_found = 0;
384 var->type = value_actual_type (value, 0, &real_type_found);
386 value = value_cast (var->type, value);
389 /* Set language info */
390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
392 install_new_value (var.get (), value, 1 /* Initial assignment */);
394 /* Set ourselves as our root. */
395 var->root->rootvar = var.get ();
397 /* Reset the selected frame. */
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
402 /* If the variable object name is null, that means this
403 is a temporary variable, so don't install it. */
405 if ((var != NULL) && (objname != NULL))
407 var->obj_name = objname;
409 /* If a varobj name is duplicated, the install will fail so
411 if (!install_variable (var.get ()))
415 return var.release ();
418 /* Generates an unique name that can be used for a varobj. */
421 varobj_gen_name (void)
425 /* Generate a name for this object. */
427 return string_printf ("var%d", id);
430 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
434 varobj_get_handle (const char *objname)
438 unsigned int index = 0;
441 for (chp = objname; *chp; chp++)
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
446 cv = *(varobj_table + index);
447 while (cv != NULL && cv->var->obj_name != objname)
451 error (_("Variable object not found"));
456 /* Given the handle, return the name of the object. */
459 varobj_get_objname (const struct varobj *var)
461 return var->obj_name.c_str ();
464 /* Given the handle, return the expression represented by the
468 varobj_get_expression (const struct varobj *var)
470 return name_of_variable (var);
476 varobj_delete (struct varobj *var, bool only_children)
478 return delete_variable (var, only_children);
483 /* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
486 instantiate_pretty_printer (PyObject *constructor, struct value *value)
488 PyObject *val_obj = NULL;
491 val_obj = value_to_value_object (value);
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
502 /* Set/Get variable object display format. */
504 enum varobj_display_formats
505 varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
513 case FORMAT_HEXADECIMAL:
515 case FORMAT_ZHEXADECIMAL:
516 var->format = format;
520 var->format = variable_default_display (var);
523 if (varobj_value_is_changeable_p (var)
524 && var->value != nullptr && !value_lazy (var->value.get ()))
526 var->print_value = varobj_value_get_print_value (var->value.get (),
533 enum varobj_display_formats
534 varobj_get_display_format (const struct varobj *var)
539 gdb::unique_xmalloc_ptr<char>
540 varobj_get_display_hint (const struct varobj *var)
542 gdb::unique_xmalloc_ptr<char> result;
545 if (!gdb_python_initialized)
548 gdbpy_enter_varobj enter_py (var);
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
557 /* Return true if the varobj has items after TO, false otherwise. */
560 varobj_has_more (const struct varobj *var, int to)
562 if (var->children.size () > to)
565 return ((to == -1 || var->children.size () == to)
566 && (var->dynamic->saved_item != NULL));
569 /* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
572 is always positive. Otherwise, returns -1. */
574 varobj_get_thread_id (const struct varobj *var)
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
583 varobj_set_frozen (struct varobj *var, bool frozen)
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
596 varobj_get_frozen (const struct varobj *var)
601 /* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
607 varobj_restrict_range (const std::vector<varobj *> &children,
610 int len = children.size ();
612 if (*from < 0 || *to < 0)
628 /* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
632 install_dynamic_child (struct varobj *var,
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
639 struct varobj_item *item)
641 if (var->children.size () < index + 1)
643 /* There's no child yet. */
644 struct varobj *child = varobj_add_child (var, item);
648 newobj->push_back (child);
654 varobj *existing = var->children[index];
655 bool type_updated = update_type_if_necessary (existing, item->value);
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
662 if (install_new_value (existing, item->value, 0))
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
675 dynamic_varobj_has_child_method (const struct varobj *var)
677 PyObject *printer = var->dynamic->pretty_printer;
679 if (!gdb_python_initialized)
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
687 /* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
690 static struct varobj_iter *
691 varobj_get_iterator (struct varobj *var)
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
698 gdb_assert_not_reached (_("\
699 requested an iterator from a non-dynamic varobj"));
702 /* Release and clear VAR's saved item, if any. */
705 varobj_clear_saved_item (struct varobj_dynamic *var)
707 if (var->saved_item != NULL)
709 value_decref (var->saved_item->value);
710 delete var->saved_item;
711 var->saved_item = NULL;
716 update_dynamic_varobj_children (struct varobj *var,
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
722 bool update_children,
730 if (update_children || var->dynamic->child_iter == NULL)
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
735 varobj_clear_saved_item (var->dynamic);
739 if (var->dynamic->child_iter == NULL)
743 i = var->children.size ();
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
751 /* See if there was a leftover from last time. */
752 if (var->dynamic->saved_item != NULL)
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
759 item = varobj_iter_next (var->dynamic->child_iter);
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
763 item->value = release_value (item->value).release ();
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
776 bool can_mention = from < 0 || i >= from;
778 install_dynamic_child (var, can_mention ? changed : NULL,
779 can_mention ? type_changed : NULL,
780 can_mention ? newobj : NULL,
781 can_mention ? unchanged : NULL,
782 can_mention ? cchanged : NULL, i,
789 var->dynamic->saved_item = item;
791 /* We want to truncate the child list just before this
797 if (i < var->children.size ())
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
803 var->children.resize (i);
806 /* If there are fewer children than requested, note that the list of
808 if (to >= 0 && var->children.size () < to)
811 var->num_children = var->children.size ();
817 varobj_get_num_children (struct varobj *var)
819 if (var->num_children == -1)
821 if (varobj_is_dynamic_p (var))
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
831 var->num_children = number_of_children (var);
834 return var->num_children >= 0 ? var->num_children : 0;
837 /* Creates a list of the immediate children of a variable object;
838 the return code is the number of such children or -1 on error. */
840 const std::vector<varobj *> &
841 varobj_list_children (struct varobj *var, int *from, int *to)
843 var->dynamic->children_requested = true;
845 if (varobj_is_dynamic_p (var))
847 bool children_changed;
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
853 &children_changed, false, 0, *to);
854 varobj_restrict_range (var->children, from, to);
855 return var->children;
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
861 /* If that failed, give up. */
862 if (var->num_children == -1)
863 return var->children;
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
870 for (int i = 0; i < var->num_children; i++)
872 if (var->children[i] == NULL)
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
877 std::string name = name_of_child (var, i);
878 var->children[i] = create_child (var, i, name);
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
886 static struct varobj *
887 varobj_add_child (struct varobj *var, struct varobj_item *item)
889 varobj *v = create_child_with_value (var, var->children.size (), item);
891 var->children.push_back (v);
896 /* Obtain the type of an object Variable as a string similar to the one gdb
897 prints on the console. The caller is responsible for freeing the string.
901 varobj_get_type (struct varobj *var)
903 /* For the "fake" variables, do not return a type. (Its type is
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
907 return std::string ();
909 return type_to_string (var->type);
912 /* Obtain the type of an object variable. */
915 varobj_get_gdb_type (const struct varobj *var)
920 /* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
924 is_path_expr_parent (const struct varobj *var)
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
930 /* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
935 varobj_default_is_path_expr_parent (const struct varobj *var)
940 /* Return the path expression parent for VAR. */
942 const struct varobj *
943 varobj_get_path_expr_parent (const struct varobj *var)
945 const struct varobj *parent = var;
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
950 /* Computation of full rooted expression for children of dynamic
951 varobjs is not supported. */
952 if (varobj_is_dynamic_p (parent))
953 error (_("Invalid variable object (child of a dynamic varobj)"));
958 /* Return a pointer to the full rooted expression of varobj VAR.
959 If it has not been computed yet, compute it. */
962 varobj_get_path_expr (const struct varobj *var)
964 if (var->path_expr.empty ())
966 /* For root varobjs, we initialize path_expr
967 when creating varobj, so here it should be
969 struct varobj *mutable_var = (struct varobj *) var;
970 gdb_assert (!is_root_p (var));
972 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
975 return var->path_expr.c_str ();
978 const struct language_defn *
979 varobj_get_language (const struct varobj *var)
981 return var->root->exp->language_defn;
985 varobj_get_attributes (const struct varobj *var)
989 if (varobj_editable_p (var))
990 /* FIXME: define masks for attributes. */
991 attributes |= 0x00000001; /* Editable */
996 /* Return true if VAR is a dynamic varobj. */
999 varobj_is_dynamic_p (const struct varobj *var)
1001 return var->dynamic->pretty_printer != NULL;
1005 varobj_get_formatted_value (struct varobj *var,
1006 enum varobj_display_formats format)
1008 return my_value_of_variable (var, format);
1012 varobj_get_value (struct varobj *var)
1014 return my_value_of_variable (var, var->format);
1017 /* Set the value of an object variable (if it is editable) to the
1018 value of the given expression. */
1019 /* Note: Invokes functions that can call error(). */
1022 varobj_set_value (struct varobj *var, const char *expression)
1024 struct value *val = NULL; /* Initialize to keep gcc happy. */
1025 /* The argument "expression" contains the variable's new value.
1026 We need to first construct a legal expression for this -- ugh! */
1027 /* Does this cover all the bases? */
1028 struct value *value = NULL; /* Initialize to keep gcc happy. */
1029 int saved_input_radix = input_radix;
1030 const char *s = expression;
1032 gdb_assert (varobj_editable_p (var));
1034 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1035 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1038 value = evaluate_expression (exp.get ());
1041 catch (const gdb_exception_error &except)
1043 /* We cannot proceed without a valid expression. */
1047 /* All types that are editable must also be changeable. */
1048 gdb_assert (varobj_value_is_changeable_p (var));
1050 /* The value of a changeable variable object must not be lazy. */
1051 gdb_assert (!value_lazy (var->value.get ()));
1053 /* Need to coerce the input. We want to check if the
1054 value of the variable object will be different
1055 after assignment, and the first thing value_assign
1056 does is coerce the input.
1057 For example, if we are assigning an array to a pointer variable we
1058 should compare the pointer with the array's address, not with the
1060 value = coerce_array (value);
1062 /* The new value may be lazy. value_assign, or
1063 rather value_contents, will take care of this. */
1066 val = value_assign (var->value.get (), value);
1069 catch (const gdb_exception_error &except)
1074 /* If the value has changed, record it, so that next -var-update can
1075 report this change. If a variable had a value of '1', we've set it
1076 to '333' and then set again to '1', when -var-update will report this
1077 variable as changed -- because the first assignment has set the
1078 'updated' flag. There's no need to optimize that, because return value
1079 of -var-update should be considered an approximation. */
1080 var->updated = install_new_value (var, val, false /* Compare values. */);
1081 input_radix = saved_input_radix;
1087 /* A helper function to install a constructor function and visualizer
1088 in a varobj_dynamic. */
1091 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1092 PyObject *visualizer)
1094 Py_XDECREF (var->constructor);
1095 var->constructor = constructor;
1097 Py_XDECREF (var->pretty_printer);
1098 var->pretty_printer = visualizer;
1100 varobj_iter_delete (var->child_iter);
1101 var->child_iter = NULL;
1104 /* Install the default visualizer for VAR. */
1107 install_default_visualizer (struct varobj *var)
1109 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1110 if (CPLUS_FAKE_CHILD (var))
1113 if (pretty_printing)
1115 gdbpy_ref<> pretty_printer;
1117 if (var->value != nullptr)
1119 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1120 if (pretty_printer == nullptr)
1122 gdbpy_print_stack ();
1123 error (_("Cannot instantiate printer for default visualizer"));
1127 if (pretty_printer == Py_None)
1128 pretty_printer.reset (nullptr);
1130 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
1134 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1135 make a new object. */
1138 construct_visualizer (struct varobj *var, PyObject *constructor)
1140 PyObject *pretty_printer;
1142 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1143 if (CPLUS_FAKE_CHILD (var))
1146 Py_INCREF (constructor);
1147 if (constructor == Py_None)
1148 pretty_printer = NULL;
1151 pretty_printer = instantiate_pretty_printer (constructor,
1153 if (! pretty_printer)
1155 gdbpy_print_stack ();
1156 Py_DECREF (constructor);
1157 constructor = Py_None;
1158 Py_INCREF (constructor);
1161 if (pretty_printer == Py_None)
1163 Py_DECREF (pretty_printer);
1164 pretty_printer = NULL;
1168 install_visualizer (var->dynamic, constructor, pretty_printer);
1171 #endif /* HAVE_PYTHON */
1173 /* A helper function for install_new_value. This creates and installs
1174 a visualizer for VAR, if appropriate. */
1177 install_new_value_visualizer (struct varobj *var)
1180 /* If the constructor is None, then we want the raw value. If VAR
1181 does not have a value, just skip this. */
1182 if (!gdb_python_initialized)
1185 if (var->dynamic->constructor != Py_None && var->value != NULL)
1187 gdbpy_enter_varobj enter_py (var);
1189 if (var->dynamic->constructor == NULL)
1190 install_default_visualizer (var);
1192 construct_visualizer (var, var->dynamic->constructor);
1199 /* When using RTTI to determine variable type it may be changed in runtime when
1200 the variable value is changed. This function checks whether type of varobj
1201 VAR will change when a new value NEW_VALUE is assigned and if it is so
1202 updates the type of VAR. */
1205 update_type_if_necessary (struct varobj *var, struct value *new_value)
1209 struct value_print_options opts;
1211 get_user_print_options (&opts);
1212 if (opts.objectprint)
1214 struct type *new_type = value_actual_type (new_value, 0, 0);
1215 std::string new_type_str = type_to_string (new_type);
1216 std::string curr_type_str = varobj_get_type (var);
1218 /* Did the type name change? */
1219 if (curr_type_str != new_type_str)
1221 var->type = new_type;
1223 /* This information may be not valid for a new type. */
1224 varobj_delete (var, 1);
1225 var->children.clear ();
1226 var->num_children = -1;
1235 /* Assign a new value to a variable object. If INITIAL is true,
1236 this is the first assignment after the variable object was just
1237 created, or changed type. In that case, just assign the value
1239 Otherwise, assign the new value, and return true if the value is
1240 different from the current one, false otherwise. The comparison is
1241 done on textual representation of value. Therefore, some types
1242 need not be compared. E.g. for structures the reported value is
1243 always "{...}", so no comparison is necessary here. If the old
1244 value was NULL and new one is not, or vice versa, we always return true.
1246 The VALUE parameter should not be released -- the function will
1247 take care of releasing it when needed. */
1249 install_new_value (struct varobj *var, struct value *value, bool initial)
1253 bool changed = false;
1254 bool intentionally_not_fetched = false;
1256 /* We need to know the varobj's type to decide if the value should
1257 be fetched or not. C++ fake children (public/protected/private)
1258 don't have a type. */
1259 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1260 changeable = varobj_value_is_changeable_p (var);
1262 /* If the type has custom visualizer, we consider it to be always
1263 changeable. FIXME: need to make sure this behaviour will not
1264 mess up read-sensitive values. */
1265 if (var->dynamic->pretty_printer != NULL)
1268 need_to_fetch = changeable;
1270 /* We are not interested in the address of references, and given
1271 that in C++ a reference is not rebindable, it cannot
1272 meaningfully change. So, get hold of the real value. */
1274 value = coerce_ref (value);
1276 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1277 /* For unions, we need to fetch the value implicitly because
1278 of implementation of union member fetch. When gdb
1279 creates a value for a field and the value of the enclosing
1280 structure is not lazy, it immediately copies the necessary
1281 bytes from the enclosing values. If the enclosing value is
1282 lazy, the call to value_fetch_lazy on the field will read
1283 the data from memory. For unions, that means we'll read the
1284 same memory more than once, which is not desirable. So
1286 need_to_fetch = true;
1288 /* The new value might be lazy. If the type is changeable,
1289 that is we'll be comparing values of this type, fetch the
1290 value now. Otherwise, on the next update the old value
1291 will be lazy, which means we've lost that old value. */
1292 if (need_to_fetch && value && value_lazy (value))
1294 const struct varobj *parent = var->parent;
1295 bool frozen = var->frozen;
1297 for (; !frozen && parent; parent = parent->parent)
1298 frozen |= parent->frozen;
1300 if (frozen && initial)
1302 /* For variables that are frozen, or are children of frozen
1303 variables, we don't do fetch on initial assignment.
1304 For non-initial assignemnt we do the fetch, since it means we're
1305 explicitly asked to compare the new value with the old one. */
1306 intentionally_not_fetched = true;
1313 value_fetch_lazy (value);
1316 catch (const gdb_exception_error &except)
1318 /* Set the value to NULL, so that for the next -var-update,
1319 we don't try to compare the new value with this value,
1320 that we couldn't even read. */
1326 /* Get a reference now, before possibly passing it to any Python
1327 code that might release it. */
1328 value_ref_ptr value_holder;
1330 value_holder = value_ref_ptr::new_reference (value);
1332 /* Below, we'll be comparing string rendering of old and new
1333 values. Don't get string rendering if the value is
1334 lazy -- if it is, the code above has decided that the value
1335 should not be fetched. */
1336 std::string print_value;
1337 if (value != NULL && !value_lazy (value)
1338 && var->dynamic->pretty_printer == NULL)
1339 print_value = varobj_value_get_print_value (value, var->format, var);
1341 /* If the type is changeable, compare the old and the new values.
1342 If this is the initial assignment, we don't have any old value
1344 if (!initial && changeable)
1346 /* If the value of the varobj was changed by -var-set-value,
1347 then the value in the varobj and in the target is the same.
1348 However, that value is different from the value that the
1349 varobj had after the previous -var-update. So need to the
1350 varobj as changed. */
1353 else if (var->dynamic->pretty_printer == NULL)
1355 /* Try to compare the values. That requires that both
1356 values are non-lazy. */
1357 if (var->not_fetched && value_lazy (var->value.get ()))
1359 /* This is a frozen varobj and the value was never read.
1360 Presumably, UI shows some "never read" indicator.
1361 Now that we've fetched the real value, we need to report
1362 this varobj as changed so that UI can show the real
1366 else if (var->value == NULL && value == NULL)
1369 else if (var->value == NULL || value == NULL)
1375 gdb_assert (!value_lazy (var->value.get ()));
1376 gdb_assert (!value_lazy (value));
1378 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1379 if (var->print_value != print_value)
1385 if (!initial && !changeable)
1387 /* For values that are not changeable, we don't compare the values.
1388 However, we want to notice if a value was not NULL and now is NULL,
1389 or vise versa, so that we report when top-level varobjs come in scope
1390 and leave the scope. */
1391 changed = (var->value != NULL) != (value != NULL);
1394 /* We must always keep the new value, since children depend on it. */
1395 var->value = value_holder;
1396 if (value && value_lazy (value) && intentionally_not_fetched)
1397 var->not_fetched = true;
1399 var->not_fetched = false;
1400 var->updated = false;
1402 install_new_value_visualizer (var);
1404 /* If we installed a pretty-printer, re-compare the printed version
1405 to see if the variable changed. */
1406 if (var->dynamic->pretty_printer != NULL)
1408 print_value = varobj_value_get_print_value (var->value.get (),
1410 if ((var->print_value.empty () && !print_value.empty ())
1411 || (!var->print_value.empty () && print_value.empty ())
1412 || (!var->print_value.empty () && !print_value.empty ()
1413 && var->print_value != print_value))
1416 var->print_value = print_value;
1418 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1423 /* Return the requested range for a varobj. VAR is the varobj. FROM
1424 and TO are out parameters; *FROM and *TO will be set to the
1425 selected sub-range of VAR. If no range was selected using
1426 -var-set-update-range, then both will be -1. */
1428 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1434 /* Set the selected sub-range of children of VAR to start at index
1435 FROM and end at index TO. If either FROM or TO is less than zero,
1436 this is interpreted as a request for all children. */
1438 varobj_set_child_range (struct varobj *var, int from, int to)
1445 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1450 if (!gdb_python_initialized)
1453 gdbpy_enter_varobj enter_py (var);
1455 mainmod = PyImport_AddModule ("__main__");
1457 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1458 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1459 globals.get (), globals.get ()));
1461 if (constructor == NULL)
1463 gdbpy_print_stack ();
1464 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1467 construct_visualizer (var, constructor.get ());
1469 /* If there are any children now, wipe them. */
1470 varobj_delete (var, 1 /* children only */);
1471 var->num_children = -1;
1473 error (_("Python support required"));
1477 /* If NEW_VALUE is the new value of the given varobj (var), return
1478 true if var has mutated. In other words, if the type of
1479 the new value is different from the type of the varobj's old
1482 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1485 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1486 struct type *new_type)
1488 /* If we haven't previously computed the number of children in var,
1489 it does not matter from the front-end's perspective whether
1490 the type has mutated or not. For all intents and purposes,
1491 it has not mutated. */
1492 if (var->num_children < 0)
1495 if (var->root->lang_ops->value_has_mutated != NULL)
1497 /* The varobj module, when installing new values, explicitly strips
1498 references, saying that we're not interested in those addresses.
1499 But detection of mutation happens before installing the new
1500 value, so our value may be a reference that we need to strip
1501 in order to remain consistent. */
1502 if (new_value != NULL)
1503 new_value = coerce_ref (new_value);
1504 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1510 /* Update the values for a variable and its children. This is a
1511 two-pronged attack. First, re-parse the value for the root's
1512 expression to see if it's changed. Then go all the way
1513 through its children, reconstructing them and noting if they've
1516 The IS_EXPLICIT parameter specifies if this call is result
1517 of MI request to update this specific variable, or
1518 result of implicit -var-update *. For implicit request, we don't
1519 update frozen variables.
1521 NOTE: This function may delete the caller's varobj. If it
1522 returns TYPE_CHANGED, then it has done this and VARP will be modified
1523 to point to the new varobj. */
1525 std::vector<varobj_update_result>
1526 varobj_update (struct varobj **varp, bool is_explicit)
1528 bool type_changed = false;
1529 struct value *newobj;
1530 std::vector<varobj_update_result> stack;
1531 std::vector<varobj_update_result> result;
1533 /* Frozen means frozen -- we don't check for any change in
1534 this varobj, including its going out of scope, or
1535 changing type. One use case for frozen varobjs is
1536 retaining previously evaluated expressions, and we don't
1537 want them to be reevaluated at all. */
1538 if (!is_explicit && (*varp)->frozen)
1541 if (!(*varp)->root->is_valid)
1543 result.emplace_back (*varp, VAROBJ_INVALID);
1547 if ((*varp)->root->rootvar == *varp)
1549 varobj_update_result r (*varp);
1551 /* Update the root variable. value_of_root can return NULL
1552 if the variable is no longer around, i.e. we stepped out of
1553 the frame in which a local existed. We are letting the
1554 value_of_root variable dispose of the varobj if the type
1556 newobj = value_of_root (varp, &type_changed);
1557 if (update_type_if_necessary (*varp, newobj))
1558 type_changed = true;
1560 r.type_changed = type_changed;
1561 if (install_new_value ((*varp), newobj, type_changed))
1565 r.status = VAROBJ_NOT_IN_SCOPE;
1566 r.value_installed = true;
1568 if (r.status == VAROBJ_NOT_IN_SCOPE)
1570 if (r.type_changed || r.changed)
1571 result.push_back (std::move (r));
1576 stack.push_back (std::move (r));
1579 stack.emplace_back (*varp);
1581 /* Walk through the children, reconstructing them all. */
1582 while (!stack.empty ())
1584 varobj_update_result r = std::move (stack.back ());
1586 struct varobj *v = r.varobj;
1588 /* Update this variable, unless it's a root, which is already
1590 if (!r.value_installed)
1592 struct type *new_type;
1594 newobj = value_of_child (v->parent, v->index);
1595 if (update_type_if_necessary (v, newobj))
1596 r.type_changed = true;
1598 new_type = value_type (newobj);
1600 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1602 if (varobj_value_has_mutated (v, newobj, new_type))
1604 /* The children are no longer valid; delete them now.
1605 Report the fact that its type changed as well. */
1606 varobj_delete (v, 1 /* only_children */);
1607 v->num_children = -1;
1611 r.type_changed = true;
1614 if (install_new_value (v, newobj, r.type_changed))
1621 /* We probably should not get children of a dynamic varobj, but
1622 for which -var-list-children was never invoked. */
1623 if (varobj_is_dynamic_p (v))
1625 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
1626 bool children_changed = false;
1631 if (!v->dynamic->children_requested)
1635 /* If we initially did not have potential children, but
1636 now we do, consider the varobj as changed.
1637 Otherwise, if children were never requested, consider
1638 it as unchanged -- presumably, such varobj is not yet
1639 expanded in the UI, so we need not bother getting
1641 if (!varobj_has_more (v, 0))
1643 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1644 &dummy, false, 0, 0);
1645 if (varobj_has_more (v, 0))
1650 result.push_back (std::move (r));
1655 /* If update_dynamic_varobj_children returns false, then we have
1656 a non-conforming pretty-printer, so we skip it. */
1657 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1659 &unchanged, &children_changed,
1660 true, v->from, v->to))
1662 if (children_changed || !newobj_vec.empty ())
1664 r.children_changed = true;
1665 r.newobj = std::move (newobj_vec);
1667 /* Push in reverse order so that the first child is
1668 popped from the work stack first, and so will be
1669 added to result first. This does not affect
1670 correctness, just "nicer". */
1671 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
1673 varobj_update_result item (type_changed_vec[i]);
1675 /* Type may change only if value was changed. */
1676 item.changed = true;
1677 item.type_changed = true;
1678 item.value_installed = true;
1680 stack.push_back (std::move (item));
1682 for (int i = changed.size () - 1; i >= 0; --i)
1684 varobj_update_result item (changed[i]);
1686 item.changed = true;
1687 item.value_installed = true;
1689 stack.push_back (std::move (item));
1691 for (int i = unchanged.size () - 1; i >= 0; --i)
1693 if (!unchanged[i]->frozen)
1695 varobj_update_result item (unchanged[i]);
1697 item.value_installed = true;
1699 stack.push_back (std::move (item));
1702 if (r.changed || r.children_changed)
1703 result.push_back (std::move (r));
1709 /* Push any children. Use reverse order so that the first
1710 child is popped from the work stack first, and so
1711 will be added to result first. This does not
1712 affect correctness, just "nicer". */
1713 for (int i = v->children.size () - 1; i >= 0; --i)
1715 varobj *c = v->children[i];
1717 /* Child may be NULL if explicitly deleted by -var-delete. */
1718 if (c != NULL && !c->frozen)
1719 stack.emplace_back (c);
1722 if (r.changed || r.type_changed)
1723 result.push_back (std::move (r));
1729 /* Helper functions */
1732 * Variable object construction/destruction
1736 delete_variable (struct varobj *var, bool only_children_p)
1740 delete_variable_1 (&delcount, var, only_children_p,
1741 true /* remove_from_parent_p */ );
1746 /* Delete the variable object VAR and its children. */
1747 /* IMPORTANT NOTE: If we delete a variable which is a child
1748 and the parent is not removed we dump core. It must be always
1749 initially called with remove_from_parent_p set. */
1751 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1752 bool remove_from_parent_p)
1754 /* Delete any children of this variable, too. */
1755 for (varobj *child : var->children)
1760 if (!remove_from_parent_p)
1761 child->parent = NULL;
1763 delete_variable_1 (delcountp, child, false, only_children_p);
1765 var->children.clear ();
1767 /* if we were called to delete only the children we are done here. */
1768 if (only_children_p)
1771 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1772 /* If the name is empty, this is a temporary variable, that has not
1773 yet been installed, don't report it, it belongs to the caller... */
1774 if (!var->obj_name.empty ())
1776 *delcountp = *delcountp + 1;
1779 /* If this variable has a parent, remove it from its parent's list. */
1780 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1781 (as indicated by remove_from_parent_p) we don't bother doing an
1782 expensive list search to find the element to remove when we are
1783 discarding the list afterwards. */
1784 if ((remove_from_parent_p) && (var->parent != NULL))
1785 var->parent->children[var->index] = NULL;
1787 if (!var->obj_name.empty ())
1788 uninstall_variable (var);
1790 /* Free memory associated with this variable. */
1794 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1796 install_variable (struct varobj *var)
1799 struct vlist *newvl;
1801 unsigned int index = 0;
1804 for (chp = var->obj_name.c_str (); *chp; chp++)
1806 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1809 cv = *(varobj_table + index);
1810 while (cv != NULL && cv->var->obj_name != var->obj_name)
1814 error (_("Duplicate variable object name"));
1816 /* Add varobj to hash table. */
1817 newvl = XNEW (struct vlist);
1818 newvl->next = *(varobj_table + index);
1820 *(varobj_table + index) = newvl;
1822 /* If root, add varobj to root list. */
1823 if (is_root_p (var))
1825 /* Add to list of root variables. */
1826 if (rootlist == NULL)
1827 var->root->next = NULL;
1829 var->root->next = rootlist;
1830 rootlist = var->root;
1833 return true; /* OK */
1836 /* Unistall the object VAR. */
1838 uninstall_variable (struct varobj *var)
1842 struct varobj_root *cr;
1843 struct varobj_root *prer;
1845 unsigned int index = 0;
1848 /* Remove varobj from hash table. */
1849 for (chp = var->obj_name.c_str (); *chp; chp++)
1851 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1854 cv = *(varobj_table + index);
1856 while (cv != NULL && cv->var->obj_name != var->obj_name)
1863 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1868 ("Assertion failed: Could not find variable object \"%s\" to delete",
1869 var->obj_name.c_str ());
1874 *(varobj_table + index) = cv->next;
1876 prev->next = cv->next;
1880 /* If root, remove varobj from root list. */
1881 if (is_root_p (var))
1883 /* Remove from list of root variables. */
1884 if (rootlist == var->root)
1885 rootlist = var->root->next;
1890 while ((cr != NULL) && (cr->rootvar != var))
1897 warning (_("Assertion failed: Could not find "
1898 "varobj \"%s\" in root list"),
1899 var->obj_name.c_str ());
1905 prer->next = cr->next;
1911 /* Create and install a child of the parent of the given name.
1913 The created VAROBJ takes ownership of the allocated NAME. */
1915 static struct varobj *
1916 create_child (struct varobj *parent, int index, std::string &name)
1918 struct varobj_item item;
1920 std::swap (item.name, name);
1921 item.value = value_of_child (parent, index);
1923 return create_child_with_value (parent, index, &item);
1926 static struct varobj *
1927 create_child_with_value (struct varobj *parent, int index,
1928 struct varobj_item *item)
1930 varobj *child = new varobj (parent->root);
1932 /* NAME is allocated by caller. */
1933 std::swap (child->name, item->name);
1934 child->index = index;
1935 child->parent = parent;
1937 if (varobj_is_anonymous_child (child))
1938 child->obj_name = string_printf ("%s.%d_anonymous",
1939 parent->obj_name.c_str (), index);
1941 child->obj_name = string_printf ("%s.%s",
1942 parent->obj_name.c_str (),
1943 child->name.c_str ());
1945 install_variable (child);
1947 /* Compute the type of the child. Must do this before
1948 calling install_new_value. */
1949 if (item->value != NULL)
1950 /* If the child had no evaluation errors, var->value
1951 will be non-NULL and contain a valid type. */
1952 child->type = value_actual_type (item->value, 0, NULL);
1954 /* Otherwise, we must compute the type. */
1955 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1957 install_new_value (child, item->value, 1);
1964 * Miscellaneous utility functions.
1967 /* Allocate memory and initialize a new variable. */
1968 varobj::varobj (varobj_root *root_)
1969 : root (root_), dynamic (new varobj_dynamic)
1973 /* Free any allocated memory associated with VAR. */
1980 if (var->dynamic->pretty_printer != NULL)
1982 gdbpy_enter_varobj enter_py (var);
1984 Py_XDECREF (var->dynamic->constructor);
1985 Py_XDECREF (var->dynamic->pretty_printer);
1989 varobj_iter_delete (var->dynamic->child_iter);
1990 varobj_clear_saved_item (var->dynamic);
1992 if (is_root_p (var))
1995 delete var->dynamic;
1998 /* Return the type of the value that's stored in VAR,
1999 or that would have being stored there if the
2000 value were accessible.
2002 This differs from VAR->type in that VAR->type is always
2003 the true type of the expession in the source language.
2004 The return value of this function is the type we're
2005 actually storing in varobj, and using for displaying
2006 the values and for comparing previous and new values.
2008 For example, top-level references are always stripped. */
2010 varobj_get_value_type (const struct varobj *var)
2014 if (var->value != nullptr)
2015 type = value_type (var->value.get ());
2019 type = check_typedef (type);
2021 if (TYPE_IS_REFERENCE (type))
2022 type = get_target_type (type);
2024 type = check_typedef (type);
2029 /* What is the default display for this variable? We assume that
2030 everything is "natural". Any exceptions? */
2031 static enum varobj_display_formats
2032 variable_default_display (struct varobj *var)
2034 return FORMAT_NATURAL;
2038 * Language-dependencies
2041 /* Common entry points */
2043 /* Return the number of children for a given variable.
2044 The result of this function is defined by the language
2045 implementation. The number of children returned by this function
2046 is the number of children that the user will see in the variable
2049 number_of_children (const struct varobj *var)
2051 return (*var->root->lang_ops->number_of_children) (var);
2054 /* What is the expression for the root varobj VAR? */
2057 name_of_variable (const struct varobj *var)
2059 return (*var->root->lang_ops->name_of_variable) (var);
2062 /* What is the name of the INDEX'th child of VAR? */
2065 name_of_child (struct varobj *var, int index)
2067 return (*var->root->lang_ops->name_of_child) (var, index);
2070 /* If frame associated with VAR can be found, switch
2071 to it and return true. Otherwise, return false. */
2074 check_scope (const struct varobj *var)
2076 struct frame_info *fi;
2079 fi = frame_find_by_id (var->root->frame);
2084 CORE_ADDR pc = get_frame_pc (fi);
2086 if (pc < BLOCK_START (var->root->valid_block) ||
2087 pc >= BLOCK_END (var->root->valid_block))
2095 /* Helper function to value_of_root. */
2097 static struct value *
2098 value_of_root_1 (struct varobj **var_handle)
2100 struct value *new_val = NULL;
2101 struct varobj *var = *var_handle;
2102 bool within_scope = false;
2104 /* Only root variables can be updated... */
2105 if (!is_root_p (var))
2106 /* Not a root var. */
2109 scoped_restore_current_thread restore_thread;
2111 /* Determine whether the variable is still around. */
2112 if (var->root->valid_block == NULL || var->root->floating)
2113 within_scope = true;
2114 else if (var->root->thread_id == 0)
2116 /* The program was single-threaded when the variable object was
2117 created. Technically, it's possible that the program became
2118 multi-threaded since then, but we don't support such
2120 within_scope = check_scope (var);
2124 thread_info *thread = find_thread_global_id (var->root->thread_id);
2128 switch_to_thread (thread);
2129 within_scope = check_scope (var);
2136 /* We need to catch errors here, because if evaluate
2137 expression fails we want to just return NULL. */
2140 new_val = evaluate_expression (var->root->exp.get ());
2142 catch (const gdb_exception_error &except)
2150 /* What is the ``struct value *'' of the root variable VAR?
2151 For floating variable object, evaluation can get us a value
2152 of different type from what is stored in varobj already. In
2154 - *type_changed will be set to 1
2155 - old varobj will be freed, and new one will be
2156 created, with the same name.
2157 - *var_handle will be set to the new varobj
2158 Otherwise, *type_changed will be set to 0. */
2159 static struct value *
2160 value_of_root (struct varobj **var_handle, bool *type_changed)
2164 if (var_handle == NULL)
2169 /* This should really be an exception, since this should
2170 only get called with a root variable. */
2172 if (!is_root_p (var))
2175 if (var->root->floating)
2177 struct varobj *tmp_var;
2179 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2180 USE_SELECTED_FRAME);
2181 if (tmp_var == NULL)
2185 std::string old_type = varobj_get_type (var);
2186 std::string new_type = varobj_get_type (tmp_var);
2187 if (old_type == new_type)
2189 /* The expression presently stored inside var->root->exp
2190 remembers the locations of local variables relatively to
2191 the frame where the expression was created (in DWARF location
2192 button, for example). Naturally, those locations are not
2193 correct in other frames, so update the expression. */
2195 std::swap (var->root->exp, tmp_var->root->exp);
2197 varobj_delete (tmp_var, 0);
2202 tmp_var->obj_name = var->obj_name;
2203 tmp_var->from = var->from;
2204 tmp_var->to = var->to;
2205 varobj_delete (var, 0);
2207 install_variable (tmp_var);
2208 *var_handle = tmp_var;
2210 *type_changed = true;
2219 struct value *value;
2221 value = value_of_root_1 (var_handle);
2222 if (var->value == NULL || value == NULL)
2224 /* For root varobj-s, a NULL value indicates a scoping issue.
2225 So, nothing to do in terms of checking for mutations. */
2227 else if (varobj_value_has_mutated (var, value, value_type (value)))
2229 /* The type has mutated, so the children are no longer valid.
2230 Just delete them, and tell our caller that the type has
2232 varobj_delete (var, 1 /* only_children */);
2233 var->num_children = -1;
2236 *type_changed = true;
2242 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2243 static struct value *
2244 value_of_child (const struct varobj *parent, int index)
2246 struct value *value;
2248 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2253 /* GDB already has a command called "value_of_variable". Sigh. */
2255 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2257 if (var->root->is_valid)
2259 if (var->dynamic->pretty_printer != NULL)
2260 return varobj_value_get_print_value (var->value.get (), var->format,
2262 return (*var->root->lang_ops->value_of_variable) (var, format);
2265 return std::string ();
2269 varobj_formatted_print_options (struct value_print_options *opts,
2270 enum varobj_display_formats format)
2272 get_formatted_print_options (opts, format_code[(int) format]);
2273 opts->deref_ref = 0;
2274 opts->raw = !pretty_printing;
2278 varobj_value_get_print_value (struct value *value,
2279 enum varobj_display_formats format,
2280 const struct varobj *var)
2282 struct value_print_options opts;
2283 struct type *type = NULL;
2285 gdb::unique_xmalloc_ptr<char> encoding;
2286 /* Initialize it just to avoid a GCC false warning. */
2287 CORE_ADDR str_addr = 0;
2288 bool string_print = false;
2291 return std::string ();
2294 std::string thevalue;
2297 if (gdb_python_initialized)
2299 PyObject *value_formatter = var->dynamic->pretty_printer;
2301 gdbpy_enter_varobj enter_py (var);
2303 if (value_formatter)
2305 /* First check to see if we have any children at all. If so,
2306 we simply return {...}. */
2307 if (dynamic_varobj_has_child_method (var))
2310 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2312 struct value *replacement;
2314 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2318 /* If we have string like output ... */
2321 /* If this is a lazy string, extract it. For lazy
2322 strings we always print as a string, so set
2324 if (gdbpy_is_lazy_string (output.get ()))
2326 gdbpy_extract_lazy_string (output.get (), &str_addr,
2327 &type, &len, &encoding);
2328 string_print = true;
2332 /* If it is a regular (non-lazy) string, extract
2333 it and copy the contents into THEVALUE. If the
2334 hint says to print it as a string, set
2335 string_print. Otherwise just return the extracted
2336 string as a value. */
2338 gdb::unique_xmalloc_ptr<char> s
2339 = python_string_to_target_string (output.get ());
2343 struct gdbarch *gdbarch;
2345 gdb::unique_xmalloc_ptr<char> hint
2346 = gdbpy_get_display_hint (value_formatter);
2349 if (!strcmp (hint.get (), "string"))
2350 string_print = true;
2353 thevalue = std::string (s.get ());
2354 len = thevalue.size ();
2355 gdbarch = get_type_arch (value_type (value));
2356 type = builtin_type (gdbarch)->builtin_char;
2362 gdbpy_print_stack ();
2365 /* If the printer returned a replacement value, set VALUE
2366 to REPLACEMENT. If there is not a replacement value,
2367 just use the value passed to this function. */
2369 value = replacement;
2375 varobj_formatted_print_options (&opts, format);
2377 /* If the THEVALUE has contents, it is a regular string. */
2378 if (!thevalue.empty ())
2379 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2380 len, encoding.get (), 0, &opts);
2381 else if (string_print)
2382 /* Otherwise, if string_print is set, and it is not a regular
2383 string, it is a lazy string. */
2384 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2386 /* All other cases. */
2387 common_val_print (value, &stb, 0, &opts, current_language);
2389 return std::move (stb.string ());
2393 varobj_editable_p (const struct varobj *var)
2397 if (!(var->root->is_valid && var->value != nullptr
2398 && VALUE_LVAL (var->value.get ())))
2401 type = varobj_get_value_type (var);
2403 switch (TYPE_CODE (type))
2405 case TYPE_CODE_STRUCT:
2406 case TYPE_CODE_UNION:
2407 case TYPE_CODE_ARRAY:
2408 case TYPE_CODE_FUNC:
2409 case TYPE_CODE_METHOD:
2419 /* Call VAR's value_is_changeable_p language-specific callback. */
2422 varobj_value_is_changeable_p (const struct varobj *var)
2424 return var->root->lang_ops->value_is_changeable_p (var);
2427 /* Return true if that varobj is floating, that is is always evaluated in the
2428 selected frame, and not bound to thread/frame. Such variable objects
2429 are created using '@' as frame specifier to -var-create. */
2431 varobj_floating_p (const struct varobj *var)
2433 return var->root->floating;
2436 /* Implement the "value_is_changeable_p" varobj callback for most
2440 varobj_default_value_is_changeable_p (const struct varobj *var)
2445 if (CPLUS_FAKE_CHILD (var))
2448 type = varobj_get_value_type (var);
2450 switch (TYPE_CODE (type))
2452 case TYPE_CODE_STRUCT:
2453 case TYPE_CODE_UNION:
2454 case TYPE_CODE_ARRAY:
2465 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2466 with an arbitrary caller supplied DATA pointer. */
2469 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2471 struct varobj_root *var_root, *var_root_next;
2473 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2475 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2477 var_root_next = var_root->next;
2479 (*func) (var_root->rootvar, data);
2483 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2484 defined on globals. It is a helper for varobj_invalidate.
2486 This function is called after changing the symbol file, in this case the
2487 pointers to "struct type" stored by the varobj are no longer valid. All
2488 varobj must be either re-evaluated, or marked as invalid here. */
2491 varobj_invalidate_iter (struct varobj *var, void *unused)
2493 /* global and floating var must be re-evaluated. */
2494 if (var->root->floating || var->root->valid_block == NULL)
2496 struct varobj *tmp_var;
2498 /* Try to create a varobj with same expression. If we succeed
2499 replace the old varobj, otherwise invalidate it. */
2500 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2502 if (tmp_var != NULL)
2504 tmp_var->obj_name = var->obj_name;
2505 varobj_delete (var, 0);
2506 install_variable (tmp_var);
2509 var->root->is_valid = false;
2511 else /* locals must be invalidated. */
2512 var->root->is_valid = false;
2515 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2516 are defined on globals.
2517 Invalidated varobjs will be always printed in_scope="invalid". */
2520 varobj_invalidate (void)
2522 all_root_varobjs (varobj_invalidate_iter, NULL);
2526 _initialize_varobj (void)
2528 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2530 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2532 _("Set varobj debugging."),
2533 _("Show varobj debugging."),
2534 _("When non-zero, varobj debugging is enabled."),
2535 NULL, show_varobjdebug,
2536 &setdebuglist, &showdebuglist);