1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include "exceptions.h"
21 #include "expression.h"
28 #include "gdb_assert.h"
30 #include "gdb_regex.h"
34 #include "gdbthread.h"
36 #include "varobj-iter.h"
39 #include "python/python.h"
40 #include "python/python-internal.h"
45 /* Non-zero if we want to see trace of varobj level stuff. */
47 unsigned int varobjdebug = 0;
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
55 /* String representations of gdb's format codes. */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59 /* True if we want to allow Python-based pretty-printing. */
60 static int pretty_printing = 0;
63 varobj_enable_pretty_printing (void)
70 /* Every root variable has one of these structures saved in its
71 varobj. Members which must be free'd are noted. */
75 /* Alloc'd expression for this parent. */
76 struct expression *exp;
78 /* Block for which this expression is valid. */
79 const struct block *valid_block;
81 /* The frame for this expression. This field is set iff valid_block is
83 struct frame_id frame;
85 /* The thread ID that this varobj_root belong to. This field
86 is only valid if valid_block is not NULL.
87 When not 0, indicates which thread 'frame' belongs to.
88 When 0, indicates that the thread list was empty when the varobj_root
92 /* If 1, the -var-update always recomputes the value in the
93 current thread and frame. Otherwise, variable object is
94 always updated in the specific scope/thread/frame. */
97 /* Flag that indicates validity: set to 0 when this varobj_root refers
98 to symbols that do not exist anymore. */
101 /* Language-related operations for this variable and its
103 const struct lang_varobj_ops *lang_ops;
105 /* The varobj for this root node. */
106 struct varobj *rootvar;
108 /* Next root variable */
109 struct varobj_root *next;
112 /* Dynamic part of varobj. */
114 struct varobj_dynamic
116 /* Whether the children of this varobj were requested. This field is
117 used to decide if dynamic varobj should recompute their children.
118 In the event that the frontend never asked for the children, we
120 int children_requested;
122 /* The pretty-printer constructor. If NULL, then the default
123 pretty-printer will be looked up. If None, then no
124 pretty-printer will be installed. */
125 PyObject *constructor;
127 /* The pretty-printer that has been constructed. If NULL, then a
128 new printer object is needed, and one will be constructed. */
129 PyObject *pretty_printer;
131 /* The iterator returned by the printer's 'children' method, or NULL
133 struct varobj_iter *child_iter;
135 /* We request one extra item from the iterator, so that we can
136 report to the caller whether there are more items than we have
137 already reported. However, we don't want to install this value
138 when we read it, because that will mess up future updates. So,
139 we stash it here instead. */
140 varobj_item *saved_item;
146 struct cpstack *next;
149 /* A list of varobjs */
157 /* Private function prototypes */
159 /* Helper functions for the above subcommands. */
161 static int delete_variable (struct cpstack **, struct varobj *, int);
163 static void delete_variable_1 (struct cpstack **, int *,
164 struct varobj *, int, int);
166 static int install_variable (struct varobj *);
168 static void uninstall_variable (struct varobj *);
170 static struct varobj *create_child (struct varobj *, int, char *);
172 static struct varobj *
173 create_child_with_value (struct varobj *parent, int index,
174 struct varobj_item *item);
176 /* Utility routines */
178 static struct varobj *new_variable (void);
180 static struct varobj *new_root_variable (void);
182 static void free_variable (struct varobj *var);
184 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
186 static enum varobj_display_formats variable_default_display (struct varobj *);
188 static void cppush (struct cpstack **pstack, char *name);
190 static char *cppop (struct cpstack **pstack);
192 static int update_type_if_necessary (struct varobj *var,
193 struct value *new_value);
195 static int install_new_value (struct varobj *var, struct value *value,
198 /* Language-specific routines. */
200 static int number_of_children (struct varobj *);
202 static char *name_of_variable (struct varobj *);
204 static char *name_of_child (struct varobj *, int);
206 static struct value *value_of_root (struct varobj **var_handle, int *);
208 static struct value *value_of_child (struct varobj *parent, int index);
210 static char *my_value_of_variable (struct varobj *var,
211 enum varobj_display_formats format);
213 static int is_root_p (struct varobj *var);
215 static struct varobj *varobj_add_child (struct varobj *var,
216 struct varobj_item *item);
220 /* Mappings of varobj_display_formats enums to gdb's format codes. */
221 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
223 /* Header of the list of root variable objects. */
224 static struct varobj_root *rootlist;
226 /* Prime number indicating the number of buckets in the hash table. */
227 /* A prime large enough to avoid too many colisions. */
228 #define VAROBJ_TABLE_SIZE 227
230 /* Pointer to the varobj hash table (built at run time). */
231 static struct vlist **varobj_table;
235 /* API Implementation */
237 is_root_p (struct varobj *var)
239 return (var->root->rootvar == var);
243 /* Helper function to install a Python environment suitable for
244 use during operations on VAR. */
246 varobj_ensure_python_env (struct varobj *var)
248 return ensure_python_env (var->root->exp->gdbarch,
249 var->root->exp->language_defn);
253 /* Creates a varobj (not its children). */
255 /* Return the full FRAME which corresponds to the given CORE_ADDR
256 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
258 static struct frame_info *
259 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
261 struct frame_info *frame = NULL;
263 if (frame_addr == (CORE_ADDR) 0)
266 for (frame = get_current_frame ();
268 frame = get_prev_frame (frame))
270 /* The CORE_ADDR we get as argument was parsed from a string GDB
271 output as $fp. This output got truncated to gdbarch_addr_bit.
272 Truncate the frame base address in the same manner before
273 comparing it against our argument. */
274 CORE_ADDR frame_base = get_frame_base_address (frame);
275 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
277 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
278 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
280 if (frame_base == frame_addr)
288 varobj_create (char *objname,
289 char *expression, CORE_ADDR frame, enum varobj_type type)
292 struct cleanup *old_chain;
294 /* Fill out a varobj structure for the (root) variable being constructed. */
295 var = new_root_variable ();
296 old_chain = make_cleanup_free_variable (var);
298 if (expression != NULL)
300 struct frame_info *fi;
301 struct frame_id old_id = null_frame_id;
302 const struct block *block;
304 struct value *value = NULL;
305 volatile struct gdb_exception except;
308 /* Parse and evaluate the expression, filling in as much of the
309 variable's data as possible. */
311 if (has_stack_frames ())
313 /* Allow creator to specify context of variable. */
314 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
315 fi = get_selected_frame (NULL);
317 /* FIXME: cagney/2002-11-23: This code should be doing a
318 lookup using the frame ID and not just the frame's
319 ``address''. This, of course, means an interface
320 change. However, with out that interface change ISAs,
321 such as the ia64 with its two stacks, won't work.
322 Similar goes for the case where there is a frameless
324 fi = find_frame_addr_in_frame_chain (frame);
329 /* frame = -2 means always use selected frame. */
330 if (type == USE_SELECTED_FRAME)
331 var->root->floating = 1;
337 block = get_frame_block (fi, 0);
338 pc = get_frame_pc (fi);
342 innermost_block = NULL;
343 /* Wrap the call to parse expression, so we can
344 return a sensible error. */
345 TRY_CATCH (except, RETURN_MASK_ERROR)
347 var->root->exp = parse_exp_1 (&p, pc, block, 0);
350 if (except.reason < 0)
352 do_cleanups (old_chain);
356 /* Don't allow variables to be created for types. */
357 if (var->root->exp->elts[0].opcode == OP_TYPE
358 || var->root->exp->elts[0].opcode == OP_TYPEOF
359 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
361 do_cleanups (old_chain);
362 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
363 " as an expression.\n");
367 var->format = variable_default_display (var);
368 var->root->valid_block = innermost_block;
369 var->name = xstrdup (expression);
370 /* For a root var, the name and the expr are the same. */
371 var->path_expr = xstrdup (expression);
373 /* When the frame is different from the current frame,
374 we must select the appropriate frame before parsing
375 the expression, otherwise the value will not be current.
376 Since select_frame is so benign, just call it for all cases. */
379 /* User could specify explicit FRAME-ADDR which was not found but
380 EXPRESSION is frame specific and we would not be able to evaluate
381 it correctly next time. With VALID_BLOCK set we must also set
382 FRAME and THREAD_ID. */
384 error (_("Failed to find the specified frame"));
386 var->root->frame = get_frame_id (fi);
387 var->root->thread_id = pid_to_thread_id (inferior_ptid);
388 old_id = get_frame_id (get_selected_frame (NULL));
392 /* We definitely need to catch errors here.
393 If evaluate_expression succeeds we got the value we wanted.
394 But if it fails, we still go on with a call to evaluate_type(). */
395 TRY_CATCH (except, RETURN_MASK_ERROR)
397 value = evaluate_expression (var->root->exp);
400 if (except.reason < 0)
402 /* Error getting the value. Try to at least get the
404 struct value *type_only_value = evaluate_type (var->root->exp);
406 var->type = value_type (type_only_value);
410 int real_type_found = 0;
412 var->type = value_actual_type (value, 0, &real_type_found);
414 value = value_cast (var->type, value);
417 /* Set language info */
418 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
420 install_new_value (var, value, 1 /* Initial assignment */);
422 /* Set ourselves as our root. */
423 var->root->rootvar = var;
425 /* Reset the selected frame. */
426 if (frame_id_p (old_id))
427 select_frame (frame_find_by_id (old_id));
430 /* If the variable object name is null, that means this
431 is a temporary variable, so don't install it. */
433 if ((var != NULL) && (objname != NULL))
435 var->obj_name = xstrdup (objname);
437 /* If a varobj name is duplicated, the install will fail so
439 if (!install_variable (var))
441 do_cleanups (old_chain);
446 discard_cleanups (old_chain);
450 /* Generates an unique name that can be used for a varobj. */
453 varobj_gen_name (void)
458 /* Generate a name for this object. */
460 obj_name = xstrprintf ("var%d", id);
465 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
466 error if OBJNAME cannot be found. */
469 varobj_get_handle (char *objname)
473 unsigned int index = 0;
476 for (chp = objname; *chp; chp++)
478 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
481 cv = *(varobj_table + index);
482 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
486 error (_("Variable object not found"));
491 /* Given the handle, return the name of the object. */
494 varobj_get_objname (struct varobj *var)
496 return var->obj_name;
499 /* Given the handle, return the expression represented by the object. */
502 varobj_get_expression (struct varobj *var)
504 return name_of_variable (var);
507 /* Deletes a varobj and all its children if only_children == 0,
508 otherwise deletes only the children; returns a malloc'ed list of
509 all the (malloc'ed) names of the variables that have been deleted
510 (NULL terminated). */
513 varobj_delete (struct varobj *var, char ***dellist, int only_children)
517 struct cpstack *result = NULL;
520 /* Initialize a stack for temporary results. */
521 cppush (&result, NULL);
524 /* Delete only the variable children. */
525 delcount = delete_variable (&result, var, 1 /* only the children */ );
527 /* Delete the variable and all its children. */
528 delcount = delete_variable (&result, var, 0 /* parent+children */ );
530 /* We may have been asked to return a list of what has been deleted. */
533 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
537 *cp = cppop (&result);
538 while ((*cp != NULL) && (mycount > 0))
542 *cp = cppop (&result);
545 if (mycount || (*cp != NULL))
546 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
555 /* Convenience function for varobj_set_visualizer. Instantiate a
556 pretty-printer for a given value. */
558 instantiate_pretty_printer (PyObject *constructor, struct value *value)
560 PyObject *val_obj = NULL;
563 val_obj = value_to_value_object (value);
567 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
574 /* Set/Get variable object display format. */
576 enum varobj_display_formats
577 varobj_set_display_format (struct varobj *var,
578 enum varobj_display_formats format)
585 case FORMAT_HEXADECIMAL:
587 var->format = format;
591 var->format = variable_default_display (var);
594 if (varobj_value_is_changeable_p (var)
595 && var->value && !value_lazy (var->value))
597 xfree (var->print_value);
598 var->print_value = varobj_value_get_print_value (var->value,
605 enum varobj_display_formats
606 varobj_get_display_format (struct varobj *var)
612 varobj_get_display_hint (struct varobj *var)
617 struct cleanup *back_to;
619 if (!gdb_python_initialized)
622 back_to = varobj_ensure_python_env (var);
624 if (var->dynamic->pretty_printer != NULL)
625 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
627 do_cleanups (back_to);
633 /* Return true if the varobj has items after TO, false otherwise. */
636 varobj_has_more (struct varobj *var, int to)
638 if (VEC_length (varobj_p, var->children) > to)
640 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
641 && (var->dynamic->saved_item != NULL));
644 /* If the variable object is bound to a specific thread, that
645 is its evaluation can always be done in context of a frame
646 inside that thread, returns GDB id of the thread -- which
647 is always positive. Otherwise, returns -1. */
649 varobj_get_thread_id (struct varobj *var)
651 if (var->root->valid_block && var->root->thread_id > 0)
652 return var->root->thread_id;
658 varobj_set_frozen (struct varobj *var, int frozen)
660 /* When a variable is unfrozen, we don't fetch its value.
661 The 'not_fetched' flag remains set, so next -var-update
664 We don't fetch the value, because for structures the client
665 should do -var-update anyway. It would be bad to have different
666 client-size logic for structure and other types. */
667 var->frozen = frozen;
671 varobj_get_frozen (struct varobj *var)
676 /* A helper function that restricts a range to what is actually
677 available in a VEC. This follows the usual rules for the meaning
678 of FROM and TO -- if either is negative, the entire range is
682 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
684 if (*from < 0 || *to < 0)
687 *to = VEC_length (varobj_p, children);
691 if (*from > VEC_length (varobj_p, children))
692 *from = VEC_length (varobj_p, children);
693 if (*to > VEC_length (varobj_p, children))
694 *to = VEC_length (varobj_p, children);
700 /* A helper for update_dynamic_varobj_children that installs a new
701 child when needed. */
704 install_dynamic_child (struct varobj *var,
705 VEC (varobj_p) **changed,
706 VEC (varobj_p) **type_changed,
707 VEC (varobj_p) **new,
708 VEC (varobj_p) **unchanged,
711 struct varobj_item *item)
713 if (VEC_length (varobj_p, var->children) < index + 1)
715 /* There's no child yet. */
716 struct varobj *child = varobj_add_child (var, item);
720 VEC_safe_push (varobj_p, *new, child);
726 varobj_p existing = VEC_index (varobj_p, var->children, index);
727 int type_updated = update_type_if_necessary (existing, item->value);
732 VEC_safe_push (varobj_p, *type_changed, existing);
734 if (install_new_value (existing, item->value, 0))
736 if (!type_updated && changed)
737 VEC_safe_push (varobj_p, *changed, existing);
739 else if (!type_updated && unchanged)
740 VEC_safe_push (varobj_p, *unchanged, existing);
747 dynamic_varobj_has_child_method (struct varobj *var)
749 struct cleanup *back_to;
750 PyObject *printer = var->dynamic->pretty_printer;
753 if (!gdb_python_initialized)
756 back_to = varobj_ensure_python_env (var);
757 result = PyObject_HasAttr (printer, gdbpy_children_cst);
758 do_cleanups (back_to);
763 /* A factory for creating dynamic varobj's iterators. Returns an
764 iterator object suitable for iterating over VAR's children. */
766 static struct varobj_iter *
767 varobj_get_iterator (struct varobj *var)
770 if (var->dynamic->pretty_printer)
771 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
774 gdb_assert_not_reached (_("\
775 requested an iterator from a non-dynamic varobj"));
778 /* Release and clear VAR's saved item, if any. */
781 varobj_clear_saved_item (struct varobj_dynamic *var)
783 if (var->saved_item != NULL)
785 value_free (var->saved_item->value);
786 xfree (var->saved_item);
787 var->saved_item = NULL;
792 update_dynamic_varobj_children (struct varobj *var,
793 VEC (varobj_p) **changed,
794 VEC (varobj_p) **type_changed,
795 VEC (varobj_p) **new,
796 VEC (varobj_p) **unchanged,
806 if (update_children || var->dynamic->child_iter == NULL)
808 varobj_iter_delete (var->dynamic->child_iter);
809 var->dynamic->child_iter = varobj_get_iterator (var);
811 varobj_clear_saved_item (var->dynamic);
815 if (var->dynamic->child_iter == NULL)
819 i = VEC_length (varobj_p, var->children);
821 /* We ask for one extra child, so that MI can report whether there
822 are more children. */
823 for (; to < 0 || i < to + 1; ++i)
827 /* See if there was a leftover from last time. */
828 if (var->dynamic->saved_item != NULL)
830 item = var->dynamic->saved_item;
831 var->dynamic->saved_item = NULL;
835 item = varobj_iter_next (var->dynamic->child_iter);
836 /* Release vitem->value so its lifetime is not bound to the
837 execution of a command. */
838 if (item != NULL && item->value != NULL)
839 release_value_or_incref (item->value);
844 /* Iteration is done. Remove iterator from VAR. */
845 varobj_iter_delete (var->dynamic->child_iter);
846 var->dynamic->child_iter = NULL;
849 /* We don't want to push the extra child on any report list. */
850 if (to < 0 || i < to)
852 int can_mention = from < 0 || i >= from;
854 install_dynamic_child (var, can_mention ? changed : NULL,
855 can_mention ? type_changed : NULL,
856 can_mention ? new : NULL,
857 can_mention ? unchanged : NULL,
858 can_mention ? cchanged : NULL, i,
865 var->dynamic->saved_item = item;
867 /* We want to truncate the child list just before this
873 if (i < VEC_length (varobj_p, var->children))
878 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
879 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
880 VEC_truncate (varobj_p, var->children, i);
883 /* If there are fewer children than requested, note that the list of
885 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
888 var->num_children = VEC_length (varobj_p, var->children);
894 varobj_get_num_children (struct varobj *var)
896 if (var->num_children == -1)
898 if (varobj_is_dynamic_p (var))
902 /* If we have a dynamic varobj, don't report -1 children.
903 So, try to fetch some children first. */
904 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
908 var->num_children = number_of_children (var);
911 return var->num_children >= 0 ? var->num_children : 0;
914 /* Creates a list of the immediate children of a variable object;
915 the return code is the number of such children or -1 on error. */
918 varobj_list_children (struct varobj *var, int *from, int *to)
921 int i, children_changed;
923 var->dynamic->children_requested = 1;
925 if (varobj_is_dynamic_p (var))
927 /* This, in theory, can result in the number of children changing without
928 frontend noticing. But well, calling -var-list-children on the same
929 varobj twice is not something a sane frontend would do. */
930 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
931 &children_changed, 0, 0, *to);
932 varobj_restrict_range (var->children, from, to);
933 return var->children;
936 if (var->num_children == -1)
937 var->num_children = number_of_children (var);
939 /* If that failed, give up. */
940 if (var->num_children == -1)
941 return var->children;
943 /* If we're called when the list of children is not yet initialized,
944 allocate enough elements in it. */
945 while (VEC_length (varobj_p, var->children) < var->num_children)
946 VEC_safe_push (varobj_p, var->children, NULL);
948 for (i = 0; i < var->num_children; i++)
950 varobj_p existing = VEC_index (varobj_p, var->children, i);
952 if (existing == NULL)
954 /* Either it's the first call to varobj_list_children for
955 this variable object, and the child was never created,
956 or it was explicitly deleted by the client. */
957 name = name_of_child (var, i);
958 existing = create_child (var, i, name);
959 VEC_replace (varobj_p, var->children, i, existing);
963 varobj_restrict_range (var->children, from, to);
964 return var->children;
967 static struct varobj *
968 varobj_add_child (struct varobj *var, struct varobj_item *item)
970 varobj_p v = create_child_with_value (var,
971 VEC_length (varobj_p, var->children),
974 VEC_safe_push (varobj_p, var->children, v);
978 /* Obtain the type of an object Variable as a string similar to the one gdb
979 prints on the console. */
982 varobj_get_type (struct varobj *var)
984 /* For the "fake" variables, do not return a type. (Its type is
986 Do not return a type for invalid variables as well. */
987 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
990 return type_to_string (var->type);
993 /* Obtain the type of an object variable. */
996 varobj_get_gdb_type (struct varobj *var)
1001 /* Is VAR a path expression parent, i.e., can it be used to construct
1002 a valid path expression? */
1005 is_path_expr_parent (struct varobj *var)
1009 /* "Fake" children are not path_expr parents. */
1010 if (CPLUS_FAKE_CHILD (var))
1013 type = varobj_get_value_type (var);
1015 /* Anonymous unions and structs are also not path_expr parents. */
1016 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1017 || TYPE_CODE (type) == TYPE_CODE_UNION)
1018 && TYPE_NAME (type) == NULL);
1021 /* Return the path expression parent for VAR. */
1024 varobj_get_path_expr_parent (struct varobj *var)
1026 struct varobj *parent = var;
1028 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1029 parent = parent->parent;
1034 /* Return a pointer to the full rooted expression of varobj VAR.
1035 If it has not been computed yet, compute it. */
1037 varobj_get_path_expr (struct varobj *var)
1039 if (var->path_expr != NULL)
1040 return var->path_expr;
1043 /* For root varobjs, we initialize path_expr
1044 when creating varobj, so here it should be
1046 gdb_assert (!is_root_p (var));
1047 return (*var->root->lang_ops->path_expr_of_child) (var);
1051 const struct language_defn *
1052 varobj_get_language (struct varobj *var)
1054 return var->root->exp->language_defn;
1058 varobj_get_attributes (struct varobj *var)
1062 if (varobj_editable_p (var))
1063 /* FIXME: define masks for attributes. */
1064 attributes |= 0x00000001; /* Editable */
1069 /* Return true if VAR is a dynamic varobj. */
1072 varobj_is_dynamic_p (struct varobj *var)
1074 return var->dynamic->pretty_printer != NULL;
1078 varobj_get_formatted_value (struct varobj *var,
1079 enum varobj_display_formats format)
1081 return my_value_of_variable (var, format);
1085 varobj_get_value (struct varobj *var)
1087 return my_value_of_variable (var, var->format);
1090 /* Set the value of an object variable (if it is editable) to the
1091 value of the given expression. */
1092 /* Note: Invokes functions that can call error(). */
1095 varobj_set_value (struct varobj *var, char *expression)
1097 struct value *val = NULL; /* Initialize to keep gcc happy. */
1098 /* The argument "expression" contains the variable's new value.
1099 We need to first construct a legal expression for this -- ugh! */
1100 /* Does this cover all the bases? */
1101 struct expression *exp;
1102 struct value *value = NULL; /* Initialize to keep gcc happy. */
1103 int saved_input_radix = input_radix;
1104 const char *s = expression;
1105 volatile struct gdb_exception except;
1107 gdb_assert (varobj_editable_p (var));
1109 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1110 exp = parse_exp_1 (&s, 0, 0, 0);
1111 TRY_CATCH (except, RETURN_MASK_ERROR)
1113 value = evaluate_expression (exp);
1116 if (except.reason < 0)
1118 /* We cannot proceed without a valid expression. */
1123 /* All types that are editable must also be changeable. */
1124 gdb_assert (varobj_value_is_changeable_p (var));
1126 /* The value of a changeable variable object must not be lazy. */
1127 gdb_assert (!value_lazy (var->value));
1129 /* Need to coerce the input. We want to check if the
1130 value of the variable object will be different
1131 after assignment, and the first thing value_assign
1132 does is coerce the input.
1133 For example, if we are assigning an array to a pointer variable we
1134 should compare the pointer with the array's address, not with the
1136 value = coerce_array (value);
1138 /* The new value may be lazy. value_assign, or
1139 rather value_contents, will take care of this. */
1140 TRY_CATCH (except, RETURN_MASK_ERROR)
1142 val = value_assign (var->value, value);
1145 if (except.reason < 0)
1148 /* If the value has changed, record it, so that next -var-update can
1149 report this change. If a variable had a value of '1', we've set it
1150 to '333' and then set again to '1', when -var-update will report this
1151 variable as changed -- because the first assignment has set the
1152 'updated' flag. There's no need to optimize that, because return value
1153 of -var-update should be considered an approximation. */
1154 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1155 input_radix = saved_input_radix;
1161 /* A helper function to install a constructor function and visualizer
1162 in a varobj_dynamic. */
1165 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1166 PyObject *visualizer)
1168 Py_XDECREF (var->constructor);
1169 var->constructor = constructor;
1171 Py_XDECREF (var->pretty_printer);
1172 var->pretty_printer = visualizer;
1174 varobj_iter_delete (var->child_iter);
1175 var->child_iter = NULL;
1178 /* Install the default visualizer for VAR. */
1181 install_default_visualizer (struct varobj *var)
1183 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1184 if (CPLUS_FAKE_CHILD (var))
1187 if (pretty_printing)
1189 PyObject *pretty_printer = NULL;
1193 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1194 if (! pretty_printer)
1196 gdbpy_print_stack ();
1197 error (_("Cannot instantiate printer for default visualizer"));
1201 if (pretty_printer == Py_None)
1203 Py_DECREF (pretty_printer);
1204 pretty_printer = NULL;
1207 install_visualizer (var->dynamic, NULL, pretty_printer);
1211 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1212 make a new object. */
1215 construct_visualizer (struct varobj *var, PyObject *constructor)
1217 PyObject *pretty_printer;
1219 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1220 if (CPLUS_FAKE_CHILD (var))
1223 Py_INCREF (constructor);
1224 if (constructor == Py_None)
1225 pretty_printer = NULL;
1228 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1229 if (! pretty_printer)
1231 gdbpy_print_stack ();
1232 Py_DECREF (constructor);
1233 constructor = Py_None;
1234 Py_INCREF (constructor);
1237 if (pretty_printer == Py_None)
1239 Py_DECREF (pretty_printer);
1240 pretty_printer = NULL;
1244 install_visualizer (var->dynamic, constructor, pretty_printer);
1247 #endif /* HAVE_PYTHON */
1249 /* A helper function for install_new_value. This creates and installs
1250 a visualizer for VAR, if appropriate. */
1253 install_new_value_visualizer (struct varobj *var)
1256 /* If the constructor is None, then we want the raw value. If VAR
1257 does not have a value, just skip this. */
1258 if (!gdb_python_initialized)
1261 if (var->dynamic->constructor != Py_None && var->value != NULL)
1263 struct cleanup *cleanup;
1265 cleanup = varobj_ensure_python_env (var);
1267 if (var->dynamic->constructor == NULL)
1268 install_default_visualizer (var);
1270 construct_visualizer (var, var->dynamic->constructor);
1272 do_cleanups (cleanup);
1279 /* When using RTTI to determine variable type it may be changed in runtime when
1280 the variable value is changed. This function checks whether type of varobj
1281 VAR will change when a new value NEW_VALUE is assigned and if it is so
1282 updates the type of VAR. */
1285 update_type_if_necessary (struct varobj *var, struct value *new_value)
1289 struct value_print_options opts;
1291 get_user_print_options (&opts);
1292 if (opts.objectprint)
1294 struct type *new_type;
1295 char *curr_type_str, *new_type_str;
1297 new_type = value_actual_type (new_value, 0, 0);
1298 new_type_str = type_to_string (new_type);
1299 curr_type_str = varobj_get_type (var);
1300 if (strcmp (curr_type_str, new_type_str) != 0)
1302 var->type = new_type;
1304 /* This information may be not valid for a new type. */
1305 varobj_delete (var, NULL, 1);
1306 VEC_free (varobj_p, var->children);
1307 var->num_children = -1;
1316 /* Assign a new value to a variable object. If INITIAL is non-zero,
1317 this is the first assignement after the variable object was just
1318 created, or changed type. In that case, just assign the value
1320 Otherwise, assign the new value, and return 1 if the value is
1321 different from the current one, 0 otherwise. The comparison is
1322 done on textual representation of value. Therefore, some types
1323 need not be compared. E.g. for structures the reported value is
1324 always "{...}", so no comparison is necessary here. If the old
1325 value was NULL and new one is not, or vice versa, we always return 1.
1327 The VALUE parameter should not be released -- the function will
1328 take care of releasing it when needed. */
1330 install_new_value (struct varobj *var, struct value *value, int initial)
1335 int intentionally_not_fetched = 0;
1336 char *print_value = NULL;
1338 /* We need to know the varobj's type to decide if the value should
1339 be fetched or not. C++ fake children (public/protected/private)
1340 don't have a type. */
1341 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1342 changeable = varobj_value_is_changeable_p (var);
1344 /* If the type has custom visualizer, we consider it to be always
1345 changeable. FIXME: need to make sure this behaviour will not
1346 mess up read-sensitive values. */
1347 if (var->dynamic->pretty_printer != NULL)
1350 need_to_fetch = changeable;
1352 /* We are not interested in the address of references, and given
1353 that in C++ a reference is not rebindable, it cannot
1354 meaningfully change. So, get hold of the real value. */
1356 value = coerce_ref (value);
1358 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1359 /* For unions, we need to fetch the value implicitly because
1360 of implementation of union member fetch. When gdb
1361 creates a value for a field and the value of the enclosing
1362 structure is not lazy, it immediately copies the necessary
1363 bytes from the enclosing values. If the enclosing value is
1364 lazy, the call to value_fetch_lazy on the field will read
1365 the data from memory. For unions, that means we'll read the
1366 same memory more than once, which is not desirable. So
1370 /* The new value might be lazy. If the type is changeable,
1371 that is we'll be comparing values of this type, fetch the
1372 value now. Otherwise, on the next update the old value
1373 will be lazy, which means we've lost that old value. */
1374 if (need_to_fetch && value && value_lazy (value))
1376 struct varobj *parent = var->parent;
1377 int frozen = var->frozen;
1379 for (; !frozen && parent; parent = parent->parent)
1380 frozen |= parent->frozen;
1382 if (frozen && initial)
1384 /* For variables that are frozen, or are children of frozen
1385 variables, we don't do fetch on initial assignment.
1386 For non-initial assignemnt we do the fetch, since it means we're
1387 explicitly asked to compare the new value with the old one. */
1388 intentionally_not_fetched = 1;
1392 volatile struct gdb_exception except;
1394 TRY_CATCH (except, RETURN_MASK_ERROR)
1396 value_fetch_lazy (value);
1399 if (except.reason < 0)
1401 /* Set the value to NULL, so that for the next -var-update,
1402 we don't try to compare the new value with this value,
1403 that we couldn't even read. */
1409 /* Get a reference now, before possibly passing it to any Python
1410 code that might release it. */
1412 value_incref (value);
1414 /* Below, we'll be comparing string rendering of old and new
1415 values. Don't get string rendering if the value is
1416 lazy -- if it is, the code above has decided that the value
1417 should not be fetched. */
1418 if (value != NULL && !value_lazy (value)
1419 && var->dynamic->pretty_printer == NULL)
1420 print_value = varobj_value_get_print_value (value, var->format, var);
1422 /* If the type is changeable, compare the old and the new values.
1423 If this is the initial assignment, we don't have any old value
1425 if (!initial && changeable)
1427 /* If the value of the varobj was changed by -var-set-value,
1428 then the value in the varobj and in the target is the same.
1429 However, that value is different from the value that the
1430 varobj had after the previous -var-update. So need to the
1431 varobj as changed. */
1436 else if (var->dynamic->pretty_printer == NULL)
1438 /* Try to compare the values. That requires that both
1439 values are non-lazy. */
1440 if (var->not_fetched && value_lazy (var->value))
1442 /* This is a frozen varobj and the value was never read.
1443 Presumably, UI shows some "never read" indicator.
1444 Now that we've fetched the real value, we need to report
1445 this varobj as changed so that UI can show the real
1449 else if (var->value == NULL && value == NULL)
1452 else if (var->value == NULL || value == NULL)
1458 gdb_assert (!value_lazy (var->value));
1459 gdb_assert (!value_lazy (value));
1461 gdb_assert (var->print_value != NULL && print_value != NULL);
1462 if (strcmp (var->print_value, print_value) != 0)
1468 if (!initial && !changeable)
1470 /* For values that are not changeable, we don't compare the values.
1471 However, we want to notice if a value was not NULL and now is NULL,
1472 or vise versa, so that we report when top-level varobjs come in scope
1473 and leave the scope. */
1474 changed = (var->value != NULL) != (value != NULL);
1477 /* We must always keep the new value, since children depend on it. */
1478 if (var->value != NULL && var->value != value)
1479 value_free (var->value);
1481 if (value && value_lazy (value) && intentionally_not_fetched)
1482 var->not_fetched = 1;
1484 var->not_fetched = 0;
1487 install_new_value_visualizer (var);
1489 /* If we installed a pretty-printer, re-compare the printed version
1490 to see if the variable changed. */
1491 if (var->dynamic->pretty_printer != NULL)
1493 xfree (print_value);
1494 print_value = varobj_value_get_print_value (var->value, var->format,
1496 if ((var->print_value == NULL && print_value != NULL)
1497 || (var->print_value != NULL && print_value == NULL)
1498 || (var->print_value != NULL && print_value != NULL
1499 && strcmp (var->print_value, print_value) != 0))
1502 if (var->print_value)
1503 xfree (var->print_value);
1504 var->print_value = print_value;
1506 gdb_assert (!var->value || value_type (var->value));
1511 /* Return the requested range for a varobj. VAR is the varobj. FROM
1512 and TO are out parameters; *FROM and *TO will be set to the
1513 selected sub-range of VAR. If no range was selected using
1514 -var-set-update-range, then both will be -1. */
1516 varobj_get_child_range (struct varobj *var, int *from, int *to)
1522 /* Set the selected sub-range of children of VAR to start at index
1523 FROM and end at index TO. If either FROM or TO is less than zero,
1524 this is interpreted as a request for all children. */
1526 varobj_set_child_range (struct varobj *var, int from, int to)
1533 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1536 PyObject *mainmod, *globals, *constructor;
1537 struct cleanup *back_to;
1539 if (!gdb_python_initialized)
1542 back_to = varobj_ensure_python_env (var);
1544 mainmod = PyImport_AddModule ("__main__");
1545 globals = PyModule_GetDict (mainmod);
1546 Py_INCREF (globals);
1547 make_cleanup_py_decref (globals);
1549 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1553 gdbpy_print_stack ();
1554 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1557 construct_visualizer (var, constructor);
1558 Py_XDECREF (constructor);
1560 /* If there are any children now, wipe them. */
1561 varobj_delete (var, NULL, 1 /* children only */);
1562 var->num_children = -1;
1564 do_cleanups (back_to);
1566 error (_("Python support required"));
1570 /* If NEW_VALUE is the new value of the given varobj (var), return
1571 non-zero if var has mutated. In other words, if the type of
1572 the new value is different from the type of the varobj's old
1575 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1578 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1579 struct type *new_type)
1581 /* If we haven't previously computed the number of children in var,
1582 it does not matter from the front-end's perspective whether
1583 the type has mutated or not. For all intents and purposes,
1584 it has not mutated. */
1585 if (var->num_children < 0)
1588 if (var->root->lang_ops->value_has_mutated)
1590 /* The varobj module, when installing new values, explicitly strips
1591 references, saying that we're not interested in those addresses.
1592 But detection of mutation happens before installing the new
1593 value, so our value may be a reference that we need to strip
1594 in order to remain consistent. */
1595 if (new_value != NULL)
1596 new_value = coerce_ref (new_value);
1597 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1603 /* Update the values for a variable and its children. This is a
1604 two-pronged attack. First, re-parse the value for the root's
1605 expression to see if it's changed. Then go all the way
1606 through its children, reconstructing them and noting if they've
1609 The EXPLICIT parameter specifies if this call is result
1610 of MI request to update this specific variable, or
1611 result of implicit -var-update *. For implicit request, we don't
1612 update frozen variables.
1614 NOTE: This function may delete the caller's varobj. If it
1615 returns TYPE_CHANGED, then it has done this and VARP will be modified
1616 to point to the new varobj. */
1618 VEC(varobj_update_result) *
1619 varobj_update (struct varobj **varp, int explicit)
1621 int type_changed = 0;
1624 VEC (varobj_update_result) *stack = NULL;
1625 VEC (varobj_update_result) *result = NULL;
1627 /* Frozen means frozen -- we don't check for any change in
1628 this varobj, including its going out of scope, or
1629 changing type. One use case for frozen varobjs is
1630 retaining previously evaluated expressions, and we don't
1631 want them to be reevaluated at all. */
1632 if (!explicit && (*varp)->frozen)
1635 if (!(*varp)->root->is_valid)
1637 varobj_update_result r = {0};
1640 r.status = VAROBJ_INVALID;
1641 VEC_safe_push (varobj_update_result, result, &r);
1645 if ((*varp)->root->rootvar == *varp)
1647 varobj_update_result r = {0};
1650 r.status = VAROBJ_IN_SCOPE;
1652 /* Update the root variable. value_of_root can return NULL
1653 if the variable is no longer around, i.e. we stepped out of
1654 the frame in which a local existed. We are letting the
1655 value_of_root variable dispose of the varobj if the type
1657 new = value_of_root (varp, &type_changed);
1658 if (update_type_if_necessary(*varp, new))
1661 r.type_changed = type_changed;
1662 if (install_new_value ((*varp), new, type_changed))
1666 r.status = VAROBJ_NOT_IN_SCOPE;
1667 r.value_installed = 1;
1669 if (r.status == VAROBJ_NOT_IN_SCOPE)
1671 if (r.type_changed || r.changed)
1672 VEC_safe_push (varobj_update_result, result, &r);
1676 VEC_safe_push (varobj_update_result, stack, &r);
1680 varobj_update_result r = {0};
1683 VEC_safe_push (varobj_update_result, stack, &r);
1686 /* Walk through the children, reconstructing them all. */
1687 while (!VEC_empty (varobj_update_result, stack))
1689 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1690 struct varobj *v = r.varobj;
1692 VEC_pop (varobj_update_result, stack);
1694 /* Update this variable, unless it's a root, which is already
1696 if (!r.value_installed)
1698 struct type *new_type;
1700 new = value_of_child (v->parent, v->index);
1701 if (update_type_if_necessary(v, new))
1704 new_type = value_type (new);
1706 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1708 if (varobj_value_has_mutated (v, new, new_type))
1710 /* The children are no longer valid; delete them now.
1711 Report the fact that its type changed as well. */
1712 varobj_delete (v, NULL, 1 /* only_children */);
1713 v->num_children = -1;
1720 if (install_new_value (v, new, r.type_changed))
1727 /* We probably should not get children of a dynamic varobj, but
1728 for which -var-list-children was never invoked. */
1729 if (varobj_is_dynamic_p (v))
1731 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1732 VEC (varobj_p) *new = 0;
1733 int i, children_changed = 0;
1738 if (!v->dynamic->children_requested)
1742 /* If we initially did not have potential children, but
1743 now we do, consider the varobj as changed.
1744 Otherwise, if children were never requested, consider
1745 it as unchanged -- presumably, such varobj is not yet
1746 expanded in the UI, so we need not bother getting
1748 if (!varobj_has_more (v, 0))
1750 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1752 if (varobj_has_more (v, 0))
1757 VEC_safe_push (varobj_update_result, result, &r);
1762 /* If update_dynamic_varobj_children returns 0, then we have
1763 a non-conforming pretty-printer, so we skip it. */
1764 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1765 &unchanged, &children_changed, 1,
1768 if (children_changed || new)
1770 r.children_changed = 1;
1773 /* Push in reverse order so that the first child is
1774 popped from the work stack first, and so will be
1775 added to result first. This does not affect
1776 correctness, just "nicer". */
1777 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1779 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1780 varobj_update_result r = {0};
1782 /* Type may change only if value was changed. */
1786 r.value_installed = 1;
1787 VEC_safe_push (varobj_update_result, stack, &r);
1789 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1791 varobj_p tmp = VEC_index (varobj_p, changed, i);
1792 varobj_update_result r = {0};
1796 r.value_installed = 1;
1797 VEC_safe_push (varobj_update_result, stack, &r);
1799 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1801 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1805 varobj_update_result r = {0};
1808 r.value_installed = 1;
1809 VEC_safe_push (varobj_update_result, stack, &r);
1812 if (r.changed || r.children_changed)
1813 VEC_safe_push (varobj_update_result, result, &r);
1815 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1816 because NEW has been put into the result vector. */
1817 VEC_free (varobj_p, changed);
1818 VEC_free (varobj_p, type_changed);
1819 VEC_free (varobj_p, unchanged);
1825 /* Push any children. Use reverse order so that the first
1826 child is popped from the work stack first, and so
1827 will be added to result first. This does not
1828 affect correctness, just "nicer". */
1829 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1831 varobj_p c = VEC_index (varobj_p, v->children, i);
1833 /* Child may be NULL if explicitly deleted by -var-delete. */
1834 if (c != NULL && !c->frozen)
1836 varobj_update_result r = {0};
1839 VEC_safe_push (varobj_update_result, stack, &r);
1843 if (r.changed || r.type_changed)
1844 VEC_safe_push (varobj_update_result, result, &r);
1847 VEC_free (varobj_update_result, stack);
1853 /* Helper functions */
1856 * Variable object construction/destruction
1860 delete_variable (struct cpstack **resultp, struct varobj *var,
1861 int only_children_p)
1865 delete_variable_1 (resultp, &delcount, var,
1866 only_children_p, 1 /* remove_from_parent_p */ );
1871 /* Delete the variable object VAR and its children. */
1872 /* IMPORTANT NOTE: If we delete a variable which is a child
1873 and the parent is not removed we dump core. It must be always
1874 initially called with remove_from_parent_p set. */
1876 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1877 struct varobj *var, int only_children_p,
1878 int remove_from_parent_p)
1882 /* Delete any children of this variable, too. */
1883 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1885 varobj_p child = VEC_index (varobj_p, var->children, i);
1889 if (!remove_from_parent_p)
1890 child->parent = NULL;
1891 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1893 VEC_free (varobj_p, var->children);
1895 /* if we were called to delete only the children we are done here. */
1896 if (only_children_p)
1899 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1900 /* If the name is null, this is a temporary variable, that has not
1901 yet been installed, don't report it, it belongs to the caller... */
1902 if (var->obj_name != NULL)
1904 cppush (resultp, xstrdup (var->obj_name));
1905 *delcountp = *delcountp + 1;
1908 /* If this variable has a parent, remove it from its parent's list. */
1909 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1910 (as indicated by remove_from_parent_p) we don't bother doing an
1911 expensive list search to find the element to remove when we are
1912 discarding the list afterwards. */
1913 if ((remove_from_parent_p) && (var->parent != NULL))
1915 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1918 if (var->obj_name != NULL)
1919 uninstall_variable (var);
1921 /* Free memory associated with this variable. */
1922 free_variable (var);
1925 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1927 install_variable (struct varobj *var)
1930 struct vlist *newvl;
1932 unsigned int index = 0;
1935 for (chp = var->obj_name; *chp; chp++)
1937 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1940 cv = *(varobj_table + index);
1941 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1945 error (_("Duplicate variable object name"));
1947 /* Add varobj to hash table. */
1948 newvl = xmalloc (sizeof (struct vlist));
1949 newvl->next = *(varobj_table + index);
1951 *(varobj_table + index) = newvl;
1953 /* If root, add varobj to root list. */
1954 if (is_root_p (var))
1956 /* Add to list of root variables. */
1957 if (rootlist == NULL)
1958 var->root->next = NULL;
1960 var->root->next = rootlist;
1961 rootlist = var->root;
1967 /* Unistall the object VAR. */
1969 uninstall_variable (struct varobj *var)
1973 struct varobj_root *cr;
1974 struct varobj_root *prer;
1976 unsigned int index = 0;
1979 /* Remove varobj from hash table. */
1980 for (chp = var->obj_name; *chp; chp++)
1982 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1985 cv = *(varobj_table + index);
1987 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1994 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1999 ("Assertion failed: Could not find variable object \"%s\" to delete",
2005 *(varobj_table + index) = cv->next;
2007 prev->next = cv->next;
2011 /* If root, remove varobj from root list. */
2012 if (is_root_p (var))
2014 /* Remove from list of root variables. */
2015 if (rootlist == var->root)
2016 rootlist = var->root->next;
2021 while ((cr != NULL) && (cr->rootvar != var))
2028 warning (_("Assertion failed: Could not find "
2029 "varobj \"%s\" in root list"),
2036 prer->next = cr->next;
2042 /* Create and install a child of the parent of the given name. */
2043 static struct varobj *
2044 create_child (struct varobj *parent, int index, char *name)
2046 struct varobj_item item;
2049 item.value = value_of_child (parent, index);
2051 return create_child_with_value (parent, index, &item);
2054 static struct varobj *
2055 create_child_with_value (struct varobj *parent, int index,
2056 struct varobj_item *item)
2058 struct varobj *child;
2061 child = new_variable ();
2063 /* NAME is allocated by caller. */
2064 child->name = item->name;
2065 child->index = index;
2066 child->parent = parent;
2067 child->root = parent->root;
2069 if (varobj_is_anonymous_child (child))
2070 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2072 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2073 child->obj_name = childs_name;
2075 install_variable (child);
2077 /* Compute the type of the child. Must do this before
2078 calling install_new_value. */
2079 if (item->value != NULL)
2080 /* If the child had no evaluation errors, var->value
2081 will be non-NULL and contain a valid type. */
2082 child->type = value_actual_type (item->value, 0, NULL);
2084 /* Otherwise, we must compute the type. */
2085 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2087 install_new_value (child, item->value, 1);
2094 * Miscellaneous utility functions.
2097 /* Allocate memory and initialize a new variable. */
2098 static struct varobj *
2103 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2105 var->path_expr = NULL;
2106 var->obj_name = NULL;
2110 var->num_children = -1;
2112 var->children = NULL;
2116 var->print_value = NULL;
2118 var->not_fetched = 0;
2120 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2121 var->dynamic->children_requested = 0;
2124 var->dynamic->constructor = 0;
2125 var->dynamic->pretty_printer = 0;
2126 var->dynamic->child_iter = 0;
2127 var->dynamic->saved_item = 0;
2132 /* Allocate memory and initialize a new root variable. */
2133 static struct varobj *
2134 new_root_variable (void)
2136 struct varobj *var = new_variable ();
2138 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2139 var->root->lang_ops = NULL;
2140 var->root->exp = NULL;
2141 var->root->valid_block = NULL;
2142 var->root->frame = null_frame_id;
2143 var->root->floating = 0;
2144 var->root->rootvar = NULL;
2145 var->root->is_valid = 1;
2150 /* Free any allocated memory associated with VAR. */
2152 free_variable (struct varobj *var)
2155 if (var->dynamic->pretty_printer != NULL)
2157 struct cleanup *cleanup = varobj_ensure_python_env (var);
2159 Py_XDECREF (var->dynamic->constructor);
2160 Py_XDECREF (var->dynamic->pretty_printer);
2161 do_cleanups (cleanup);
2165 varobj_iter_delete (var->dynamic->child_iter);
2166 varobj_clear_saved_item (var->dynamic);
2167 value_free (var->value);
2169 /* Free the expression if this is a root variable. */
2170 if (is_root_p (var))
2172 xfree (var->root->exp);
2177 xfree (var->obj_name);
2178 xfree (var->print_value);
2179 xfree (var->path_expr);
2180 xfree (var->dynamic);
2185 do_free_variable_cleanup (void *var)
2187 free_variable (var);
2190 static struct cleanup *
2191 make_cleanup_free_variable (struct varobj *var)
2193 return make_cleanup (do_free_variable_cleanup, var);
2196 /* Return the type of the value that's stored in VAR,
2197 or that would have being stored there if the
2198 value were accessible.
2200 This differs from VAR->type in that VAR->type is always
2201 the true type of the expession in the source language.
2202 The return value of this function is the type we're
2203 actually storing in varobj, and using for displaying
2204 the values and for comparing previous and new values.
2206 For example, top-level references are always stripped. */
2208 varobj_get_value_type (struct varobj *var)
2213 type = value_type (var->value);
2217 type = check_typedef (type);
2219 if (TYPE_CODE (type) == TYPE_CODE_REF)
2220 type = get_target_type (type);
2222 type = check_typedef (type);
2227 /* What is the default display for this variable? We assume that
2228 everything is "natural". Any exceptions? */
2229 static enum varobj_display_formats
2230 variable_default_display (struct varobj *var)
2232 return FORMAT_NATURAL;
2235 /* FIXME: The following should be generic for any pointer. */
2237 cppush (struct cpstack **pstack, char *name)
2241 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2247 /* FIXME: The following should be generic for any pointer. */
2249 cppop (struct cpstack **pstack)
2254 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2259 *pstack = (*pstack)->next;
2266 * Language-dependencies
2269 /* Common entry points */
2271 /* Return the number of children for a given variable.
2272 The result of this function is defined by the language
2273 implementation. The number of children returned by this function
2274 is the number of children that the user will see in the variable
2277 number_of_children (struct varobj *var)
2279 return (*var->root->lang_ops->number_of_children) (var);
2282 /* What is the expression for the root varobj VAR? Returns a malloc'd
2285 name_of_variable (struct varobj *var)
2287 return (*var->root->lang_ops->name_of_variable) (var);
2290 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2293 name_of_child (struct varobj *var, int index)
2295 return (*var->root->lang_ops->name_of_child) (var, index);
2298 /* If frame associated with VAR can be found, switch
2299 to it and return 1. Otherwise, return 0. */
2302 check_scope (struct varobj *var)
2304 struct frame_info *fi;
2307 fi = frame_find_by_id (var->root->frame);
2312 CORE_ADDR pc = get_frame_pc (fi);
2314 if (pc < BLOCK_START (var->root->valid_block) ||
2315 pc >= BLOCK_END (var->root->valid_block))
2323 /* Helper function to value_of_root. */
2325 static struct value *
2326 value_of_root_1 (struct varobj **var_handle)
2328 struct value *new_val = NULL;
2329 struct varobj *var = *var_handle;
2330 int within_scope = 0;
2331 struct cleanup *back_to;
2333 /* Only root variables can be updated... */
2334 if (!is_root_p (var))
2335 /* Not a root var. */
2338 back_to = make_cleanup_restore_current_thread ();
2340 /* Determine whether the variable is still around. */
2341 if (var->root->valid_block == NULL || var->root->floating)
2343 else if (var->root->thread_id == 0)
2345 /* The program was single-threaded when the variable object was
2346 created. Technically, it's possible that the program became
2347 multi-threaded since then, but we don't support such
2349 within_scope = check_scope (var);
2353 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2354 if (in_thread_list (ptid))
2356 switch_to_thread (ptid);
2357 within_scope = check_scope (var);
2363 volatile struct gdb_exception except;
2365 /* We need to catch errors here, because if evaluate
2366 expression fails we want to just return NULL. */
2367 TRY_CATCH (except, RETURN_MASK_ERROR)
2369 new_val = evaluate_expression (var->root->exp);
2373 do_cleanups (back_to);
2378 /* What is the ``struct value *'' of the root variable VAR?
2379 For floating variable object, evaluation can get us a value
2380 of different type from what is stored in varobj already. In
2382 - *type_changed will be set to 1
2383 - old varobj will be freed, and new one will be
2384 created, with the same name.
2385 - *var_handle will be set to the new varobj
2386 Otherwise, *type_changed will be set to 0. */
2387 static struct value *
2388 value_of_root (struct varobj **var_handle, int *type_changed)
2392 if (var_handle == NULL)
2397 /* This should really be an exception, since this should
2398 only get called with a root variable. */
2400 if (!is_root_p (var))
2403 if (var->root->floating)
2405 struct varobj *tmp_var;
2406 char *old_type, *new_type;
2408 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2409 USE_SELECTED_FRAME);
2410 if (tmp_var == NULL)
2414 old_type = varobj_get_type (var);
2415 new_type = varobj_get_type (tmp_var);
2416 if (strcmp (old_type, new_type) == 0)
2418 /* The expression presently stored inside var->root->exp
2419 remembers the locations of local variables relatively to
2420 the frame where the expression was created (in DWARF location
2421 button, for example). Naturally, those locations are not
2422 correct in other frames, so update the expression. */
2424 struct expression *tmp_exp = var->root->exp;
2426 var->root->exp = tmp_var->root->exp;
2427 tmp_var->root->exp = tmp_exp;
2429 varobj_delete (tmp_var, NULL, 0);
2434 tmp_var->obj_name = xstrdup (var->obj_name);
2435 tmp_var->from = var->from;
2436 tmp_var->to = var->to;
2437 varobj_delete (var, NULL, 0);
2439 install_variable (tmp_var);
2440 *var_handle = tmp_var;
2453 struct value *value;
2455 value = value_of_root_1 (var_handle);
2456 if (var->value == NULL || value == NULL)
2458 /* For root varobj-s, a NULL value indicates a scoping issue.
2459 So, nothing to do in terms of checking for mutations. */
2461 else if (varobj_value_has_mutated (var, value, value_type (value)))
2463 /* The type has mutated, so the children are no longer valid.
2464 Just delete them, and tell our caller that the type has
2466 varobj_delete (var, NULL, 1 /* only_children */);
2467 var->num_children = -1;
2476 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2477 static struct value *
2478 value_of_child (struct varobj *parent, int index)
2480 struct value *value;
2482 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2487 /* GDB already has a command called "value_of_variable". Sigh. */
2489 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2491 if (var->root->is_valid)
2493 if (var->dynamic->pretty_printer != NULL)
2494 return varobj_value_get_print_value (var->value, var->format, var);
2495 return (*var->root->lang_ops->value_of_variable) (var, format);
2502 varobj_formatted_print_options (struct value_print_options *opts,
2503 enum varobj_display_formats format)
2505 get_formatted_print_options (opts, format_code[(int) format]);
2506 opts->deref_ref = 0;
2511 varobj_value_get_print_value (struct value *value,
2512 enum varobj_display_formats format,
2515 struct ui_file *stb;
2516 struct cleanup *old_chain;
2517 char *thevalue = NULL;
2518 struct value_print_options opts;
2519 struct type *type = NULL;
2521 char *encoding = NULL;
2522 struct gdbarch *gdbarch = NULL;
2523 /* Initialize it just to avoid a GCC false warning. */
2524 CORE_ADDR str_addr = 0;
2525 int string_print = 0;
2530 stb = mem_fileopen ();
2531 old_chain = make_cleanup_ui_file_delete (stb);
2533 gdbarch = get_type_arch (value_type (value));
2535 if (gdb_python_initialized)
2537 PyObject *value_formatter = var->dynamic->pretty_printer;
2539 varobj_ensure_python_env (var);
2541 if (value_formatter)
2543 /* First check to see if we have any children at all. If so,
2544 we simply return {...}. */
2545 if (dynamic_varobj_has_child_method (var))
2547 do_cleanups (old_chain);
2548 return xstrdup ("{...}");
2551 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2553 struct value *replacement;
2554 PyObject *output = NULL;
2556 output = apply_varobj_pretty_printer (value_formatter,
2560 /* If we have string like output ... */
2563 make_cleanup_py_decref (output);
2565 /* If this is a lazy string, extract it. For lazy
2566 strings we always print as a string, so set
2568 if (gdbpy_is_lazy_string (output))
2570 gdbpy_extract_lazy_string (output, &str_addr, &type,
2572 make_cleanup (free_current_contents, &encoding);
2577 /* If it is a regular (non-lazy) string, extract
2578 it and copy the contents into THEVALUE. If the
2579 hint says to print it as a string, set
2580 string_print. Otherwise just return the extracted
2581 string as a value. */
2583 char *s = python_string_to_target_string (output);
2589 hint = gdbpy_get_display_hint (value_formatter);
2592 if (!strcmp (hint, "string"))
2598 thevalue = xmemdup (s, len + 1, len + 1);
2599 type = builtin_type (gdbarch)->builtin_char;
2604 do_cleanups (old_chain);
2608 make_cleanup (xfree, thevalue);
2611 gdbpy_print_stack ();
2614 /* If the printer returned a replacement value, set VALUE
2615 to REPLACEMENT. If there is not a replacement value,
2616 just use the value passed to this function. */
2618 value = replacement;
2624 varobj_formatted_print_options (&opts, format);
2626 /* If the THEVALUE has contents, it is a regular string. */
2628 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2629 else if (string_print)
2630 /* Otherwise, if string_print is set, and it is not a regular
2631 string, it is a lazy string. */
2632 val_print_string (type, encoding, str_addr, len, stb, &opts);
2634 /* All other cases. */
2635 common_val_print (value, stb, 0, &opts, current_language);
2637 thevalue = ui_file_xstrdup (stb, NULL);
2639 do_cleanups (old_chain);
2644 varobj_editable_p (struct varobj *var)
2648 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2651 type = varobj_get_value_type (var);
2653 switch (TYPE_CODE (type))
2655 case TYPE_CODE_STRUCT:
2656 case TYPE_CODE_UNION:
2657 case TYPE_CODE_ARRAY:
2658 case TYPE_CODE_FUNC:
2659 case TYPE_CODE_METHOD:
2669 /* Call VAR's value_is_changeable_p language-specific callback. */
2672 varobj_value_is_changeable_p (struct varobj *var)
2674 return var->root->lang_ops->value_is_changeable_p (var);
2677 /* Return 1 if that varobj is floating, that is is always evaluated in the
2678 selected frame, and not bound to thread/frame. Such variable objects
2679 are created using '@' as frame specifier to -var-create. */
2681 varobj_floating_p (struct varobj *var)
2683 return var->root->floating;
2686 /* Implement the "value_is_changeable_p" varobj callback for most
2690 varobj_default_value_is_changeable_p (struct varobj *var)
2695 if (CPLUS_FAKE_CHILD (var))
2698 type = varobj_get_value_type (var);
2700 switch (TYPE_CODE (type))
2702 case TYPE_CODE_STRUCT:
2703 case TYPE_CODE_UNION:
2704 case TYPE_CODE_ARRAY:
2715 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2716 with an arbitrary caller supplied DATA pointer. */
2719 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2721 struct varobj_root *var_root, *var_root_next;
2723 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2725 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2727 var_root_next = var_root->next;
2729 (*func) (var_root->rootvar, data);
2733 extern void _initialize_varobj (void);
2735 _initialize_varobj (void)
2737 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2739 varobj_table = xmalloc (sizeof_table);
2740 memset (varobj_table, 0, sizeof_table);
2742 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2744 _("Set varobj debugging."),
2745 _("Show varobj debugging."),
2746 _("When non-zero, varobj debugging is enabled."),
2747 NULL, show_varobjdebug,
2748 &setdebuglist, &showdebuglist);
2751 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2752 defined on globals. It is a helper for varobj_invalidate.
2754 This function is called after changing the symbol file, in this case the
2755 pointers to "struct type" stored by the varobj are no longer valid. All
2756 varobj must be either re-evaluated, or marked as invalid here. */
2759 varobj_invalidate_iter (struct varobj *var, void *unused)
2761 /* global and floating var must be re-evaluated. */
2762 if (var->root->floating || var->root->valid_block == NULL)
2764 struct varobj *tmp_var;
2766 /* Try to create a varobj with same expression. If we succeed
2767 replace the old varobj, otherwise invalidate it. */
2768 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2770 if (tmp_var != NULL)
2772 tmp_var->obj_name = xstrdup (var->obj_name);
2773 varobj_delete (var, NULL, 0);
2774 install_variable (tmp_var);
2777 var->root->is_valid = 0;
2779 else /* locals must be invalidated. */
2780 var->root->is_valid = 0;
2783 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2784 are defined on globals.
2785 Invalidated varobjs will be always printed in_scope="invalid". */
2788 varobj_invalidate (void)
2790 all_root_varobjs (varobj_invalidate_iter, NULL);