1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "expression.h"
26 #include "gdb_regex.h"
30 #include "gdbthread.h"
32 #include "varobj-iter.h"
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #include "python/py-ref.h"
42 /* Non-zero if we want to see trace of varobj level stuff. */
44 unsigned int varobjdebug = 0;
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52 /* String representations of gdb's format codes. */
53 const char *varobj_format_string[] =
54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
56 /* True if we want to allow Python-based pretty-printing. */
57 static int pretty_printing = 0;
60 varobj_enable_pretty_printing (void)
67 /* Every root variable has one of these structures saved in its
72 /* The expression for this parent. */
75 /* Block for which this expression is valid. */
76 const struct block *valid_block;
78 /* The frame for this expression. This field is set iff valid_block is
80 struct frame_id frame;
82 /* The global thread ID that this varobj_root belongs to. This field
83 is only valid if valid_block is not NULL.
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
89 /* If 1, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
91 always updated in the specific scope/thread/frame. */
94 /* Flag that indicates validity: set to 0 when this varobj_root refers
95 to symbols that do not exist anymore. */
98 /* Language-related operations for this variable and its
100 const struct lang_varobj_ops *lang_ops;
102 /* The varobj for this root node. */
103 struct varobj *rootvar;
105 /* Next root variable */
106 struct varobj_root *next;
109 /* Dynamic part of varobj. */
111 struct varobj_dynamic
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
117 int children_requested;
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor;
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer;
128 /* The iterator returned by the printer's 'children' method, or NULL
130 struct varobj_iter *child_iter;
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
137 varobj_item *saved_item;
140 /* A list of varobjs */
148 /* Private function prototypes */
150 /* Helper functions for the above subcommands. */
152 static int delete_variable (struct varobj *, int);
154 static void delete_variable_1 (int *, struct varobj *, int, int);
156 static int install_variable (struct varobj *);
158 static void uninstall_variable (struct varobj *);
160 static struct varobj *create_child (struct varobj *, int, std::string &);
162 static struct varobj *
163 create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
166 /* Utility routines */
168 static struct varobj *new_variable (void);
170 static struct varobj *new_root_variable (void);
172 static void free_variable (struct varobj *var);
174 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
176 static enum varobj_display_formats variable_default_display (struct varobj *);
178 static int update_type_if_necessary (struct varobj *var,
179 struct value *new_value);
181 static int install_new_value (struct varobj *var, struct value *value,
184 /* Language-specific routines. */
186 static int number_of_children (const struct varobj *);
188 static std::string name_of_variable (const struct varobj *);
190 static std::string name_of_child (struct varobj *, int);
192 static struct value *value_of_root (struct varobj **var_handle, int *);
194 static struct value *value_of_child (const struct varobj *parent, int index);
196 static std::string my_value_of_variable (struct varobj *var,
197 enum varobj_display_formats format);
199 static int is_root_p (const struct varobj *var);
201 static struct varobj *varobj_add_child (struct varobj *var,
202 struct varobj_item *item);
206 /* Mappings of varobj_display_formats enums to gdb's format codes. */
207 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
209 /* Header of the list of root variable objects. */
210 static struct varobj_root *rootlist;
212 /* Prime number indicating the number of buckets in the hash table. */
213 /* A prime large enough to avoid too many collisions. */
214 #define VAROBJ_TABLE_SIZE 227
216 /* Pointer to the varobj hash table (built at run time). */
217 static struct vlist **varobj_table;
221 /* API Implementation */
223 is_root_p (const struct varobj *var)
225 return (var->root->rootvar == var);
230 /* See python-internal.h. */
231 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
232 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
238 /* Return the full FRAME which corresponds to the given CORE_ADDR
239 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
241 static struct frame_info *
242 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
244 struct frame_info *frame = NULL;
246 if (frame_addr == (CORE_ADDR) 0)
249 for (frame = get_current_frame ();
251 frame = get_prev_frame (frame))
253 /* The CORE_ADDR we get as argument was parsed from a string GDB
254 output as $fp. This output got truncated to gdbarch_addr_bit.
255 Truncate the frame base address in the same manner before
256 comparing it against our argument. */
257 CORE_ADDR frame_base = get_frame_base_address (frame);
258 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
260 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
261 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
263 if (frame_base == frame_addr)
270 /* Creates a varobj (not its children). */
273 varobj_create (const char *objname,
274 const char *expression, CORE_ADDR frame, enum varobj_type type)
277 struct cleanup *old_chain;
279 /* Fill out a varobj structure for the (root) variable being constructed. */
280 var = new_root_variable ();
281 old_chain = make_cleanup_free_variable (var);
283 if (expression != NULL)
285 struct frame_info *fi;
286 struct frame_id old_id = null_frame_id;
287 const struct block *block;
289 struct value *value = NULL;
292 /* Parse and evaluate the expression, filling in as much of the
293 variable's data as possible. */
295 if (has_stack_frames ())
297 /* Allow creator to specify context of variable. */
298 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
299 fi = get_selected_frame (NULL);
301 /* FIXME: cagney/2002-11-23: This code should be doing a
302 lookup using the frame ID and not just the frame's
303 ``address''. This, of course, means an interface
304 change. However, with out that interface change ISAs,
305 such as the ia64 with its two stacks, won't work.
306 Similar goes for the case where there is a frameless
308 fi = find_frame_addr_in_frame_chain (frame);
313 /* frame = -2 means always use selected frame. */
314 if (type == USE_SELECTED_FRAME)
315 var->root->floating = 1;
321 block = get_frame_block (fi, 0);
322 pc = get_frame_pc (fi);
326 innermost_block = NULL;
327 /* Wrap the call to parse expression, so we can
328 return a sensible error. */
331 var->root->exp = parse_exp_1 (&p, pc, block, 0);
334 CATCH (except, RETURN_MASK_ERROR)
336 do_cleanups (old_chain);
341 /* Don't allow variables to be created for types. */
342 if (var->root->exp->elts[0].opcode == OP_TYPE
343 || var->root->exp->elts[0].opcode == OP_TYPEOF
344 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
346 do_cleanups (old_chain);
347 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
348 " as an expression.\n");
352 var->format = variable_default_display (var);
353 var->root->valid_block = innermost_block;
354 var->name = expression;
355 /* For a root var, the name and the expr are the same. */
356 var->path_expr = expression;
358 /* When the frame is different from the current frame,
359 we must select the appropriate frame before parsing
360 the expression, otherwise the value will not be current.
361 Since select_frame is so benign, just call it for all cases. */
364 /* User could specify explicit FRAME-ADDR which was not found but
365 EXPRESSION is frame specific and we would not be able to evaluate
366 it correctly next time. With VALID_BLOCK set we must also set
367 FRAME and THREAD_ID. */
369 error (_("Failed to find the specified frame"));
371 var->root->frame = get_frame_id (fi);
372 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
373 old_id = get_frame_id (get_selected_frame (NULL));
377 /* We definitely need to catch errors here.
378 If evaluate_expression succeeds we got the value we wanted.
379 But if it fails, we still go on with a call to evaluate_type(). */
382 value = evaluate_expression (var->root->exp.get ());
384 CATCH (except, RETURN_MASK_ERROR)
386 /* Error getting the value. Try to at least get the
388 struct value *type_only_value = evaluate_type (var->root->exp.get ());
390 var->type = value_type (type_only_value);
396 int real_type_found = 0;
398 var->type = value_actual_type (value, 0, &real_type_found);
400 value = value_cast (var->type, value);
403 /* Set language info */
404 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
406 install_new_value (var, value, 1 /* Initial assignment */);
408 /* Set ourselves as our root. */
409 var->root->rootvar = var;
411 /* Reset the selected frame. */
412 if (frame_id_p (old_id))
413 select_frame (frame_find_by_id (old_id));
416 /* If the variable object name is null, that means this
417 is a temporary variable, so don't install it. */
419 if ((var != NULL) && (objname != NULL))
421 var->obj_name = objname;
423 /* If a varobj name is duplicated, the install will fail so
425 if (!install_variable (var))
427 do_cleanups (old_chain);
432 discard_cleanups (old_chain);
436 /* Generates an unique name that can be used for a varobj. */
439 varobj_gen_name (void)
443 /* Generate a name for this object. */
445 return string_printf ("var%d", id);
448 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
449 error if OBJNAME cannot be found. */
452 varobj_get_handle (const char *objname)
456 unsigned int index = 0;
459 for (chp = objname; *chp; chp++)
461 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
464 cv = *(varobj_table + index);
465 while (cv != NULL && cv->var->obj_name != objname)
469 error (_("Variable object not found"));
474 /* Given the handle, return the name of the object. */
477 varobj_get_objname (const struct varobj *var)
479 return var->obj_name.c_str ();
482 /* Given the handle, return the expression represented by the
486 varobj_get_expression (const struct varobj *var)
488 return name_of_variable (var);
494 varobj_delete (struct varobj *var, int only_children)
496 return delete_variable (var, only_children);
501 /* Convenience function for varobj_set_visualizer. Instantiate a
502 pretty-printer for a given value. */
504 instantiate_pretty_printer (PyObject *constructor, struct value *value)
506 PyObject *val_obj = NULL;
509 val_obj = value_to_value_object (value);
513 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
520 /* Set/Get variable object display format. */
522 enum varobj_display_formats
523 varobj_set_display_format (struct varobj *var,
524 enum varobj_display_formats format)
531 case FORMAT_HEXADECIMAL:
533 case FORMAT_ZHEXADECIMAL:
534 var->format = format;
538 var->format = variable_default_display (var);
541 if (varobj_value_is_changeable_p (var)
542 && var->value && !value_lazy (var->value))
544 var->print_value = varobj_value_get_print_value (var->value,
551 enum varobj_display_formats
552 varobj_get_display_format (const struct varobj *var)
557 gdb::unique_xmalloc_ptr<char>
558 varobj_get_display_hint (const struct varobj *var)
560 gdb::unique_xmalloc_ptr<char> result;
563 if (!gdb_python_initialized)
566 gdbpy_enter_varobj enter_py (var);
568 if (var->dynamic->pretty_printer != NULL)
569 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
575 /* Return true if the varobj has items after TO, false otherwise. */
578 varobj_has_more (const struct varobj *var, int to)
580 if (VEC_length (varobj_p, var->children) > to)
582 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
583 && (var->dynamic->saved_item != NULL));
586 /* If the variable object is bound to a specific thread, that
587 is its evaluation can always be done in context of a frame
588 inside that thread, returns GDB id of the thread -- which
589 is always positive. Otherwise, returns -1. */
591 varobj_get_thread_id (const struct varobj *var)
593 if (var->root->valid_block && var->root->thread_id > 0)
594 return var->root->thread_id;
600 varobj_set_frozen (struct varobj *var, int frozen)
602 /* When a variable is unfrozen, we don't fetch its value.
603 The 'not_fetched' flag remains set, so next -var-update
606 We don't fetch the value, because for structures the client
607 should do -var-update anyway. It would be bad to have different
608 client-size logic for structure and other types. */
609 var->frozen = frozen;
613 varobj_get_frozen (const struct varobj *var)
618 /* A helper function that restricts a range to what is actually
619 available in a VEC. This follows the usual rules for the meaning
620 of FROM and TO -- if either is negative, the entire range is
624 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
626 if (*from < 0 || *to < 0)
629 *to = VEC_length (varobj_p, children);
633 if (*from > VEC_length (varobj_p, children))
634 *from = VEC_length (varobj_p, children);
635 if (*to > VEC_length (varobj_p, children))
636 *to = VEC_length (varobj_p, children);
642 /* A helper for update_dynamic_varobj_children that installs a new
643 child when needed. */
646 install_dynamic_child (struct varobj *var,
647 VEC (varobj_p) **changed,
648 VEC (varobj_p) **type_changed,
649 VEC (varobj_p) **newobj,
650 VEC (varobj_p) **unchanged,
653 struct varobj_item *item)
655 if (VEC_length (varobj_p, var->children) < index + 1)
657 /* There's no child yet. */
658 struct varobj *child = varobj_add_child (var, item);
662 VEC_safe_push (varobj_p, *newobj, child);
668 varobj_p existing = VEC_index (varobj_p, var->children, index);
669 int type_updated = update_type_if_necessary (existing, item->value);
674 VEC_safe_push (varobj_p, *type_changed, existing);
676 if (install_new_value (existing, item->value, 0))
678 if (!type_updated && changed)
679 VEC_safe_push (varobj_p, *changed, existing);
681 else if (!type_updated && unchanged)
682 VEC_safe_push (varobj_p, *unchanged, existing);
689 dynamic_varobj_has_child_method (const struct varobj *var)
691 PyObject *printer = var->dynamic->pretty_printer;
693 if (!gdb_python_initialized)
696 gdbpy_enter_varobj enter_py (var);
697 return PyObject_HasAttr (printer, gdbpy_children_cst);
701 /* A factory for creating dynamic varobj's iterators. Returns an
702 iterator object suitable for iterating over VAR's children. */
704 static struct varobj_iter *
705 varobj_get_iterator (struct varobj *var)
708 if (var->dynamic->pretty_printer)
709 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
712 gdb_assert_not_reached (_("\
713 requested an iterator from a non-dynamic varobj"));
716 /* Release and clear VAR's saved item, if any. */
719 varobj_clear_saved_item (struct varobj_dynamic *var)
721 if (var->saved_item != NULL)
723 value_free (var->saved_item->value);
724 delete var->saved_item;
725 var->saved_item = NULL;
730 update_dynamic_varobj_children (struct varobj *var,
731 VEC (varobj_p) **changed,
732 VEC (varobj_p) **type_changed,
733 VEC (varobj_p) **newobj,
734 VEC (varobj_p) **unchanged,
744 if (update_children || var->dynamic->child_iter == NULL)
746 varobj_iter_delete (var->dynamic->child_iter);
747 var->dynamic->child_iter = varobj_get_iterator (var);
749 varobj_clear_saved_item (var->dynamic);
753 if (var->dynamic->child_iter == NULL)
757 i = VEC_length (varobj_p, var->children);
759 /* We ask for one extra child, so that MI can report whether there
760 are more children. */
761 for (; to < 0 || i < to + 1; ++i)
765 /* See if there was a leftover from last time. */
766 if (var->dynamic->saved_item != NULL)
768 item = var->dynamic->saved_item;
769 var->dynamic->saved_item = NULL;
773 item = varobj_iter_next (var->dynamic->child_iter);
774 /* Release vitem->value so its lifetime is not bound to the
775 execution of a command. */
776 if (item != NULL && item->value != NULL)
777 release_value_or_incref (item->value);
782 /* Iteration is done. Remove iterator from VAR. */
783 varobj_iter_delete (var->dynamic->child_iter);
784 var->dynamic->child_iter = NULL;
787 /* We don't want to push the extra child on any report list. */
788 if (to < 0 || i < to)
790 int can_mention = from < 0 || i >= from;
792 install_dynamic_child (var, can_mention ? changed : NULL,
793 can_mention ? type_changed : NULL,
794 can_mention ? newobj : NULL,
795 can_mention ? unchanged : NULL,
796 can_mention ? cchanged : NULL, i,
803 var->dynamic->saved_item = item;
805 /* We want to truncate the child list just before this
811 if (i < VEC_length (varobj_p, var->children))
816 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
817 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
818 VEC_truncate (varobj_p, var->children, i);
821 /* If there are fewer children than requested, note that the list of
823 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
826 var->num_children = VEC_length (varobj_p, var->children);
832 varobj_get_num_children (struct varobj *var)
834 if (var->num_children == -1)
836 if (varobj_is_dynamic_p (var))
840 /* If we have a dynamic varobj, don't report -1 children.
841 So, try to fetch some children first. */
842 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
846 var->num_children = number_of_children (var);
849 return var->num_children >= 0 ? var->num_children : 0;
852 /* Creates a list of the immediate children of a variable object;
853 the return code is the number of such children or -1 on error. */
856 varobj_list_children (struct varobj *var, int *from, int *to)
858 int i, children_changed;
860 var->dynamic->children_requested = 1;
862 if (varobj_is_dynamic_p (var))
864 /* This, in theory, can result in the number of children changing without
865 frontend noticing. But well, calling -var-list-children on the same
866 varobj twice is not something a sane frontend would do. */
867 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
868 &children_changed, 0, 0, *to);
869 varobj_restrict_range (var->children, from, to);
870 return var->children;
873 if (var->num_children == -1)
874 var->num_children = number_of_children (var);
876 /* If that failed, give up. */
877 if (var->num_children == -1)
878 return var->children;
880 /* If we're called when the list of children is not yet initialized,
881 allocate enough elements in it. */
882 while (VEC_length (varobj_p, var->children) < var->num_children)
883 VEC_safe_push (varobj_p, var->children, NULL);
885 for (i = 0; i < var->num_children; i++)
887 varobj_p existing = VEC_index (varobj_p, var->children, i);
889 if (existing == NULL)
891 /* Either it's the first call to varobj_list_children for
892 this variable object, and the child was never created,
893 or it was explicitly deleted by the client. */
894 std::string name = name_of_child (var, i);
895 existing = create_child (var, i, name);
896 VEC_replace (varobj_p, var->children, i, existing);
900 varobj_restrict_range (var->children, from, to);
901 return var->children;
904 static struct varobj *
905 varobj_add_child (struct varobj *var, struct varobj_item *item)
907 varobj_p v = create_child_with_value (var,
908 VEC_length (varobj_p, var->children),
911 VEC_safe_push (varobj_p, var->children, v);
915 /* Obtain the type of an object Variable as a string similar to the one gdb
916 prints on the console. The caller is responsible for freeing the string.
920 varobj_get_type (struct varobj *var)
922 /* For the "fake" variables, do not return a type. (Its type is
924 Do not return a type for invalid variables as well. */
925 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
926 return std::string ();
928 return type_to_string (var->type);
931 /* Obtain the type of an object variable. */
934 varobj_get_gdb_type (const struct varobj *var)
939 /* Is VAR a path expression parent, i.e., can it be used to construct
940 a valid path expression? */
943 is_path_expr_parent (const struct varobj *var)
945 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
946 return var->root->lang_ops->is_path_expr_parent (var);
949 /* Is VAR a path expression parent, i.e., can it be used to construct
950 a valid path expression? By default we assume any VAR can be a path
954 varobj_default_is_path_expr_parent (const struct varobj *var)
959 /* Return the path expression parent for VAR. */
961 const struct varobj *
962 varobj_get_path_expr_parent (const struct varobj *var)
964 const struct varobj *parent = var;
966 while (!is_root_p (parent) && !is_path_expr_parent (parent))
967 parent = parent->parent;
972 /* Return a pointer to the full rooted expression of varobj VAR.
973 If it has not been computed yet, compute it. */
976 varobj_get_path_expr (const struct varobj *var)
978 if (var->path_expr.empty ())
980 /* For root varobjs, we initialize path_expr
981 when creating varobj, so here it should be
983 struct varobj *mutable_var = (struct varobj *) var;
984 gdb_assert (!is_root_p (var));
986 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
989 return var->path_expr.c_str ();
992 const struct language_defn *
993 varobj_get_language (const struct varobj *var)
995 return var->root->exp->language_defn;
999 varobj_get_attributes (const struct varobj *var)
1003 if (varobj_editable_p (var))
1004 /* FIXME: define masks for attributes. */
1005 attributes |= 0x00000001; /* Editable */
1010 /* Return true if VAR is a dynamic varobj. */
1013 varobj_is_dynamic_p (const struct varobj *var)
1015 return var->dynamic->pretty_printer != NULL;
1019 varobj_get_formatted_value (struct varobj *var,
1020 enum varobj_display_formats format)
1022 return my_value_of_variable (var, format);
1026 varobj_get_value (struct varobj *var)
1028 return my_value_of_variable (var, var->format);
1031 /* Set the value of an object variable (if it is editable) to the
1032 value of the given expression. */
1033 /* Note: Invokes functions that can call error(). */
1036 varobj_set_value (struct varobj *var, const char *expression)
1038 struct value *val = NULL; /* Initialize to keep gcc happy. */
1039 /* The argument "expression" contains the variable's new value.
1040 We need to first construct a legal expression for this -- ugh! */
1041 /* Does this cover all the bases? */
1042 struct value *value = NULL; /* Initialize to keep gcc happy. */
1043 int saved_input_radix = input_radix;
1044 const char *s = expression;
1046 gdb_assert (varobj_editable_p (var));
1048 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1049 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1052 value = evaluate_expression (exp.get ());
1055 CATCH (except, RETURN_MASK_ERROR)
1057 /* We cannot proceed without a valid expression. */
1062 /* All types that are editable must also be changeable. */
1063 gdb_assert (varobj_value_is_changeable_p (var));
1065 /* The value of a changeable variable object must not be lazy. */
1066 gdb_assert (!value_lazy (var->value));
1068 /* Need to coerce the input. We want to check if the
1069 value of the variable object will be different
1070 after assignment, and the first thing value_assign
1071 does is coerce the input.
1072 For example, if we are assigning an array to a pointer variable we
1073 should compare the pointer with the array's address, not with the
1075 value = coerce_array (value);
1077 /* The new value may be lazy. value_assign, or
1078 rather value_contents, will take care of this. */
1081 val = value_assign (var->value, value);
1084 CATCH (except, RETURN_MASK_ERROR)
1090 /* If the value has changed, record it, so that next -var-update can
1091 report this change. If a variable had a value of '1', we've set it
1092 to '333' and then set again to '1', when -var-update will report this
1093 variable as changed -- because the first assignment has set the
1094 'updated' flag. There's no need to optimize that, because return value
1095 of -var-update should be considered an approximation. */
1096 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1097 input_radix = saved_input_radix;
1103 /* A helper function to install a constructor function and visualizer
1104 in a varobj_dynamic. */
1107 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1108 PyObject *visualizer)
1110 Py_XDECREF (var->constructor);
1111 var->constructor = constructor;
1113 Py_XDECREF (var->pretty_printer);
1114 var->pretty_printer = visualizer;
1116 varobj_iter_delete (var->child_iter);
1117 var->child_iter = NULL;
1120 /* Install the default visualizer for VAR. */
1123 install_default_visualizer (struct varobj *var)
1125 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1126 if (CPLUS_FAKE_CHILD (var))
1129 if (pretty_printing)
1131 PyObject *pretty_printer = NULL;
1135 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1136 if (! pretty_printer)
1138 gdbpy_print_stack ();
1139 error (_("Cannot instantiate printer for default visualizer"));
1143 if (pretty_printer == Py_None)
1145 Py_DECREF (pretty_printer);
1146 pretty_printer = NULL;
1149 install_visualizer (var->dynamic, NULL, pretty_printer);
1153 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1154 make a new object. */
1157 construct_visualizer (struct varobj *var, PyObject *constructor)
1159 PyObject *pretty_printer;
1161 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1162 if (CPLUS_FAKE_CHILD (var))
1165 Py_INCREF (constructor);
1166 if (constructor == Py_None)
1167 pretty_printer = NULL;
1170 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1171 if (! pretty_printer)
1173 gdbpy_print_stack ();
1174 Py_DECREF (constructor);
1175 constructor = Py_None;
1176 Py_INCREF (constructor);
1179 if (pretty_printer == Py_None)
1181 Py_DECREF (pretty_printer);
1182 pretty_printer = NULL;
1186 install_visualizer (var->dynamic, constructor, pretty_printer);
1189 #endif /* HAVE_PYTHON */
1191 /* A helper function for install_new_value. This creates and installs
1192 a visualizer for VAR, if appropriate. */
1195 install_new_value_visualizer (struct varobj *var)
1198 /* If the constructor is None, then we want the raw value. If VAR
1199 does not have a value, just skip this. */
1200 if (!gdb_python_initialized)
1203 if (var->dynamic->constructor != Py_None && var->value != NULL)
1205 gdbpy_enter_varobj enter_py (var);
1207 if (var->dynamic->constructor == NULL)
1208 install_default_visualizer (var);
1210 construct_visualizer (var, var->dynamic->constructor);
1217 /* When using RTTI to determine variable type it may be changed in runtime when
1218 the variable value is changed. This function checks whether type of varobj
1219 VAR will change when a new value NEW_VALUE is assigned and if it is so
1220 updates the type of VAR. */
1223 update_type_if_necessary (struct varobj *var, struct value *new_value)
1227 struct value_print_options opts;
1229 get_user_print_options (&opts);
1230 if (opts.objectprint)
1232 struct type *new_type = value_actual_type (new_value, 0, 0);
1233 std::string new_type_str = type_to_string (new_type);
1234 std::string curr_type_str = varobj_get_type (var);
1236 /* Did the type name change? */
1237 if (curr_type_str != new_type_str)
1239 var->type = new_type;
1241 /* This information may be not valid for a new type. */
1242 varobj_delete (var, 1);
1243 VEC_free (varobj_p, var->children);
1244 var->num_children = -1;
1253 /* Assign a new value to a variable object. If INITIAL is non-zero,
1254 this is the first assignement after the variable object was just
1255 created, or changed type. In that case, just assign the value
1257 Otherwise, assign the new value, and return 1 if the value is
1258 different from the current one, 0 otherwise. The comparison is
1259 done on textual representation of value. Therefore, some types
1260 need not be compared. E.g. for structures the reported value is
1261 always "{...}", so no comparison is necessary here. If the old
1262 value was NULL and new one is not, or vice versa, we always return 1.
1264 The VALUE parameter should not be released -- the function will
1265 take care of releasing it when needed. */
1267 install_new_value (struct varobj *var, struct value *value, int initial)
1272 int intentionally_not_fetched = 0;
1274 /* We need to know the varobj's type to decide if the value should
1275 be fetched or not. C++ fake children (public/protected/private)
1276 don't have a type. */
1277 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1278 changeable = varobj_value_is_changeable_p (var);
1280 /* If the type has custom visualizer, we consider it to be always
1281 changeable. FIXME: need to make sure this behaviour will not
1282 mess up read-sensitive values. */
1283 if (var->dynamic->pretty_printer != NULL)
1286 need_to_fetch = changeable;
1288 /* We are not interested in the address of references, and given
1289 that in C++ a reference is not rebindable, it cannot
1290 meaningfully change. So, get hold of the real value. */
1292 value = coerce_ref (value);
1294 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1295 /* For unions, we need to fetch the value implicitly because
1296 of implementation of union member fetch. When gdb
1297 creates a value for a field and the value of the enclosing
1298 structure is not lazy, it immediately copies the necessary
1299 bytes from the enclosing values. If the enclosing value is
1300 lazy, the call to value_fetch_lazy on the field will read
1301 the data from memory. For unions, that means we'll read the
1302 same memory more than once, which is not desirable. So
1306 /* The new value might be lazy. If the type is changeable,
1307 that is we'll be comparing values of this type, fetch the
1308 value now. Otherwise, on the next update the old value
1309 will be lazy, which means we've lost that old value. */
1310 if (need_to_fetch && value && value_lazy (value))
1312 const struct varobj *parent = var->parent;
1313 int frozen = var->frozen;
1315 for (; !frozen && parent; parent = parent->parent)
1316 frozen |= parent->frozen;
1318 if (frozen && initial)
1320 /* For variables that are frozen, or are children of frozen
1321 variables, we don't do fetch on initial assignment.
1322 For non-initial assignemnt we do the fetch, since it means we're
1323 explicitly asked to compare the new value with the old one. */
1324 intentionally_not_fetched = 1;
1331 value_fetch_lazy (value);
1334 CATCH (except, RETURN_MASK_ERROR)
1336 /* Set the value to NULL, so that for the next -var-update,
1337 we don't try to compare the new value with this value,
1338 that we couldn't even read. */
1345 /* Get a reference now, before possibly passing it to any Python
1346 code that might release it. */
1348 value_incref (value);
1350 /* Below, we'll be comparing string rendering of old and new
1351 values. Don't get string rendering if the value is
1352 lazy -- if it is, the code above has decided that the value
1353 should not be fetched. */
1354 std::string print_value;
1355 if (value != NULL && !value_lazy (value)
1356 && var->dynamic->pretty_printer == NULL)
1357 print_value = varobj_value_get_print_value (value, var->format, var);
1359 /* If the type is changeable, compare the old and the new values.
1360 If this is the initial assignment, we don't have any old value
1362 if (!initial && changeable)
1364 /* If the value of the varobj was changed by -var-set-value,
1365 then the value in the varobj and in the target is the same.
1366 However, that value is different from the value that the
1367 varobj had after the previous -var-update. So need to the
1368 varobj as changed. */
1373 else if (var->dynamic->pretty_printer == NULL)
1375 /* Try to compare the values. That requires that both
1376 values are non-lazy. */
1377 if (var->not_fetched && value_lazy (var->value))
1379 /* This is a frozen varobj and the value was never read.
1380 Presumably, UI shows some "never read" indicator.
1381 Now that we've fetched the real value, we need to report
1382 this varobj as changed so that UI can show the real
1386 else if (var->value == NULL && value == NULL)
1389 else if (var->value == NULL || value == NULL)
1395 gdb_assert (!value_lazy (var->value));
1396 gdb_assert (!value_lazy (value));
1398 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1399 if (var->print_value != print_value)
1405 if (!initial && !changeable)
1407 /* For values that are not changeable, we don't compare the values.
1408 However, we want to notice if a value was not NULL and now is NULL,
1409 or vise versa, so that we report when top-level varobjs come in scope
1410 and leave the scope. */
1411 changed = (var->value != NULL) != (value != NULL);
1414 /* We must always keep the new value, since children depend on it. */
1415 if (var->value != NULL && var->value != value)
1416 value_free (var->value);
1418 if (value && value_lazy (value) && intentionally_not_fetched)
1419 var->not_fetched = 1;
1421 var->not_fetched = 0;
1424 install_new_value_visualizer (var);
1426 /* If we installed a pretty-printer, re-compare the printed version
1427 to see if the variable changed. */
1428 if (var->dynamic->pretty_printer != NULL)
1430 print_value = varobj_value_get_print_value (var->value, var->format,
1432 if ((var->print_value.empty () && !print_value.empty ())
1433 || (!var->print_value.empty () && print_value.empty ())
1434 || (!var->print_value.empty () && !print_value.empty ()
1435 && var->print_value != print_value))
1438 var->print_value = print_value;
1440 gdb_assert (!var->value || value_type (var->value));
1445 /* Return the requested range for a varobj. VAR is the varobj. FROM
1446 and TO are out parameters; *FROM and *TO will be set to the
1447 selected sub-range of VAR. If no range was selected using
1448 -var-set-update-range, then both will be -1. */
1450 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1456 /* Set the selected sub-range of children of VAR to start at index
1457 FROM and end at index TO. If either FROM or TO is less than zero,
1458 this is interpreted as a request for all children. */
1460 varobj_set_child_range (struct varobj *var, int from, int to)
1467 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1472 if (!gdb_python_initialized)
1475 gdbpy_enter_varobj enter_py (var);
1477 mainmod = PyImport_AddModule ("__main__");
1478 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
1479 Py_INCREF (globals.get ());
1481 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1482 globals.get (), globals.get ()));
1484 if (constructor == NULL)
1486 gdbpy_print_stack ();
1487 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1490 construct_visualizer (var, constructor.get ());
1492 /* If there are any children now, wipe them. */
1493 varobj_delete (var, 1 /* children only */);
1494 var->num_children = -1;
1496 error (_("Python support required"));
1500 /* If NEW_VALUE is the new value of the given varobj (var), return
1501 non-zero if var has mutated. In other words, if the type of
1502 the new value is different from the type of the varobj's old
1505 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1508 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1509 struct type *new_type)
1511 /* If we haven't previously computed the number of children in var,
1512 it does not matter from the front-end's perspective whether
1513 the type has mutated or not. For all intents and purposes,
1514 it has not mutated. */
1515 if (var->num_children < 0)
1518 if (var->root->lang_ops->value_has_mutated)
1520 /* The varobj module, when installing new values, explicitly strips
1521 references, saying that we're not interested in those addresses.
1522 But detection of mutation happens before installing the new
1523 value, so our value may be a reference that we need to strip
1524 in order to remain consistent. */
1525 if (new_value != NULL)
1526 new_value = coerce_ref (new_value);
1527 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1533 /* Update the values for a variable and its children. This is a
1534 two-pronged attack. First, re-parse the value for the root's
1535 expression to see if it's changed. Then go all the way
1536 through its children, reconstructing them and noting if they've
1539 The EXPLICIT parameter specifies if this call is result
1540 of MI request to update this specific variable, or
1541 result of implicit -var-update *. For implicit request, we don't
1542 update frozen variables.
1544 NOTE: This function may delete the caller's varobj. If it
1545 returns TYPE_CHANGED, then it has done this and VARP will be modified
1546 to point to the new varobj. */
1548 VEC(varobj_update_result) *
1549 varobj_update (struct varobj **varp, int is_explicit)
1551 int type_changed = 0;
1553 struct value *newobj;
1554 VEC (varobj_update_result) *stack = NULL;
1555 VEC (varobj_update_result) *result = NULL;
1557 /* Frozen means frozen -- we don't check for any change in
1558 this varobj, including its going out of scope, or
1559 changing type. One use case for frozen varobjs is
1560 retaining previously evaluated expressions, and we don't
1561 want them to be reevaluated at all. */
1562 if (!is_explicit && (*varp)->frozen)
1565 if (!(*varp)->root->is_valid)
1567 varobj_update_result r = {0};
1570 r.status = VAROBJ_INVALID;
1571 VEC_safe_push (varobj_update_result, result, &r);
1575 if ((*varp)->root->rootvar == *varp)
1577 varobj_update_result r = {0};
1580 r.status = VAROBJ_IN_SCOPE;
1582 /* Update the root variable. value_of_root can return NULL
1583 if the variable is no longer around, i.e. we stepped out of
1584 the frame in which a local existed. We are letting the
1585 value_of_root variable dispose of the varobj if the type
1587 newobj = value_of_root (varp, &type_changed);
1588 if (update_type_if_necessary(*varp, newobj))
1591 r.type_changed = type_changed;
1592 if (install_new_value ((*varp), newobj, type_changed))
1596 r.status = VAROBJ_NOT_IN_SCOPE;
1597 r.value_installed = 1;
1599 if (r.status == VAROBJ_NOT_IN_SCOPE)
1601 if (r.type_changed || r.changed)
1602 VEC_safe_push (varobj_update_result, result, &r);
1606 VEC_safe_push (varobj_update_result, stack, &r);
1610 varobj_update_result r = {0};
1613 VEC_safe_push (varobj_update_result, stack, &r);
1616 /* Walk through the children, reconstructing them all. */
1617 while (!VEC_empty (varobj_update_result, stack))
1619 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1620 struct varobj *v = r.varobj;
1622 VEC_pop (varobj_update_result, stack);
1624 /* Update this variable, unless it's a root, which is already
1626 if (!r.value_installed)
1628 struct type *new_type;
1630 newobj = value_of_child (v->parent, v->index);
1631 if (update_type_if_necessary(v, newobj))
1634 new_type = value_type (newobj);
1636 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1638 if (varobj_value_has_mutated (v, newobj, new_type))
1640 /* The children are no longer valid; delete them now.
1641 Report the fact that its type changed as well. */
1642 varobj_delete (v, 1 /* only_children */);
1643 v->num_children = -1;
1650 if (install_new_value (v, newobj, r.type_changed))
1657 /* We probably should not get children of a dynamic varobj, but
1658 for which -var-list-children was never invoked. */
1659 if (varobj_is_dynamic_p (v))
1661 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1662 VEC (varobj_p) *newobj = 0;
1663 int i, children_changed = 0;
1668 if (!v->dynamic->children_requested)
1672 /* If we initially did not have potential children, but
1673 now we do, consider the varobj as changed.
1674 Otherwise, if children were never requested, consider
1675 it as unchanged -- presumably, such varobj is not yet
1676 expanded in the UI, so we need not bother getting
1678 if (!varobj_has_more (v, 0))
1680 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1682 if (varobj_has_more (v, 0))
1687 VEC_safe_push (varobj_update_result, result, &r);
1692 /* If update_dynamic_varobj_children returns 0, then we have
1693 a non-conforming pretty-printer, so we skip it. */
1694 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1695 &unchanged, &children_changed, 1,
1698 if (children_changed || newobj)
1700 r.children_changed = 1;
1703 /* Push in reverse order so that the first child is
1704 popped from the work stack first, and so will be
1705 added to result first. This does not affect
1706 correctness, just "nicer". */
1707 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1709 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1710 varobj_update_result r = {0};
1712 /* Type may change only if value was changed. */
1716 r.value_installed = 1;
1717 VEC_safe_push (varobj_update_result, stack, &r);
1719 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1721 varobj_p tmp = VEC_index (varobj_p, changed, i);
1722 varobj_update_result r = {0};
1726 r.value_installed = 1;
1727 VEC_safe_push (varobj_update_result, stack, &r);
1729 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1731 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1735 varobj_update_result r = {0};
1738 r.value_installed = 1;
1739 VEC_safe_push (varobj_update_result, stack, &r);
1742 if (r.changed || r.children_changed)
1743 VEC_safe_push (varobj_update_result, result, &r);
1745 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1746 because NEW has been put into the result vector. */
1747 VEC_free (varobj_p, changed);
1748 VEC_free (varobj_p, type_changed);
1749 VEC_free (varobj_p, unchanged);
1755 /* Push any children. Use reverse order so that the first
1756 child is popped from the work stack first, and so
1757 will be added to result first. This does not
1758 affect correctness, just "nicer". */
1759 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1761 varobj_p c = VEC_index (varobj_p, v->children, i);
1763 /* Child may be NULL if explicitly deleted by -var-delete. */
1764 if (c != NULL && !c->frozen)
1766 varobj_update_result r = {0};
1769 VEC_safe_push (varobj_update_result, stack, &r);
1773 if (r.changed || r.type_changed)
1774 VEC_safe_push (varobj_update_result, result, &r);
1777 VEC_free (varobj_update_result, stack);
1783 /* Helper functions */
1786 * Variable object construction/destruction
1790 delete_variable (struct varobj *var, int only_children_p)
1794 delete_variable_1 (&delcount, var, only_children_p,
1795 1 /* remove_from_parent_p */ );
1800 /* Delete the variable object VAR and its children. */
1801 /* IMPORTANT NOTE: If we delete a variable which is a child
1802 and the parent is not removed we dump core. It must be always
1803 initially called with remove_from_parent_p set. */
1805 delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
1806 int remove_from_parent_p)
1810 /* Delete any children of this variable, too. */
1811 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1813 varobj_p child = VEC_index (varobj_p, var->children, i);
1817 if (!remove_from_parent_p)
1818 child->parent = NULL;
1819 delete_variable_1 (delcountp, child, 0, only_children_p);
1821 VEC_free (varobj_p, var->children);
1823 /* if we were called to delete only the children we are done here. */
1824 if (only_children_p)
1827 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1828 /* If the name is empty, this is a temporary variable, that has not
1829 yet been installed, don't report it, it belongs to the caller... */
1830 if (!var->obj_name.empty ())
1832 *delcountp = *delcountp + 1;
1835 /* If this variable has a parent, remove it from its parent's list. */
1836 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1837 (as indicated by remove_from_parent_p) we don't bother doing an
1838 expensive list search to find the element to remove when we are
1839 discarding the list afterwards. */
1840 if ((remove_from_parent_p) && (var->parent != NULL))
1842 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1845 if (!var->obj_name.empty ())
1846 uninstall_variable (var);
1848 /* Free memory associated with this variable. */
1849 free_variable (var);
1852 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1854 install_variable (struct varobj *var)
1857 struct vlist *newvl;
1859 unsigned int index = 0;
1862 for (chp = var->obj_name.c_str (); *chp; chp++)
1864 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1867 cv = *(varobj_table + index);
1868 while (cv != NULL && cv->var->obj_name != var->obj_name)
1872 error (_("Duplicate variable object name"));
1874 /* Add varobj to hash table. */
1875 newvl = XNEW (struct vlist);
1876 newvl->next = *(varobj_table + index);
1878 *(varobj_table + index) = newvl;
1880 /* If root, add varobj to root list. */
1881 if (is_root_p (var))
1883 /* Add to list of root variables. */
1884 if (rootlist == NULL)
1885 var->root->next = NULL;
1887 var->root->next = rootlist;
1888 rootlist = var->root;
1894 /* Unistall the object VAR. */
1896 uninstall_variable (struct varobj *var)
1900 struct varobj_root *cr;
1901 struct varobj_root *prer;
1903 unsigned int index = 0;
1906 /* Remove varobj from hash table. */
1907 for (chp = var->obj_name.c_str (); *chp; chp++)
1909 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1912 cv = *(varobj_table + index);
1914 while (cv != NULL && cv->var->obj_name != var->obj_name)
1921 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1926 ("Assertion failed: Could not find variable object \"%s\" to delete",
1927 var->obj_name.c_str ());
1932 *(varobj_table + index) = cv->next;
1934 prev->next = cv->next;
1938 /* If root, remove varobj from root list. */
1939 if (is_root_p (var))
1941 /* Remove from list of root variables. */
1942 if (rootlist == var->root)
1943 rootlist = var->root->next;
1948 while ((cr != NULL) && (cr->rootvar != var))
1955 warning (_("Assertion failed: Could not find "
1956 "varobj \"%s\" in root list"),
1957 var->obj_name.c_str ());
1963 prer->next = cr->next;
1969 /* Create and install a child of the parent of the given name.
1971 The created VAROBJ takes ownership of the allocated NAME. */
1973 static struct varobj *
1974 create_child (struct varobj *parent, int index, std::string &name)
1976 struct varobj_item item;
1978 std::swap (item.name, name);
1979 item.value = value_of_child (parent, index);
1981 return create_child_with_value (parent, index, &item);
1984 static struct varobj *
1985 create_child_with_value (struct varobj *parent, int index,
1986 struct varobj_item *item)
1988 struct varobj *child;
1990 child = new_variable ();
1992 /* NAME is allocated by caller. */
1993 std::swap (child->name, item->name);
1994 child->index = index;
1995 child->parent = parent;
1996 child->root = parent->root;
1998 if (varobj_is_anonymous_child (child))
1999 child->obj_name = string_printf ("%s.%d_anonymous",
2000 parent->obj_name.c_str (), index);
2002 child->obj_name = string_printf ("%s.%s",
2003 parent->obj_name.c_str (),
2004 child->name.c_str ());
2006 install_variable (child);
2008 /* Compute the type of the child. Must do this before
2009 calling install_new_value. */
2010 if (item->value != NULL)
2011 /* If the child had no evaluation errors, var->value
2012 will be non-NULL and contain a valid type. */
2013 child->type = value_actual_type (item->value, 0, NULL);
2015 /* Otherwise, we must compute the type. */
2016 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2018 install_new_value (child, item->value, 1);
2025 * Miscellaneous utility functions.
2028 /* Allocate memory and initialize a new variable. */
2029 static struct varobj *
2034 var = new varobj ();
2038 var->num_children = -1;
2040 var->children = NULL;
2041 var->format = FORMAT_NATURAL;
2045 var->not_fetched = 0;
2046 var->dynamic = XNEW (struct varobj_dynamic);
2047 var->dynamic->children_requested = 0;
2050 var->dynamic->constructor = 0;
2051 var->dynamic->pretty_printer = 0;
2052 var->dynamic->child_iter = 0;
2053 var->dynamic->saved_item = 0;
2058 /* Allocate memory and initialize a new root variable. */
2059 static struct varobj *
2060 new_root_variable (void)
2062 struct varobj *var = new_variable ();
2064 var->root = new varobj_root ();
2065 var->root->lang_ops = NULL;
2066 var->root->exp = NULL;
2067 var->root->valid_block = NULL;
2068 var->root->frame = null_frame_id;
2069 var->root->floating = 0;
2070 var->root->rootvar = NULL;
2071 var->root->is_valid = 1;
2076 /* Free any allocated memory associated with VAR. */
2078 free_variable (struct varobj *var)
2081 if (var->dynamic->pretty_printer != NULL)
2083 gdbpy_enter_varobj enter_py (var);
2085 Py_XDECREF (var->dynamic->constructor);
2086 Py_XDECREF (var->dynamic->pretty_printer);
2090 varobj_iter_delete (var->dynamic->child_iter);
2091 varobj_clear_saved_item (var->dynamic);
2092 value_free (var->value);
2094 if (is_root_p (var))
2097 xfree (var->dynamic);
2102 do_free_variable_cleanup (void *var)
2104 free_variable ((struct varobj *) var);
2107 static struct cleanup *
2108 make_cleanup_free_variable (struct varobj *var)
2110 return make_cleanup (do_free_variable_cleanup, var);
2113 /* Return the type of the value that's stored in VAR,
2114 or that would have being stored there if the
2115 value were accessible.
2117 This differs from VAR->type in that VAR->type is always
2118 the true type of the expession in the source language.
2119 The return value of this function is the type we're
2120 actually storing in varobj, and using for displaying
2121 the values and for comparing previous and new values.
2123 For example, top-level references are always stripped. */
2125 varobj_get_value_type (const struct varobj *var)
2130 type = value_type (var->value);
2134 type = check_typedef (type);
2136 if (TYPE_IS_REFERENCE (type))
2137 type = get_target_type (type);
2139 type = check_typedef (type);
2144 /* What is the default display for this variable? We assume that
2145 everything is "natural". Any exceptions? */
2146 static enum varobj_display_formats
2147 variable_default_display (struct varobj *var)
2149 return FORMAT_NATURAL;
2153 * Language-dependencies
2156 /* Common entry points */
2158 /* Return the number of children for a given variable.
2159 The result of this function is defined by the language
2160 implementation. The number of children returned by this function
2161 is the number of children that the user will see in the variable
2164 number_of_children (const struct varobj *var)
2166 return (*var->root->lang_ops->number_of_children) (var);
2169 /* What is the expression for the root varobj VAR? */
2172 name_of_variable (const struct varobj *var)
2174 return (*var->root->lang_ops->name_of_variable) (var);
2177 /* What is the name of the INDEX'th child of VAR? */
2180 name_of_child (struct varobj *var, int index)
2182 return (*var->root->lang_ops->name_of_child) (var, index);
2185 /* If frame associated with VAR can be found, switch
2186 to it and return 1. Otherwise, return 0. */
2189 check_scope (const struct varobj *var)
2191 struct frame_info *fi;
2194 fi = frame_find_by_id (var->root->frame);
2199 CORE_ADDR pc = get_frame_pc (fi);
2201 if (pc < BLOCK_START (var->root->valid_block) ||
2202 pc >= BLOCK_END (var->root->valid_block))
2210 /* Helper function to value_of_root. */
2212 static struct value *
2213 value_of_root_1 (struct varobj **var_handle)
2215 struct value *new_val = NULL;
2216 struct varobj *var = *var_handle;
2217 int within_scope = 0;
2219 /* Only root variables can be updated... */
2220 if (!is_root_p (var))
2221 /* Not a root var. */
2224 scoped_restore_current_thread restore_thread;
2226 /* Determine whether the variable is still around. */
2227 if (var->root->valid_block == NULL || var->root->floating)
2229 else if (var->root->thread_id == 0)
2231 /* The program was single-threaded when the variable object was
2232 created. Technically, it's possible that the program became
2233 multi-threaded since then, but we don't support such
2235 within_scope = check_scope (var);
2239 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2241 if (!ptid_equal (minus_one_ptid, ptid))
2243 switch_to_thread (ptid);
2244 within_scope = check_scope (var);
2251 /* We need to catch errors here, because if evaluate
2252 expression fails we want to just return NULL. */
2255 new_val = evaluate_expression (var->root->exp.get ());
2257 CATCH (except, RETURN_MASK_ERROR)
2266 /* What is the ``struct value *'' of the root variable VAR?
2267 For floating variable object, evaluation can get us a value
2268 of different type from what is stored in varobj already. In
2270 - *type_changed will be set to 1
2271 - old varobj will be freed, and new one will be
2272 created, with the same name.
2273 - *var_handle will be set to the new varobj
2274 Otherwise, *type_changed will be set to 0. */
2275 static struct value *
2276 value_of_root (struct varobj **var_handle, int *type_changed)
2280 if (var_handle == NULL)
2285 /* This should really be an exception, since this should
2286 only get called with a root variable. */
2288 if (!is_root_p (var))
2291 if (var->root->floating)
2293 struct varobj *tmp_var;
2295 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2296 USE_SELECTED_FRAME);
2297 if (tmp_var == NULL)
2301 std::string old_type = varobj_get_type (var);
2302 std::string new_type = varobj_get_type (tmp_var);
2303 if (old_type == new_type)
2305 /* The expression presently stored inside var->root->exp
2306 remembers the locations of local variables relatively to
2307 the frame where the expression was created (in DWARF location
2308 button, for example). Naturally, those locations are not
2309 correct in other frames, so update the expression. */
2311 std::swap (var->root->exp, tmp_var->root->exp);
2313 varobj_delete (tmp_var, 0);
2318 tmp_var->obj_name = var->obj_name;
2319 tmp_var->from = var->from;
2320 tmp_var->to = var->to;
2321 varobj_delete (var, 0);
2323 install_variable (tmp_var);
2324 *var_handle = tmp_var;
2335 struct value *value;
2337 value = value_of_root_1 (var_handle);
2338 if (var->value == NULL || value == NULL)
2340 /* For root varobj-s, a NULL value indicates a scoping issue.
2341 So, nothing to do in terms of checking for mutations. */
2343 else if (varobj_value_has_mutated (var, value, value_type (value)))
2345 /* The type has mutated, so the children are no longer valid.
2346 Just delete them, and tell our caller that the type has
2348 varobj_delete (var, 1 /* only_children */);
2349 var->num_children = -1;
2358 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2359 static struct value *
2360 value_of_child (const struct varobj *parent, int index)
2362 struct value *value;
2364 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2369 /* GDB already has a command called "value_of_variable". Sigh. */
2371 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2373 if (var->root->is_valid)
2375 if (var->dynamic->pretty_printer != NULL)
2376 return varobj_value_get_print_value (var->value, var->format, var);
2377 return (*var->root->lang_ops->value_of_variable) (var, format);
2380 return std::string ();
2384 varobj_formatted_print_options (struct value_print_options *opts,
2385 enum varobj_display_formats format)
2387 get_formatted_print_options (opts, format_code[(int) format]);
2388 opts->deref_ref = 0;
2393 varobj_value_get_print_value (struct value *value,
2394 enum varobj_display_formats format,
2395 const struct varobj *var)
2397 struct value_print_options opts;
2398 struct type *type = NULL;
2400 gdb::unique_xmalloc_ptr<char> encoding;
2401 /* Initialize it just to avoid a GCC false warning. */
2402 CORE_ADDR str_addr = 0;
2403 int string_print = 0;
2406 return std::string ();
2409 std::string thevalue;
2412 if (gdb_python_initialized)
2414 PyObject *value_formatter = var->dynamic->pretty_printer;
2416 gdbpy_enter_varobj enter_py (var);
2418 if (value_formatter)
2420 /* First check to see if we have any children at all. If so,
2421 we simply return {...}. */
2422 if (dynamic_varobj_has_child_method (var))
2425 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2427 struct value *replacement;
2429 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2433 /* If we have string like output ... */
2436 /* If this is a lazy string, extract it. For lazy
2437 strings we always print as a string, so set
2439 if (gdbpy_is_lazy_string (output.get ()))
2441 gdbpy_extract_lazy_string (output.get (), &str_addr,
2442 &type, &len, &encoding);
2447 /* If it is a regular (non-lazy) string, extract
2448 it and copy the contents into THEVALUE. If the
2449 hint says to print it as a string, set
2450 string_print. Otherwise just return the extracted
2451 string as a value. */
2453 gdb::unique_xmalloc_ptr<char> s
2454 = python_string_to_target_string (output.get ());
2458 struct gdbarch *gdbarch;
2460 gdb::unique_xmalloc_ptr<char> hint
2461 = gdbpy_get_display_hint (value_formatter);
2464 if (!strcmp (hint.get (), "string"))
2468 thevalue = std::string (s.get ());
2469 len = thevalue.size ();
2470 gdbarch = get_type_arch (value_type (value));
2471 type = builtin_type (gdbarch)->builtin_char;
2477 gdbpy_print_stack ();
2480 /* If the printer returned a replacement value, set VALUE
2481 to REPLACEMENT. If there is not a replacement value,
2482 just use the value passed to this function. */
2484 value = replacement;
2490 varobj_formatted_print_options (&opts, format);
2492 /* If the THEVALUE has contents, it is a regular string. */
2493 if (!thevalue.empty ())
2494 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2495 len, encoding.get (), 0, &opts);
2496 else if (string_print)
2497 /* Otherwise, if string_print is set, and it is not a regular
2498 string, it is a lazy string. */
2499 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2501 /* All other cases. */
2502 common_val_print (value, &stb, 0, &opts, current_language);
2504 return std::move (stb.string ());
2508 varobj_editable_p (const struct varobj *var)
2512 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2515 type = varobj_get_value_type (var);
2517 switch (TYPE_CODE (type))
2519 case TYPE_CODE_STRUCT:
2520 case TYPE_CODE_UNION:
2521 case TYPE_CODE_ARRAY:
2522 case TYPE_CODE_FUNC:
2523 case TYPE_CODE_METHOD:
2533 /* Call VAR's value_is_changeable_p language-specific callback. */
2536 varobj_value_is_changeable_p (const struct varobj *var)
2538 return var->root->lang_ops->value_is_changeable_p (var);
2541 /* Return 1 if that varobj is floating, that is is always evaluated in the
2542 selected frame, and not bound to thread/frame. Such variable objects
2543 are created using '@' as frame specifier to -var-create. */
2545 varobj_floating_p (const struct varobj *var)
2547 return var->root->floating;
2550 /* Implement the "value_is_changeable_p" varobj callback for most
2554 varobj_default_value_is_changeable_p (const struct varobj *var)
2559 if (CPLUS_FAKE_CHILD (var))
2562 type = varobj_get_value_type (var);
2564 switch (TYPE_CODE (type))
2566 case TYPE_CODE_STRUCT:
2567 case TYPE_CODE_UNION:
2568 case TYPE_CODE_ARRAY:
2579 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2580 with an arbitrary caller supplied DATA pointer. */
2583 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2585 struct varobj_root *var_root, *var_root_next;
2587 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2589 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2591 var_root_next = var_root->next;
2593 (*func) (var_root->rootvar, data);
2597 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2598 defined on globals. It is a helper for varobj_invalidate.
2600 This function is called after changing the symbol file, in this case the
2601 pointers to "struct type" stored by the varobj are no longer valid. All
2602 varobj must be either re-evaluated, or marked as invalid here. */
2605 varobj_invalidate_iter (struct varobj *var, void *unused)
2607 /* global and floating var must be re-evaluated. */
2608 if (var->root->floating || var->root->valid_block == NULL)
2610 struct varobj *tmp_var;
2612 /* Try to create a varobj with same expression. If we succeed
2613 replace the old varobj, otherwise invalidate it. */
2614 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2616 if (tmp_var != NULL)
2618 tmp_var->obj_name = var->obj_name;
2619 varobj_delete (var, 0);
2620 install_variable (tmp_var);
2623 var->root->is_valid = 0;
2625 else /* locals must be invalidated. */
2626 var->root->is_valid = 0;
2629 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2630 are defined on globals.
2631 Invalidated varobjs will be always printed in_scope="invalid". */
2634 varobj_invalidate (void)
2636 all_root_varobjs (varobj_invalidate_iter, NULL);
2640 _initialize_varobj (void)
2642 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2644 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2646 _("Set varobj debugging."),
2647 _("Show varobj debugging."),
2648 _("When non-zero, varobj debugging is enabled."),
2649 NULL, show_varobjdebug,
2650 &setdebuglist, &showdebuglist);